LegloT: Ledgered Trust Management Platform
for IoT

Jens Neureither!, Alexandra Dmitrienko?, David Koisser!, Ferdinand Brasser!,

and Ahmad-Reza Sadeghi!

! Technical University Darmstadt, Germany jens.neureither@gmail.com
{david.koisser,ferdinand.brasser,ahmad.sadeghi}@trust.tu-darmstadt.de
2 University of Wiirzburg, Germany alexandra.dmitrienko@uni-wuerzburg.de

Abstract. We investigate and address the currently unsolved problem
of trust establishment in large-scale Internet of Things (IoT) networks
where heterogeneous devices and mutually mistrusting stakeholders are
involved. We design, prototype and evaluate LegloT, a novel, probabilis-
tic trust management system that enables secure, dynamic and flexible
(yet inexpensive) trust relationships in large IoT networks. The core
component of LegloT is a novel graph-based scheme that allows network
devices (graph nodes) to re-use the already existing trust associations
(graph edges) very efficiently; thus, significantly reducing the number of
individually conducted trust assessments. Since no central trusted third
party exists, LegloT leverages Distributed Ledger Technology (DLT) to
create and manage the trust relation graph in a decentralized manner.
The trust assessment among devices can be instantiated by any appro-
priate assessment technique, for which we focus on remote attestation
(integrity verification) in this paper. We prototyped LegloT for Hyper-
ledger Sawtooth and demonstrated through evaluation that the number
of trust assessments in the network can be significantly reduced — e.g.,
by a factor of 20 for a network of 400 nodes and factor 5 for 1000 nodes.

Keywords: trust management, blockchain, remote attestation

1 Introduction

The Internet of Things (IoT) is a technology trend that promises to bring our
life standard to a revolutionary new level. The key aspect of IoT are smart
“things” that connect physical objects, such as home appliances, vehicles, and
smart city objects (parking lots, traffic lights, etc.) to the digital world through
various sensors and communication interfaces. In this context, there is a grow-
ing importance of applications where IoT devices from various parties need to
collaborate with each other. Examples can be found in smart energy grids [50],
smart factories allowing for the automatic assembly of customized products [23],
up to sensors and actors enhancing various cases, like smart locks [44].

At the same time, the deployment of large IoT networks will lead to new
threats. Malicious behavior and corrupted devices by one party can have dev-
astating effects on the entire system. Attacks on smart meters [42] or smart

2 J. Neureither et al.

locks [18] show how liability is already a concern in these systems. Worse, attacks
on Industrial Control Systems (ICS) are increasing in number and sophistica-
tion in recent years [26] and have grave security implications, like Stuznet [35]
demonstrated. Thus, it is essential to have appropriate security mechanisms in
place, which allow connected devices to establish trust relationships in the net-
work. However, such trust relations are challenging to build and maintain, as we
explore in the following.

Challenge 1: The large number of devices and their heterogeneity in terms of
capabilities—due to different hardware and software architectures—complicate
any attempts to use unified schemes for trust establishment.

Challenge 2: TIoT networks interconnect devices produced, owned and controlled
by many different parties, which are typically mutually mistrusting. Hence, so-
lutions should not solely rely on a central entity, which needs to be trusted by
all stakeholders and represents a single point of failure.

Challenge 3: Establishing trust in a scalable manner without a central author-
ity is difficult. For example, methods based on pairwise trust links do not scale
to large networks. Furthermore, if devices handle their individual trust estab-
lishment processes independently, the results within their limited point of view
are a lot less significant compared to a scenario where information is shared
throughout the network.

Trust Establishment. Existing trust establishment methods enable entities to
gain trust into other entities in the system through either behavioral monitoring
and detection of abnormal activities [14,25], or by means of a stronger type of
trust indicator, such as cryptographic keys or attestation evidence—a primitive
underlying Remote Attestation (RA), a key concept of Trusted Computing tech-
nology [41]. Behavioral monitoring can only detect malicious devices that deviate
from the expected behavior, but are ineffective against malicious entities that
play along established rules. Cryptographic keys help to tell apart malicious and
benign devices; however, keys lose their benefits if the platform is compromised.
In contrast, RA was specifically designed to allow an entity to remotely verify
the state of another system and decide whether it is compromised in a process
called platform measurement [3]. Typically, attestation assumes the existence of
a trusted component, ranging from simple ROM to cryptographic co-processors.

However, RA is designed to work in a device-to-device fashion and does
not scale well to large deployments. For instance, attempts to scale RA to large
networks [30, 33, 34, 10] have limitations, such as the inability to build trust rela-
tionships between individual devices dynamically when they are needed. Instead,
groups of devices can only be attested statically in their entirety. In swarm at-
testation schemes [11,9,16], this leads to high workloads on individual devices
and requires a trusted central entity.

Trust Management. Trust management schemes rely on underlying trust es-
tablishment methods and manage available trust information in the system.
Existing solutions can be divided into two categories: Recommendation and
evidence-based [36]. The first category relies on recommendations from inter-
mediaries to establish the trust relationship between two strangers [5,51] and

LegloT: Ledgered Trust Management Platform for IoT 3

is well-suited for decentralized systems. Nevertheless, they cannot provide trust
establishment on demand between arbitrary nodes, since the existence of inter-
mediate trust links is required but cannot be guaranteed. The second category
of evidence-based systems can be used for trust establishment on demand. How-
ever, they either rely on trusted third parties [22,27], or on out-of-band chan-
nels [47,21] to disseminate trustworthy information, and hence, are not suitable
for large-scale networks of devices controlled by mutually mistrusted parties.

To the best of our knowledge, state-of-the-art distributed trust management
systems cannot satisfy both the decentralized setting and on-demand trust es-
tablishment at once—a limitation we aim to address in this paper.

Contributions. In particular, we make the following contributions:

— We propose LegloT, a trust management framework that can leverage var-
ious evidence-based methods for trust establishment to enable interoper-
ability among heterogeneous devices (addressing challenge 1). It builds and
maintains trust information in a system-wide fashion by managing dynamic
(recommendation-like) trust chains across the network. As such, LegloT
combines recommendation and evidence-based approaches in one system.

— LegloT enables on-demand trust establishment between mutually mistrusted
devices, even if no intermediate trust relations pre-exist. In its heart, LegloT
has a novel graph enlargement algorithm, which adds new trust links to the
system, while maximizing their re-usability to benefit the entire network.
Our evaluation results demonstrate that the overall number of trust estab-
lishment processes can be significantly reduced (challenge 3), e.g., by as much
as a factor of 20 for a network size of 400 and a factor of 5 for 1000 nodes.

— LegloT utilizes Distributed Ledger Technology (DLT) to store, manage and
process trust information, which enables mutually mistrusting parties to
participate in the network (challenge 2). DLT is the previously missing piece
of the puzzle that allows us to blend evidence-based and recommendation-
based approaches to inherit advantages of both worlds: On-demand trust
establishment and a decentralized setting. We instantiated LegloT using

Hyperledger Sawtooth and published the implementation as open source®.

2 System Model

Our system model involves the following entities: (i) IoT devices D operating in
a collaborative environment; (ii) device owners O; (iii) device manufacturers M,
and (iv) distributed ledger £. IoT devices D are manufactured by M, and dif-
ferent devices d;, d; € D can be manufactured by different m € M. We assume
that &; € D has the means to establish trust relations with another 4 € D, e.g.,
through known characteristics of its benign behavior or via remote attestation,
and fulfills the requirements of the deployed trust mechanism. The distributed
ledger L is a tamper-proof append-only data structure, which is maintained co-
operatively by a distributed network of ledger validators. We assume that £

3 Available under the link: https://github.com/legiot/LegloT

4 J. Neureither et al.

has the ability to store integrity-protected data and execute programs provably
correct through so-called smart contracts [15]. £ is operated by a consortium
of the stakeholders, which can include the owners O, device manufacturers M,
as well as external entities like consumer advocacy organizations or government
agencies. The parties maintaining £ are mutually distrusting but we assume
that only a minority of parties are malicious. New consortium members require
a collective agreement by the consortium to participate, e.g., by vetting new
members before admission, to prevent a party to gain disproportionate voting
power.

Adversary Model. We assume that device manufacturers M are trusted to
produce non-malicious hardware and firmware for IoT devices D and to provide
correct information helping to verify that they are in the trusted state (e.g.,
benign software and hardware configurations). We also assume that devices D
are initially trusted and are not infected prior deployment. After deployment,
devices might be compromised. We denote an adversary by A. At the network
layer, we consider the Dolev-Yao model where A has unlimited access to the
network [19,17]. A is unable to break cryptographic primitives but can per-
form both passive attacks such as eavesdropping and active attacks like message
spoofing and replaying. Through these capabilities, the adversary can further run
arbitrary malware on devices D. Furthermore, we inherit any assumptions from
the underlying trust establishment mechanisms, e.g., many attestation schemes
assume a trust anchor on the device.

Moreover, we rule out Denial-of-Service (DoS) attacks, as it is a common
assumption in the context of trust management literature. Additionally, we as-
sume an attacker is not able to compromise and leave devices without traces
instantaneously. We refer to this phenomenon as a fast roaming adversary and
argue, that an attacker at least needs the time 7 to restore the uninfected state
of a device and hide his prior presence.

3 LegloT Design

LegloT is a trust management framework that enables network participants to
query trust information on demand. In a nutshell, our system builds and uses
indirect trust relationships between devices via a trust relation graph. The intu-
ition is, if the trustworthiness of a device 4; was successfully verified by 4, and
another device 4¢ € D wants to assess the trustworthiness of 4; shortly after, 4
can gain indirect trust into 4;. This concept can be extended to consider more
devices, and thus can build trust chains, which in turn can be combined into a
trust graph. This graph is calculated and managed by LegloT using Distributed
Ledger Technology (DLT). This avoids a single point of failure and enables mutu-
ally mistrusting parties to reach consensus about the trust graph without relying
on a central authority.

Figure 1 shows an exemplary deployment of a new device 4 and its integra-
tion into the trust graph. In Step 1, a device manufacturer m € M registers

LegloT: Ledgered Trust Management Platform for IoT 5

3. Manufacture HOI
device d 2. Register Distributed i
device type, version Ledger E —l 7 Trust
lish
1. Manufacturer = tablishment (8
registration AP E
Smart C
Contract 6. Register d ﬂ I
""" - - 5. Deploy
Device Manufacturers M 4. Sell device & Owner 0, deviced Owner 0

Fig. 1. Example of deploying a new device and integrating it into the trust graph in a
collaborative environment.

itself on the distributed ledger £. Additionally, m submits universal information
about its devices required to publicly verify them by any party—mnamely, their
trustworthy configurations or trustworthy behavioral characteristics (Step 2).
After the owner o, sets up and configures the device 4 acquired from m (Step 3,
4 and 5), o, registers this individual deployment of 4 on £ (Step 6), allowing any
party to access the stored information to make their own trust assessments. The
owners O are mutually mistrusting, so at some point there will be a request to
establish trust in 4 by a device of another owner o; in Step 7. After accessing all
the necessary information from £ to evaluate the trustworthiness of &, the result
of this trust assessment is committed to £ (Step 8). In Step 9, The ledger £ then
integrates this evidence into the trust graph via a smart contract.

Through the trust graph, £ can serve queries regarding the trustworthiness
of a device from any party. In such an instance we call the targeted device
the prover Prv and the requesting party the verifier %7f. The smart contract
handling the trust query then tries to find a continuous trust path to the Pro,
which may possibly consist of multiple hops. Whenever a prover’s trust score
is requested and no path exists, the Vrf will not perform a trust assessment of
the device directly. Instead, it will follow suggestions of the trust management
framework, which will find a ?rv,, as an optimal entry point into the trust
graph. The trust link established from the suggested entry point will produce a
valid trust path, while including as many devices as possible in between. Thus, a
single trust evaluation process will result in gaining trust into several devices at
once: the prover Prv at the end of the trust path and implicitly into all devices
along the path from the prover node. We elaborate on the concept of indirect
trust in Section 3.1. Hence, in the long-term, the number of individual trust
establishment processes among devices can be largely reduced.

3.1 Theoretical Foundations

In the following, we define the notion of indirect trust relationships. Afterwards,
we define a graph-based representation of trust relationships, elaborate on the
idea of trust chains and propose methods for their valuations.

6 J. Neureither et al.

Indirect Trust. The notion of trust and indirect trust relationships was exten-
sively studied in the context of social networks [31, 53]. Generally, the concept of
trust is not transferable via multiple entities, which makes it non-trivial to ap-
ply the notion of indirect trust to a system. For this purpose we refer to Jgsang
et al., who introduced the notions of functional and referral trust [31]. Both
referral and functional trust can be direct an indirect. In addition, each trust
link is assigned a scope o. Figure 2 depicts how referral trust can be combined
with direct functional trust to derive indirect functional trust. Here, Alice wants
to buy bread from the baker Charlie and relies on the recommendation of her
friend Bob regarding the trust scope, bread quality (o). To enable indirect trust
chains with multiple hops, two important requirements must be fulfilled. First,
the Functional Trust Derivation Criterion states that ”referral trust requires
that the last trust arc represents functional trust and all previous trust arcs rep-
resent referral trust” [31]. Second, the Trust Scope Consistency Criterion states
that a "trust path requires that there exists a trust scope which is a common
subset of all trust scores in the path. The derived trust scope then is the largest
common subset.” [31].

indirect functional trust o

(3]

a direct referral trust o a direct functional trust o e
- a7 @

Alice recommendation gy Charlie

Fig. 2. Example regarding the process of gaining indirect functional trust.

Yu et al. define T;(5)? as the “trust rating assigned by agent i to agent j at
time t” [53]. We extend this definition in a way, that it also includes the trust
scope o between agent i and agent j: T;(j, o). Further, we constrain:

0 < Ti(j,0)" <1 and T;(j,0)° = 0. (1)

Regarding trust propagation, the following rule holds for an indirect trust chain
r = y = z [5b3]:

(To(2,0)™ < Tuly, 0)") A (Tu(2,0)™ < Ty(2,0)") 2)
To satisfy this rule, multiplication can be used for determining indirect trust [53]:
Ty (2,0)"*! = Tu(y,0)" Ty(z,0)" (3)

Trust Scope. The trust scope ¢ plays an important role in trust paths as it
defines what the subject of a relationship actually is. Of particular interest is

LegloT: Ledgered Trust Management Platform for IoT 7

the question of whether evidences enable referral trust, functional trust or both.
Devices may or may not provide referral trust, and the actual scope depends on
the underlying scheme that is used for trust establishment. Generally, LegloT
can rely on various trust establishment methods.

Let us take remote attestation as an example, which can be classified into four
groups. (i) software-based attestation schemes [45, 3] aim to not rely on specific
hardware components, while (ii) hybrid architectures [20,32], (iii) hardware-
based architectures [41,43], and (iv) control flow attestation [2,4] leverage hard-
ware trust anchors. Hence, they provide different levels of resilience against com-
promise and vary in trust scope. We provide a more thorough discussion on the
various attestation schemes in Appendix A.

Trust Graph and Trust Chains. To represent the trust graph of a system,
we consider a directed and weighted graph (D,E). D is the set of all devices
participating in the network. represents the set of all established trust links
which create the edges in the graph?. The idea behind trust chains implies that
devices do not necessarily need to be assessed directly. Instead, it suffices that
a verifier evaluates any vertex d € 9D where a path ps_, s, exists, if the following
constraints apply:

1. Path Scope: ps_ e, fulfills the scope criteria o (cf. Section 3.1 Trust Scope).

2. Trust Scope: 4 must be eligible for referral trust.

3. Temporal Edge Validity: All edges in the resulting path pyy_,p, must still
be considered valid at the time of calculation.

The validity of edges is strongly bound to the temporal proximity 7 of the
trust evaluation process and the usage of the trust evidence 7 = T, — Topar- Tuse
is the time regarding the usage of the evidence and 7, its inception). After
a device was evaluated successfully, it might be compromised by adversaries.
Thus, the resilience and significance of edges vanishes over time. We define a
time threshold 7,,,, assuming an adversary requires some time to progressively
compromise devices in the network. As long as 7 < 7, the evidence is fully valid.
Afterwards, the probability of an attack increases the longer the device was not
checked. Therefore, the validity decreases according to a time function v(7). We
also define the expiration time 7,. After this time evidences are considered
invalid.

Trust Chain Valuation. As a first step of a path valuation, the weight of
a single edge is calculated. In addition to temporal validity, the valuation is
also influenced by the resilience of an underlying trust evaluation scheme (cf.
Section 3.1 Trust Scope). The reliability function r for a trust evaluation method
type Eval produces a probabilistic result r(Eval) € [0, 1]. Together, the combined
edge reliability f(7, Eval) can be calculated as follows:

f(7, Eval) = v(7) * r(Eval) (4)

4 An edge is equivalent to a direct trust rating T} (j) of two nodes; yet, we simply use
e € E for better readability.

8 J. Neureither et al.

Distributed Ledger

|
trust A trust path, 1) entry point, 8] 3) submit
query path score path score evidence

2) evaluate N g

ﬂ—wnn—»

Prv

Vaux

Fig. 3. Illustration of an exemplary trust query, sent by Vrf.

The resulting value expresses the probability that the targeted node is in a trust-
worthy condition from the point of view of the verifying node. To chain the
reliability of multiple sequential edges on a path together, we use the findings
from Equation (3). Based on this, the probability weights can be multiplied for
each edge e in path p:

) =TT/ (). zoat(0)) (5)

ecp

3.2 Protocols and Algorithms

We now proceed to describe protocols and algorithms based on the concepts
described in the previous section.

System Initialization and Administration. Prior to deployment, multiple
databases containing administrative data need to be initialized. In particular,
every manufacturer M maintains a Policy DB on the ledger £, which includes
information about their devices as well as information to evaluate their state.
Furthermore, an owner O needs to submit four databases to the ledger £: (i) Sys-
tem Settings DB, (ii) Device DB, (iii) Verifier DB, and (iv) Trust Evaluation Meth-
ods DB.

System Settings DB includes system-wide settings, such as a security param-
eter denoting the maximum path distance between Prv and Vrf. The Device DB
maps a device identity (represented by public keys) to a device described in Pol-
icy DB. Verifier DB contains entities that are not included in Device DB; yet, are
permitted to act as verifiers. These could be, for instance, external entities such
as device owners. Trust Evaluation Methods DB stores parameters for each trust
evaluation method, such as reliability score and timing characteristics, which
denotes how fast the validity of an established trust evidence vanishes over time.

Trust Query. The trust query protocol offers an interface to query the state of
another device. The protocol is depicted in Figure 3. It is called by a verifier with

LegloT: Ledgered Trust Management Platform for IoT 9

an identity IDyy that requests to establish trust into a prover with IDeg,,. The
query is represented by the transaction trustQuery(IDy,y, 1Dg,, minReliability).
With minReliability the verifier can specify the lower bound of the final trust
score the path is allowed to have. LegloT continues with the following steps:
(i) Verify that IDg,, and IDyy are found in Device DB or Verifier DB; (ii) run a
graph search algorithm (cf. Section 3.2 Graph Search Algorithm) with param-
eters (IDyy, [Dpr,, minReliability, secParameter) where the secParameter de-
notes the maximum permitted path length; (iii) if a path exists with the desired
minReliability, it is returned to the verifier (case A in Fig. 3).

If no path exists, an optimal entry point is returned according to the Graph
Enlargement Policy (GEP) presented in Section 3.2 Optimal Entry Point (case
B, Step 1 in Fig. 3). 91f then proceeds to execute the trust evaluation process
(Step 2) and submits the collected evidences (Step 3). Included in the submission
is the obtained trust score Sy, ¢, the trust evaluation method Zwval, and the
prover’s device class as well as its version regarding the Policy DB.

Graph Search Algorithm. To search the graph for an existing path in between
Prv and Vrf, LegloT uses limited-depth breadth-first search with the parameters
IDyys, Dy, minReliability, and secParameter. The functionality is described
in Algorithm 1. The algorithm searches the graph for a direct path between Vrf
and Prv. The expand operation in line 10 denotes the listing of all predecessors
for a given node that were not visited, yet. Fringe denotes the frontier of nodes
that were already visited by a search algorithm. Nodes in the fringe directly
border to nodes that were not yet visited and will be expanded next. Any valid
path found (multiple may exist) will result in a positive trust assessment and the
found path is returned. Otherwise, Algorithm 2 is called in line 22 to calculate
the best entry point (described in Section 3.2 Optimal Entry Point).

Optimal Entry Point. If a trust query is issued and no path between Prv and
the V1 exists, the system needs to integrate ¥rf to the trust graph in a way that
it will be able to reach Prv through a valid path. We use a GEP to determine a
node, which the verifier is supposed to evaluate. The idea behind this policy is to
create and use the synergy effects of individual trust evaluation processes. The
longer the path between verifier and prover is, the more likely it is that a path
already exists for subsequent queries and no new trust evaluation is necessary.
The algorithm for the entry point calculation is described in Algorithm 2. The
task of the GEP is to find an entry point in the graph that meets the following
conditions:

— Validity: The entry point enables at least one valid path to the prover.

— Distance: The entry point has the maximal hop distance to the prover that
is permitted by the secParameter.

— Optimality: For multiple entry points at a given distance, the option with
the highest resulting trust score is chosen.

10 J. Neureither et al.

Algorithm 1 BuildPath function for establishing a path between 7rf and Prv
(shortened)

Input: vf, Prv, minReliability, secParameter
Output: pathFound, path, pathReliability, entrypoint
1: fringe{} « Prv

2: newFringe{} + 0

3: mazDepth + (secParameter — 1)

4: visited[] < 0

5: currentDepth <+ 0

6

7

8

9

: path[] < 0

: rating[] «+ 0

: while currentDepth < maxDepth do
: ‘ for node in fringe do

10: expanded < expand(node)

11: for (newEdge, parent) in expanded do

12: ‘ edgeReliability < reliability (newEdge)
13: | path[parent] « path[node] U newEdge
14: | rating[parent] < rating[node] - edgeReliability
15: ‘ visited < visited U parent

16: | newFringe «+ newFringe U parent

17: if Vf € expanded then

18: | return true, path[¥if], rating[Vif], 0

19: currentDepth < currentDepth + 1

20: fringe < newFringe

21: newFringe < (

22: entrypoint + CalculateEntryPoint(visited, minReliability)
23: return false, pathlentrypoint], rating[entrypoint], entrypoint

Algorithm 2 Calculate EntryPoint sub-algorithm to determine the best pos-
sible graph entry point

Input: wvisited, minReliability
Output: entrypoint

. for candidate in visited do
| if reliability(candidate) < minReliability then
‘ ‘ delete candidate
sortByReliability (visited, descending)
sortBySearchDepth(visited, descending)
entrypoint < visited[0]
return entrypoint

4 Prototype Implementation

We implemented LegloT based on Hyperledger Sawtooth, a framework for dis-
tributed ledgers [28]. The Hyperledger functionality is implemented in Python
and consists of about 2900 LoC. It is included in the Transaction Processors
(TP)—Sawtooth’s equivalents of smart contracts in public blockchains. Three
of them are provided by Sawtooth framework itself. Settings TP implements a
voting-based administration of system settings among validators. Furthermore,
Identity and Settings TPs manage permissioning of both validators and clients.
Block-Info TP enables access to historic ledger-specific data such as latest block
number and current timestamp in the context of transaction processing. Our
implementation is included in the next two TPs described. Trust TP builds the
core component of LegloT and includes all application logic for handling sub-

LegloT: Ledgered Trust Management Platform for IoT 11

mitted evidences and calculating paths for trust queries (Algorithm 1 and 2).
Administration TP handles updates of the databases described in Section 3.2.

The Client side of LegloT is implemented in two modules. (1) AdminClient
serves administrative tasks, such as initialization of system parameters and pop-
ulating databases (cf. Section 3.2 System Initialization and Administration).
(2) loTclient is used to execute the trust query protocol as described in Sec-
tion 3.2 Trust Query. Both clients are written in Python and consist of 1200 and
900 LoC, respectively, and are available as open source?.

Additionally, we ported loTclient to C to run it on the LPC55S69-EVK eval-
uation board from NXP. The board is based on ARM Cortex-M33 processor and
includes the ARM TrustZone security architecture [8], which provides the nec-
essary hardware features to support hybrid RA methods such as TrustLight [32]
and SMART [20]. Furthermore, we implemented a middlebox to translate Mes-
sage Queuing Telemetry Transport (MQTT)® requests issued by the board into
HTTP requests processed by Hyperledger. The C version of the client contains
some proprietary libraries, which prohibits us to open source it. We are willing
to share it upon request for non-commercial use.

5 Evaluation

Within this section, we evaluate how LegloT is able to enhance the trust evalu-
ation performance compared to a scenario without trust management. If a trust
path from Vrf to Prv already exists, zero trust evaluation processes are needed
to establish trust, which we call a trust query hit. If there is no valid path, one
trust evaluation process must be carried out to the entry point, called a trust
query miss. The goal is to maximize the hit percentage, which we define as:

TrustQueryHits

100
(TrustQueryHits + TrustQueryMisses) *

HitPercentage =

Parameters. Several factors influence the hit percentage. Unless otherwise spec-
ified we use the following parameter values. The network size N is set to 200
and the minReliability to 0.80. The edge reliability function is set to:

(7, Eval) = —0.0006666667 * = + 1.2

Further, we use 7., = 300s and 7, = 600s. Attacks in the wild like on Industrial
Control Systems (ICS) [26] last over weeks, with a stealthy adversary trying to
take over large parts of a network. Coupled with the fact that the adversary
will not know when the next attestation towards compromised devices will take
place, the system can certainly protect the network in its entirety with the chosen
time parameters.

Note that LegloT has an initialization phase before entering a normal op-
eration phase. To ensure that the operation phase is reflected within the eval-

uation, simulation duration = 1200s and query rate = % are set accordingly.

® http://mqtt.org/

12

J. Neureither et al.

Additionally, simulations are repeated five times by default. Between simulation
repetitions, the trust graph is not reset in order to reflect long-time operation.

100

90

80

Hit Percentage

70

100

Minimal Reliability = 0.80 —_—t
Minimal Reliability = 0.85 —
Minimal Reliability = 0.90 ——
Minimal Reliability = 0.95

604/,

95

90

85

80

Security Parameter = 3 ——
Security Parameter = 6 —>¢
Security Parameter = 9 —&—

! ! ! ! ! ! ! ! !

50 !

3 4

75

100 200 300 400 500 600 700 800 900 1000

Security Parameter Number of Nodes

Fig. 4. Effects on the hit percentage for different minimal reliability parameters (left)
and for increasingly larger networks with different security parameters (right).

Security Parameter Variation. The security parameter denotes the maxi-
mum permitted number of hops between ¥if and Prv on a trust path. In the
following, we vary the security parameter from zero to five, where zero matches
a case without using our system. Figure 4 on the left shows the influence of a
larger security parameter. A minReliability = 0.80 and a security parameter
of three already boosts the hit percentage to approximately 93%. This means
that in 100 trust queries only 7 fresh trust assessments are needed. It is impos-
sible for the hit percentage to reach 100% because evidences expire and need to
be renewed. Thus, we state that a horizontal asymptote exists which the curve
approaches. This asymptote changes depending on the other parameters.

Minimal Reliability Variation. In Figure 4 on the left we display graphs
for four different minimal reliabilities ranging from 0.80 to 0.95. Generally, lower
required reliabilities result in a higher hit percentage. It can be observed that the
higher the minimal reliability is, the faster the function approaches an asymptote.
While the curve of ’0.95” does not improve from security parameter 3 on, the
curves ’0.9” and ’0.85 still profit from increasing the value. This phenomenon
results from the fact, that the individual edge reliabilities are multiplied for the
total reliability score. Thus, for a path that uses a higher security parameter
the product of edge probabilities is lower than for a path that is only expanded
regarding a lower security parameter.

Network Size Variation. To model different network sizes, we vary the num-
ber of nodes from N = 25 to N = 1000. Additionally, three different security
parameters are tested with all network sizes. Results are depicted in Figure 4 on
the right. With the security parameter set to 6 and N = 400 a hit percentage of
95% is achieved (a reduction by a factor of 20) and 80% for N = 1000 (factor
5).

LegloT: Ledgered Trust Management Platform for IoT 13

All curves have in common that a network enlargement lowers the hit per-
centage. This can be explained by the fact that if the graph grows, it is less
probable that a random verifier and prover are located in the same area. To
overcome the increasing distance, a higher security parameter has a positive
impact. The curves with less-restrictive hop limitations (Security Parameter 6
and 9) descend more significantly at higher network sizes than the curve with
Security Parameter 3. The curves for parameters 6 and 9 are nearly equal. This
phenomenon is explained by the fact that the minimal reliability of '0.8" also
limits search depth indirectly, due to multiplication of individual edge reliabili-
ties. There is a high probability that the overall path reliability falls below 0.8’
at a certain length. In order to make use of a greater security parameter, the
minimal reliability must be lowered or a better suited path reliability calculation
method must be used. While we stated that LegloT does not profit from secu-
rity parameter increases at a certain point in the context of minimal reliability
limitations, it can still be useful to compensate for network size effects.

Edge Reliability Function Variation. Any arbitrary function can be used
to describe desired time validity behavior. For exemplary purposes, we assume
that the supported trust evaluation methods are different types of attestation
schemes, which we described in Appendix A. They can be mapped to linear
functions with different validity periods. Functions are noted in the format
[Time function, T, Texp]' All functions degrade linearly from ’'1’ between 7,
and 7Z,,. They vary in their gradient as well as in validity periods. Short-lived
functions like [—0.003333333 * = + 1.2,60, 120] reflect attestation types with
weaker resilience such as software-based attestation. On the contrary schemes
like control-flow attestation with stronger resilience against compromise might
use functions with high validity for a long duration such as [—0.000333333 x = +
1.2,600, 1200].

100 T

[0.003333333* + 1.2, 60, 120] ——
[-0.0006666667*x + 1.2, 300, 600] ——
[-0.0003333333*x + 1.2, 600, 1200]
L
[
L

Hit Percentage

0.001666667*x + 1.5, 300, 600]
0.003333333*x + 2, 300, 600]
-0.001666667*x + 2, 600, 1200]
50 I I
1 2 3 4 5

Security Parameter

i

Fig. 5. Hit percentage effects regarding selected edge reliability functions.

In Figure 5 we show how variations of these function parameters influence
hit percentages with different security parameters. The first three functions that
all degrade from ’1’ to ’0.8” within their degeneration phase offer similar charac-
teristics. As expected, the function with the longest validity achieves the highest

14 J. Neureither et al.

hit percentages. It is noticeable, that the slowly descending functions profit from
higher security parameters. Altogether, function differences in most cases have
less impact the higher the security parameter is. Even though validity times are
varied by the factor of ten, the hit percentage difference is less than 10%.

6 Security Analysis

In this section, we informally analyze possible attack vectors on LegloT, explain
their impact, and if needed, their mitigation. Our analysis focuses on LegloT
itself without taking into account potential security weaknesses of underlying
technologies (e.g., distributed ledgers or crypto primitives).

Evidence Spoofing. The adversary may submit faulty evidence as he imper-
sonates a verifier. Nevertheless, these edges are only used if another (honest)
device evaluated the adversary’s device to complete a trust path. As the device
is infected, the trust evaluation method reports a lack of trust and no path is
established. Thus, spoofed evidence is never used when considering the present
attacker model that excludes fast roaming adversaries.

Roaming Adversaries. A roaming adversary is the one that infects the device
to forge the trust evidence for a malicious node and leaves the device with no
traces. If positively evaluated by another honest verifier while the forged evidence
is still valid, trust is gained in the malicious node and in all other nodes connected
to it. An attacker could use this strategy to create a great number of trust links to
devices infected by him via one single device. Our system provides probabilistic
protection against this attack vector. First, our attacker cannot leave devices
without traces in no time (cf. Section 2). Second, he cannot know for sure when
the next evaluation towards his device will take place, limiting his chances to
succeed. Third, the estimated minimal compromise time 7,,;, and the temporal
edge validity function further restrict the motion range an adversary has.

Device Infection in Validity Period. A device can possibly be infected during
the validity period of evidence created for it as a prover. Therefore, evidences
towards the device might still exist even if it was corrupted in the meantime. The
uncertainty of whether an infection happens in the validity period of an evidence
is again reflected by T, T, as well as the temporal edge validity function. Thus,
the risk can be controlled by setting these parameters.

Timestamp Attacks. If timestamps can be forged or manipulated, system
correctness is highly endangered. One important precaution is that timestamps
are added by the Validator nodes that run the ledger. Using time from verifying
devices as a timestamp would cause issues since this would require them to have
a synchronized real-time clock, which is hard to implement in practice in the
targeted setting. However, a malicious verifier could carry out a trust evaluation
process for an honest prover and withhold this trust evidence. He might keep the
evidence, infect the prover device and then submit the valid evidence. As a result,
a valid evidence for a malicious device exists in the graph. Similar to evidence
spoofing, the trust edge alone is not sufficient to convince other devices of the

LegloT: Ledgered Trust Management Platform for IoT 15

correctness of a prover. At the point where other verifiers try to build trust into
the prover, the path leads via the corrupted verifier that uploaded the evidence.
Another attack may be compromising a single Validator node. Here, in order to
enforce deterministic transaction results, other Validators are unable to check
the timestamps generated by the block creator since they never match exactly.
To prevent this, Sawtooth offers rules that enforce timestamp monotonicity and
a roughly synchronized network time [29].

Sneaky Hopping Attack. With sneaky hopping, an adversary tries to predict
the next system actions to stay undetected. He always tries to compromise de-
vices that will most likely not be attested in the near future. This also requires
the adversary to be roaming but he has more time to infect, leave and hide traces
(slow roaming). For LegloT this is not applicable since it is unpredictable which
evidence will be added or trust score queried next. Both evidence submission
and trust query are initiated by entities whose decisions are out of range of the
attacker.

7 Related Work

Trust Management. Trust Management is an important issue in distributed
systems, which aims to track the trustworthiness of all individual devices in an
up-to-date fashion. A key work in this field was proposed by Blaze et al. [13],
which first tackled the problem of decentralized trust beyond the verification of
certificates. The work of Abdul-Rahman and Hailes [1] then introduced the no-
tion of a recommendation-based trust model, in which recommendations help
to establish trust between two strangers. Another class of trust models de-
rive trust based on evidence, such as cryptographic keys, and typically rely
on trusted parties (e.g., for key distribution). Examples are the resurrecting
duckling model [47], Pretty Good Privacy (PGP) [21] and the X.509 certifi-
cate [27] systems. Our approach is a combination of both recommendation- and
evidence-based approaches. It relies on attestation evidences and indirect trust
links built using recommendations, while enabling dynamic and on-demand trust
establishment in networks between heterogeneous devices controlled by mutually
mistrusting parties. Furthermore, it can leverage a stronger type of trust indi-
cator, such as attestation evidence, which enables the detection of compromised
devices. Our trust establishment is also directly applicable from a single request,
in contrast to systems that need to converge over multiple recommendations,
like bayesian trust models [49].

Another line of work in the area of trust management targets ad-hoc net-
works [37,14], which are dynamic and do not typically include trusted third par-
ties. Such systems work by nodes disseminating trust information about other
nodes through the network. Trust judgments are made by monitoring neigh-
boring nodes and identifying suspicious behavior. In contrast, LegloT relies on
a stronger type of evidence that can detect compromised devices, even if they
behave correctly. Furthermore, trust information is stored and managed on a

16 J. Neureither et al.

distributed ledger, and thus nodes do not need to constantly disseminate infor-
mation among peers.

DLT-based Intrusion Detection. Research papers [25, 46, 7, 38] deal with the
question of whether distributed ledgers can be leveraged for detecting anomalies
and isolating untrusted devices. All these systems rely on behavioral monitoring
for trust establishment and maintain reputation scores for network nodes, while
LegloT can leverage stronger underlying trust establishment methods, such as
remote attestation, and provides means to utilize indirect trust relationships.

DLT-based Trust Management. Recently, DLT-based trust management
systems were developed to support authentication systems [6,39]. Similarly to
LegloT, they use distributed ledgers to manage trust information in the system,
but rely on evidence-based trust establishment methods based on cryptographic
keys. In particular, Alexopoulos et al. [6] show how to enhance a public-key-to-
id binding for PGP [21] and X.509 public key infrastructure (PKI) [27]. Their
system can build and leverage indirect trust relationships; however, neither pro-
vides on-demand trust establishment nor maximizes benefits of pre-established
trust connections. The solution by Moinet at al. [39] is intended to substitute
PGP and X.509 PKI in Wireless Sensor Networks (WSN). Their approach to
trust management is different, as it relies on the concept known as Human-like
Knowledge based Trust (HKT), and does not include the notion of indirect trust.

DLT and Trusted Computing. TM-Coin [40] deals with “Trustworthy Man-
agement of TCB Measurements in IoT”. The authors eliminate the redundancy
of measurements by letting miners attest the Trusted Computing Base (TCB) of
IoT devices. Afterwards, a remote verifier can query these results from the dis-
tributed ledger. In contrast, LegloT does not involve miners into the attestation
process—instead, it is carried out by other clients, which simplifies deployment.
Furthermore, unlike TM-Coin, LegloT utilizes attestation results submitted by
other nodes to reduce the number of overall attestation processes in the system
and can combine various attestation methods in one solution.

Banerjee et al. [12] propose a conceptual design for a blockchain-based secu-
rity layer for identification, auditing, and isolation of misbehaving nodes in IoT
networks, which relies on remote attestation to detect compromised entities. The
attestation process in the system takes place between two clients and the result
is recorded in a smart contract in a form of a whitelist. In contrast, LegloT builds
and manages a system trust graph and provides the means to reuse results of
previously conducted trust evaluation processes. Furthermore, LegloT supports
various attestation schemes in one solution, while the system by Banerjee et al.
is limited to only one method.

Last, Xu et al. [52] propose a security model for remote attestation for V2X
applications with focus on anonymity of attested vehicles. In contrast to LegloT,
it does not focus on trust management and only supports hardware-based remote
attestation that requires support of Trusted Platform Module (TPM). This limits
heterogeneity and to a large extend, rules out IoT use-cases.

LegloT: Ledgered Trust Management Platform for IoT 17

8 Conclusion

With LegloT, we present a new approach to trust management in IoT networks,
in which recommendation-like trust links provided by intermediate nodes are
combined with evidence-based trust establishment methods. The design lever-
ages distributed ledger technology to store, manage and distribute trust infor-
mation in the network—the missing piece of the puzzle that made the com-
bination of both approaches possible. The resulting solution inherits benefits
of both worlds: On-demand trust management from evidence-based systems as
well as the dynamics and trustless setting from reputation-based solutions. As a
result, LegloT can provide dynamic on-demand trust management in decentral-
ized networks and can combine various underlying trust establishment methods
to accommodate the various needs of heterogeneous IoT platforms. The novel
algorithm for trust graph management in the heart of LegloT maximizes the
benefits of newly established trust links for the entire network, which improves
the scalability of the system by multiple factors.

Acknowledgment

This research has been funded by the Federal Ministry of Education and Re-
search of Germany (BMBF) in the framework KMU-innovativ-Verbundprojekt:
Secure Internet of Things Management Platform - SIMPL (project number
16KIS0852), by BMBF within the project iBlockchain, by the European Space
Operations Centre with the Networking/Partnering Initiative, and by the In-
tel Collaborative Research Institute for Collaborative Autonomous & Resilient
Systems (ICRI-CARS).

References

1. Abdul-Rahman, A., Hailes, S.: A distributed trust model. In: Proceedings of the
1997 workshop on New security paradigms. pp. 48-60 (1998)

2. Abera, T., Asokan, N., Davi, L., Ekberg, J.E., Nyman, T., Paverd, A., Sadeghi,
A.R., Tsudik, G.: C-FLAT: Control-flow attestation for embedded systems soft-
ware. In: ACM SIGSAC CCS (2016)

3. Abera, T., Asokan, N., Davi, L., Koushanfar, F., Paverd, A., Sadeghi, A.R., Tsudik,
G.: Things, trouble, trust: On building trust in iot systems. In: ACM DAC (2016)

4. Abera, T., Bahmani, R., Brasser, F., Ibrahim, A., Sadeghi, A.R., Schunter, M.:
DIAT: Data integrity attestation for resilient collaboration of autonomous systems.
NDSS (2019)

5. Aberer, K., Despotovic, Z.: Managing trust in a peer-to-peer information system.
In: ACM CIKM (2001)

6. Alexopoulos, N., Daubert, J., Miihlhduser, M., Habib, S.M.: Beyond the hype:
On using blockchains in trust management for authentication. In: IEEE Trust-
com/BigDataSE/ICESS (2017)

7. Alexopoulos, N., Vasilomanolakis, E., Ivanké, N.R., Miihlh&duser, M.: Towards
blockchain-based collaborative intrusion detection systems. In: CRITIS (2017)

18

®°

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

J. Neureither et al.

Alves, T., Felton, D.: TrustZone: Integrated hardware and software security (2004)
Ambrosin, M., Conti, M., Ibrahim, A., Neven, G., Sadeghi, A.R., Schunter, M.:
SANA: Secure and scalable aggregate network attestation. In: ACM SIGSAC CCS
(2016)

Ammar, M., Washha, M., Ramabhadran, G.S., Crispo, B.: Slimiot: Scalable
lightweight attestation protocol for the Internet of Things. In: IEEE DSC (2018)
Asokan, N., Brasser, F., Ibrahim, A., Sadeghi, A.R., Schunter, M., Tsudik, G.,
Wachsmann, C.: SEDA: Scalable embedded device attestation. In: ACM SIGSAC
CCS (2015)

Banerjee, M., Lee, J., Chen, Q., Choo, K.R.: Blockchain-based security layer for
identification and isolation of malicious things in IoT: A conceptual design. In:
ICCCN (2018)

Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: IEEE
S&P (1996)

Buchegger, S., Le Boudec, J.Y.: Performance analysis of the CONFIDANT proto-
col. In: ACM MOBIHOC (2002)

Buterin, V.: A next-generation smart contract and decentralized application plat-
form. Whitepaper (2014), https://blockchainlab.com/pdf/Ethereum_white_paper-
a_next_generation_smart_contract_and_decentralized _application_platform-vitalik-
buterin.pdf

Carpent, X., ElDefrawy, K., Rattanavipanon, N., Tsudik, G.: Lightweight swarm
attestation: A tale of two LISA-s. In: ACM AsiaCCS (2017)

Cervesato, I.: The Dolev-Yao intruder is the most powerful attacker. In:
ACM/IEEE LICS (2001)

Dardaman, C.: Breaking & entering with Zipato SmartHubs (2019),
https://blackmarble.sh/zipato-smart-hub/

Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
Information Theory (1983)

Eldefrawy, K., Tsudik, G., Francillon, A., Perito, D.: Smart: Secure and minimal
architecture for (establishing dynamic) root of trust. In: NDSS (2012)

Elkins, M., Torto, D.D., Levien, R., Roessler, T.: MIME Security with OpenPGP,
IETF RFC 3156 (2001), www.ietf.org/rfc/rfc3156.txt

Eschenauer, L., Gligor, V., Baras, J.: On trust establishment in mobile ad-hoc
networks. In: Security Protocols Workshop (2002)

Forum, W.E.: This is how a smart factory actually works (2019),
https://www.weforum.org/agenda/2019/06 /connectivity-is-driving-a-revolution-
in-manufacturing/

Francillon, A., Nguyen, Q., Rasmussen, K.B., Tsudik, G.: A minimalist approach
to remote attestation. In: DATE (2014)

Golomb, T., Mirsky, Y., Elovici, Y.: CIoTA: Collaborative IoT anomaly detection
via blockchain. CoRR (2018)

Hemsley, K., Fisher, R.: History of industrial control system cyber incidents (2018)
Housley, R., Ford, W., Polk, W., Solo, D.: Internet X.509 Public Key Infrastructure,
Certificate and CRL Profile, IETF RFC 2459 (1999), www.ietf.org/rfc/rfc2459.txt
Hyperledger: Hyperledger = Sawtooth — a modular platform for
building, deploying, and running distributed ledgers. (2018),
https://www.hyperledger.org/projects/sawtooth

Hyperledger: ~ Hyperledger =~ Sawtooth v1.1.4 documentation (2019),
https://sawtooth.hyperledger.org/docs/core/releases/1.1.4/

Ibrahim, A., Sadeghi, A.R., Tsudik, G., Zeitouni, S.: DARPA: Device attestation
resilient to physical attacks. In: 9th ACM WiSec (2016)

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

51.

52.

53.

LegloT: Ledgered Trust Management Platform for IoT 19

Josang, A., Hayward, R., Pope, S.: Trust network analysis with subjective logic.
In: Australasian Computer Science Conference (2006)

Koeberl, P., Schulz, S., Sadeghi, A.R., Varadharajan, V.: TrustLite: A security
architecture for tiny embedded devices. In: EuroSys (2014)

Kohnh&user, F., Biischer, N., Gabmeyer, S., Katzenbeisser, S.: Scapi: A scalable
attestation protocol to detect software and physical attacks. In: ACM WiSec (2017)
Kohnh&user, F., Biischer, N., Katzenbeisser, S.: Salad: Secure and lightweight at-
testation of highly dynamic and disruptive networks. In: ACM AsiaCCS (2018)
Langner, R.: Stuxnet: Dissecting a cyberwarfare weapon. IEEE S&P (2011)

Li, H., Singhal, M.: Trust management in distributed systems. Computers (2)
(2007)

Marti, S., Giuli, T.J., Lai, K., Baker, M.: Mitigating routing misbehavior in mobile
ad hoc networks. In: MobiCom (2000)

Meng, W., Tischhauser, E.W., Wang, Q., Wang, Y., Han, J.: When intrusion de-
tection meets blockchain technology: A review. IEEE Access 6 (2018)

Moinet, A., Darties, B., Baril, J.L.: Blockchain based trust & authentication for
decentralized sensor networks. CoRR (2017)

Park, J., Kim, K.: TM-Coin: Trustworthy management of TCB measurements in
IoT. In: PerCom Workshops. IEEE (2017)

Pearson, S., Balacheff, B.: Trusted Computing Platforms: TCPA Technology in
Context. Prentice Hall Professional (2003)

Rayner, G.: Smart meters could leave british homes vulnerable to cyber attacks, ex-
perts have warned (2018), https://www.telegraph.co.uk/news/2018/02/18 /smart-
meters-could-leave-british-homes-vulnerable-cyber-attacks/

Sabt, M., Achemlal, M., Bouabdallah, A.: Trusted execution environment: What
it is, and what it is not. In: IEEE Trustcom/BigDataSE/ISPA (2015)

Scout, S.L.: Guide on Airbnb smart locks (2019),
https://www.postscapes.com/airbnb-smart-lock/

Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.: Using software-based attestation
for verifying embedded systems in cars. In: ESCAR Workshop (2004)

Signorini, M., Pontecorvi, M., Kanoun, W., Di Pietro, R.: Bad: Blockchain anomaly
detection. CoRR (2018)

Stajano, F., Anderson, R.: The resurrecting duckling: Security issues for ad hoc
wireless networks. In: Security Protocols Workshop (1999)

TCG: Trusted computing group, https://trustedcomputinggroup.org/

Wang, Y., Vassileva, J.: Bayesian network-based trust model. In: IEEE/WIC WI
2003. pp. 372-378. IEEE (2003)

World, T.: IoT in utilities market forecasted to grow to $53.8 billion by
2024 (2020), https://www.tdworld.com/grid-innovations/article/21120887 /iot-in-
utilities-market-worth-538-billion-by-2024

Xiong, L., Liu, L.: Building trust in decentralized peer-to-peer electronic commu-
nities. In: ICEC (2002)

Xu, C., Liu, H., Li, P., Wang, P.: A remote attestation security model based on
privacy-preserving blockchain for v2x. IEEE Access 6 (2018)

Yu, B., Singh, M.P.: A social mechanism of reputation management in electronic
communities. In: CIA Workshop. Springer (2000)

20 J. Neureither et al.

A Attestation Schemes and Trust Scope

Remote attestation originally came to prominence as a feature of the TPM [41],
the standard defined by the Trusted Computing Group (TCG) [48]. Many ap-
proaches to attestation have been developed, which differ in underlying require-
ments and security guarantees provided. Generally, they provide different levels
of resilience, which refers to the general robustness of the underlying architecture
against compromise. In the following we discuss attestation approaches of four
categories, and suggest what resilience level and trust scope they can provide.

Hardware-based architectures. include strong cryptographic co-processors
like TPMs [41]. A different approach are Trusted Execution Environments (TEESs)
that use an isolated processing environment [43]. Usually, they offer complex
attestation mechanisms with arbitrary cryptographic functionality. Since cryp-
tographic co-processors are well studied and strongly protected, hardware-based
architectures generally have a high resilience. Thus, this architecture is able to
attest other devices and create functional as well as referral trust.

Hybrid architectures. generally include minimal security features like Read
Only Memory (ROM) and Memory Protection Unit (MPU) for secure storage
[24]. Generally, hybrid schemes such as SMART [20] and TrustLite [32] attest
a defined area of code only. Their limitations are less significant compared to
software-based attestation schemes. Thus, their resilience is considered to be
medium. If the attested code contains the segment that handles device function-
ality, functional trust is gained. In contrast, referral trust requires the attestation
component of the prover to be attested.

Software-based attestation. Generally, secure co-processors are not available
on low-end embedded devices due to minimal cost requirements. Thus, purely
software-based approaches were developed [45]. They do not assume any secrets
on the prover’s device, since there is no secure storage available at the prover
side. Instead, these schemes are based on using side-channel information to de-
cide whether an attestation result is valid. However, this approach poses many
assumptions on the network topology and adversarial capabilities. For instance,
the verifier needs to have direct communication with the prover with no inter-
mediate hops [3]. We consider resilience of this attestation type as low because
the potential attack surface is comparatively high. As attestation statements
made by such attestations about other parties cannot be trusted, they can only
provide functional trust.

Control-flow attestation. is a relatively recent development in the attestation
landscape [2]. Static attestation, to which previously discussed attestation cate-
gories belong to, is not able to capture misbehavior of software during runtime.
This is where runtime attestation comes into play by monitoring an application’s
control flow and detecting all deviations from the expected flow (documented in
the security policy). This approach enables the highest trust guarantees of all
attestation schemes. Runtime attestation schemes like DIAT [4] offer a very high
resilience because they also protect against runtime adversaries, and thus can
provide both referral and functional trust.

