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Abstract

In this thesis, we closely examine an important type of attack against Android smart-
phones that exploit weaknesses in the user interface. In particular, we study, analyze and
implement the “Keystroke Inference #3” attack from the “Cloak and Dagger” paper by
Fratantonio et al. [1, 2], which enables an attacker to steal sensitive input such as pass-
words. The attack takes advantage of a vulnerability that was subsequently patched on
all newer Android versions. Yet, it still affects a significant user base that utilizes older
devices. In this paper, we present the end-to-end attack implementation of the “Keystroke
Inference #3” concept and elaborate on in-depth details. In order to make the attack fea-
sible certain technical challenges needed to be solved, therefore our developed approaches
are presented as well. After the evaluation of the results, we show that the implementa-
tion is applicable to a wide range of Android versions. We then present our novel defense
technique OverlayShifter, which fully prevents the attack while being independent of
operating system modifications. Moreover, characteristics that facilitate the detection of
the attack are discussed.
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Zusammenfassung

In dieser Arbeit beschäftigen wir uns mit User-Interface-Angriffen gegen Android Smart-
phones. Diese stellen einen besonders wichtigen Angriffsvektoren dar. Vor allem untersu-
chen und implementieren wir den “Keystroke Inference #3”-Angriff, der schematisch von
Fratantonio et al. im Jahr 2017 vorgestellt wurde [1, 2]. Dieser Angriff erlaubt es die
Eingaben von Nutzern mitzuverfolgen und somit unter anderem Passwörter oder sonstige
sensible Daten zu erbeuten. Zwar wird bei dem Angriff eine Sicherheitslücke genutzt, die
bereits vor einiger Zeit geschlossen wurde, jedoch wird ein signifikanter Teil der Nutzer
trotzdem nicht vor solchen Angriffen geschützt, da diese veraltete Mobiltelefone benutzen
und somit keinen Zugriff mehr auf Sicherheitsupdates haben. Zunächst präsentieren wir
unsere Implementierung für den Angriff. Um den Angriff erfolgreich durchführen zu kön-
nen mussten einige technische Schwierigkeiten überwunden werden, deshalb erläutern wir
zusätzlich unsere entwickelten Ansätze um diese zu lösen. Im weiteren Verlauf der Arbeit
präsentieren wir die Auswertung des implementierten Angriffs. Hierbei zeigen wir, dass
der Angriff bei einer Vielzahl an Geräten durchführbar ist. Zudem präsentieren wir unsere
neuartige Verteidigungsmethod OverlayShifter. Diese ist in der Lage eine erfolgreiche
Durchführung des Angriffs, ohne Betriebssystemmodifikationen, zu verhindern. Außerdem
stellen wir Eigenheiten vor, die einer Erkennung von User-Interface-Angriffen dienen.
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1. Introduction

Mobile phones are playing an extremely important role in our everyday life. A majority of
these devices use the Android operating system [3] and are used for highly security-sensitive
tasks like online banking, online shopping and other services concerning financial transac-
tions. It is therefore inevitable that criminals develop malware that exploits vulnerabilities
on smartphones to enrich themselves. Several attacks have already been discovered, such
as the “HummingBad” malware, which infected an estimated ten million devices and de-
ployed ads to generate revenue [4]. Another example is the “ZeuS-in-the-Mobile” malware,
which aimed at stealing mobile TANs used to authorize transactions in online banking [5].
By using sophisticated exploitation techniques, Davi et al. [6] managed to bypass restric-
tions imposed by the sandbox and achieved privilege escalation. This can, for instance, be
abused to send text messages to any phone number without the user’s knowledge. Cur-
rently, computer scientists are putting a lot of effort into developing innovative techniques
to detect Android malware, e.g. [7, 8, 9].

The ubiquitous digitization and rapid advancement of technology not only lead to a better
user experience but also made evident the importance of security and data protection.
Criminals have been trying to steal sensitive information for decades and their attempts
are becoming increasingly more frequent and sophisticated over time. As a result, almost
every device is exposed to threats. The User Interface (UI) attacks form an important
attack vector. For years, researchers have been stressing that the Android user interface (cf.
[10], [11]) should be considered a security-sensitive part of the software. There are many
examples of poor design choices of the UI that lead to security vulnerabilities, for instance,
Clickjacking [10] or general UI deception [11]. When exploited, these vulnerabilities can
deceive the user into unintentionally giving access to their sensitive information without
their knowledge. In 2017, Fratantonio et al. [1] demonstrated in their paper “Cloak and
Dagger” how a critical flaw in Android’s UI can lead to a complete bypass of the security
measures.

Developing defenses against this type of attacks is challenging. Proposed defense mecha-
nisms are either based on heuristic approaches, which may suffer from false positives and
are therefore only partially suitable for the average user [11], or on hybrid approaches
that combine dynamic and static analysis [12]. It is proven that these are still not able
to detect all UI attacks and suffer to some extent from race conditions [11]. Furthermore,
some of them have to be applied in pre-deployment [13] and are therefore dependent on
being implemented by app stores. In case the malware is installed from sources other than
app stores the defense mechanism will not be applied. Moreover, defense methods directly
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2 1. Introduction

targeting the attack have a significant negative impact on the usability of a device or are
not able to fully prevent the attack.

This work focuses on the “Keystroke Inference #3” attack from the “Cloak and Dagger”
paper [1], which is also called “Invisible Grid” attack [2]. By means of this attack, an
adversary is able to eavesdrop on sensitive input by utilizing invisible overlay windows.
The attack itself was subsequently patched on almost all Android versions, however, a
significant user base utilizes older devices that may not receive security fixes anymore.
Hence, defense methods which are independent of Operating System (OS) modification
need to be applied in order to prevent the attack. Fratantonio et al. [1] identified the
side-channel enabling the attack, however, they did not present a proof-of-concept im-
plementation. Important technical challenges that are essential for an end-to-end attack
implementation such as keyboard detection and layout retrieval remain unsolved. Hence,
in this work, the operating principle of this attack will be investigated in-depth and so-
lutions for the technical challenges will be provided. In particular, this thesis makes the
following contributions:

� We investigate the operating principle of this attack.

� Furthermore, important technical challenges such as system-wide keyboard presence
detection, mapping of clicks to specific keyboard keys and keyboard type detection
are solved.

� The end-to-end attack implementation is evaluated and the development of further
countermeasures is facilitated by providing attack-specific characteristics.

� We present our, system-wide working, novel defense technique called OverlayShifter
which fully prevents the “Keystroke Inference #3” attack while preserving overlay
functionality, without being dependent on OS modification.

Furthermore, the execution of this malware sample can be used to obtain an attack trace
that can be collected. These traces can later be used in projects that use e.g. machine
learning techniques to detect UI attacks. This detection technique should then be applied
as an alternative to a security fix, which may not be available for older devices.

The main objective of this thesis is to build the foundation for future research. The attack
is therefore implemented for Android 7.0 Versions that have not patched the side-channel
exploited by “Keystroke Inference #3” attack. Furthermore, the execution of the end-
to-end attack sample can be used to produce an attack trace, which is used for future
analysis or evaluation of detection methods. In addition to these objectives, we discuss
attack-specific characteristics that indicate an ongoing attack. The results can be used
to further facilitate the development of countermeasures. Moreover, we present our novel
defense technique OverlayShifter which is able to fully prevent the attack without
being dependent on OS modification.

Sections of the Thesis This work is structured as follows: In Chapter 2, we present back-
ground information about the Android operating system. User interface attacks and the
“Invisible Grid” [2] attack in particular are introduced in Chapter 3. We present the prob-
lem statement in Chapter 4 followed by our identification of essential requirements and
technical challenges for the attack implementation in Chapter 5. The solutions to iden-
tified technical challenges and the end-to-end attack implementation are then elaborated
in-depth in Chapter 6. We evaluate the attack implementation in Chapter 7. We present
our novel defense technique in Chapter 8. Additionally, we propose further defense mech-
anisms and present characteristics of the “Invisible Grid” attack in Chapter 9. Finally,
conclusions are drawn in Chapter 10.
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2. Background

In this chapter, we present background information about the Android operating system
to comprehend the way the attack is operating.

2.1. Android Security Mechanisms

Key security mechanisms of the Android OS are the advanced permission model, process
isolation and application sandboxing. Internally, an Android app is associated with a Linux
process. The Linux operating system enforces security by using a kernel-level sandbox for
each new process. This sandbox mechanism is achieved by assigning each process a unique
user ID. This prevents processes from communicating with each other and limits the access
to the operating system [14]. Additionally, a new so-called Dalvik Virtual Machine (VM) is
spawned inside each process in order to support the execution of Java-based applications.
The VM then loads the pre-compiled Java code and executes it. The Android operating
system provides an easy-to-use Application Programming Interface (API) to access all
device-related hardware, e.g., the internal memory, GPS or WI-FI. It also provides access to
software methods, such as interfaces for spawning new windows or setting the background
image.

Such API functions may utilize underlying system resources or require access to security-
sensitive functionality or private data. It is, therefore, useful to provide some kind of
restriction. To enforce these restrictions, Android introduced a permission model. The
permissions are divided into four different levels. The first level also referred to as install-
time permissions, is the group in which API functions pose little potential risk to the user
or the system. Those permissions are granted by the system without consent of the user.
The second level, which is called normal permissions, contains all API calls that have a
high potential to be abused and are therefore protected stronger. Those API calls, for
instance, may access data on the phone. Those permissions can only be granted after the
user explicitly gave his consent. The third group is called signature permissions. Those
are highly dangerous and therefore only granted to applications that are signed with the
same certificate as the application that defined this permission. The last level is called
runtime permissions all API calls that directly access privacy-sensitive user data such as
the location or the contacts fall into this category. Those permissions must therefore be
granted by the user during runtime of the app [15].

As the operating system gives permissions to Linux processes, restrictions affect code in
the VM as well as natively executed code. The very fine-grained permission model and
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4 2. Background

the process isolation provided by Linux ensure the integrity and confidentiality of the
system even if the user installs a malicious app. Such malicious software will not be able
to invoke API functions if it has not obtained the corresponding permission. Additionally,
the application storage is sandboxed as the Linux subsystem checks whether or not the
corresponding process has the right to access the data. Due to these access restrictions,
accessing other application’s data without previously obtaining the permission to do so
should not be possible [14].

2.2. Overlays in Android

In this section, we present the necessary basic principles concerning Android’s overlays.
Overlays are UI elements drawn on top of other applications UI elements, allowing two UI
elements to be shown at the same time. We present different types of overlays and elaborate
on how the stacking order is determined. Additionally, the terminology of Androids UI
rendering system is explained.

Android provides apps with the possibility to create an Activity. Those are acting as the
root element for interaction with the user. An Activity can be rendered on the screen
by creating a Window with the UI elements of the app [16]. Each Window can have
multiple View elements [17]. “View is the base class for widgets, which are used to create
interactive UI components (buttons, text fields, etc.)” [18].

Android provides multiple types of system-wide overlays. Those are View elements that
are usually rendered on top of windows. The most common one is the TYPE_SYSTEM_-
ALERT overlay. This type always lays on top of windows and should be used for alerts
such as the low power alert. Another one is the TYPE_TOAST overlay, which should be
used for transient notifications. Those are used to notify a user of messages but only for
a short time [19].

Z-Index Each overlay is assigned a z-index by the Android OS. It defines the depth of an
UI element in the view hierarchy, meaning the vertical stacking order is determined this
way. A higher z-index indicates that the UI element is drawn above an UI element with a
lower z-index [20].

2.3. Keyboard

In this section, we provide background information about keyboard operational modes,
such as portrait or landscape. Additionally, we present types of keyboard input fields and
explain the difference between functional and non-functional keys.

Operational Mode Android provides the user with three modes to enter input. The first
mode is the portrait keyboard mode, which is enabled in case the device is in portrait
orientation. As seen in Figure 2.1a, the keyboard usually takes up about a third of the
screen height and the entire width of the screen. While the device is in landscape orien-
tation, the keyboard adjusts its dimensions to fit the screen in the best way possible. As
seen in Figure 2.1b, the keyboard decreases its height compared to the portrait mode. To
fit all the keys on the screen, the width is fully used again. In case the input field flag
NoExtractUi is not set, the keyboard has the permission to enter full-screen mode if
it is in landscape orientation [21]. As shown in Figure 2.1c, the ExtractUi keyboard
mode takes up the entire available space. As the ExtractUi keyboard provides an input
field called EditText in its own UI, this mode is different from the others. This special
EditText is called ExtractEditText and behaves just like a normal EditText [22].
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2.3. Keyboard 5

(a) AOSP keyboard
portrait mode.

(b) AOSP keyboard landscape mode.

(c) AOSP keyboard landscape ExtractUi mode.

Figure 2.1.: Comparison of AOSP keyboard modes.

Type Concerning the Android operating system, the EditText is the most widely used UI
element for input. An EditText provides various methods and extends the TextView
class to inherit most of the numerous attributes that define the design of a TextView and
additional properties. The inputType attribute is used to determine which input type
should be entered. For instance, some types are:

� datetime – Used for entering date and time
� numberPassword – A numeric password field
� textPassword – An alphanumeric password field
� textVisiblePassword – An alphanumeric password that should be visible
� phone – Used for entering phone numbers
� textEmailAddress – Alphanumeric input that represent an E-mail address [23]

The amount of keys on the keyboard, the assigned letters and the dimensions of keys are
changing according to the input field that is currently focused. This can be seen in Figure
2.2a, showing alphanumeric keys, which is compared to Figure 2.2b showing only numeric
keys.

5
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6 2. Background

(a) Main page for
textPassword
input fields

(b) Main page for
numberPassword
input fields

Figure 2.2.: Comparison of main pages for PIN and alphanumeric AOSP keyboard layout.

Function Keys All keys that have functions different to the ability to enter characters are
called function keys. This includes, for instance, the Shift key or the Backspace key.

Pages A keyboard can have multiple pages. Those are used to group certain keys together.
An additional benefit of grouping is the increased size of the keys as they are distributed
on multiple pages. The keyboard pages are shown via the example of the Android Open
Source Project (AOSP) keyboard in the following figures. The main pages were already
illustrated in the Figures 2.2a and 2.2b. Each page can have a different amount of keys
and usually has different letters assigned to the individual keys (shown in Figures 2.3a,
2.3b and 2.4). The dimensions of the keys might therefore change as well. Understanding
the behavior of keyboards including their operational modes and ability to adapt to input
fields is essential for development of an end-to-end attack. The presented background
knowledge will be utilized in Section 5.

(a) First special characters
page

(b) Second special charac-
ters page

Figure 2.3.: Comparison of AOSP keyboard pages for textPassword input fields.

Figure 2.4.: AOSP keyboard Special characters page for phone input fields.

6



3. Related Work

In this chapter, we present related user interface attacks and discuss proposed defense
techniques for the “Invisible Grid” attack.

3.1. Attacks

UI attacks exploit weaknesses in the interface in order to deceive the user [10]. “When
multiple applications or websites (or OS principals in general) share a graphical display,
they are subject to clickjacking (also known as UI redressing) attacks: one principal may
trick the user into interacting with (e.g. clicking, touching, or voice controlling) UI elements
of another principal, triggering actions not intended by the user” [10]. The OS allows two
or more principals to be displayed at the same time to enable Multitasking and to process
tasks more efficiently [24]. One example of an attack is tricking the user into clicking a
“Buy” button on some online marketplace without the user noticing by overlaying it with
an innocuous UI element. These attacks are summarized under the term Clickjacking [10]
or more generally UI Deception [11] attacks. There exist many possibilities to exploit UI
weaknesses ranging from spawning a fake view in the right moment in order to hijack an
input field to drawing overlay views that are actually forwarding clicks to underlying UI
elements [25, 10, 26].

In this thesis, we focus on the Keylogger presented in the “Cloak and Dagger” paper [1],
which exploits a vulnerability in the Android UI. The attack is able to log all keystrokes
that are typed on the virtual keyboard [1].

Zheng et al. [27] show that the “Keystroke Inference #3” from the “Cloak and Dagger”
paper is feasible using only TYPE_TOAST overlays. This enables an adversary to launch the
attack without being dependent on the SYSTEM_ALERT_WINDOW permission. However,
the authors have not provided solutions to important technical challenges like keyboard
detection and layout retrieval, which are addressed in this thesis.

Ulqinaku et al. [28] presented a similar attack in their paper “Using Hover to Compromise
the Confidentiality of User Input on Android”. They were able to record keystrokes system-
wide by creating overlays on the screen after users clicked. Those overlays then received
“post-tap hover events”which were used to infer the clicked key on the keyboard. It was not
clarified how the layout retrieval, which is essential for mapping a click to a keyboard key,
was done. The authors propose to prevent overlay dimensions of zero and limit transparent
overlays to system services only. This approach, however, will most likely interfere with
legitimate apps and therefore limit the functionality.

7
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8 3. Related Work

3.2. Defense Methods

There were numerous attempts to develop countermeasures for general UI attacks. For
instance, some approaches work by warning the user of malicious activity using an indica-
tor similar to the green Hypertext Transfer Protocol Lock in browsers [12]. Fernandes et
al. [11] show that this approach suffers from race conditions and can therefore be circum-
vented. Other defense methods aim at detecting UI attacks prior to app deployment [13].
Those methods have to be implemented by the app stores and therefore must be highly
scalable. The goal is to detect malware before it is added to the official app store. However,
detecting malicious use of UI elements is very challenging as there is a variety of legitimate
use-cases as well. Furthermore, some defense methods are dependent on OS modification
[11] which can only be implemented by the mobile device vendor. Many Android versions
are no longer supported by the specific vendor, hence, those defense methods will not be
implemented.

In 2012, Hill proposed in his paper “Adaptive User Interface Randomization as an Anti-
clickjacking Strategy” [29] to randomize the UI. This approach can be applied to prevent
the “Keystroke Inference #3” attack. By randomizing the location of keys on the keyboard
mapping of clicks to corresponding keys is no longer feasible. This approach, however, will
have a significant impact on usability. The typing speed will be drastically reduced and
it’s exhausting to search for the desired key. Due to these severe drawbacks, we consider
this approach not applicable.

Aljarrah et al. [30] proposed in 2016 a novel defense technique to prevent UI attacks. The
defense method called “Window Punching” tries to inject clicks using the Instrumen-
tation API from Android. The OS does not allow injection of clicks into UI elements
of foreign applications. Hence, if the injected click hits an overlay, an access violation
exception is thrown. This circumstance can be used to detect if overlays are obscuring the
application. Kalysch et al. [31] proposed in 2018 to use the “Window Punching” defense
technique to prevent the “Keystroke Inference #3” attack. This, however, is not possible
due to the fact that overlays from the attack are pass-through, hence, no clicks can be
received by the overlays. Therefore, the access violation exception will never be thrown
resulting in the defense technique being useless. The second method which was also pro-
posed by Kalysch et al. [31] is the use of in-app keyboards with certain flags enabled.
They propose to set the FLAG_SECURE and disable all accessibility events for the in-app
keyboard. We conducted some tests and were able to successfully launch our developed
“Keystroke Inference #3” attack despite implementing the proposed defense technique.
Hence, “Window Punching” and in-app keyboards, with the FLAG_SECURE set, are not
sufficient defense techniques.

We conclude, that important technical challenges like keyboard detection and layout re-
trieval remain unsolved. We, therefore, investigate the feasibility of solving those challenges
in this work. The proposed defense mechanisms so far either have a severe negative im-
pact on the usability of the device or are not applicable at all. Due to the lack of working
defense mechanisms preserving usability, we present our novel defense technique called
OverlayShifter.

8
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4. Problem Statement

In this chapter, the basic principle of the “Keystroke Inference #3” attack from the “Cloak
and Dagger” paper [1] is introduced.

Android has the ability to draw views on top of other applications. These views are
commonly called overlays. One use-case of overlays is, for instance, that the app wants
to inform the user of important events but it is currently not in the foreground. If an
application wants to draw overlays, it has to access the View Manager and invoke the
addView() method [32]. This method is protected by the SYSTEM_ALERT_WINDOW
permission in case an application wants to add a TYPE_SYSTEM_ALERT overlay. For
apps installed using the official play store, this permission is considered an install-time
permission, hence, it’s granted without the consent of the user. “If the app targets API
level 23 or higher, the user must explicitly grant this permission to the app through a
permission management screen” [33]. Developers, however, can provide an advance notice
to Google to request an automatic grant of the permission without user interaction [34].
By providing an advance notice, apps that are considered trustworthy by Google save their
users the effort of manually granting the permission.

Once the malicious app obtained the SYSTEM_ALERT_WINDOW permission, it is able to
draw overlays on top of every Android app [35]. These overlays can be transparent and
therefore invisible to the user. Each view is represented by the View class, in the Android
system. Android’s View class provides an onTouch() event that can be registered. This
onTouch() event can capture clicks and provide information about them, e.g. x and
y coordinates [18]. By declaring the flags FLAG_NOT_TOUCHABLE and FLAG_NOT_-
FOCUSABLE, every click that reaches the View can be passed on to the underlying instance.
This results in the following behavior: if an overlay is clicked, the click is passed to the
underlying view. Even if the full screen is covered with a transparent overlay, the user is
still able to interact with the underlying UI. This implies that the transparent overlay will
no longer receive onTouch() events by definition of the FLAG_NOT_TOUCHABLE flag.
The clicks are now passed on to the underlying instance.

By additionally declaring the FLAG_WATCH_OUTSIDE_TOUCH the overlay view’s View.
OnTouchListener is triggered with an MotionEvent if the click is outside the area of
the view. As the overlay passes each click to the underlying instance, clicks are always
outside of the area. The overlay is now able to detect when a click occurred [36]. Even
though clicks outside the area are detected, the x and y coordinates of the click can not
be queried. Otherwise, this could lead to a massive security breach and the exposure
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Figure 4.1.: x-y projection of the views

of confidential data. By making a correlation between a key on the keyboard and the
click’s location, for instance, a malicious app could determine which key was pressed and
therefore eavesdrop on sensitive input.

Every MotionEvent delivered by a View.OnTouchListener has the attribute OB-
SCURED. “This flag is set to true if and only if the click event passed though a different
overlay before reaching its final destination” [1]. The name OBSCURED is misleading. The
function just checks whether or not the click passed through an overlay with a higher
z-index without considering the areas. As a result, even if the respective x-y projections
of the overlays are disjoint, the top overlay will still obscure the bottom one. The Android
operating system even sets the obscured flags for overlays that set the pass-through flags
[37].

Therefore, we propose the following definition of OBSCURED: Let Oi be an overlay with
i ∈ N0. Additionally, let j ∈ N0 be an integer. Furthermore, let p be the point clicked and
denote p ∈ Oi if p lies in the area of Oi (projected onto the x-y-plane). Additionally, we
define z as the injective function that maps an overlay to its corresponding z-index.

Oi.OBSCURED = 1 ⇐⇒ [There exists Oj with z(Oj) > z(Oi) and p ∈ Oj ]

The OBSCURED flag has the value 1 if the click passed through an overlay with higher
z-index, otherwise 0. If overlay views are stacked on top of each other, they all inherit
different z-indices as shown in Figure 4.2. The z-index determines the stacking order of
elements. If each overlay has pairwise disjoint x-y projections, they form a grid in which
no overlay overlaps another (Fig. 4.1). If the malicious app now receives onTouch()
event callbacks, it is able to count the sum of obscured flags for all of its drawn overlays.
This can be done by counting all views that have the OBSCURED flag set to 1. The sum of
OBSCURED flags is identical to the index of the clicked overlay, hence an adversary is able
to determine which overlay was clicked (Fig. 4.3).

This flag enables numerous attacks. One of them is the logging of keystrokes which draws
an overlay on each key of Android’s virtual keyboard, also called soft keyboard. Each
overlay has a unique z-index. The overlays only cover one key of the keyboard. As a result,
the overlays constitute a grid and therefore inherit pairwise disjoint x-y projections. An
attacker can now effectively determine which overlay was clicked (fig. 4.3) and eavesdrop
on passwords and other sensitive input [1]. In order to make this attack work, however,
each overlay needs to obscure no more than one keyboard key. Otherwise, it is not possible
to distinguish which key has been clicked. If an overlay is on top of two keys, for instance,
an adversary has no way to determine which of the two keys was clicked.
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Figure 4.2.: Side perspective showing the z-indices of the Views

Figure 4.3.: Obscured Views are marked blue in case the red View was clicked

Consider overlays O0, ..., On, with disjoint x-y projections, ordered by increasing z-index
(fig. 4.2). Again let p be the point clicked. Assume p ∈ Oi. For all j > i we have
Oi.OBSCURED = 0 because p 6∈ Oj . Due to z(Oj) < z(Oj+1) for all j ∈ N0, we can deduce
the definition of OBSCURED to:

Oj .OBSCURED = 1 ⇐⇒ p ∈ Oj+1 ∨ p ∈ Oj+2 ∨ ... ∨ p ∈ On.

Which is, due to p ∈ Oi, equivalent to the following:

Oj .OBSCURED = 1 ⇐⇒ j < i

Combining, we observe:
n∑

j=0

Oj .OBSCURED = i

Common Vulnerabilities and Exposures Entry The previously described problem was ac-
knowledged as a vulnerability and was recorded in a Common Vulnerabilities and Expo-
sures (CVE) database under CVE-2017-0860 identifier. It was subsequently patched on
almost all Android versions, and to date, only those vulnerable to CVE-2017-0860 are
still at risk [38]. The vulnerability’s patch simply sets the OBSCURED flag to 0 in case the
view which receives the onTouch() event set the FLAG_WATCH_OUTSIDE_TOUCH [39].

Android security fixes need to be distributed by each vendor individually as they all use
customized Android operating systems. Many vendors only deliver updates to their devices
for a relatively small period of time. Everyone who is in the unfortunate situation to have
purchased smartphones from vendors that no longer support their devices has no access
to these security fixes. This leaves their devices defenseless to vulnerabilities that can be
exploited at any time [40]. According to StatCounter [3], about 23.5 percent of Android
users worldwide still use Android 7.0 or below (see Appendix A.1a for more details). In
Asia, it is even more than a quarter of the users (cf. Appendix A.1b). Those devices,
running 7.0 or older, potentially have not received security patches, depending on the time
they were bought and the manufacturer, and are therefore vulnerable to CVE-2017-0860.
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For example, the fix for CVE-2017-0860 for Google Nexus smartphones was distributed
by Google in the Security Bulletin November 2017 [41]. The following Android versions
were patched: 5.0.2, 5.1.1, 6.0, 6.0.1, 7.0, 7.1.1, 7.1.2. Google Phones only receive security
updates for about three years after being introduced. As a result, all phones that are older
than November 2014 have a high chance of being vulnerable to CVE-2017-0860 as they
have not received security updates. Nexus 4 was introduced in 2012 and was updated
to Android 5.1 as of April 2015 [42]. The security fix support for this device ended in
November 2015 [43]. This is just one example of a vulnerable phone. There are many
other smartphones that are still used despite the fact that they are no longer entitled to
security patches.
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5. Approach

In this chapter, we present our approach for implementation of the “Invisible Grid” at-
tack. We define a precise adversarial model for the attack. Furthermore, the technical
challenges, for instance, keyboard layout retrieval and keyboard presence detection, for an
implementation are analyzed and explained. Based on the model and technical challenges
we introduce our implementation structure and elaborate design choices.

5.1. Adversarial Model and Requirements

In the following, we present the adversarial model and certain requirements for a successful
attack implementation.

Adversarial Model We assume that the attack app was installed on the victim’s Android
device and is running in the background. This is a common requirement for attacks on
Android phones [28]. Additionally, we require that the device is vulnerable to CVE-
2017-0860. In order to be inconspicuous, the malicious app should work only using the
SYSTEM_ALERT_WINDOW permission. We assume that this permission is already granted
by the OS or the user. We furthermore assume that the user only enabled one keyboard
at a time. Hence, the attack implementation does not need to support multiple keyboards
simultaneously. In particular, we assume that the user does not switch between different
keyboards during the runtime of the attack. Furthermore, it is assumed that the keyboard
always has a width identical to the screen’s width.

Requirements In the following, we present requirements for a successful attack implemen-
tation. The app should launch the attack in the background without the user noticing.
As a result, we require that the app should act as inconspicuously as possible. The attack
must therefore be completely invisible to the average user. The attack itself must be reli-
able to be able to eavesdrop on sensitive input. Almost all keyboards have multiple pages
as it is hard to fit all keys on one single page. These keyboards usually have a function
key, which is used to switch between independent pages, as seen in the lower-left corner
of Figure 2.2a. As a result, we require that an adversary needs to support keyboards with
multiple pages. Additionally, many keyboards provide upper- and lowercase letters. Shift
keys, therefore, have to be supported as well. This entails, that an implementation must
monitor the state of the shift key and adapt the attack layout if it is switched to another
page.
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5.2. Technical Challenges

In this section, we analyze the technical challenges that need to be solved to make the
“Invisible Grid” attack by Fratantonio et al. in the “Cloak and Dagger” paper feasible
[1, 2]. We label challenges with the letter C combined with their consecutive number.
Additionally, we present arguments which demonstrate the necessity of certain challenges.

Keyboard Layouts [C1] To successfully launch the “Cloak and Dagger” attack, the cor-
rect key labels, and, more importantly, their positions must be obtained. The layout is
necessary for the attack, as simply drawing any grid has two major disadvantages. As a
first disadvantage, the grid must be very narrow as touches can otherwise not be uniquely
assigned to a specific key. The input text might therefore not be unambiguously recon-
structed. Hence, an adversary has to guarantee that a grid field can be attributed to one
single key. If this condition is fulfilled, the amount of possible texts is reduced to one. In
order to achieve this, a very narrow grid is required to guarantee that one grid field does
not occupy two keyboard keys. However, the drawing of a very narrow grid field requires
a high number of overlays and therefore consumes a large number of resources. The in-
creasing utilization of resources results in higher loading times that will be noticeable by
the user.

We conducted a performance test of the Android Choreographer, using the systrace
tool, which coordinates the rendering of the contents of an app [44]. As seen in Table
5.1, the Total time required to render the applications increases with each overlay. We
measured the time required to load an E-mail app with different amounts of overlays on
the screen. As seen in the Table the Total necessary to load the app is 374.57 ms without
any overlays. However, by adding 200 overlays the time heavily increases to 1,127.98 ms.
We only present expressive steps from the measured performance of the Choreographer to
preserve clarity. The column doFrames specifies the time necessary to render the frame
for the application. Traversal specifies the time necessary for the Android OS to traverse
the layout hierarchy. This must be done to ensure that parent UI elements are drawn
before child UI elements. Draw specifies the time which is necessary for the actual drawing
process of the rendered frame. The process of loading the layout from a eXtensible Markup
Language (XML) definition is grouped under Inflate. We can clearly see that the drawing
and inflation process is only slightly impacted by the amount of overlays (7.16 ms and
18.52 ms for drawing / 35.07 ms and 35.14 ms for inflation). Additionally, we can see that
the doFrames and Traversal steps are heavily increasing with 155.94/153.10 ms versus
449.04/450.95 ms when 200 overlays are present.

We have shown that the time necessary to render any app heavily increases with the
amount of overlays. This, therefore, makes the attack not feasible for narrow grids due
to the user noticing severe slow-downs. Most European keyboards based on Latin script
use at least 26 keys from the alphabet [45]. This sets a lower limit on the number of
overlays that have to be drawn as every key needs an independent overlay to assemble the
attack and functional as well as special character keys further increase that number, for
instance, the English AOSP keyboard as seen in Figure 2.2a has 33 keys. As shown in the
Table adding 35 overlays only slightly impacts (92.59 ms) the loading time of applications.
Hence, by only utilizing the lowest required amount of overlays the attack is feasible.

The other disadvantage is that by drawing just any grid, it is not possible for an adversary
to identify which character the key represents. An adversary has to attribute each grid
field to a character on the keyboard after the actual attack took place. This can be
very challenging as additional information about the device, such as keyboard language,
screen resolution and device orientation, are necessary in order to infer the label of keys.
Additionally, the layout and labels can change during recorded input. An adversary,
however, needs to know these attributes at every moment of the capturing process. Due
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Amount of
Overlays

doFrames
(ms)

Traversal
(ms)

Draw
(ms)

Inflate
(ms)

Total
(ms)

0 155.94 153.10 7.16 35.07 374.57
35 210.60 206.86 11.67 35.11 467.16
100 260.36 258.50 15.16 34.97 566.32
200 449.04 450.95 18.52 35.14 1,127.98

Table 5.1.: Selected steps from Choreographer performance for different amount of overlays

to the complexity behind the keyboard layout, heuristics seem to be out of reach and
cannot effectively recover the input text.

As Android does not provide an API for retrieval of the keyboard layout, a custom ap-
proach needs to be developed. The approach has to work dynamically and support any
keyboard. Furthermore, the attack has to be independent of the device orientation and
therefore has to work in portrait as well as landscape mode.

Keyboard Presence [C2] and Keyboard Orientation [C3] To perform the attack, an adver-
sary has to know in which orientation and layout the overlays have to be drawn. Another
challenge is therefore the detection of keyboard presence. An approach has to work system-
wide as sensitive input is usually not entered in the app of the adversary. This implies
that the detection must be feasible without restricting to a specific app or configuration.
As already mentioned in C1, both device orientations should be supported. Furthermore,
the three different keyboard modes (as shown in Section 2.3) should be supported as well
as sensitive input can be entered using any of the modes. Some keyboards change their
internal state when closed and reopened, for instance, the AOSP keyboard resets the shift
key to disabled for each subsequent reopening. A continuous stream of information about
the keyboard’s presence, including the device orientation, is therefore necessary. Thus, an
approach has to detect the appearance or disappearance of the keyboard as fast as possi-
ble. For clarity, detection of the current device orientation is grouped as the abbreviation
C3.

Keyboard Type Detection [C4] Another challenge is the detection of the current keyboard
input type. Android provides numerous types of input fields. Some of them only support
numeric inputs while others are not restricted at all, e.g. by accepting alphanumeric keys
or special characters. Many keyboards have a feature that adjusts the shown keys to the
corresponding input field [46]. Among different input types, the character assignments to
the keys may change or additional keys may be added. Thus, it is required to infer which
characters were typed through knowledge of the input type.

Window Manager Performance [C5] Android’s Window Manager is responsible for adding
overlays to the screen. A measurement has shown that it takes up to 67 milliseconds to
draw 20 overlays as presented in Figure 5.1. The measurement was performed by drawing
a number of random overlays and repeating this process ten times. The time was measured
by saving the starting timestamp and comparing it with the timestamp after the Window
Manager call finished. A distribution summary, i.e. boxplot of those ten iterations, was
then calculated to have a representative result. As placing 30 overlays takes up to 94
milliseconds, it takes too much time to reliably eavesdrop on sensitive input. As soon as
the keyboard appears, most users almost instantly start typing. If the overlays are only
added after a hundred milliseconds, an adversary may miss keystrokes. Therefore, the
overlays should be kept on the screen to avoid the time-consuming drawing process for
each successive reopening. This, however, entails other implementation specifics that are
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Figure 5.1.: Time needed in ms to place overlays

further elaborated in Section 5.3.2.

5.3. Attack Design

In the following section, we propose abstract solution ideas to the challenges formulated
in Section 5.2. We begin with presenting a control flow graph of the attack, then discuss
individual attack steps and propose a class structure for an attack implementation.

5.3.1. Attack Control-Flow Graph

In order to fulfill that the attack is invisible to the average user, the malicious app is
launched in a minimized window state and utilizes transparent overlays.

The control-flow of the app is structured as shown in Figure 5.2. The first step is to
determine the dimensions, i.e. width and height, of the keyboard. This information is
necessary for the creation of an attack layout as required by C1. A module called Key-
boardSizeProvider is therefore responsible for returning the keyboard’s dimensions. A
keyboard can have multiple measurements depending on the current device’s orientation
and the mode it is operating in. As soon as this information is gathered, the execution
continues by providing the values to a module named KeyboardLayoutProvider. In our ap-
proach, this module is implemented via two different methods: the layout is either read by
the ResourceProvider from a previously defined layout file that was created by an attacker
prior to execution or it is dynamically extracted from a keyboard by the DynamicProvider.
Different methods are hereby used to obtain layout files that belong to the keyboard in or-
der to obtain information about the layout. The static approach (ResourceProvider) acts
as a fall-back solution in case the dynamic extraction (DynamicProvider) of the layout
fails. The dynamic extraction fails in case the user utilizes keyboards different from the
supported ones.

Simultaneously, a module named KeyboardPresenceProvider is instantiated to detect the
keyboard state, which contains information about whether or not the keyboard is actively
shown on the screen or hidden (C2) as well as the keyboard’s orientation (C3). This
information is vital as an adversary has to know at what point in time and in which
orientation, i.e. landscape or portrait mode, the overlays have to be drawn. Furthermore,
the used input type is provided to fulfill challenge C4 as well.
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KeyboardSizeProvider

ResourceProvider DynamicProvider

KeyboardLayoutProvider KeyboardPresenceProvider

KeyloggerManager

KeyloggerLogger

Figure 5.2.: Control-flow graph of the attack. Edges represent successive steps of the
control flow. Dotted edges represent the relation to a superclass.

The data from the KeyboardLayoutProvider and KeyboardPresenceProvider are used to
proceed with the execution of a module called KeyloggerManager, which represents the
attack’s core. It is responsible for merging all previously gathered data in order to perfectly
deploy the attack on a device. This module fetches the keystrokes and forwards them to the
next module called KeyloggerLogger. In particular, state transitions initiated by the shift
key are handled by the latter module. On the other hand, keys responsible for switching to
different layout pages are handled by the KeyloggerManager as it is in charge of drawing
the attack layout. The KeyloggerManager is also responsible for adapting the attack to
changes in the environment, for instance, device rotations from portrait to landscape mode
during the attack.

5.3.2. Communication Between Modules

As the app does not have information about the keyboard state in advance, an asyn-
chronous stream of information from KeyboardPresenceProvider to KeyloggerManager is
desired. The asynchronous approach is superior to the synchronous one as, for instance,
changes in the orientation of the device cannot be foreseen. If a synchronous approach is
used, a polled operation is necessary [47]. This produces large overhead of resources as
polling of the current keyboard mode is executed in regular intervals. Redundant infor-
mation is produced, for instance, when nothing changed but a polling operation occurs.

KeyboardLayoutProvider and KeyloggerManager By using asynchronous methods, the
information is provided only once, using a callback in case it has changed. This implies
that either:

a) KeyloggerManager needs to fetch relevant layouts from the KeyboardLayoutProvider
or

b) the KeyboardLayoutProvider sends all possible keyboard pages.

Assuming b), the KeyboardLayoutProvider sends all possible keyboard pages in the ini-
tialization step of the attack. This leads to longer loading times as all keyboard pages

17
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must be provided initially. Furthermore, some keyboard pages may not be necessary for
the attack and will therefore produce an overhead. As approach a) is implemented, the
KeyboardLayoutProvider has to provide a method for adapting the layout to new keyboard
modes.

This means the communication of those two modules is bidirectional. For instance, in
case a change of orientation from portrait to landscape mode occurs, the keyboard layout
must also change, to the corresponding orientation. Otherwise, the attack layout is still
in portrait mode while the user types his sensitive information in landscape mode. This
produces false results. In case a user changes the keyboard page, e.g. to the page with
special characters, the overlays attack layout must also adapt correspondingly. Otherwise,
it is not synchronous with the underlying keyboard layout, producing false results as well.

KeyboardPresenceProvider and KeyloggerManager Keyboard layouts usually differ for
each input type. For instance, the keyboard used to enter Personal Identification Num-
ber (PIN)s only contains numeric keys while the user also enters letters in case of an
alphanumeric password. Once again, the attack overlays must be identical to the key-
board layout. As a result, it is essential that the input type must be detected (C4). This
information is gathered by the KeyboardPresenceProvider. The current keyboard type
must be provided every time the KeyloggerManager queries the KeyboardLayoutProvider
for a layout. The KeyboardPresenceProvider must therefore inform the KeyloggerManager
of any changes that occurred.

As described in Section 5.2, re-drawing the overlays every single time consumes too much
time (C5), this problem has to be addressed as well. One solution is to keep the overlays
on the screen regardless of the state the keyboard is in. This leads to the problem that
clicks are detected regardless of the keyboard state. If the keyboard is closed, for instance,
and the user clicks on an overlay it is considered a click on a keyboard key. As a result,
a feature is necessary that is able to verify if clicks occurred on the keyboard or in some
other app. The verification feature does not require another module since the KeyboardP-
resenceProvider delivers exactly this information. In case a click occurs and the keyboard
is opened, the malicious app can infer that the click was inside the area of the keyboard.
Hence, by solving the technical challenge C2 the challenge C5 is fulfilled too.

In this chapter, we have defined an adversarial model and discussed requirements for
an attack implementation. Furthermore, we have elaborated on the technical challenges
and proposed solution ideas for our end-to-end attack implementation. The feasibility of
our solution ideas is investigated in the next section. Furthermore, we present specific
implementation approaches for individual classes of the control-flow graph.
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6. Implementation

In this chapter, we present in-depth information about the implementation of the concept
defined in Section 5.3. Additionally, we justify our choices of implementation by elaborat-
ing the strengths and limitations of different approaches and analyzing the feasibility of
each module.

6.1. Android Prerequisites

The following paragraphs explain the basic principles to comprehend the developed ap-
proaches.

Input Method Android provides an interface InputMethod to enable communication
between the keyboard and apps that are dependent on user input. An InputMethod
is not restricted to keyboards but can, for instance, perform speech to text conversion
as well [49]. However, due to the nature of the attack, the focus is on keyboards used
as an InputMethod. This interface is a highly security-critical aspect of the OS and
therefore has a special architecture with the goal of preserving confidentiality and integrity.
One of those architectural properties is that only the Android OS is able to access the
InputMethod interface by demanding a signature permission in order to access it.

The interface itself can be used to create new sessions between apps and the keyboard. If
an adversary controls the session between an InputMethod and an app, he is able to log
all input events.

Another security feature to guarantee integrity and confidentiality of the input is that the
InputMethod is only able to communicate with one app at a time. As a result, only the
currently active app is able to access an InputMethod [50].

Input Method Info The malicious app is able to obtain a new instance of the Input-
MethodManager by executing the getSystemService() method. The user can choose
to enable or disable certain InputMethods from a list of installed input methods. All en-
abled input methods can be obtained by calling the getEnabledInputMethodList()
function [50]. Android stores the unique IDentifier (ID) for currently selected Input-
Method’s in the secure settings. The settings are considered secure as they are read-only
and additional permissions are required in order to modify them [51]. However, they can
be read without permissions.

As a result, the ID DEFAULT_INPUT_METHOD can be read without any further permission.
The malicious app can get information about the currently enabled InputMethod by
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iterating over all input methods and compare the ID. The fact that an InputMethod is
enabled does not reveal anything about its state, e.g. “open” or “closed”.

Input Method Subtype Each Input Method has a certain number of InputMethodSub-
types. The “Subtype can describe locale (e.g. en_US, fr_FR, ...) and mode (e.g. voice,
keyboard, ...)” [52]. The class is therefore used to specify which language is currently in
use. The malicious app can obtain the current Subtype by executing the getCurrentIn-
putMethodSubtype() method from InputMethodManager [53].

Window Manager The first step of adding overlays is to obtain the current instance of
Android’s WindowManager by executing the getSystemService(Context) function
with Context.WINDOW_SERVICE as an argument [36].

Window Manager Layout Parameters In order to add an overlay, some layout parameters
have to be defined first by declaring new WindowManager.LayoutParams. By chang-
ing the x and y properties, the location of an overlay can be set. Additionally, flags,
such as FLAG_NOT_TOUCHABLE, dimensions using width and height properties and the
overlay type, such as TYPE_SYSTEM_ALERT, can be declared. In the next step any View
and the previously declared WindowManager.LayoutParams can be passed to the ad-
dView(View, LayoutParams) method of the WindowManager in order to draw a
new overlay on the screen [36]. The TYPE_SYSTEM_ALERT flag is deprecated as of API
level 26 (Android 8.0) [54]. Due to the focus on Android 7.0, the flag is still usable for our
implementation.

As described in Chapter 4, an attack requires the flags: FLAG_NOT_TOUCHABLE, FLAG_-
NOT_FOCUSABLE and FLAG_WATCH_OUTSIDE_TOUCH to be set. Additionally, a pixel
format that supports transparency can be declared by setting the property PixelFor-
mat.TRANSPARENT. Overlays with pass-through behavior are always considered outside
of touch. By using these flags, an adversary can create transparent pass-through overlays
that are always notified in case a click occurs.

6.2. Package Diagram

In the following, we elaborate on the Java package diagram based on the control-flow
graph. Appendix Figure B.2 shows the package diagram including classes and interfaces.
Most of the classes are structured as specified by the control-flow graph. The Keyboard-
LayoutProvider is defined by an interface to acquire uniform methods and to provide safe
access without typecasting. As a result, each LayoutProvider, e.g. the DynamicProvider
and ResourceProvider, implement certain methods that ensure support for desired opera-
tions, e.g. the retrieval of a layout in case the keyboard orientation changes. Additionally,
the use of interfaces makes the KeyboardLayoutProvider extensible if a new method to
retrieve the layout emerges.

All asynchronous operations are implemented similar to the Observer pattern by using
interfaces [48]. If the KeyboardPresenceProvider detects a change of orientation, the call-
back OrientationCallback is notified. The same procedure happens if a height change
is detected. But this time, however, the ResultCallback is notified. Due to the reasons
elaborated further on, we chose to additionally provide a callback if the results from the
KeyboardSizeProvider are available. By using interfaces we can take advantage of the easy
access to information. If a module needs information from one of those providers, we can
effortlessly implement the interface and will be notified automatically in case a change
occurs.
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6.3. Keyboard Presence

As Android does not provide an API call to query information about the presence of a
keyboard, we present our developed approaches for the KeyboardPresenceProvider imple-
mentation to achieve this goal. Furthermore, we show the limitations and strengths of the
developed approaches. The presence detection is used to gather three essential information
pieces about the keyboard:

a) Keyboard State – Determines if the keyboard is opened or closed,

b) Keyboard Type – Determines which type of EditText is currently focused,

c) Keyboard Orientation – Determines in which orientation the keyboard is displayed.

6.3.1. State

The basic idea for detecting the current state of the keyboard is to gather the height of
the keyboard. This value can then be used to infer the state as a non-zero value indicates
an opened keyboard. In particular, we solve the challenge C2. The method should work
for all three keyboard modes:

1.) Portrait Mode – The keyboard is in portrait orientation,

2.) Landscape Mode – The keyboard is in landscape orientation,

3.) Landscape ExtractUi mode – The keyboard is in landscape orientation and has
extracted the input field.

We have developed three individual methods to measure the keyboard height. The first
method Reflection Method works by invoking hidden API functions. The second method
Window Method aims at creating special overlays that are capable of detecting the key-
board state due to layout changes. The last method called Advanced Window Method is a
more sophisticated implementation of the second method.

Reflection Method The first proposed by us method takes advantage of the reflection that
is supported by Android. “[R]eflection allows inspection of [...] methods at runtime without
knowing the names [...] at compile time. It also allows [...] invocation of methods” [55].
Android provides a public API but also maintains a hidden API that is intended for use by
the operating system only. The development team behind Android accidentally exposed an
API method getInputMethodWindowVisibleHeight() that was actually supposed
to be annotated as hidden [56]. This method belongs to the InputMethodManager and
can be used to query the visible height of the keyboard by obtaining the visible rectangle
of a keyboard and returning the height of it. Hidden API functions can be accessed using
reflection techniques but may be removed without any warning in future Android versions.
By obtaining a new instance of the InputMethodManager and acquiring the hidden API
function by using the getDeclaredMethod() function, an adversary is able to make it
accessible [57]. After the reflection process, the current height of the keyboard can be
obtained by executing the function.

This method works system-wide, meaning it does not matter if the keyboard is opened
in the malicious app or any other app. Using this technique the keyboard height in the
portrait mode and landscape mode can be obtained. However, we observed that the
method does not work for the ExtractUi keyboard mode. Another limitation is, that
the method needs to be executed in a loop to have continuous information about height
changes, which produces massive performance overhead. Due to these limitations, other
methods were developed which try to eliminate those drawbacks.

Window Method Due to the limitations of the “Reflection Method”, especially concerning
the resource overhead, another technique was developed. This method takes advantage
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Figure 6.1.: The white rectangle represents an activity. The blue rectangle represents the
specially-crafted overlay. It is placed between the keyboard and the foreground
activity.

of the fact that the appearance of the keyboard triggers a layout change event. This
discovery was first presented in a basic form by Siebe Brouwer in his GitHub repository
[58]. However, his method does not work system-wide and was therefore only used as
inspiration.

During the implementation, we observed an interesting behavior. By definition, an TYPE_-
SYSTEM_ALERT overlay always resides on top of each activity in Android. However, by
adding a special PopupWindow to the overlay, the z-indices of all overlays that are cur-
rently on the screen are adjusted. The PopupWindow has the flag INPUT_METHOD_-
NEEDED set, which specifies that the PopupWindow needs to be able to receive input [59].
As a result, all overlays that have lesser z-indices than the currently added overlay with
PopupWindow are moved on top of every activity but behind the keyboard. To summa-
rize, by adding the PopupWindow to an overlay, we can shift the z-indices of the overlays
that are currently on the screen to be between activities and a keyboard. This can be seen
in Figure 6.1. This behavior will be leveraged as explained in the following paragraphs
and we refer to this technique (adding a PopupWindow with the mentioned flags to an
overlay) as a specially-crafted overlay. Assuming a specially-crafted overlay was already
added, we want our adversarial overlay to automatically resize to the same dimensions as
the keyboard. Therefore, the flags SOFT_INPUT_ADJUST_RESIZE and SOFT_INPUT_-
STATE_ALWAYS_VISIBLE for the PopupWindow are also declared and the overlay’s type
is changed to TYPE_TOAST with the flag FLAG_NOT_FOCUSABLE set. As a consequence
of the flags, the appearance of the overlay now no longer closes the keyboard if it was
already showing and resizes its dimensions to fit the keyboard.

Resizing of the adversarial overlay due to state transitions of a keyboard can now be
detected by hooking into the onGlobalLayout() method. This will cause a listener
(OnGlobalLayoutListener) to be called if the layout undergoes size changes [60]. If
the keyboard is shown, it will trigger a resize of the adversarial overlay and therefore a
layout change. If the keyboard is closed, there no longer exists a valid reason to resize
and therefore a new layout change is required. This behavior is shown in Figure 6.2. As
the goal is to infer the keyboard’s state by obtaining the keyboard’s height, the overlay’s
height is set to the screen height. However, the status bar can only be covered by declaring
additional flags and is therefore not obscured. This circumstance must be considered and
results in the following calculation:

KeyboardHeight = ScreenHeight− StatusBarHeight−OverlayHeight.

By setting the width property of the adversarial overlay to zero the method is completely
invisible to the user and still triggers the layout change event. The method works system-
wide and produces very little resource overhead as no loops are required. The continuous

22

https://developer.android.com/reference/android/view/WindowManager.LayoutParams#TYPE_SYSTEM_ALERT
https://developer.android.com/reference/android/view/WindowManager.LayoutParams#TYPE_SYSTEM_ALERT
https://developer.android.com/reference/android/widget/PopupWindow
https://developer.android.com/reference/android/widget/PopupWindow
https://developer.android.com/reference/android/widget/PopupWindow#INPUT_METHOD_NEEDED
https://developer.android.com/reference/android/widget/PopupWindow#INPUT_METHOD_NEEDED
https://developer.android.com/reference/android/widget/PopupWindow
https://developer.android.com/reference/android/widget/PopupWindow
https://developer.android.com/reference/android/widget/PopupWindow
https://developer.android.com/reference/android/widget/PopupWindow
https://developer.android.com/reference/android/view/WindowManager.LayoutParams#SOFT_INPUT_ADJUST_RESIZE
https://developer.android.com/reference/android/view/WindowManager.LayoutParams#SOFT_INPUT_STATE_ALWAYS_VISIBLE
https://developer.android.com/reference/android/view/WindowManager.LayoutParams#SOFT_INPUT_STATE_ALWAYS_VISIBLE
https://developer.android.com/reference/android/widget/PopupWindow
https://developer.android.com/reference/android/view/WindowManager.LayoutParams#TYPE_TOAST
https://developer.android.com/reference/android/view/WindowManager.LayoutParams#FLAG_NOT_FOCUSABLE
https://developer.android.com/reference/android/view/ViewTreeObserver.OnGlobalLayoutListener#onGlobalLayout()
https://developer.android.com/reference/android/view/ViewTreeObserver.OnGlobalLayoutListener


6.3. Keyboard Presence 23

Figure 6.2.: The white rectangle represents an activity. The blue rectangle represents
the specially-crafted overlay. The red rectangle represents the area that is
occupied by the keyboard.

stream of information about the height is still guaranteed as every state transition of the
keyboard triggers a change in layout. In spite of that, one limitation is that this technique
is not applicable to the ExtractUi mode of the keyboard. As the keyboard occupies the
whole screen height and therefore does not resize any overlays as seen in Figure 6.3.

Figure 6.3.: Keyboard in ExtractUi mode. The gray rectangle represents the keyboard.
The blue rectangle represents the specially-crafted overlay.

Advanced Window Method The third technique was developed by us to combat the limi-
tation of the “Window Method”, which does not detect the keyboard state in the Extrac-
tUi mode. We assume a specially-crafted overlay O1 is already added to the screen. The
overlay should inherit pass-though behavior and therefore has the flags FLAG_WATCH_-
OUTSIDE_TOUCH, FLAG_NOT_TOUCHABLE and FLAG_NOT_FOCUSABLE set. We want
the overlay to be invisible to the user and therefore the width and height is set to zero.

The second overlay O2 is a TYPE_SYSTEM_ALERT overlay, which will be added after the
first one. It has the pass-through flags (FLAG_WATCH_OUTSIDE_TOUCH, FLAG_NOT_-
TOUCHABLE,FLAG_NOT_FOCUSABLE) set and to be invisible to the user its width and
height is set to zero as well.

The approach works as follows: An adversary adds two overlays O1 and O2, in this order,
to the screen. The order is of great importance as by adding a specially-crafted overlay,
all overlays already on the screen will be shifted to the back in terms of their z-indices.
Additionally, the call order of ACTION_OUTSIDE events is descending, which means the
View with the highest z-index is notified first if an event occurs. Overlay O1 is the
previously described specially-crafted overlay. The second overlay O2 is a standard TYPE_-
SYSTEM_ALERT overlay. As the keyboard does not demonstrate pass-through behavior, it
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(a) Overlay 1 (O1) does
not receive click events
in case a keyboard is
opened.

(b) Overlay 1 (O1) re-
ceives click events in
case the keyboard is
closed or the click did
not occur inside the
keyboards region.

Figure 6.4.: Schematic sketch of the Advanced Window Method. Overlay 2 (O2) always
receives clicks events.

will not pass MotionEvents to the underlying overlay O1 but consumes them. However,
as overlay O2 is on top of the keyboard, it will indeed receive an ACTION_OUTSIDE
event. This circumstance can be leveraged to detect the state of the keyboard as shown
in Figure 6.4. If overlay O2 receives an ACTION_OUTSIDE event but O1 does not receive
an ACTION_OUTSIDE event afterwards, an adversary can infer that the keyboard must
have consumed the event. Therefore, its state must be opened as well. On the contrary, if
an event is received by O1, it implies that the keyboard state must be closed or the user
did not click inside the region of the keyboard. This behavior can therefore be leveraged
to infer the state of the keyboard and if clicks occurred inside the region of the keyboard.

This technique supports all three keyboard modes and works system-wide. As the in-
formation can only be inferred in case a click occurred, the requirement for providing
continuous height information is violated (C2). This drawback is addressed by utilizing
a hybrid technique, which is a combination of the “Window Method” and the “Advanced
Window Method”. The continuous height information from the “Window Method” can be
used to detect keyboard presence in portrait and landscape mode. And the “Advanced
Window Method” is used to detect keyboard presence in ExtractUi mode.

Keyboard Height Threshold We additionally define a threshold at which the state of the
keyboard is considered to be opened or closed. This is necessary due to the navigation bar
which also occupies height on the screen and can trigger layout change events. Screens
have different densities, hence keyboards can therefore have different absolute pixel heights
on devices. The Android Style Guides suggest that touch targets should at least be 48 by
48 Density-independent Pixels (dp) [61]. Therefore, a conservative assumption is that the
touch targets have at least a height of 30 dp. A standard keyboard usually has at least 4
rows. We can now calculate the threshold at which we consider a keyboard to be opened:

Threshold = 30 dp× 4 = 120 dp.

Due to the dp units, it is independent of the device and must be converted to pixels on
each device by multiplying with the screen density, which can be obtained from the OS.

6.3.2. Type

In this section, inference techniques of the current type of the keyboard are described.
In particular, we solve the challenge C4. The types can, for instance, be “PASSWORD”,
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used for entering alphanumeric passwords, or “PIN”, used to enter numeric passwords.
The type of the keyboard is determined by the type of the currently focused EditText.
Android only provides information about the EditText in an EditorInfo object that
is exclusively passed to the keyboard app. As it runs in a different package, there is
no legitimate way an adversary can access it without exploiting vulnerabilities [21]. An
adversary is able to infer the displayed keyboard layout by querying the inputType of
the EditText. However, this only works in case an adversary can directly access the
focused EditText. This is only the case if an EditText is owned by the malicious app.
This implies that there is no official way of detecting which inputType is active for the
EditText that does not belong to the malicious app [18].

Furthermore, it does not appear that the EditText can be inferred from the Input-
Method. The function dispatchKeyEventFromInputMethod() is used to dispatch a
passed key from the active keyboard to a currently focused EditText [53]. Even emitting
illegal letters by using this function to the EditText cause no detectable exception.

One approach for detecting different layout types of keyboards is to infer it by analyzing
the height of a keyboard. The height can be obtained by either using the Reflection
Method or Window Method described in Section 6.3. The two most important layouts
for an adversary are the TYPE_NUMBER_VARIATION_PASSWORD for PIN inputs and the
TYPE_TEXT_VARIATION_PASSWORD for alphanumeric passwords. Furthermore, most
keyboards have different layouts for the alphanumeric and PIN passwords.

Our approach works as follows: Let h(x) refer to the height of a keyboard x. Additionally,
let KT be a keyboard of InputType T . In case the inequality

h(KTi) 6= h(KTj )

is true for all i 6= j, an attacker is able to successfully determine the InputType by height.
That implies that the condition

h(KTYPE_NUMBER_VARIATION_PASSWORD) 6= h(KTYPE_TEXT_VARIATION_PASSWORD)

is fulfilled and therefore an adversary is able to successfully determine if the user types
a PIN or an alphanumeric password provided that he knows the height of the keyboard
that is currently active. The approach can be generalized by mapping heights that were
previously captured for certain types to the respective keyboard type. Therefore, the goal
is to create an injective lookup table that assigns each keyboard height the respective
keyboard type.

The AOSP keyboard does not satisfy the previously mentioned generalization and inequal-
ity. The implemented malicious app is therefore not able to distinguish between PIN and
alphanumeric passwords in case of the AOSP keyboard. As a majority of passwords are
alphanumeric and therefore constitute the greater attack vector, we chose to focus on
them in case the inequality is not fulfilled by drawing a grid for alphanumeric passwords
by default.

6.3.3. Orientation

Current device orientation can be queried by registering a broadcast from the Android OS
called ACTION_CONFIGURATION_CHANGED. This process of registering requires no addi-
tional permissions as it is done by calling the unprotected method registerReceiver()
[62]. The broadcast is always sent if the current device configuration has changed. This
includes the device orientation [63]. Hence, by implementing this approach we have solved
the technical challenge C3.
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6.4. Keyboard Dimensions

The positions of the keys on the keyboard and the assigned characters will be referred to
as attack layout. In order to create keyboard attack layouts, it is necessary to know the
dimensions of a keyboard in advance. The purpose of the KeyboardSizeProvider module
is to provide this information. The dimensions of a keyboard are defined by its width and
height. Most Android keyboards expand their width to the screen width, for instance,
the AOSP keyboard as seen in Figure 2.2a or Google’s Gboard (fig. 7.1d). We, therefore,
decided to assume in the adversarial model that the keyboard’s width is identical to the
screen’s width. This assumption should prove right in most of the cases as it makes little
sense to vertically restrict the keyboard. Therefore, it is sufficient for this module to
provide information about the current keyboard height. Many keyboards have different
heights depending on the orientation mode they are operating in. For instance, the height
of the AOSP keyboard in landscape mode is much smaller compared to the portrait mode.
It is therefore required that not only the keyboard height is provided in advance but also
the different orientations of the devices are respected (Requirement Orientations). The
information provided by this module should therefore be equal to the keyboard height in
portrait and landscape orientation.

In order to utilize the keyboard type detection method proposed in Section 6.3.2, the
keyboard height for different input types needs to be provided. As a result, one require-
ment is that the keyboard height for the TYPE_NUMBER_VARIATION_PASSWORD and the
TYPE_TEXT_VARIATION_PASSWORD keyboard is provided (Requirement InputTypes).

The main idea is that the malicious app deliberately opens the keyboard to take measure-
ments. Those measurements can then be combined with the knowledge of an input type
and therefore a lookup-table can be created. The first step is to display an Activity
that contains the mentioned EditTexts, assuming we added an EditText number of
type TYPE_NUMBER_VARIATION_PASSWORD and an EditText alpha of type TYPE_-
TEXT_VARIATION_PASSWORD. In order to fulfill requirement Orientations the Keyboard-
SizeProvider module changes the orientation to portrait mode. This can be achieved by
calling the Android method setRequestedOrientation() [64]. In the next step, the
module requests focus for the alpha EditText. As a consequence of this operation, the
currently active keyboard opens as user input is expected for the focused EditText. As
soon as the keyboard is shown for the focused alpha input, the reflection method described
in Section 6.3.1 to infer the height is used. It was chosen as it is very fast to utilize and the
height value is only needed once. Therefore, the performance overhead is well-acceptable
as a one-time cost. Due to the fact that its not known when a keyboard appears, the
algorithm queries the keyboard’s size until it is greater than the threshold. After a value
was obtained, the algorithm then proceeds to perform the same technique for the number
EditText in order to infer the height as specified by requirement InputTypes. To comply
with requirement Orientations, the process is repeated for landscape orientation as well.

The described technique is not invisible on the victim’s device as the keyboard opens and
closes multiple times. Suspicion may be aroused by tech-savvy users that consider this
behavior odd. By utilizing this technique, the requirement stating that the malicious app
has to be as inconspicuous as possible is not fulfilled. Most smartphone users, however,
won’t notice this process at all as it only takes a few seconds and may have legitimate
reasons. The automatic opening of the keyboard itself is not a malicious act. Additionally,
the taking of measurements could be done when the user does not pay attention to the
device, e.g., at night-time or when the device is not moving. We, therefore, consider the
approach compliant with the requirements and the defined adversarial model.
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6.5. Keyboard Layout

In order to make the attack feasible, an adversary needs the following keyboard layout
information:

1.) The positions of the keys on the keyboard,

2.) the assigned characters to the keys,

3.) for each device orientation and for the two relevant input types.

As previously specified the positions of the keys and the corresponding characters are
referred to as attack layout. Android does not provide an API call to retrieve layout
information. We therefore implemented two approaches, ResourceProvider and Dynam-
icProvider, to solve the challenge C1.

Each individual provider, e.g. ResourceProvider or DynamicProvider, needs to implement
a method called getEntryKeyboard(Height). The layout returned by this function
is the main page for the currently enabled keyboard. The method also takes the keyboard
type into consideration, therefore the height is passed as an additional parameter to this
function. The height can be used to infer the keyboard type as described in Section 6.3.2.
The actual inference process was delegated to the layout providers as they require the
height as well. For the case when the main attack layout is drawn and the user clicks on
a key to switch between layout pages, the interface must provide an additional function
where the following layouts can be retrieved via the method getKeyboard(Key) that
takes the clicked key as an argument. If the passed key is used to switch between layout
pages, the function should return the page corresponding to the clicked key. Using these
two functions, each layout provider can be used regardless of their implementation due to
its uniform structure.

6.5.1. Layout Definition

To provide a keyboard attack layout, we first need to settle on one definition to only
have one interpretation. We encode a keyboard layout (with all its different layout pages)
using an object of Android’s class Keyboard. This object maintains the positions and
dimensions of each key and is also able to parse XML resource files of keyboard layouts [65].
Usually, function keys are defined by using integer constants but for clarity, we decided to
encode function keys by assigning the following labels:

� [Space] – is the label of the space bar key
� [SHIFT] – is the label of the shift key
� [Del] – is the label of the delete key
� [Enter] – is the label of the enter key
� [Switch] – is the label of the key responsible for switching to other layout pages

Pages Android’s Keyboard class supports multiple definitions in one file to support differ-
ent layout pages. Each page must be identifiable by a unique value in the keyboardMode
attribute. Some constants as seen in Table 6.1 were defined for our layout definition. By
providing the XML file and the desired mode to the constructor of the Keyboard class, a
keyboard can be acquired that only consists of the keys from the passed mode. We require
that the main layout, which is the entry point, has the mode zero for portrait layout and
one for landscape. Concerning PIN layouts, the entry points should have the modes six
and seven. All additional layout pages are selected dynamically using [Switch] keys.
Of course, those follow-up layout pages, such as the symbols page need to be marked as
well, using one of the mode constants. As Android’s Keyboard class does not support the
handling of the [Switch] key, this feature needs to be implemented. To be able to do so,
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Mode name Mode ID

keyboard normal portrait 0
keyboard normal landscape 1
keyboard symbol portrait pageOne 2
keyboard symbol landscape pageOne 3
keyboard symbol portrait pageTwo 4
keyboard symbol landscape pageTwo 5
keyboard pin portrait 6
keyboard pin landscape 7
keyboard symbol number portrait 8
keyboard symbol number landscape 9
keyboard number portrait 10
keyboard number landscape 11

Table 6.1.: Keyboard modes of the layout definition

the [Switch] key must provide a mode ID to the following page that is displayed, if the
key is clicked. We observed that Android automatically resolves resource IDs defined in
XML files to their corresponding value at runtime. However, the Keyboard class requests
the actual resource ID as argument for the mode [65]. If the attribute popupKeyboard
is set to a keyboard mode, the attribute popupResId automatically obtains the resource
ID of the provided mode integer. If a [Switch] key is clicked, the resource ID of the
mode for the following layout page is therefore stored in the popupResId attribute.

We are now able to either manually create a new Keyboard layout by creating a new list
of Key objects or by loading an XML file by using the constructor of the Keyboard class
and calling getKeys() function to obtain the list of Key objects [65]. An example XML
attack layout for Google’s Gboard is shown in Appendix Listing 10.2.

6.5.2. Resource Layout Provider

The purpose of the ResourceProvider is to give an adversary the possibility to create
attack layout files prior to the execution of the malicious app. Those attack layouts are
saved in the resources of the malicious app. Each app on Android has the ability to define
resources. “Resources are the additional files and static content that your code uses, such
as bitmaps, layout definitions, user interface strings, animation instructions, and more”
[66]. It is intended to act as a fall-back solution if the dynamic approach is not applicable.
To select the matching attack layout for the currently active keyboard, an ID for it is
necessary.

6.5.2.1. Unique Identifier

In order to select the correct XML attack layout from the malicious app’s resources, an
identifier is necessary. Our goal is to assemble the Unique IDentifier (UID) in such a
way that it changes if the selected keyboard changes (UID.1). Additionally, the selected
language that is represented by the InputMethodSubtype should be considered as well
(UID.2). We therefore need to determine a function mapping a tuple of InputMethod-
Info and InputMethodSubtype to a UID. The UID should then be used as the filename
for the attack layout stored in the resources.

In order to fulfill requirement UID.1, we chose to take the applicationId of the cur-
rently selected InputMethod into account. The applicationId is guaranteed to be
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unique among other Android applications [67]. As a result, when the user installs a new
keyboard, the UID changes accordingly.

The second part of the UID considers changes in the selected language (UID.2). This part
therefore considers a unique property of the currently selected InputMethodSubtype.
The subtype provides an attribute called getLocale() that returns a locale character
sequence. The locale is a value that identifies a language. However, this method is depre-
cated as of API level 24 (Android 7.0) [52]. A similar method called getLanguageTag()
was introduced, it is used to return a BCP-47 language tag. “An BCP-47 language tag
is a code to identify human languages. For example the tag en stands for English” [68].
We discovered that it is not mandatory to return a value from the getLanguageTag()
method. Some keyboards, such as the AOSP and Google Gboard keyboard do not provide
this tag, therefore another property is necessary to identify the currently selected language.
We observed that the value returned from the hashCode() method on the respective In-
putMethodSubtype object works as well as, among other things, its recommended for
an efficient hashCode() implementation that two identical objects always produce same
integer results [52]. If the AOSP keyboard is used, this behavior can be verified as shown
in Table 6.2.

We tested 74 different locales and achieved unique integer results for the AOSP keyboard.
The values remained identical after a reboot of the device. When using Google’s Gboard,
however, this did not produce distinct values. This is due to the Gboard using the same
InputMethodSubtype for all languages. In order to still support different languages,
the current Android system language is taken into account. The locale of Android can be
queried using the getLocales() method. A limitation of this approach is that the locale
from Android may differ from the selected keyboard language and can therefore produce
inaccurate results.

Listing 6.1: Creation of UID for current Keyboard

1 InputMethodManager imm = (InputMethodManager)
↪→ ctx.getSystemService(Context.INPUT_METHOD_SERVICE);

2 InputMethodInfo imi = getCurrentInputMethod();
3 int hashcode = imm.getCurrentInputMethodSubtype().hashCode();
4 String returnString = imi.getPackageName() +
5 Integer.toString(hashcode).replace("-", "_") +
6 Configuration.getLocales().get(0).toLowerCase();
7 return returnString.replace(".", "_");

We create the UID based on three values. The first part is the currently selected Input-
Method’s applicationId. The second part consists of the hash code returned by the
InputMethodSubtype. As the third part, Android’s current locale is appended. In
order to comply with Android’s resource file naming conventions, all letters are converted
to lowercase and dots and minus characters are replaced with underscores [69].

6.5.2.2. Layout Retrieval

If the KeyloggerManager requests a new layout, the first step is to determine whether or
not the keyboard type can be inferred by height. If both keyboard types have the same
height, the alphanumeric layout is selected due to the greater attack vector as discussed
in Section 6.3.2. If the keyboard type can be inferred reliably, the layout is selected
accordingly by providing the matching mode ID constant.

Layout Entry Point The malicious app then uses the calculated UID to search for the pre-
defined XML layout file in the own resources. If a matching layout is found, the execution
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Locale UID (applicationId, hashCode(), getLocales()[0])

en US com android inputmethod latin921088104en us
de com android inputmethod latin774684257de
ru com android inputmethod latin1983547218ru
ar com android inputmethod latin1494081088ar
in com android inputmethod latin2108597344in
nl com android inputmethod latin1067440414nl

Table 6.2.: Selected Unique Identifiers for the AOSP keyboard

proceeds by selecting the type and orientation of the layout. Entry points are defined by
setting the keyboard mode in the predefined layout file to either keyboard * portrait or
keyboard * landscape. The matching layout is then parsed using the Android class Key-
board. We can simply pass the previously determined resource ID to the constructor and
receive a list of keys and their positions using the getKeys() function. The Keyboard
class is deprecated as of API level 29. This, however, is not relevant as the attack is
targeting Android 7.0, which corresponds to API level 24 [65]. After obtaining the list
of keys, their coordinates need to be translated to the screen bottom. This is necessary
as the key’s coordinates are arranged relative to the keyboard. We can achieve this by
calculating the following equation for each individual key:

Key.y := Key.y + Display.height− Keyboard.height− status_bar_height

The height of the status bar in pixels can be queried from the configuration value sta-
tus_bar_height [70]. After the process of shifting is completed, the layout can be
passed to the requesting instance.

Following Layouts All following layout pages are requested by passing the clicked key as
an argument to the ResourceProvider. The method then validates that the passed key is
indeed a switch key by verifying the label [Switch]. As defined in Section 6.5.1, each
key which purpose is to switch between layout pages is obligated to provide a resource ID
for the following mode in the popupResId attribute. The layout is retrieved identical to
the process described above but uses the passed keyboard mode instead of the entry point.

6.5.3. Dynamic Layout Provider

In this section, we elaborate on the approach to dynamically query the currently selected
keyboard layout. We will show how to use Android’s methods to access foreign resource
files to obtain keyboard layout files.

We observed that Google’s Gboard and the AOSP keyboard save their layout files in the
app resources. The actual key declarations are stored in various XML files in both apps.
However, they do not share the same type definition and are therefore not uniform as
seen in the Listings 6.2 and 6.3. As a result, a parser that supports the specifics of the
type definition has to be developed for each keyboard individually. The focus was set on
the AOSP keyboard as it is a very well documented keyboard and specifications can be
extracted without excessive use of reverse engineering. The Gboard, on the other hand,
is closed-source and therefore the specifications are not publicly available. Additionally,
well-known custom operating systems based on Android such as “Lineage OS” use the
AOSP keyboard [71]. The implemented parser for the AOSP keyboard shall act as proof of
concept that it is possible to develop parsers for other keyboards as well as their functioning
is similar.
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Listing 6.2: Google Gboard definition for the letter q [72]

1 <softkey
2 id="@+id/softkey_latin_small_letter_q"
3 press_data="q"/>
4 <mapping
5 key_id="@+id/softkey_latin_small_letter_q"
6 view_id="@+id/key_pos_0_0"/>

Listing 6.3: AOSP keyboard definition for the letter q [73]

1 <Key
2 latin:keySpec="!text/keyspec_q"
3 latin:keyHintLabel="1"
4 latin:additionalMoreKeys="1"
5 latin:moreKeys="!text/morekeys_q" />

The main goal of the DynamicProvider is therefore to obtain the layout files from the app
resources of the AOSP keyboard. Those layout files are then parsed to dynamically infer
the exact attack layout. Hence, the goals are structured as follows:

a) Determine relevant Layout XML files from the AOSP keyboard

b) Obtain relevant layouts from AOSP keyboard’s resources

c) Parse the obtained layout files and resolve dependencies

6.5.3.1. AOSP Keyboard Layout Definition

We start by presenting the AOSP keyboard layout type definition. We observed that
each AOSP keyboard layout is structured as follows: there is a root document called
keyboard_layout_set_* whereas the * defines the keyboard name that is related to
the language, for instance: qwerty, hebrew, georgian. The keyboard_layout_set_*
contains the definitions for single layout pages grouped under <Element> tags as seen in
Figure 6.5. Each of those tags has the attribute elementName that specifies the keyboard
type and page. This can, for instance, be:

1. alphabet – for the alphanumeric keyboard layout

2. symbols – for the symbol page of the alphanumeric keyboard

3. number – for the PIN keyboard.

The actual layout definitions are not stored in the tag but are referenced using the el-
ementKeyboard attribute. It contains a reference to the file that contains the layout
definition. Each <Element> tag can be resolved to a file kbd_*, e.g., kbd_qwerty
consisting of a <Keyboard> tag as the root element. This tag can have multiple <Row>
declarations, which represent a keyboard row. In each row, there are several <Key> tags,
which define the actual keys for the layout. Those tags have various attributes, for ex-
ample, the attribute keySpec defines which character is represented by that key. Both
the <Row> and <Key> tag can define attributes, for instance, keyWidth. However, if the
attribute is defined inside a <Row> tag, it is set at the granularity of rows. That results in
each <Key>, which is a child of that row, adopting the specified attribute. If the attribute
is defined inside the <Key> tag, it overrides inherited values.

In order to be able to reuse any layout definition, the AOSP keyboard supports <in-
clude> tags. Those can be used to add a dependency for another layout file that contains
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the actual declaration. The declarations can range from single keys to complete rows and
are not restricted by any means. Each tag has the attribute keyboardLayout, which
defines the reference to the layout file that is included. An example of definitions with
<include> tags is provided in Listings 6.4.

Listing 6.4: AOSP keyboard file rows qwerty.xml

1 <Row latin:keyWidth="10%p">
2 <include latin:keyboardLayout="@xml/rowkeys_qwerty1"/>
3 </Row>
4 <Row latin:keyWidth="10%p">
5 <Key latin:keySpec="!text/keyspec_q"
6 latin:keyHintLabel="1"
7 latin:additionalMoreKeys="1"
8 latin:moreKeys="!text/morekeys_q" />
9 <include latin:keyboardLayout="@xml/rowkeys_qwerty3"/>

10 </Row>

To support even more sophisticated layouts, <switch> statements can be included in any
XML file. Those are used like conventional switch statements and represent conditional
branches inside the nested files. These may look like shown in the example presented in
Listing 6.5.

Listing 6.5: An example Switch statement

1 <switch>
2 <case latin:passwordInput="true">
3 <include latin:keyboardLayout="@xml/
4 rows_number_password" />
5 </case>
6
7 <default>
8 <include latin:keyboardLayout="@xml/
9 rows_number_normal" />

10 </default>
11 </switch>

The root element is a <switch> tag. There can be any number of <case> statements.
Each <case> statement has an attribute that acts as condition and needs to be validated.
If the condition is satisfied, the instructions inside the <case> tag are executed. Each
<switch> statement must contain a <default> branch that is executed in case no
condition could be fulfilled [73]. The hierarchy of XML tags is shown in Figure 6.5.

6.5.3.2. Obtain Relevant Keyboard Layout Set

In this section, we describe the process of obtaining relevant layout pages from the AOSP
keyboard. The first step is to detect the current keyboard language. The keyboard lan-
guage should be mapped to a XML file, which is then parsed to an attack layout.

Keyboard Language The first step is to detect the current language of the keyboard. As
the amount of keys and their positions may differ for varying scripts, the keyboard script
needs to be detected in order to launch a successful attack. The Latin script is the basis
of most alphabets [45]. But there are many others like Cyrillic, Arabic or Malayalam
script. The AOSP keyboard supports around 80 different languages (ref B.2). Our goal
is to support the same languages in order to perfectly mimic the AOSP keyboard. By
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< Element >

kbd layout set ∗

< Element > < Element >

< include > < switch >< Row >

< Key >

... ...< Keyboard >

< case >

< default >

Figure 6.5.: Hierarchy of AOSP XML tags

obtaining the currently selected InputMethodSubtype, the locale of it can be obtained.
“A locale is a set of parameters that defines the user’s language [and] region” [74].

Obtain Resource ID for Keyboard Layout Set We can obtain the package name of the
keyboard by calling the getPackageName() function from the InputMethodInfo.
“Package objects contain version information about the implementation and specifica-
tion of a Java package” [75]. Packages can be identified by their fully-qualified name for
example: uni.wue.cloak.and.dagger. Android’s PackageManager provides the
getResourcesForApplication() method to obtain the resources from any app. The
returned Resources object provides various methods to access single files or objects. For
example, the method getIdentifier() is used to return the resource ID. Once the ID
is obtained, an adversary can obtain a file by calling the method which matches the type.
For example, a String resource can be obtained by calling the getString(id) function
[76].

By using this technique, the resource ID of a lookup map can be obtained from the AOSP
keyboard’s resources, that resolves locales to their corresponding keyboard and is called
locale_and_extra_value_to_keyboard_layout_set_map [77]. The obtained re-
source ID can then be used to obtain the actual lookup map. By obtaining the entry from
the table that corresponds to the keyboard’s locale, the resource name of the keyboard
layout set can be inferred. The resource name can then be resolved to a resource ID by
using the getIdentifier() method.

6.5.3.3. Parse Keyboard Layout Set

As the Resource ID for the currently active keyboard layout set was obtained in the
previous step, this section describes the actual parsing algorithm. The process applies the
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Layout name Layout ID

alphabet 0
symbols 5
symbolsShifted 6

phone 7
phoneSymbols 8

number 9

Table 6.3.: Layout name to layout ID table

following steps:

1.) Select relevant keyboard pages,

2.) Resolve each dependency from <include> statements,

3.) Evaluate each <switch> statement and act accordingly,

4.) Obtain further values necessary to parse the layout,

5.) Parse relevant tags.

A XmlResourceParser can be obtained from the resource ID in order to access its
contents. As mentioned before, the keyboard layout sets contain multiple keyboards and
their pages. An adversary is only interested in alphanumeric and numeric passwords.
Additionally, we decided to support the layout to enter phone numbers. Internally, the
keyboard layout names are represented by integer values. First, we create a lookup table
for resolving the layout names to their respective numbers as shown in Table 6.3. In the
next step, the resource identifiers for the single layout pages are obtained. For instance,
in order to parse the first layout page of the keyboard used for alphanumeric passwords,
the <Element> tag that has the value zero set for the latin:elementName attribute
has to be found. If the right <Element> was found, the resource ID of this layout can
be obtained by accessing the value stored in latin:elementKeyboard. This resource
identifier can then be parsed in the next step.

Resolve Dependencies Due to <include> statements, the layout can contain dependen-
cies to different XML files that need to be resolved. A recursive algorithm should evaluate
each tag and obtain the corresponding layout file in case of <include> statements. How-
ever, not all <include> tags need to be parsed in case they are bound by a condition
using <switch> tags. The algorithm has therefore to be capable of evaluating conditional
branches.

Switch statements are mostly used to define additional keys, such as vowel mutations.
These can be entered by long-pressing a key (Figure 6.6) and depend on the selected
language. Furthermore, they are used to determine if a language switch button is included
in the layout in case the user selected multiple languages. We decided to ignore the
additional keys as the attack is only able to detect single clicks. Additionally, we assumed
in the adversarial model that the user only selected one active keyboard language. As
a result, only the default branch of <switch> statements is parsed. Concerning PIN
password layouts, the branch with the latin:passwordInput attribute set to true is
parsed due to the fact that PIN password layouts have additional keys called “spacers”
that are used for centering the layout [73]. The spacers, marked using [S], are shown in
Figure 7.1a.
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Figure 6.6.: Gboard vowel mutations [78]

Variable Meaning Configuration value

mTopPadding
space between content

and top border
config_keyboard_top_padding_holo

mBottomPadding
space between content

and bottom border
config_keyboard_bottom_padding_holo

mDefaultKeyWidth default key width config_more_keys_keyboard_key_width

mHorizontalGap
horizontal gap between

two keys
config_key_horizontal_gap_holo

mVerticalGap
vertical gap between

two keys
config_key_vertical_gap_holo

mDefaultRowHeight default row height config_more_keys_keyboard_key_height

Table 6.4.: AOSP keyboard configuration values

As the algorithm is now capable of evaluating which tags are relevant, the parsing pro-
cess can continue. Each <include> statement represents a stand-alone XML file. The
latin:keyboardLayout attribute contains an @ character concatenated with the re-
source ID. The algorithm can therefore be called recursively with the newly obtained
resource XML file. This process is repeated for each dependency.

Configuration Values Not all keys have explicitly set values for their width and height due
to the fact that only those differing from the default values must be defined explicitly.
All others inherit the default width and height defined as keyboard configuration values.
Those can be obtained from the AOSP keyboard resources saved as fractional values. We
are interested in the values presented in Table 6.4. We observed that even if clicks are
outside the key’s area, the key click is still detected by the AOSP keyboard, meaning the
gaps are for layout purposes only and do not really change the hit-box dimensions of actual
keys. However, they still need to be obtained in order to calculate the row height and the
key dimensions as the values are relative to the keyboards dimensions. For instance, the
default key height is relative to the row height. The row height, however, is relative to
the View from the keyboard in which keys are displayed. Finally, the dimensions of this
View are dependent on the defined gaps and paddings [79]. In order to have identical
behavior, especially concerning the detection of identical key strokes, we decided to ignore
the gaps between the keys. The mDefaultRowHeight value is therefore used as default
key height and the mDefaultKeyWidth value as default width.

Parse Rows and Keys If the recursive algorithm detects <Row> declarations, a method to
parse them is executed. Only keyWidth and keyHeight attributes are relevant as they
are used to define the dimensions at the granularity of rows. The attributes can be defined
by using relative or absolute values. Values that are relative to the keyboard dimensions
can be detected by the character sequence %p at the end of declarations [73].
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Label Name Keyboard Page Transition

toSymbolKeyStyle alphanumeric to symbol page one

backFromMoreSymbolKeyStyle from symbol page two to symbol page one

toMoreSymbolKeyStyle from symbol page one to symbol page two

toAlphaKeyStyle from symbol page one to alphanumeric

numPhoneToSymbolKeyStyle from number to number symbol

numPhoneToNumericKeyStyle from number symbol to number

Table 6.5.: Switch key labels from the AOSP Definition used to switch between layout
pages [73]

If the recursive algorithm finds a <Key> declaration, the keyWidth and keyHeight
attributes are parsed as well, as long as they are present. As mentioned above, attributes
defined for single keys override attributes defined for rows. Additionally, the keySpec
attribute is parsed in order to obtain the key’s label. Some keys have no keySpec at-
tribute but a keyStyle defined, for instance, lessKeyStyle, deleteKeyStyle or
enterKeyStyle [73]. As the values are unique, we decided to adopt them as key labels.
However, for aesthetic reasons, some characters are replaced by their actual symbol which
can be seen in Appendix Table B.1.

The algorithm has to convert functional keys, especially the key used to switch between
layout pages, to our used definition. As a result, the AOSP definition of a switch key has
to be converted to our own definition. Concerning the AOSP keyboard, switch keys are
defined by setting the latin:keyStyle attribute to a value like toSymbolKeyStyle
or backFromMoreSymbolKeyStyle. Those label names identify a keyboard page tran-
sition, for instance, from the alphanumeric keyboard to page one of the symbol keyboard.
The latin:keyStyle attribute is then evaluated and the target layout page for the
[Switch] key is defined by the label name from Table 6.5.

Center layout The AOSP keyboard centers all keys in each row as seen, for instance, in
Figure 2.2a if no spacers are defined. The process is therefore adopted and each key is
centered in its respective row by expanding the width of left and right most key to equal
parts until no space is left. We observed that the expanded keys have a larger area for
which clicks are detected (hit-box) due to their greater size. However, the AOSP keyboard
shows identical behavior.

6.5.4. Layout Learning

The dynamic attack layout learning approach was not implemented as its performance
was not good enough. Yet we introduce it briefly as it was considered to be implemented.
As the app is able to create an input field in which the user is lured to type some keys,
the app can check which text was typed in the EditText. Previously, an adversary has
drawn a very narrow grid on top of the keyboard. This enables an adversary to infer
which grid field equals which keystroke and therefore dynamically map each grid field to a
keyboard key. This approach, however, is quite slow and requires manual user interaction
but theoretically can be improved by using statistical predictive modeling approaches,
such as decision trees [80]. The approach only works in case the user actively clicks keys
on the keyboard, hence, user interaction is required. The approach could be autonomous
by emulating the clicks programmatically. This, however, needs the INJECT_EVENTS
permission. This is a so-called signature permission defined by the OS and can therefore
only be granted to apps that share the same private key as the operating system [81]. If we
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were able to obtain this permission, it would enable us to automatically learn the keyboard
layout without being dependent on any user interaction. Additionally, as elaborated in
Section 5.2, the drawing of narrow grid fields produces very large resource overheads and
tends to have a bad performance, which makes this approach hardly feasible.

6.6. Keylogger Manager

In this section, the implementation of the KeyloggerManager module is presented. The
goal is to perfectly place the “Invisible Grid” attack on a device. We, therefore, have to
combine information and approaches from the previous modules. The approach includes
the following steps:

a) Get the size of the keyboard using KeyboardSizeProvider,

b) Get the attack layout from matching Layout Provider e.g. ResourceProvider or
DynamicProvider,

c) Detect the state of the keyboard using KeyboardPresenceProvider,

d) Utilize “Invisible Grid” attack to infer keystrokes.

Initialization Stage The initialization step applies methods from the KeyboardSizeProvider
to deliberately open the keyboard in order to take measurements. Since the Dynam-
icProvider only supports the AOSP keyboard it is only used in case the AOSP keyboard
is actually enabled. For all other keyboards, the ResourceProvider is used, however, it can
only be utilized in case the matching attack layout was created prior to app execution. In
our implementation, we only created an attack layout for Google’s Gboard English layout.
As elaborated in Section 6.5.2 more keyboards can easily be supported by creating their
XML attack layout. The measurements from the KeyboardSizeProvider are used in the
next step to gather the main layout page from the DynamicProvider if the AOSP keyboard
is used. Otherwise, the ResourceProvider is used to gather the layout if it was created
prior to app execution. Orientation information necessary to select the layout is gathered
from the KeyboardPresenceProvider.

6.6.1. Placement Stage

After the initialization step is finished, the actual attack is placed. The goal is to combine
the modules to infer the following information:

1.) Detect if relevant clicks occurred inside the keyboards key area,

2.) Detect keyboard state changes to be able to reset layout pages.

Relevant Clicks The basic attack strategy is structured as follows. In the first step, only
relevant clicks are evaluated. Clicks that have occurred outside the keyboards key region
can not reach a key and do not need to be evaluated. The app is therefore supposed to
only evaluate clicks that occurred inside the key region and detect for those if the keyboard
state is Opened. This distinction is necessary as the ExtractUi mode has a key region
and a text region as seen in Figure 2.1c. We can infer if a click occurred inside the key
region by applying the following approach, which will ultimately be combined with the
Advanced Window Method.

It is assumed we draw the overlay O2 in the top left corner with a width and height
of zero and the pass-through flags set. Additionally, the flag FLAG_WATCH_OUTSIDE_-
TOUCH is set. As the overlay inherits pass-through behavior, each click is considered
outside and therefore each click will trigger the outside touch event. In the next step, the
keyboard overlays O3, O4, ..., On are drawn. The positions of the keys are provided by a
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Figure 6.7.: Clicks that have occurred outside the keyboards key region are not considered
relevant.

KeyboardLayoutProvider and therefore each overlay has pairwise disjoint x-y-projections.
As the overlays were added in ascending order, we can assume that the z-index of O2 is
smaller than the z-index of Oj for all j > 2. All overlays are therefore ordered by increasing
z-index and have pairwise disjoint x-y-projections.

Based on the definitions presented in Section 4, the following detection scheme can be
used: Assuming p 6∈ Oi for all i ∈ N, we have O2.OBSCURED = 0 as p 6∈ Oj for all j > 2
with j ∈ N. Conversely, if p ∈ Oj with j > 2 we have, by definition, O2.OBSCURED = 1.

Simplified that means: if a click is detected by O2 and O2.OBSCURED = 0, the click must
have occurred outside the keys region. Otherwise, an overlay in the keys area was clicked
and therefore overlay O2 is obscured.

This detection scheme enables the malicious app to infer which clicks are relevant. For
those considered relevant due to the condition O2.OBSCURED = 1 being fulfilled, the cur-
rent keyboard state is evaluated by combining this detection technique with the Advanced
Window Method. A specially-crafted overlay O1 is therefore drawn prior to all other over-
lays. If overlay O2 receives an outside touch event and the click is considered relevant, the
malicious app waits for a small period of time and validates if O1 has received an event as
well. By using this approach, only relevant clicks are evaluated and the keyboard state is
taken into consideration as well.

Keyboard State Changes Keyboard state changes need to be detected in order to reset
layout pages. Due to this requirement, the Window Method is utilized. If the state of
the keyboard is set to “Closed”, the layout page is reset to the entry point layout page.
Additionally, the [Shift] key is reset to disabled as well.

As Herley et al. discovered, a limitation of classical keyloggers is that they are not able to
eavesdrop on sensitive input correctly if the user changes cursor positions in the EditText
[82]. We can’t bypass this limitation but the impact can be lowered. Therefore a feature
was implemented that exploits the way Android keyboards work. If a user clicks outside
an EditText’s area, the EditText that is currently focused will lose focus. If no
EditText is focused, the Android keyboard will automatically close.

The state of the keyboard is detected by the Window Method presented in Section 6.3.1.
Each click that is not considered relevant, meaning O2.OBSCURED = 0, is outside of the
region of the keyboard. For these clicks, the malicious app is able to check if the keyboard
closed after 500 milliseconds. If the keyboard did not close, the EditText still has focus
and therefore the probability is very high that the user changed the cursor position. In
this case, a warning is printed to the output that results may be inaccurate.
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Implementation Details As we have already elaborated, drawing a specially-crafted overlay
will result in all overlays, currently on the screen, being shifted below the keyboard in terms
of their z-index. Due to this circumstance, the drawing order is of severe importance. An
attack would not be successful if the keyboard overlays are behind the keyboard, as clicks
would not be detected anymore. That means all overlays, which overlay keys on the
keyboard, have to be drawn last to not be shifted. The Window Method must therefore
be added first since it contains a specially-crafted overlay. Afterward, for the same reason,
the Advanced Window Method is applied. As the last step, the single keyboard overlays
are drawn.

For the implementation of the Advanced Window Method, combined with the detection
of relevant clicks, concurrent programming is necessary. Due to the overlay O1 being
added first by the Advanced Window Method, it inherits the lowest z-index. Therefore,
it is notified last in case an outside click occurs. In case overlay O2 detects an outside
key click, a new thread is started that waits for ten milliseconds to get a signal from the
overlay O1. The signal feature is implemented using a synchronized object that is used to
safely access objects from multiple threads [83]. The signal is provided in case the overlay
O1 receives a FLAG_WATCH_OUTSIDE_TOUCH event. The thread then checks if the signal
was set or if a timeout occurred. In case of a timeout, the malicious app can infer that
the keyboard is opened, otherwise, a FLAG_WATCH_OUTSIDE_TOUCH event would have
been fired for the overlay O1. However, if the overlay O1 does receive a FLAG_WATCH_-
OUTSIDE_TOUCH event, the malicious app can infer that the keyboard is not opened in
any of the three keyboard modes.

6.6.2. Attack Stage

Each keyboard overlay O3, O4, ..., On is stored in the keyViews array. The keyViews
were added last and therefore have higher z-indices than all other overlays. In case the over-
lay O2 detects a click, the Advanced Window Method determines if the click occurred inside
the keyboards key area, i.e., is relevant. Additionally, since the FLAG_WATCH_OUTSIDE_-
TOUCH event order is descending, the event was processed by every overlay in the keyView
array. Each time a keyView receives a callback from the View.OnTouchListener due
to a FLAG_WATCH_OUTSIDE_TOUCH event, it validates whether or not the OBSCURED
flag is set for it. If it is obscured, an integer called counter is incremented.

If O2 detects an obscured outside click, i.e., a relevant click, the amount of obscured
overlays from the keyViews array is now stored in the counter variable. The clicked
overlay can therefore be inferred by using the counter as an index for the keyViews array.
At the end of each event from the O2 overlay, the counter is reset to zero in order to be
able to infer the next key click. In order to be able to infer which key was clicked, a lookup
map is created that assigns each View the corresponding keyboard Key. If a [Switch]
key is clicked, the method for drawing the layout is called and the [Switch] key is passed
as an argument to the getKeyboard(Key) method from the KeyboardLayoutProvider
in order to obtain the next layout page.

Listing 6.6: Pseudo Code to infer key strokes

1 keyViews = [O3, O4, ..., On]
2 counter = 0
3 clickedKeyView = null
4 //When executed clickedKeyView contains the clicked key
5
6 outsideTouchEventCallback(
7 new function(O)
8 if O is O2
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9 if O.OBSCURED
10 if O1.SIGNAL
11 clickedKeyView = null
12 else if O1.TIMEOUT
13 clickedKeyView = keyViews[counter]
14 else
15 clickedKeyView = null
16 if keyboard does not close after 500ms print warning
17
18 counter = 0
19 else s.t. O equal to O3, O4, ..., On

20 if O.OBSCURED
21 counter++
22 )

11 12 13 14

10090807
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O2

keyView Overlays

Android Keyboard

Input Field
02

O1

Window
Method

Figure 6.8.: KeyloggerManager attack placement (numeric values inside boxes represent
z-indices). Circles represent that the overlay has a lower z-index than the
keyboard.

Drawing the Attack As shown in Section 5.3, the drawing of overlays takes a lot of
time. Therefore, the overlays are kept on the screen and in case of layout changes the
characters and positions are updated. If the new layout requires a different amount
of overlays than the previous one, the numerical difference ∆ is calculated. Hence, ∆
overlays are either added or removed. Afterward new layout parameters (WindowMan-
ager.LayoutParams) with the updated attributes are created. By calling the updat-
eViewLayout() method from the WindowManager, the new layouts are assigned [36].

Sensitive and Non-Sensitive Input The height of the keyboard for different input types was
measured using the KeyboardSizeProvider in the initialization stage. The app is therefore
able to distinguish between sensitive and non-sensitive input if there is an injective mapping
from (measured) keyboard height to keyboard type. Concerning the AOSP keyboard, we
observed that the TYPE_TEXT input usually spawns a suggestions bar on top of the AOSP
keyboard in order to provide suggestions for the typed input. This increases the height of
a keyboard and therefore it is distinguishable from sensitive input fields that usually do
not have a suggestion bar. The malicious app prints information if a PIN, alphanumeric
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password or text input field was detected. However, in case of the AOSP keyboard, the
measured heights for PIN and alphanumeric passwords are the same. Hence, the app is
only able to distinguish between passwords and normal text.

6.7. Logger

In the following paragraphs, the module KeyloggerLogger is presented. Its purpose is to
handle all key clicks and print out the characters. In order to infer the correct characters the
[Shift] key must be handled correctly. The following paragraphs describe the approach
and resulting limitations.

Each key click is forwarded to the KeyloggerLogger module by calling the keyClicked(Key)
method and passing the clicked Key as an argument. In the next step, the method tries
to infer if the clicked key is upper- or lowercase.

Distinguishing Upper- and Lowercase This is achieved by evaluating clicks on shift keys.
Concerning the AOSP keyboard, we observed that there are three ways to enable shift
keys. The first method is to single click on the [Shift] key and therefore shift only
the next letter. The second way is to click the [Shift] key twice in a small period of
time that enables caps lock. Caps lock permanently enables the [Shift] key until it is
clicked again. This function can also be enabled by long clicking the [Shift] key, that
represents the third way.

Single clicks on the [Shift] key can be detected trivially. Additionally, the malicious
app stores the timestamp of each [Shift] key click in order to infer if a subsequent click
took place. If the two successive clicks are in a time span of 300 milliseconds, caps lock
is enabled. The threshold was adopted from the AOSP keyboard, due to the observation
that caps lock is enabled for a time span of 300 milliseconds but not for 305 milliseconds.

The third way of enabling the [Shift] key, by long clicking the key, cannot be im-
plemented due to the functioning of the attack. The limitation is that, by design, the
malicious app is only able to detect the initial gesture that triggered the ACTION_OUT-
SIDE event. It therefore only gets the “down event” but not the following “up event”. As a
result, long presses on keys are not detected. The third method for enabling the [Shift]
key is therefore not implemented.
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7. Evaluation

In this chapter, we evaluate the implemented attack by use-case testing it on different
devices. A representative sample of the languages supported by the AOSP keyboard as
well as Google’s Gboard English layout is tested. Furthermore, different device resolutions
and orientations are considered.

Android Version Implementation Working Additional modification necessary

4.4 X X
5.1 X *
6.0 (X) X
7.0 X *
7.1 X X
Greater 7.1 * *

Table 7.1.: Overview of use-case tested implementation for different Android versions. The
(X) indicates that the general attack works on this version but the developed
application does not.

7.1. Vulnerable Android Versions

Our implementation targets Android 7.0. However, we evaluate on which other Android
versions it works as well. We test the end-to-end attack implementation for the AOSP
keyboard. As the AOSP keyboard supports around 80 different languages we only test a
representative sample of languages. Additionally, we test the attack for Google’s Gboard
English layout. We summarize the findings into categories below 7.1 and above 7.1. In the
figures 7.1a, 7.1b, 7.1c and 7.1d, we present visible attack overlays for the AOSP keyboard
using the DynamicProvider and Google’s Gboard by utilizing the ResourceProvider.

7.1.1. Android 7.1 and below

In this section, we evaluate the implementation for Android versions below 7.0 by use-case
testing it on devices that utilize different Android versions. The use-case test was con-
ducted by comparing recorded keystrokes with actual keystrokes for random user input.
The random keystrokes made sure that all keyboard pages were utilized. Moreover, upper-
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and lowercase letters were tested. Furthermore, the use-case tests were carried out using
a representative sample consisting of multiple languages including English, Russian, Ger-
man, Tamil and Georgian. Additionally, the attack was tested on different screen sizes to
guarantee that it is independent of device resolution.

Android 4.4 The implementation works for emulated Android 4.4 devices as long as the
app is in the foreground. As soon as the app is sent to the background, all overlays
are closed due to the fact that a valid Context is necessary to display overlays. The
Context is destroyed as soon as the app is in the background. This behavior can be
circumvented by creating a Service that keeps running in the background. In order to
create a Service, no additional permissions are necessary for Android 4.4 [84]. The attack
can run successfully on devices using this Android version by applying this modification.

Android 5.1 The implementation was tested on an emulated Android 5.1 device with a
screen resolution of 1080 by 1920 pixels. The security patch level was dated as of 1st
November 2015. The implemented attack worked without any restrictions.

Android 6.0 The attack was also tested on an emulated Android 6.0 device with a screen
resolution of 480 by 800 pixels. The screen resolution was drastically reduced to determine
if the attack is capable of handling different resolutions. The security patch level was dated
as of 6th September 2016. The implementation was working smoothly as long as the app
is in the foreground. If the app enters the background, the ACTION_OUTSIDE events were
dropped by Android’s ViewRootImpl. This method checks if the receiving view has the
focus in case it does not, the event is dropped [85].

Due to the dropping of events, the implementation does not work for this version. If
ACTION_OUTSIDE events are dropped, the counter, which is incremented in case the
View is obscured, does not work properly. We are, therefore, not able to infer which grid
field was clicked. Zheng et al. [27] managed to successfully launch the attack on Android
6.0 using TYPE_TOAST overlays instead of TYPE_SYSTEM_ALERT. Nevertheless, we could
not reproduce the success by changing the overlay type of our implementation as well.

Android 7.0 The attack was use-case tested on an emulated Android 7.0 device with
the security patch dated as of 5th June 2017. The attack was tested with the AOSP
keyboard for different languages. Google’s Gboard was tested as well but only for the
English keyboard layout. All three keyboard modes were tested. Furthermore, both
device orientations were tested. In all use-case tests, the implementation was able to
successfully eavesdrop on sensitive input for different languages. Therefore, we conclude
that all implementation challenges were solved for the targeted Android version.

Android 7.1 Android 7.1 introduced two new mitigation techniques to prevent the“Invisible
Grid” attack. The first one is a timeout for TYPE_TOAST overlays that ensures they can
only be shown for a maximum period of 3.5 seconds. The second mitigation is that only
one TYPE_TOAST overlay per application is allowed [27].

As a result of this behavior, the Window Method, presented in Section 6.3.1, no longer
works. In order to circumvent this restriction, however, an adversary can use the Reflection
Method, presented in Section 6.3.1, instead as it does not rely on overlays at all. The
implementation appears to be feasible by using this strategy for this version. We conclude
that the attack can run successfully on devices by implementing the modifications. Zheng
et al. [27] managed to make the attack itself feasible for Android 7.1 devices, which
strengthens our hypothesis.

7.1.2. Above Android 7.1

The TYPE_SYSTEM_ALERT flag is deprecated as of Android 8.0 [54]. This implies that
the implementation does not work for versions greater 7.1. Zheng et al. presented in their
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(a) AOSP PIN keyboard with
visible attack overlays

(b) AOSP keyboard with visible
attack overlays

(c) AOSP keyboard with visible
attack overlays in landscape
orientation ExtractUi
mode

(d) Google Gboard keyboard
with visible attack overlays

Figure 7.1.: Visible attack overlays for different keyboards.

paper “Android Toast Overlay Attack: ‘Cloak and Dagger’ with No Permissions” [27] an
implementation without the use of TYPE_SYSTEM_ALERT overlays. Instead, the authors
used TYPE_TOAST overlays that are not deprecated in Android 8.0.

Due to the restrictions introduced in Android 7.1, only one overlay at a time can be drawn
[27]. This prevents the attack as multiple overlays are necessary to infer key strokes.

7.2. Limitations

In this section, we present the limitations of the implemented end-to-end attack. We elab-
orate on floating keyboards, unsupported swipe gestures, and explain further limitations
of the developed approaches.

7.2.1. Supported Keyboards

The first limitation is that only rectangle-shaped keyboards were considered. The attack
therefore only works on these. Android itself does not limit the development to rectangle-
shaped keyboards; in fact, a keyboard can be implemented in many ways. The most
common keyboards, however, are rectangle-shaped and therefore the attack is applicable
to a majority of keyboards. The second limitation is that the attack, by design, only works
for software keyboards. If users connect a hardware keyboard to a device, an attack is no
longer feasible. Floating keyboards that are not placed at the bottom of the screen and
can be placed individually by drag-and-drop are also not supported.

7.2.2. Unsupported Swipe Gestures

Another limitation is that the app is only able to detect the initial gesture that triggered
the ACTION_OUTSIDE event. As a result, it only gets the “down event” but not the
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following “up event”. It is therefore possible that a user can press a key and slide to
another key. This will log the wrong key since the internal keyboard will detect the
pressed key using the “up event”. The malicious app, however, is using the “down event”
and has no way of accessing the “up event”. While in such a case sensitive data cannot be
recovered precisely, an attacker can reduce the search space for his brute-force attack by
concentrating on neighboring keys like vowel mutations (as shown in Figure 6.6).

The AOSP keyboard disables swiping at password input by default. Furthermore, swipe
keyboards itself pose little limitation since passwords are usually not typed by using“swipe
techniques”. This is mainly due to swipe keyboards correlating the swipe path with a word
search engine and passwords are often random, hence not found by a word search engine
[86]. However, if passphrases consist of natural words, “swipe techniques” may indeed be
utilized, which would make the eavesdropping of these not feasible.

7.2.3. Limitations of Keyboard Language Detection

As already mentioned in Section 6.5.2.1, keyboard language detection does not work for
some keyboards, such as Google’s Gboard. As a fall-back solution, the system language
is assumed to be identical to the keyboard’s language. This assumption is correct for
the majority of users. Meanwhile, multiple-selected languages are not supported, e.g.
English and German being enabled at the same time. By generalizing our approach, the
implementation of this feature appears to be feasible at least for the AOSP keyboard.

7.2.4. Limitations of Advanced Window Method

The Advanced Window Method presented in Section 6.3.1 is used to determine keyboard
presence for all three modes. Due to the design of this approach, the closing of the keyboard
can only be detected by evaluating user clicks. If the user does not click anywhere, the
closing process of the landscape ExtractUi mode is not detected and therefore the current
layout page will not be reset. This limitation only applies to very limited use-cases, such
as apps that automatically focus on input fields without the necessity of user interaction
and therefore do not impact the feasibility of an attack.

We tested the attack implementation on a variety of versions and have shown that it
successfully runs on the targeted platform Android 7.0 and 5.1 without additional modifi-
cations. By applying the proposed modifications the attack can run on Android versions
4.4 and 7.1. Furthermore, we have shown that the attack works independently of device
resolution and orientation. By testing a representative sample of the around 80 languages
supported by the AOSP keyboard we conclude that the implementation supports all the
languages as well. Moreover, we have shown that the utilization of custom attack layouts
created prior to app execution, for unsupported keyboards such as Goggle’s Gboard, is
working as well.
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In this section, we present OverlayShifter, a novel defense technique preventing the
“Keystroke Inference #3” attack from the “Cloak and Dagger” paper by Fratantonio et
al. [1]. The defense technique works system-wide and is independent of OS modification
while fully preserving usability and overlay functionality. In particular, we first provide
theoretical foundations and then present our design and implementation.

8.1. Theoretical Foundations

Consider the adversarial application A and the defender application B. Both applications
have distinct package names, hence are completely separated by the Android OS. The ad-
versarial application A is performing the “Keystroke Inference #3” attack. The defender’s
application B now adds a specially-crafted overlay to the screen. As we elaborated in Sec-
tion 6.3.1, the so-called specially-crafted overlay will shift all overlays that are currently
on the screen behind the keyboard. Hence, the z-indices of all adversarial overlays will be
shifted in such a way that they are no longer on top of the keyboard. As we have elabo-
rated in Section 6.3.1, if overlays are behind the keyboard in terms of their z-indices they
will no longer receive motion events if input is being entered. That entails, all adversarial
overlays from application A will no longer receive motion events in case input is being
entered and are therefore no longer able to perform the “Keystroke Inference #3” attack.

We observed that the adversarial overlays are shifted for as long as the specially-crafted
overlay from application B is on the screen. However, if A removes the adversarial overlays
and adds them for a second time they will be on top of the keyboard again, regardless
of the existence of a specially-crafted overlay. In order to circumvent possible re-adding
of adversarial overlays, the defender application B needs to continuously add specially-
crafted overlays. However, the old overlays don’t need to be kept on the screen. Hence,
the defender application B can add a new specially-crafted overlay and remove the previous
one.

Consider A continuously adds n malicious overlays. The time which is necessary to place
n operational adversarial overlays will be defined by the cycle time c1. Hence, c1 specifies
the time necessary till the last overlay is fully operational, whereas operational means it
is placed on the screen and capable of receiving motion events.

c1 = TimestampLastOverlayOperational− TimestampStartAdding

47



48 8. Defense Method OverlayShifter

If the defender application B now continuously adds specially-crafted overlays with a cycle
time c2 and achieves a cycle time such that c2 < c1, the adversarial process of adding n
overlays on top of the keyboard will be disrupted, as the overlays added by A will be
shifted behind the keyboard by B.

We have observed that an overlay is only fully operational (able to receive motion events),
if the second onLayoutChange() event fired. Therefore, we were able to measure the
time necessary to place n operational overlays. This was done by storing the timestamp of
the second onLayoutChange() event for all placed overlays. Additionally, the starting
timestamp from which the overlays were initially added was stored. Using those two times-
tamps we were able to calculate the cycle time c1. We have conducted the measurement
using 30 overlays (n = 30) as we have elaborated in Section 5.2 this is the lower bound
necessary to perform the attack. We took cycle measurements on a population size of
130 to get reliable results. As seen in Figure 8.1 the minimum adversarial cycle time c1
is 364 milliseconds. Hence, if the defender achieves a cycle time c2 < 364 the attack is
prevented. The smaller cycle time is realistic, as the defender only needs to add one single
overlay compared to 30 malicious overlays. Yet, we still measured the time necessary to
add one specially-crafted overlay until its operational. The population size was 195 and
the maximum defender cycle time c2 is 62, therefore the condition c2 < c1 can easily be
fulfilled.
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Figure 8.1.: Comparison of adversary (c1 marked blue) and defender cycle times (c2 marked
red).

8.2. Design and Implementation

OverlayShifter is designed to prevent the “Keystroke Inference #3” attack. We have
elaborated in the previous section, that the defense technique continuously adds specially-
crafted overlays with a lower cycle-time than the adversary. The old overlay can be removed
as the new one is being added. We have decided to rotate four specially crafted overlays
in order to guarantee that at least one overlay is always present on the screen. This is
done by storing four specially-crafted overlays O0, O1, O2, O3 into an array. In case the
overlay Oi is added, the overlay Oj is removed where j = i − 2 for i > 1 or j = i + 2
for i < 2 with i, j ∈ N0. This rotation of specially-crafted overlays is done in a loop.
The process of adding a specially-crafted overlay takes around 44 milliseconds (Median).
Hence, we can delay our loop by t = c1 − c2 which results in t = 320. Hence, the function
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shiftAllOverlays(int overlayID) (cf. Appendix C for implementation details)
must be called every 319 milliseconds to achieve a defender cycle time c2 = 363 < 364 = c1.
That results in roughly three overlays being placed per second.

The added specially-crafted overlays have a width and height of zero and are therefore
invisible to the user. The developed approach can be deployed system-wide which means
it does not have to be implemented by each application individually on the Android de-
vice. However, due to performance reasons elaborated further on the defense method
should only be applied in case sensitive input is expected. OverlayShifter works using
only the SYSTEM_ALERT_WINDOW permission. However, in the current implementation,
it is not guaranteed that the OverlayShifter continues to work in the background.
Hence, additional permissions such as FOREGROUND_SERVICE to register a foreground
service may be necessary for advanced versions. Foreground services enable continuous
background execution on the device. The developed approach does not impair legitimate
overlays, as they are most likely not dependent on being above the keyboard.

Future Improvements We have only presented a very basic implementation of the Over-
layShifter defense method. Further improvements could focus on the performance of
the application as loops are usually resource intensive. The performance was not directly
measured as we considered this out of scope. However, we were not able to notice any
limitations during the test of the OverlayShifter. The resource utilization could be
further reduced by only activating the defense method in case the keyboard is shown or
sensitive input is being entered. The presence of the keyboard can be detected system-wide
using any of the three developed approaches in Section 6.3. It should be investigated if
other related attacks such as “Hoover” [28] could be prevented as well. In theory, shifting
the overlays utilized by this attack behind the keyboard leads to the overlays no longer
being able to receive “post-tap hover events”. Hence, the attack could be prevented if
the defense method is able to shift the overlays in time. The feasibility still needs to be
investigated.
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9. Discussion on Countermeasures

In this section we discuss countermeasures, apart from the OverlayShifter, such as
in-app keyboards. Furthermore, we present characteristics of the attack which facilitate
the development of countermeasures.

Security Patching The most effective defense mechanism against the“Invisible Grid”attack
is to install the fix for CVE if available. Additionally, SYSTEM_ALERT_WINDOW permission
should only be granted to trusted applications. Otherwise, malicious activities may be
employed. As elaborated previously, many manufacturers no longer support their devices,
which therefore do not receive security fixes. In this case, other defense methods that do
not rely on modification of the operating system must be applied.

In-app Keyboards One proposed defense mechanism is the use of custom in-app keyboards.
Our implementation could be adapted to in-app keyboards by using the in-app keyboard
layout as a grid. While this allows the implementation to read the input into the in-app
keyboard when open, it cannot distinguish typed input from clicks in the bottom area of
the screen that do not belong to a keyboard. However, an adversary may still be able
to detect the password as it differs from random input and can thus be detected. The
attack is even more feasible if the user types the same password again. This is very likely
if the attack is running for a sufficiently long time. The approach is similar to a Kasiski
& Babbage test [87]. An adversary may be able to detect two identical n-grams with a
distance of t. For instance: aKPasswordAGOnCbTQnPasswordBTzgRO.

It may be hard to distinguish normal words from a password. In theory, however, the attack
is not prevented just by using in-app keyboards without additional security features. An
adversary may get enough hints from analyzing the text to infer sensitive input. Therefore,
it is of great importance that the in-app keyboard is also able to detect overlay-based
attacks. The detection method could be designed in a way that it is able to detect overlays,
for instance by evaluating the OBSCURED flag. If the user tries to type on the keyboard and
an overlay is detected, it prevents users from typing and displays a warning stating that
there might be an ongoing attack. In-app keyboards that detect overlays are, therefore,
a fully working defense method. However, the usage of in-app keyboards can reduce user
experience as it would be difficult to get used to different keyboards for each app. Another
drawback is that legitimate apps can utilize overlays and therefore trigger the obscured
flag (e.g. [88]) resulting in false positives.

A huge advantage of in-app keyboards is the low resource overhead. Compared to the
OverlayShifter the resource utilization is very low, as no loops are required. It should,
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therefore, be considered to utilize in-app keyboards instead of the OverlayShifter in
case the reduction in user experience is affordable.

Intrusion Detection Intrusion detection is the utilization of applications that are able to
detect, for instance, overlay-based malware. As the malicious app was developed for this
approach, we will introduce it briefly. The main goal is to detect malware by collecting
traces from ongoing attacks. Due to the variety of possible types of attacks, static analysis
can only limitedly be applied in this case. Traces should therefore be analyzed in combi-
nation with machine learning techniques to detect attacks. A lot of research effort has to
be conducted in this field. However, the utilization of machine learning techniques could
just bring the desired success.

In the following, we are going to discuss the characteristics of the attack that facilitate its
detection. It is not clear if those characteristics can be detected without OS access. There-
fore, the feasibility of detecting those characteristics has to be studied in further research.
The first indication for an ongoing attack is the type of overlays that are drawn. The
overlays from this implementation are either of TYPE_TOAST or TYPE_SYSTEM_ALERT
overlays. Furthermore, as Yan et al. discovered, many malware samples use TYPE_SYS-
TEM_ERROR overlays as well [13]. The type of an overlay, therefore, indicates an ongoing
attack.

Moreover, the appearance of the overlays could be evaluated. If the overlays are trans-
parent, it is very likely that they are used in a malicious way as they are hidden from
the user. However, this characteristic is challenging to detect as it mostly relies on the
alpha value of the used color [13]. This will likely produce false positives as there are
many legitimate uses of transparent or semi-transparent overlays, such as the Twilight
app that filters out the blue color in order to preserve the natural sleep cycle [88]. Addi-
tionally, we showed that programmatically visible overlays are practically invisible to the
user (Section 6.3.1) by setting the width to zero. These overlays can therefore have any
color and bypass detection techniques that rely on transparency detection. The dimen-
sions of an overlay, such as its width and its height, therefore have to be considered as well.

The third characteristic is the number of drawn overlays. To reduce possible permuta-
tions, an adversary has to utilize a high number of overlays as described in Section 5.2. In
order to make the attack feasible, an adversary needs to draw at least one overlay for each
key on the keyboard. This results in at least 26 overlays as estimated in Section 5.2. A
legitimate application will most likely not use such high amounts of overlays and therefore
restrict to just a few.

The number of overlays can be correlated with their position in order to strengthen the
suspicion of an ongoing attack. Most keyboards are drawn in the bottom area of the
screen. The overlays are therefore mostly placed in the bottom region of the screen where
the keyboard is placed. If many overlays are drawn at the bottom area of the screen, an
ongoing attack is very likely. Additionally, all overlays form a grid and, as a result, inherit
distinct locations on the screen without overlapping each other.

The last characteristic is the usage of permissions. In order to maximize the effective-
ness of the attack, an adversary has to guarantee that the application is executed in the
background. Thus, it should contain the capability of restarting in case it was forcibly
closed or the device restarted. This process needs additional permissions, such as the RE-
CEIVE_BOOT_COMPLETED permission. Therefore, the usage of certain permissions may
also be an indicator for the attack.
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10. Conclusion and Future Work

Mobile phones are playing an extremely important role in our everyday life. Most of these
devices operate under the Android Operating System and are used for highly sensitive
tasks such as Online Banking. Ensuring their security is therefore of great importance.
Overlay-based attacks pose one of the biggest threats as they are highly versatile and
challenging to detect. They aim at exploiting legitimate features of the User Interface to
steal sensitive information.

In this thesis, we closely examined an important type of attack against Android smart-
phones that exploit weaknesses in the user interface. In particular, we studied, analyzed,
and implemented the “Invisible Grid” attack from the “Cloak and Dagger” paper [1, 2] that
enables an attacker to steal sensitive keyboard input like passwords. The attack takes ad-
vantage of a vulnerability that was subsequently patched on almost all Android versions.
Nevertheless, it still affects a significant number of smartphone users with older devices as
they are no longer entitled to security fixes. These devices are therefore unpatched and
vulnerable to exploitation.

The implemented attack serves as a malicious to facilitate the development of future de-
tection methods, for instance, by using artificial intelligence methods. The main target is
to produce a malicious execution trace that will be utilized in a machine learning project
that aims at detecting overlay-based malware. Results acquired by this thesis can also
help to better understand the individual steps of an attack as well as the characteristics
that could be used to create specific features helpful for attack detection.

We presented our concept and elaborated on the in-depth details of the implementation.
We developed additional approaches and solved technical challenges to make the end-to-
end attack feasible. Three methods to detect the presence of a keyboard were presented and
compared. Additionally, we developed a module capable of dynamically retrieving layout
files from the Android Open Source Project keyboard, making the attack straightforward
and applicable to more than seventy languages. Furthermore, we developed a static ap-
proach that utilizes predefined layout files in order to attack almost any keyboard. In
order to perfectly place the attack on a device, another module aiming at merging all
information from previous modules was developed as well. This module is capable of de-
tecting the areas in which clicks occur. The implementation itself is able to mimic the
behavior of a keyboard and perfectly utilize the attack to monitor sensitive keyboard input.
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We presented our novel defense technique OverlayShifter which is capable of prevent-
ing the attack while preserving usability and overlay functionality. We have elaborated
that the defense technique shifts all adversarial overlays below the keyboard and therefore
prevents a successful attack. Furthermore, we have explained implementational details
and discussed future improvements.

An evaluation has shown that the implementation is applicable to a wide range of Android
versions. Certain characteristics that facilitate the detection of an attack were interpreted
as well. Furthermore, we have discussed countermeasures, apart from our developed novel
defense technique, such as in-app keyboards.

Future Work We briefly discuss a follow-up attack that could be implemented by using our
research results. The Window Method that was presented in Section 6.3.1 could be used to
infer the exact moment when users begin to type into sensitive input fields, for instance, a
login screen. An adversary may utilize it to launch high precision input hijacking attacks
by spawning an identical login overlay in the right moment without the user’s knowledge.
The feasibility of this follow-up attack should be investigated in future research.

The developed novel defense method OverlayShifter was only presented in a very basic
version. Future work should focus on improvements such as performance optimization.

The attack does not work on smartphones running a more recent Android version than 7.1.
A significant share of users, however, is still affected by such attacks as they are utilizing
older devices. Future work, therefore, has to focus on mitigating the consequences of an
attack for affected users, e.g. by using alternative user interface elements that do not
limit capabilities but preserve confidentiality and integrity as well. Moreover, advanced
detection techniques that do not rely on OS modification should be studied to provide
safety for devices that are no longer entitled to security fixes.
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A. Appendix Market Share

(a) Android version market share in May 2020
(Worldwide) [3]

(b) Android version market share in May 2020
(Asia) [90]

Figure A.1.: Android Market Share
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B. Appendix Implementation

Listing 10.1: Specially Crafted Overlay used by Window Method

1 View detectKeyBoardOpenView = View.inflate(ctx,
↪→ R.layout.top_overlay_style, null);

2 LayoutParams layoutParams_detectKeyBoardOpenView = new
↪→ WindowManager.LayoutParams(0, metrics.heightPixels,
↪→ LayoutParams.TYPE_TOAST,
↪→ WindowManager.LayoutParams.FLAG_NOT_FOCUSABLE,
↪→ PixelFormat.TRANSLUCENT);

3 //Add the View with the window manager
4 manager.addView(detectKeyBoardOpenView,

↪→ layoutParams_detectKeyBoardOpenView);
5 //Add a popup window with a linear Layout to the view with the flag

↪→ SOFT_INPUT_ADJUST_RESIZE to detect resize changes
6 PopupWindow popup = new PopupWindow();
7 LinearLayout detectSizeChangeLayout = new LinearLayout(ctx);
8 detectSizeChangeLayout.setLayoutParams(new LinearLayout.LayoutParams(
9 ViewGroup.LayoutParams.MATCH_PARENT,

↪→ ViewGroup.LayoutParams.MATCH_PARENT));
10 //Add the linear layout to the popup View
11 popup.setContentView(detectSizeChangeLayout);
12 //Set SOFT_INPUT_ADJUST_RESIZE flag
13 popup.setSoftInputMode(
14 LayoutParams.SOFT_INPUT_ADJUST_RESIZE |
15 LayoutParams.SOFT_INPUT_STATE_ALWAYS_VISIBLE);
16 popup.setInputMethodMode(PopupWindow.INPUT_METHOD_NEEDED);
17 popup.setHeight(ViewGroup.LayoutParams.MATCH_PARENT);
18 //Add the popup to the detectKeyBoardOpenView overlay
19 detectKeyBoardOpenView.post(() ->

↪→ popup.showAtLocation(detectKeyBoardOpenView, Gravity.NO_GRAVITY,
↪→ 0, 0));

AOSP Label Implementation Label

currencyKeyStyle $
moreCurrency1KeyStyle £
moreCurrency2KeyStyle ¢

moreCurrency3KeyStyle =C
moreCurrency4KeyStyle ¥

lessKeyStyle <
greaterKeyStyle >
spaceKeyStyle [SPACE]
shiftKeyStyle [SHIFT]
deleteKeyStyle [DEL]
enterKeyStyle [ENTER]

Table B.1.: Key label replacement of AOSP keyboard
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Figure B.2.: The Java Package diagram of the app
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Listing 10.2: Selected lines from Google Gboard englisch attack layout

1 <Row android:keyWidth="10%p" android:keyHeight="9%p"
↪→ android:keyboardMode="

2 @integer/keyboard_normal_portrait">
3 <Key
4 android:keyLabel="[SHIFT]"
5 android:keyWidth="15%p" />
6 <Key
7 android:keyLabel="z" />
8 <Key
9 android:keyLabel="x" />

10 <Key
11 android:keyLabel="c" />
12 <Key
13 android:keyLabel="v" />
14 <Key
15 android:keyLabel="b" />
16 <Key
17 android:keyLabel="n" />
18 <Key
19 android:keyLabel="m" />
20 <Key
21 android:keyLabel="[DEL]"
22 android:keyWidth="15%p" />
23 </Row>
24 <Row android:keyWidth="10%p" android:keyHeight="8%p"

↪→ android:keyboardMode="
25 @integer/keyboard_normal_portrait">
26 <Key
27 android:keyLabel="[Switch]"
28 android:popupKeyboard="
29 @integer/keyboard_symbol_portrait_pageOne"
30 android:keyWidth="15%p" />
31 <Key
32 android:keyLabel="," />
33 <Key
34 android:keyLabel="[Language]" />
35 <Key
36 android:keyLabel="[Space]"
37 android:keyWidth="40%p" />
38 <Key
39 android:keyLabel="."/>
40 <Key
41 android:keyLabel="[Enter]"
42 android:keyWidth="15%p" />
43 </Row>
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� Afrikaans

� Arabic

� Armenian (Armenia)
Phonetic

� Azerbaijani (Azerbai-
jan)

� Belarusian (Belarus)

� Bulgarian

� Bengali (Bangladesh)

� Bengali (India)

� Catalan

� Croatian

� Czech

� Danish

� Dutch

� Dutch (Belgium)

� English (India)

� English (United
States)

� English (Great
Britain)

� Esperanto

� Spanish

� Spanish (United
States)

� Spanish (Latin Amer-
ica)

� Estonian (Estonia)

� Basque (Spain)

� Persian

� Finnish

� French

� French (Canada)

� French (Switzerland)

� German

� Georgian (Georgia)

� German (Switzerland)

� Greek

� Galician (Spain)

� Hebrew

� Hindi

� Hinglish

� Hungarian

� Indonesian

� Icelandic

� Italian

� Italian (Switzerland)

� Kazakh

� Khmer (Cambodia)

� Kannada (India)

� Kyrgyz

� Lao (Laos)

� Lithuanian

� Latvian

� Macedonian

� Malayalam (India)

� Mongolian (Mongolia)

� Marathi (India)

� Malay (Malaysia)

� Norwegian Bokm̊al

� Nepali (Nepal) Ro-
manized

� Nepali (Nepal) Tradi-
tional

� Polish

� Portuguese (Brazil)

� Portuguese (Portugal)

� Romanian

� Russian

� Sinhala (Sri Lanka)

� Slovak

� Slovenian

� Serbian

� Serbian (Latin)

� Swedish

� Swahili

� Tamil (India)

� Tamil (Sri Lanka)

� Tamil (Singapore)

� Telugu (India)

� Thai

� Tagalog

� Turkish

� Ukrainian

� Uzbek (Uzbekistan)

� Vietnamese

� Zulu

Table B.2.: Supported languages / layouts by the Android Open Source Project keyboard
[89]
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C. Appendix OverlayShifter

Listing 10.3: Core Logic of OverlayShifter

1 private Context ctx=this; // The current Context
2 private View[]overlay=new View[4];
3 private WindowManager manager;
4 private WindowManager.LayoutParams layoutParams=new

↪→ WindowManager.LayoutParams(0,0,
5 WindowManager.LayoutParams.TYPE_SYSTEM_ERROR,FLAG_NOT_FOCUSABLE|
6 FLAG_NOT_TOUCHABLE,PixelFormat.TRANSLUCENT);
7
8 private void shiftAllOverlays(int overlayID){
9 View previousOverlay;

10 // Flag the second previous overlay for removal
11 int previousOverlayIndex=overlayID-2;
12 if(previousOverlayIndex< 0)previousOverlayIndex+=3;
13 previousOverlay=overlay[previousOverlayIndex];
14 // Create new overlay
15 View newOverlay=new View(ctx);
16 // Add the new overlay
17 ((Activity)ctx).runOnUiThread(()->{
18 manager.addView(newOverlay,layoutParams);
19 overlay[overlayID]=newOverlay;});
20 // Create popup
21 PopupWindow popup=new PopupWindow();
22 TextView emptyTextView=new TextView(ctx);
23 // Add, for instance, a TextView as content (will be invisible anyways)
24 popup.setContentView(emptyTextView);
25 // Set popup flags
26 popup.setSoftInputMode(
27 WindowManager.LayoutParams.SOFT_INPUT_ADJUST_RESIZE|
28 WindowManager.LayoutParams.SOFT_INPUT_STATE_ALWAYS_VISIBLE);
29 popup.setInputMethodMode(PopupWindow.INPUT_METHOD_NEEDED);
30 // Add the popup to the overlay
31 newOverlay.post(()->popup.showAtLocation(
32 newOverlay,Gravity.NO_GRAVITY,0,0));
33 // Remove the overlay which was flagged for removal
34 if(previousOverlay!=null){
35 ((Activity)ctx).runOnUiThread(()->
36 manager.removeView(previousOverlay));
37 }
38 }
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