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Abstract— Contact discovery allows users of mobile messen-
gers to conveniently connect with people in their address book.
In this work, we demonstrate that severe privacy issues exist in
currently deployed contact discovery methods.

Our study of three popular mobile messengers (WhatsApp,
Signal, and Telegram) shows that, contrary to expectations, large-
scale crawling attacks are (still) possible. Using an accurate
database of mobile phone number prefixes and very few resources,
we have queried 10 % of US mobile phone numbers for WhatsApp
and 100 % for Signal. For Telegram we find that its API exposes
a wide range of sensitive information, even about numbers
not registered with the service. We present interesting (cross-
messenger) usage statistics, which also reveal that very few users
change the default privacy settings. Regarding mitigations, we
propose novel techniques to significantly limit the feasibility of our
crawling attacks, especially a new incremental contact discovery
scheme that strictly improves over Signal’s current approach.

Furthermore, we show that currently deployed hashing-based
contact discovery protocols are severely broken by comparing
three methods for efficient hash reversal of mobile phone numbers.
For this, we also propose a significantly improved rainbow
table construction for non-uniformly distributed inputs that is
of independent interest.

I. INTRODUCTION

Contact discovery is a procedure run by mobile messaging
applications to determine which of the contacts in the user’s
address book are registered with the messaging service. Newly
registered users can thus conveniently and instantly start
messaging existing contacts based on their phone number
without the need to exchange additional information like user
names, email addresses, or other identifiers1.

Centralized messaging platforms can generally learn the
social graphs of their users by observing messages exchanged
between them. Current approaches to protect against this type
of traffic analysis are inefficient [80], with Signal attempting to
improve their service in that regard [46]. While only active users
are exposed to such analyses, the contact discovery process
potentially reveals all contacts of users to the service provider,
since they must in some way be matched with the server’s
database. This is one of the reasons why messengers like Whats-
App might not be compliant with the European GDPR in a
business context [21], [77].

1Some mobile applications of social networks perform contact discovery
also using email addresses stored in the address book.

Cryptographic protocols for private set intersection (PSI)
can perform this matching securely. Unfortunately, they are
currently not efficient enough for mobile applications with
billions of users [37]. Furthermore, even when deploying PSI
protocols, this does not resolve all privacy issues related to
contact discovery as they cannot prevent enumeration attacks,
where an attacker attempts to discover which phone numbers
are registered with the service.

Leaking Social Graphs. Worryingly, recent work [37] has
shown that many mobile messengers (including WhatsApp)
facilitate contact discovery by simply uploading all contacts
from the user’s address book2 to the service provider and
even store them on the server if no match is found [2]. The
server can then notify the user about newly registered users,
but can also construct the full social graph of each user. These
graphs can be enriched with additional information linked to
the phone numbers from other sources [12], [29], [30]. The
main privacy issue here is that sensitive contact relationships
can become known and could be used to scam, discriminate, or
blackmail users, harm their reputation, or make them the target
of an investigation. The server could also be compromised,
resulting in the exposure of such sensitive information even if
the provider is honest.

To alleviate these concerns, some mobile messaging appli-
cations (including Signal) implement a hashing-based contact
discovery protocol, where phone numbers are transmitted to
the server in hashed form [37]. Unfortunately, the low entropy
of phone numbers indicates that it is most likely feasible for
service providers to reverse the received hash values [50] and
therefore, albeit all good intentions, there is no gain in privacy.

Crawling. Unfortunately, curious or compromised service
providers are not the only threat. Malicious users or external
parties might also be interested in extracting information about
others. Since there are usually no noteworthy restrictions for
signing up with such services, any third party can create a large
number of user accounts to crawl this database for information
by requesting data for (randomly) chosen phone numbers.

Such enumeration attacks cannot be fully prevented, since
legitimate users must be able to query the database for contacts.
In practice, rate-limiting is a well-established measure to
effectively mitigate such attacks at a large scale, and one would
assume that service providers apply reasonable limits to protect
their platforms. As we show in § IV, this is not the case.

The simple information whether a specific phone number is
registered with a certain messaging service can be sensitive in

2Assuming that users give the app permission to access contacts, which is
very likely since otherwise they must manually enter their messenger contacts.
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many ways, especially when it can be linked to a person. For
example, in areas where some services are strictly forbidden,
disobeying citizens can be identified and persecuted.

Comprehensive databases of phone numbers registered
with a particular service can also allow attackers to perform
exploitation at a larger scale. Since registering a phone number
usually implies that the phone is active, such databases can be
used as a reliable basis for automated sales or phishing calls.
Such “robocalls” are already a massive problem in the US [79]
and recent studies show that telephone scams are unexpectedly
successful [78]. Two recent WhatsApp vulnerabilities, where
spyware could be injected via voice calls [73] or where remote
code execution was possible through specially crafted MP4
files [26], could have been used together with such a database
to quickly compromise a significant number of mobile devices.

Which information can be collected with enumeration
attacks depends on the service provider and the privacy
settings (both in terms of which settings are chosen by the user
and which are available). Examples for personal (meta) data that
can commonly be extracted from a user’s account include profile
picture(s), nickname, status message, and the last time the user
was online. In order to obtain such information, one can simply
discover specific numbers, or randomly search for users [71].
By tracking such data over time, it is possible to build accurate
behavior models [8], [72], [87]. Matching such information with
other social networks and publicly available data sources allows
third parties to build even more detailed profiles [12], [29], [30].
From a commercial perspective, such knowledge can be utilized
for targeted advertisement or scams; from a personal perspective
for discrimination, blackmailing, or planning a crime; and
from a nation state perspective to closely monitor or persecute
citizens [14]. A feature of Telegram, the possibility to determine
phone numbers associated with nicknames appearing in group
chats, lead to the identification of “Comrade Major” [85] and
potentially endangered many Hong Kong protesters [14].

Our Contributions. We illustrate severe privacy issues
that exist in currently deployed contact discovery methods by
performing practical attacks both from the perspective of a
curious service provider as well as malicious users.

a) Hash Reversal Attacks: Curious service providers
can exploit currently deployed hashing-based contact discovery
methods, which are known to be vulnerable [20], [48], [50].
We quantify the practical efforts for service providers (or
an attacker who gains access to the server) for efficiently
reversing hash values received from users by evaluating three
approaches: (i) generating large-scale key-value stores of phone
numbers and corresponding hash values for instantaneous
dictionary lookups, (ii) hybrid brute-force attacks based on
hashcat [74], and (iii) a novel rainbow table construction.

In particular, we compile an accurate database of world-
wide mobile phone prefixes (cf. § II) and demonstrate in § III
that their hashes can be reversed in just 0.1 ms amortized
time per hash using a lookup database or 57 ms when brute-
forcing. Our rainbow table construction incorporates the non-
uniform structure of all possible phone numbers and is of
independent interest. We show that one can achieve a hit
rate of over 99.99 % with an amortized lookup time of 52 ms
while only requiring 24 GB storage space, which improves over
classical rainbow tables by more than factor 9,400x in storage.

b) Crawling Attacks: For malicious registered users and
outside attackers, we demonstrate that crawling the global
databases of the major mobile messaging services WhatsApp,
Signal, and Telegram is feasible. Within a few weeks time,
we were able to query 10 % of all US mobile phone numbers
for WhatsApp and 100 % for Signal. Our attack uses very few
resources: the free Hushed [1] application for registering clients
with new phone numbers, a VPN subscription for rotating IP
addresses, and a single laptop running multiple Android
emulators. We report the rate limits and countermeasures
experienced during the process, as well as other interesting
findings and statistics. We also find that Telegram’s API reveals
sensitive personal (meta) data, most notably how many users
include non-registered numbers in their contacts.

c) Mitigations: We propose a novel incremental contact
discovery scheme that does not require server-side storage
of client contacts (cf. § V). Our evaluation reveals that our
approach enables deploying much stricter rate limits without de-
grading usability or privacy. In particular, the currently deployed
rate-limiting by Signal can be improved by a factor of 31.6x
at the cost of negligible overhead (assuming the database
of registered users changes 0.1 % per day). Furthermore, we
provide a comprehensive discussion on potential mitigation
techniques against both hash reversal and enumeration attacks
in § VI, ranging from database partitioning and selective contact
permissions to limiting contact discovery to mutual contacts.

Overall, our work provides a comprehensive study of privacy
issues in mobile contact discovery and the methods deployed by
three popular applications with billions of users. We investigate
three attack strategies for hash reversal, explore enumeration
attacks at a much larger scale than previous works [30], [71],
and discuss a wide range of mitigation strategies, including our
novel incremental contact discovery that has the potential of
real-world impact through deployment by Signal.

Outline. We first describe our approach to compile an
accurate database of mobile phone numbers (§ II), which
we use to demonstrate efficient reversal of phone number
hashes (§ III). We also use this information to crawl WhatsApp,
Signal, and Telegram, and present insights and statistics (§ IV).
Regarding mitigations, we present our incremental contact dis-
covery scheme (§ V) and discuss further techniques (§ VI). We
then provide an overview of related work (§ VII) and conclude
with a report on our responsible disclosure process (§ VIII).

II. MOBILE PHONE NUMBER PREFIX DATABASE

In the following sections, we demonstrate privacy issues
in currently deployed contact discovery methods by showing
how alarmingly fast hashes of mobile phone numbers can be
reversed (cf. § III) and that the database crawling of popular
mobile messaging services is feasible (cf. § IV). Both attacks
can be performed more efficiently with an accurate database
of all possible mobile phone number prefixes3. Hence, we first
show how such a database can be built.

A. Phone Number Structure
International phone numbers conform to a specific structure

to be globally unique: Each number starts with a country

3Some messengers like WhatsApp and Signal also allow to register with
landline phone numbers. We assume that very few users make use of this
option, and also argue that gathering landline phone numbers is less attractive
for attackers (e.g., when the goal is to infect smartphones with malware).
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code (defined by the ITU-T standards E.123 and E.164, e.g., +1
for the US), followed by a country-specific prefix and a
subscriber number. Valid prefixes for a country are usually
determined by a government body and assigned to one or more
telecommunication companies. These prefixes have blocks of
subscriber numbers assigned to them, from which numbers can
be chosen by the provider to be handed out to customers. The
length of the subscriber numbers is specific for each prefix and
can be fixed or in a specified range.

In the following, we describe how an accurate list of (mo-
bile) phone number prefixes can be compiled, including the
possible length of the subscriber number. A numbering plan
database is maintained by the International Telecommunication
Union (ITU) [36] and further national numbering plans are
linked therein. This database comprises more than 250 coun-
tries (including autonomous cities, city states, oversea territories,
and remote island groups) and more than 9,000 providers
in total. In our experiments in § IV, we focus on the US,
where there are 3,794 providers (including local branches).
Considering the specified minimum and maximum length of
phone numbers, the prefix database allows for ≈52 trillion
possible phone numbers (≈1.6 billion in the US). However,
when limiting the selection to mobile numbers only, the search
space is reduced to ≈758 billion (≈0.5 billion in the US).

B. Database Preprocessing
As it turned out in our experiments, some of the numbers

that are supposed to be valid according to the ITU still cannot be
registered with the examined messaging applications. Therefore,
we perform two additional preprocessing steps.

Google’s libphonenumber library [27] can validate
phone numbers against a rule-based representation of inter-
national numbering plans and is commonly used in Android
applications to filter user inputs. By filtering out invalid
numbers, the amount of possible mobile phone numbers can
be reduced to ≈353 billion.

Furthermore, WhatsApp performs an online validation of
the numbers before registration to check, for example, whether
the respective number was banned before. This allows us to
check all remaining prefixes against the WhatsApp registra-
tion/login API by requesting the registration of one number for
each prefix and each possible length of the subscriber number.
Several more prefixes are rejected by WhatsApp for reasons
like “too long” or “too short”. Our final database for our further
experiments thus contains up to ≈118 billion mobile phone
numbers (≈0.5 billion in the US4). In § A we detail interesting
relative differences in the amount of registrable mobile phone
numbers between countries.

III. MOBILE PHONE NUMBER HASH REVERSAL

Although the possibility of reversing phone number hashes
has been acknowledged before [20], [48], [50], the severity of
the problem has not been quantified. The amount of possible
mobile phone numbers that we determined in § II indicates
the feasibility of determining numbers based on their hash
values. In the following, we show that real-time hash reversal
is practical not only for service providers and adversaries with
powerful resources, but even at a large scale using commodity
hardware only.

4libphonenumber and WhatsApp reject no US mobile prefixes.

Threat Model. Here we consider the scenario where users
provide hashed mobile phone numbers of their address book
entries to the service provider of a mobile messaging application
during contact discovery. The adversary’s goal is to learn
the numbers from their hashed representation. For this, we
assume the adversary has full access to the hashes received
by the service provider. The adversary therefore might be
the service provider itself (being “curious”), an insider (e.g.,
an administrator of the service provider), a third party who
compromised the service provider’s infrastructure, or a law
enforcement or intelligence agency who forces the service
provider to hand out information. Importantly, we assume the
adversary has no control over the users and does not tamper
with the contact discovery protocol.

We compare three different approaches to reverse hashes
of mobile phone numbers, each suitable for different purposes
and available resources. In order to ensure comparability and
uniqueness, phone numbers are processed as strings without
spaces or dashes, and including their country code. Some
applications add the “+”-sign as a prefix to conform to the E.164
format. In our experiments, numbers only consist of digits,
but all approaches work similarly for other formats. We
choose SHA-1 as our exemplary hash function, which is also
used by Signal for contact discovery5.

A. Hash Database

The limited amount of possible mobile phone numbers
combined with the rapid increase in affordable storage capacity
makes it feasible to create key-value databases of phone
numbers indexed by their hashes and then to perform constant-
time lookups for each given hash value. We demonstrate
this by using a high-performance cluster to create an in-
memory database of all 118 billion possible mobile phone
numbers from § II-B (i.e., mobile phone numbers allowed
by Google’s libphonenumber and the WhatsApp registra-
tion API) paired with their SHA-1 hashes.

Benchmarks. We use one node in our cluster, consisting
of 48 Intel Skylake cores at 2.3 GHz, 630 GB of RAM,
and 1 TB of disk storage. We choose a Redis database due to
its robustness, in-memory design, and near constant lookup-
time [70]. Since one Redis instance cannot handle the required
number of keys, we construct a cluster of 120 instances on our
node. Populating the table requires ≈13 h in our experiments
due to several bottlenecks, e.g., the interface to the Redis cluster
can only be accessed through a network interface. Unfortunately,
only 8 billion hashes (roughly 6.8 % of the considered number
space) can fit into the RAM with our test setup. We perform
batched lookups of 10,000 items, which on average take 1.0 s,
resulting in an amortized lookup time of 0.1 ms.

To cover the entire mobile phone number space, a system
with several Terabytes of RAM would be necessary, which
makes this type of hash reversal feasible for attackers with
moderate financial resources, such as large companies or nation
state actors. For attackers with consumer hardware, it would
also be feasible to store a full database on disk, which requires
roughly 3.3 TB of storage space6, but results in significantly
higher lookup times due to disk access latencies.

5Signal truncates the SHA-1 output to 10 B to reduce communication
overhead while still producing unique hashes for all possible phone numbers.

6Assuming SHA-1 hashes of 20 bytes and 64-bit encoded phone numbers.
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Figure 1: Brute-force benchmark results.

B. Brute-Force

Another possibility to reverse phone number hashes is to
iteratively hash every element of the input domain until a
matching hash is found. A popular choice for this task is the
open-source tool hashcat [74], which is often used to brute-
force password hashes. Hashcat can efficiently parallelize the
brute-force process and additionally utilize GPUs to maximize
performance. With its hybrid brute-forcing mode it is possible
to specify masks that constrain the inputs according to a
given structure. We use this mode to model our input space
of 118 billion mobile phone numbers (cf. § II-B).

Benchmarks. We perform lookups of phone number hashes
on one node of our high-performance cluster with two In-
tel Xeon Gold 6134 (8 physical cores at 3.2 GHz), 384 GB
of RAM, and two NVIDIA Tesla P100 GPUs (16 GB of RAM
each). Our setup has a theoretical rate of 9.5 GHashes/s accord-
ing to the hashcat benchmark. This would allow us to search
the full mobile phone number space in less than 13 seconds.

However, the true hash rate is significantly lower due to
the overhead introduced by hashcat when distributing loads for
processing. Since many of the prefixes have short subscriber
numbers (e.g., 158,903 prefixes with length 4 digits), the
overhead of distributing the masks is the bottleneck for the
calculations, dropping the true hash rate to 4.3 MHashes/s
for 3-digit masks (less than 0.05 % efficiency). The hash rate
reaches its plateau at around 105 MHashes/s for masks larger
than 4 digits (cf. Fig. 1a), which is still only 1.1 % of the
theoretical hash rate.

A full search over the number space can be completed
in 15.3 hours for batches of 10,000 hashes. While the total
time only slightly increases with larger batch sizes (cf. Fig. 1b),
the amortized lookup rate drops significantly, to only 57 ms per
hash for batches of 1 million hashes (cf. Fig. 1c). Consequently,
the practical results show that theoretical hash rates cannot
be reached by simply deploying hashcat and that additional
engineering effort would be required to optimize brute-force
software for efficient phone number hash reversal.

C. Optimized Rainbow Tables

Rainbow tables are an interesting time-memory trade-off to
reverse hashes (or any one-way function) from a limited input
domain. Based on work from Hellman [32] and Oechslin [55],
they consist of precomputed chains of plaintexts from the input
domain and their corresponding hashes. These are chained
together by a set of reduction functions, which map each hash
back to a plaintext. By using this mapping in a deterministic
chain, only the start and end of the chain must be stored to be
able to search for all plaintexts in the chain. A large number of

chains with random start points form a rainbow table, which
can be searched by computing the chain for the given hash,
and checking if the end point matches one of the entries in the
table. If a match is found, then the chain can be computed from
the corresponding start index to reveal the original plaintext.
The length of the chains determines the time-memory trade-
off: shorter chain lengths require more chains to store the
same number of plaintexts, while longer chains increase the
computation time for lookups. The success rate of lookups is
determined by the number of chains, where special care has to
be taken to limit the number of duplicate entries in the table
by carefully choosing the reduction functions.

Each rainbow table is specific to the hash algorithm being
used, as well as the specifications of the input domain, which
determines the reduction functions. Conventional rainbow tables
work by using a specific alphabet as well as a maximum
input length, e.g., 8-digit ASCII numbers7. While they can be
used to work on phone numbers as well, they are extremely
inefficient for this purpose: to cover numbers conforming to
the E.164 standard (up to 15 digits), the size of the input
domain would be 1015, requiring either huge storage capacity
or extremely long chains to achieve acceptable hit rates.

By designing new reduction functions that always map a
hash back into a valid phone number, we improve performance
significantly. While we use our approach to optimize rainbow
tables for phone numbers, our construction can also find
application in other areas, e.g., advanced password cracking.

Specialized Reduction Functions. Our optimization relies
on the specific structure of mobile phone numbers, which
consist of a country code, a mobile prefix, and a subscriber
number of a specific length (cf. § II). Conventional reduction
functions simply perform a modulo operation to map each hash
back to the input domain, with additional arithmetic to reduce
the number of collisions in the table.

Our algorithm concatenates ranges of valid mobile phone
numbers into a virtual table, which we can index with a given
hash. For each prefix, we store the amount of possible subscriber
numbers and the offset of the range within the table. To select
a valid number, we calculate the index from the 64-bit prefix
of the given hash modulo the table size and perform a binary
search for the closest smaller offset to determine the corre-
sponding mobile prefix. Subtracting the offset from the index
yields the subscriber number. For example, given Tab. I and
index 3,849,382, we select the prefix +491511 and calculate
the subscriber number as 3,849,382 − 110,000 = 3,739,382,
yielding the valid mobile phone number +491511 3739382.

In practice, our algorithm includes additional inputs (e.g.,
the current chain position) to limit the number of collisions
and duplicate chains. The full specification is given in § B.

Implementation. We implement our optimized rainbow
table construction based on the open-source version 1.28

of RainbowCrack [35]. To improve table generation and lookup
performance, we add multi-threading to parts of the program
via OpenMP [57]. SHA-1 hash calculations are performed
using OpenSSL [58]. The table generation is modified to receive

7There are implementations that allow per-character alphabets [7], which is
not applicable to phone numbers, since the allowed digits for each position
strongly depend on the previous characters. More details are given in § C.

8Newer versions of RainbowCrack that support multi-threading and GPU ac-
celeration exist, but are not open-source [68].
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Country Code + Prefix # Subscriber Numbers Offset

+1982738 10,000 0
+172193 100,000 10,000
+491511 10,000,000 110,000
+49176 10,000,000 10,110,000

Table I: Example for selecting the next phone number from a
hash value for our improved rainbow table construction.

the number specification as an additional parameter (a file
with a list of phone number prefixes and the length of
their subscriber numbers). Our open-source implementation
is available at https://contact-discovery.github.io/.

Benchmarks. We generate a table of SHA-1 hashes for
all registrable mobile phone numbers (118 billion numbers,
cf. § II) and determine its creation time and size depending on
the desired success rate for lookups, as well as lookup rates.

Our test system has an Intel Core i7-9800X with 16 physical
cores and 64 GB RAM (only 2 GB are used), and can perform
over 17 million hash-reduce operations per second.

We store 100 million chains of length 1,000 in each
file, which results in files of 1.6 GB with a creation time
of ≈98 minutes each. For a single file, we already achieve a
success rate of over 50 % and an amortized lookup time of less
than 26 ms for each hash when testing batches of 10,000 items.
With 15 files (24 GB, created within 24.5 hours) the success rate
is more than 99.99 % with an amortized lookup time of 52 ms.

In comparison, a conventional rainbow table of all 7 to 15-
digit numbers has an input domain more than 9,400x larger than
ours, and (with similar success rates and the same chain length)
would require approximately 230 TB of storage and a creation
time of more than 26 years on our test system (which is a
one-time expense). The table size can be reduced by increasing
the chain length, but this would result in much slower lookups.

These measurements show that our improved rainbow table
construction makes large-scale hash reversal of phone numbers
practical even with commodity hardware and limited financial
investments. Since the created tables have a size of only a few
gigabytes, they can also be easily distributed.

D. Comparison of Hash Reversal Methods
Our results for the three different approaches are sum-

marized in Tab. II. Each approach is suitable for different
application scenarios, as we discuss in the following. In § D,
we discuss further optimizations for the presented methods.

A full in-memory hash database (cf. § III-A) is an option
only for well-funded adversaries that require real-time reversal
of hashes. It is superior to the brute-force method and rainbow
tables when considering lookup latencies and total runtimes.

Brute-force cracking (cf. § III-B) is an option for a range of
adversaries, from nation state actors to attackers with consumer-
grade hardware, but requires non-trivial effort to perform
efficiently, because publicly available tools do not perform well
for phone numbers. Batching allows to significantly improve
the amortized lookup rate, making brute-force cracking more
suitable when a large number of hashes is to be reversed, e.g.,
when an attacker compromised a database.

Our optimized rainbow tables (cf. § III-C) are the approach
most suited for adversaries with commodity hardware, since

Evaluation Criteria Hash Database Brute-Force Rainbow Tables
§ III-A § III-B § III-C

Generation Time 13 h – 24.5 h
RAM / Storage Requirements ≥ 3.3 TB – / – 2 GB / 24 GB

Lookup Time per 10k Batch 1 s 15.3 h 520 s
Best Amortized Time per Hash 0.1 ms 57 ms 52 ms

GPU Acceleration 7 3 (3)

Table II: Comparison of phone number hash reversal methods.

these tables can be calculated in reasonable time, require only
a few gigabytes of storage, can be easily customized to specific
countries or number ranges and types, and can reverse dozens
of phone number hashes per second. It is also possible to
easily share and use precomputed rainbow tables, which is
done for conventional rainbow tables as well [67], despite their
significantly larger size.

For other hash functions than SHA-1, we expect reversal
and generation times to vary by a constant factor, depending
on the computation time of the hash function [31] (except for
hash databases where look-up times remain constant).

Our results show that hashing phone numbers for privacy
reasons does not provide any protection, as it is easily possible
to recover the original number from the hash. Thus, we strictly
advise against the use of hashing-based protocols in their current
form for contact discovery when users are identified by low-
entropy identifiers such as phone numbers, short user names, or
email addresses. In § VI-A, we discuss multiple ideas how to at
least strengthen hashing-based protocols against the presented
hash reversal methods.

IV. USER DATABASE CRAWLING

We study three popular mobile messengers to quantify
the threat of enumeration attacks based on our accurate phone
number database from § II-B: WhatsApp, Signal, and Telegram.
All three messengers discover contacts based on phone numbers,
yet differ in their implementation of the discovery service and
the information exposed about registered users.

Threat Model. Here we consider an adversary who is a
registered user and can query the contact discovery API of the
service provider of a mobile messaging application. For each
query containing a list of mobile phone numbers (e.g., in hashed
form) an adversary can learn which of the provided numbers are
registered with the service along with further information about
the associated accounts (e.g., profile pictures). The concrete
contact discovery implementation is irrelevant and it might be
even based on PSI (cf. § VI-A). The adversary’s goal is to check
as many numbers as possible and also collect all additional
information and meta data provided for the associated accounts.
The adversary may control one user account or even multiple
accounts, and is restricted to (ab)use the contact discovery API
with well-formed queries. This implies that we assume no
invasive attacks, e.g., compromising other users or the service
provider’s infrastructure.

A. Investigated Messengers
WhatsApp. WhatsApp is currently one of the most popular

messengers in the world, with 2.0 billion users [25]. Launched
in 2009, it was acquired by Facebook in 2014 for approxi-
mately 19.3 billion USD.
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Signal. The Signal Messenger is an increasingly popular
messenger focused on privacy. Their end-to-end-encryption
protocol is also being used by other applications, such as
WhatsApp, Facebook, and Skype. There are no recent statistics
available regarding Signal’s growth and active user base.

Telegram. Telegram is a cloud-based messenger that re-
ported 400 million users in April 2020 [23].

B. Differences in Contact Discovery
Both WhatsApp and Telegram transmit the contacts of users

in clear text to their servers (but encrypted during transit), where
they are stored to allow the services to push updates (such as
newly registered contacts) to the clients. WhatsApp stores phone
numbers of its users in clear text on the server, while phone
numbers not registered with WhatsApp are MD5-hashed with
the country prefix prepended (according to court documents
from 2014 [2]).

Signal does not store contacts on the server. Instead, each
client periodically sends hashes of the phone numbers stored
in the address book to the service, which matches them against
the list of registered users and responds with the intersection.

The different procedures illustrate a trade-off between
usability and privacy: the approach of WhatsApp and Telegram
can provide faster updates to the user with less communication
overhead, but needs to store sensitive data on the servers.

C. Test Setups
We evaluate the resistance of these three messengers against

large-scale enumeration attacks with different setups.
WhatsApp. Because WhatsApp is closed source, we run

the official Android application in an emulator, and use
the Android UI Automator framework to control the user
interface. First, we insert 60,000 new phone numbers into the
address book of the device, then start the client to initiate the
contact discovery. After synchronization, we can automatically
extract profile information about the registered users by stepping
through the contact list. New accounts are registered manually
following the standard sign-up procedure with phone numbers
obtained from the free Hushed [1] application.

Interestingly, if the number provided by Hushed was
previously registered by another user, the WhatsApp account
is “inherited”, including group memberships. A non-negligible
percentage of the accounts we registered had been in active
use, with personal and/or group messages arriving after account
takeover. This in itself presents a significant privacy risk for
these users, comparable to (and possibly worse than) privacy
issues associated with disposable email addresses [33]. We did
not use such accounts for our crawling attempts.

Signal. The Android client of Signal is open-source, which
allows us to extract the requests for registration and contact
discovery, and perform them efficiently through a Python script.
We register new clients manually and use the authentication
tokens created upon registration to perform subsequent calls to
the contact discovery API. Signal uses truncated SHA-1 hashes
of the phone numbers in the contact discovery request9. The
response from the Signal server is either an error message if
the rate limit has been reached, or the hashes of the phone
numbers registered with Signal.

9We use the legacy API; the new Intel SGX service does not use hashes.

Telegram. Interactions with the Telegram service can be
made through the official library TDLib [76], which is available
for many systems and programming languages. In order to
create a functioning client, each project using TDLib has to
be registered with Telegram to receive an authentication token,
which can be done with minimal effort. We use the C++ version
to perform registration and contact discovery, and to potentially
download additional information about Telegram users. The
registration of phone numbers is done manually by requesting
a phone call to authenticate the number.

D. Ethical and Legal Considerations

We excessively query the contact discovery services of
major mobile messengers, which we think is the only way
to reliably estimate the success of our attacks in the real
world. Similar considerations were made in previous works
that evaluate attacks by crawling user data from production
systems (e.g., [82]). We do not interfere with the smooth
operation of the services or negatively affect other users.

In coordination with the legal department of our institution,
we design the data collection process as a pipeline creating only
aggregate statistics to preserve user privacy and to comply with
all requirements under the European General Data Protection
Regulation (GDPR) [56], especially the data minimization
principle (Article 5c) and regulations of the collection of data
for scientific use (Article 89). Privacy sensitive information
such as profile pictures are never stored, and all data processing
is performed on a dedicated local machine.

E. Rate Limits and Abuse Protection

Each messenger applies different types of protection mech-
anisms to prevent abuse of the contact discovery service10.

WhatsApp. WhatsApp does not disclose how it protects
against data scraping. Our experiments in September 2019
show that accounts get banned when excessively using the
contact discovery service. We observe that the rate limits have
a leaky bucket structure, where new requests fill a virtual
bucket of a certain size, which slowly empties over time
according to a specified leak rate. Once a request exceeds
the currently remaining bucket size, the rate limit is reached,
and the request will be denied. We estimate the bucket size to
be close to 120,000 contacts, while our crawling was stable
when checking 60,000 new numbers per day. There seems to be
no total limit of contacts per account: some of our test accounts
were able to check over 2.8 million different numbers.

Signal. According to the source code [47], the Signal
servers use a leaky bucket structure. However, the parameters
are not publicly available. Our measurements show that
the bucket size is 50,000 contacts, while the leak rate is
approximately 200,000 new numbers per day. There are no
bans for clients that exceed these limits: The requests simply
fail, and can be tried again later. There is no global limit for
an account, as the server does not store the contacts or hashes,
and thus cannot determine how many different numbers each
account has already checked.

While we only use Signal’s hashing-based legacy API,
current Android clients also sync with the new API based
on Intel SGX and compare the results. We found that the

10There might be additional protections not triggered by our experiments.
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new API has the same rate limits as the legacy API, allowing
an attacker to use both with different inputs, and thus double
the effective crawling rate.

Signal clients use an additional API to download encrypted
profile pictures of discovered contacts. Separate rate limits exist
to protect this data, with a leaky bucket size of 4,000 and a
leak rate of around 180 profiles per hour.

Telegram. The mechanism used by Telegram to limit the
contact discovery process differs from WhatsApp and Signal.
Telegram allows each account to add a maximum of 5,000 con-
tacts, irrespective of the rate. Once this limit is exceeded, each
account is limited to 100 new numbers per day. More requests
result in a rate limit error, with multiple violations resulting in
the ban of the phone number from the contact discovery service.
The batch size for contact requests is 100 and performing
consecutive requests with a delay of less than ≈8.3 s results in
an immediate ban from the service.

In a response to the privacy issue discovered in Au-
gust 2019 [14], where group members with hidden phone
numbers can be identified through enumeration attacks, Tele-
gram stated that once phone numbers are banned from contact
discovery, they can only sync 5 contacts per day. We were
not able to reproduce this behavior. Following our responsible
disclosure, Telegram detailed additional defenses not triggered
by our experiments (cf. § VIII).

F. Exposed User Data
All three messengers differ significantly regarding the

amount of user data that is exposed.
WhatsApp. Users registered with WhatsApp can always

be discovered by anyone through their phone number, yet the
app has customizable settings for the profile picture, About text,
and Last Seen information. The default for all these settings
is Everybody, with the other options being My Contacts
or Nobody. In recent Android versions it is no longer possible to
save the profile picture of users through the UI, but it is possible
to create screenshots through the Android Debug Bridge (ADB).
The status text can be read out through the UI Automator
framework by accessing the text fields in the contact list view.

Signal. The Signal messenger is primarily focused on user
privacy, and thus exposes almost no information about users
through the contact discovery service. The only information
available about registered users is their ability to receive voice
and video calls. It is also possible to retrieve the encrypted
profile picture of registered users through a separate API call,
if they have set any [84]. However, user name and avatar can
only be decrypted if the user has consented to this explicitly
for the user requesting the information and has exchanged at
least one message with them [45].

Telegram. Telegram exposes a variety of information about
users through the contact discovery process. It is possible
to access first, last, and user name, a short bio (similar
to WhatsApp’s About), a hint when the user was last online,
all profile pictures of the user (up to 100), and the number of
common groups. Some of this information can be restricted to
contacts only by changing the default privacy settings of the
account. There is also additional management information (such
as the Telegram ID), which we do not detail here.

Surprisingly, Telegram also discloses information about
numbers not registered with the service through an integer
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Figure 2: Optimized crawling compared to random crawling
based on the non-uniform distribution of registered WhatsApp
users across the US mobile phone number space.

labeled importer_count. According to the API documen-
tation [75], it indicates how many registered users store a
particular number in their address book, and is 0 for registered
numbers11. Importantly, it represents the current state of a
number, and thus decrements once users remove the number
from their contacts. As such, the importer_count is
a source of interesting meta data when keeping a specific
target under surveillance. Also, when crawlers attempt to
compile comprehensive databases of likely active numbers for
conducting sales or phishing calls (as motivated in § I), having
access to the importer_count increases the efficiency. And
finally, numbers with non-zero values are good candidates to
check on other messengers.

G. Our Evaluation Approach
We perform random lookups for mobile phone numbers

in the US and collect statistics about the number of reg-
istered users, as well as the information exposed by them.
The number space consists of 505.7 million mobile phone
numbers (cf. § II-B). We assume that almost all users sign up
for these messengers with mobile numbers, and thus exclude
landline and VoIP numbers from our search space. The US
numbering plan currently includes 301 3-digit area codes, which
are split into 1,000 subranges of 10,000 numbers each. These
subranges are handed out individually to phone companies, and
only 50,573 of the 301,000 possible subranges are currently
in use for mobile phone numbers. To reach our crawling
targets, we select numbers evenly from all subranges. While the
enumeration success rate could be increased by using telephone
number lists or directories as used for telephone surveys [44],
this would come at the expense of lower coverage.

H. Our Crawling Results
The messengers have different rate limits, amount of

available user information, and setup complexity. This results
in different crawling speeds and number space coverage, and
affects the type of statistics that can be generated.

WhatsApp. For WhatsApp we use 25 accounts12 over 34
days, each testing 60,000 numbers daily, which allows us to
check 10 % of all US mobile phone numbers. For a subset
of discovered users, we also check if they have public profile
pictures by comparing their thumbnails to the default icon.

11Telegram clients use this count to suggest contacts who would benefit the
most from registering.

12Less than 100 for Signal due to the overhead of running Android emulators.
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1.9%

47.4%

(a) WhatsApp; the popularity is estimated based on enumerat-
ing 10 % of all possible US mobile phone numbers.

Washington D.C.

0.1%

3.8%

(b) Signal; Washington D.C. numbers are more than twice as likely
to be registered with Signal than for any other area in the US.

Figure 3: Number of registered WhatsApp and Signal accounts of US states and Washington D.C. in relation to their population.

Messengers WhatsApp Signal Telegram

Contact Discovery Method Clear Hashing Clear
Rate Limits 60k / d 120k / d 5k + (100 / d)
Our Crawling Method UI Automator (Legacy) API API

# US Numbers Checked 46.2 M 505.7 M 0.1 M
Coverage of US Numbers 10 % 100 % <0.02 %
Success Rate for Random US Number 9.8 % 0.5 % 0.9 %
# US Users Found 5.0 M 2.5 M 908
# US Users (estimated) 49.6 M 2.5 M 4.6 M

Default Privacy Settings /
Information Exposure

Profile Picture Public Explicit Share Public
Status Public – Public
Last Online Public – Public

Option to Hide Being Online 7 3 3
Option to Disable Contact Discovery 7 7 3

Table III: Comparison of surveyed messengers.

Users of
also use WhatsApp Signal Telegram

WhatsApp – 2.2 % 5.1 %
Signal 42.3 % – 8.6 %
Telegram 46.5 % 5.3 % –

Table IV: Cross-messenger statistics for US users.

Our data shows that 5 million out of 50.5 million checked
numbers are registered with WhatsApp, resulting in an average
success rate of 9.8 % for enumerating random mobile phone
numbers. The highest average for a single area code is 35.4 %
for 718 (New York) and 35 % for 305 (Florida), while there
are 209 subranges with a success rate higher than 50 % (the
maximum is 67 % for a prefix in Florida). The non-uniform user
distribution across the phone number space can be exploited
to increase the initial success rate when enumerating entire
countries, as shown in Fig. 2 for the US: with 20 % effort it is
possible to discover more than 50 % of the registered users.

Extrapolating this data allows us to estimate the total number
of WhatsApp accounts registered to US mobile phone numbers
to be around 49.6 million. While there are no official numbers
available, estimates from other sources place the number of
monthly active WhatsApp users in the US at 25 million [16].
Our estimate deviates from this number, because our results
include all registered numbers, not only active ones. Another
statistic [17] estimates the number of US mobile phone numbers
that accessed WhatsApp in 2019 at 68.1 million, which seems
to be an overestimation based on our results.

For a random subset of 150,000 users we also analyzed
the availability of profile pictures and About texts: 49.6 %
have a publicly available profile picture and 89.7 % have a
public About text. An analysis of the most popular About texts
shows that the predefined (language-dependent) text is the most
popular (77.6 %), followed by “Available” (6.71 %), and the
empty string (0.81 %, including “.” and “*** no status ***”),
while very few users enter custom texts.

Signal. Our script for Signal uses 100 accounts over 25 days
to check all 505 million mobile phone numbers in the US.
Our results show that Signal currently has 2.5 million users
registered in the US, of which 82.3 % have set an encrypted
user name, and 47.8 % use an encrypted profile picture. We
also cross-checked with WhatsApp to see if Signal users differ
in their use of public profile pictures, and found that 42.3 %
of Signal users are also registered on WhatsApp (cf. Tab. IV),
and 46.3 % of them have a public profile picture there.
While this is slightly lower than the average for WhatsApp
users (49.6 %), it is not sufficient to indicate an increased
privacy-awareness of Signal’s users, at least for profile pictures.

Telegram. For Telegram we use 20 accounts running
for 20 days on random US mobile phone numbers. Since Tele-
gram’s rate limits are very strict, only 100,000 numbers
were checked during that time: 0.9 % of those are registered
and 41.9 % have a non-zero importer_count. These num-
bers have a higher probability than random ones to be present on
other messengers, with 20.2 % of the numbers being registered
with WhatsApp and 1.1 % registered with Signal, compared to
the average success rates of 9.8 % and 0.9 %, respectively. Of
the discovered Telegram users, 44 % of the crawled users have
at least one public profile picture, with 2 % of users having
more than 10 pictures available.

Summary and Comparison. An overview of the tested
messengers, our crawling setup, and our most important results
are given in Tab. III. Our crawling of WhatsApp, Signal,
and Telegram provides insight into privacy aspects of these
messengers with regard to their contact discovery service. The
first notable difference is the storage of the users’ contact
information, where both WhatsApp and Telegram retain this
information on the server, while Signal chooses not to maintain
a server-side state in order to better preserve the users’ privacy.
This practice unfortunately requires significantly higher rate-
limits for the contact discovery process, since all of a user’s

8



contacts are compared on every sync, and the server has no
possibility to compare them to previously synced numbers.
While Telegram uses the server-side storage of contacts to
enforce strict rate limits, WhatsApp nevertheless lets individual
clients check millions of numbers.

With its focus on privacy, Signal excels in exposing almost
no information about registered users, apart from their phone
number. In contrast, WhatsApp exposes profile pictures and
the About text for registered numbers, and requires users to
opt-out of sharing this data by changing the default settings.
Our results show that only half of all US users prevent such
sharing by either not uploading an image or changing the
settings. Telegram behaves even worse: it allows crawling
multiple images and also additional information for each user.
The importer_count offered by its API even provides
information about users not registered with the service. This
can help attackers to acquire likely active numbers, which can
be searched on other platforms.

Our results also show that many users are registered with
multiple services (cf. Tab. IV), with 42.3 % of Signal users
also being active on WhatsApp. We only found 2 out of 10,129
checked users on all three platforms (i.e., less than 0.02 %).
In Fig. 3, we visualize the popularity of WhatsApp and Signal
for the individual US states and Washington D.C. On average,
about 10 % of residents have mobile numbers from another
state [22], which may obscure these results to some extent.
Interestingly, Washington D.C. numbers are more than twice as
often registered on Signal than numbers from any other state,
with Washington D.C. also being the region with the most
non-local numbers (55 %) [22].

V. INCREMENTAL CONTACT DISCOVERY

We propose a new rate-limiting scheme for contact discovery
in messengers without server-side contact storage such as Signal.
Setting strict limits for services without server-side contact stor-
age is difficult, since the server cannot determine if the user’s
input in discovery requests changes significantly with each
invocation. We named our new approach incremental contact
discovery and shared its details with the Signal developers who
consider to implement a similar approach (cf. § VIII). Our
approach provides strict improvements over existing solutions,
as it enables the service to enforce stricter rate limits with
negligible overhead and without degrading usability or privacy.

A. Approach

Incremental contact discovery is based on the observation
that the database of registered users changes only gradually
over time. Similarly, the contacts of legitimate users change
only slowly. Given that clients are able to store the last state
for each of their contacts, they only need to query the server
for changes since the last synchronization. Hence, if the server
tracks database changes (new and unsubscribed users), clients
who connect regularly only need to synchronize with the set
of recent database changes. This enables the server to enforce
stricter rate limits on the full database, which is only needed
for initial synchronization, for newly added client contacts, and
whenever the client fails to regularly synchronize with the set
of changes. Conversely, enumeration attacks require frequent
changes to the client set, and thus will quickly exceed the rate
limits when syncing with the full database.

Assumptions. Based on Signal’s current rate limits, we
assume that each user has at most m = 50,000 contacts that are
synced up to 4 times per day. This set changes slowly, i.e., only
by several contacts per day. Another reasonable assumption is
that the server database of registered users does not significantly
change within short time periods, e.g., only 0.5 % of users join
or leave the service per day (cf. § V-C).

Algorithm. The server of the service provider stores
two sets of contacts: the full set SF and the delta set SD.
SF contains all registered users, while SD contains only
information about users that registered or unregistered within
the last TF days. Both sets, SF and SD, are associated with
their own leaky buckets of (the same) size m, which are empty
after TF and TD days, respectively. The server stores leaky
bucket values tF and tD for each client, which represent
the (future) points in time when the leaky buckets will be
empty for requests to SF and SD, respectively.

A newly registered client syncs with the full set SF to
receive the current state of the user’s contacts. For subsequent
syncs, the client only syncs with SD to receive recently changed
contacts, provided that it synchronizes at least every TF days.
If the client is offline for a longer period of time, it can sync
with SF again, since the leaky bucket associated with it will
be empty. New contacts added by the user are initially synced
with SF in order to learn their current state.

The synchronization with SF is given in Alg. 1. It takes as
inputs the server’s set SF , the maximum number of contacts m,
and the associated time TF after which the bucket will be
empty. The client provides the set of contacts CF and the
server provides the client’s corresponding bucket parameter tF .
The output is the set D which is the intersection of CF with SF ,
or an error, if the rate limit is exceeded.

When a client initiates a sync with SF , the algorithm
calculates tnew, the new (future) timestamp when the client’s
leaky bucket would be empty (line 1). Here, |CF |/m × TF

represents the additional time which the bucket needs to drain.
If tnew is further into the future than TF (line 2), this indicates
that the maximum bucket size is reached, and the request will
abort with an error (line 3). Otherwise, the leaky bucket is
updated for the client (line 4), and the intersection between the
client set CF and the server set SF is returned (line 5).

The synchronization with SD shown in Alg. 2 is quite
similar. Here, the server supplies SF , SD, m, TD, and tD,
and the client provides the previously synced contacts CD.
The main difference to Alg. 1 is that it outputs RD, i.e., the
requested contacts that changed (registered or unregistered)
within the last TF days together with their current state (line 5).
Note that SF is only used to check the state for contacts in SD.

Algorithm 1 Synchronization with full set SF

Input: SF , m, TF , CF , tF
Output: D

1: tnew ←max(tF , current time)+ |CF |/m× TF

2: if tnew > current time+ TF then
3: raise RateLimitExceededError
4: tF ← tnew
5: return CF ∩ SF

B. Implementation
We provide an open-source proof-of-concept imple-

mentation of our incremental contact discovery scheme
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Algorithm 2 Synchronization with delta set SD

Input: SF , SD, m, TD, CD, tD
Output: RD

1: tnew ←max(tD, current time)+ |CD|/m× TD

2: if tnew > current time+ TD then
3: raise RateLimitExceededError
4: tD ← tnew
5: return {(x, x ∈ SF ) for x ∈ CD ∩ SD}

written in Python at https://contact-discovery.github.io/. It
uses Flask [54] to provide a REST API for performing contact
discovery. While not yet optimized for performance, our
implementation can be useful for service providers and their
developers, and in particular can facilitate integration of our
idea into real-world applications.

C. Evaluation

Overhead. Our incremental contact discovery introduces
only minimal server-side storage overhead, since the only
additional information is the set SD (which is small compared
to SF ), as well as the additional leaky bucket states for each
user. The runtime is even improved, since subsequent contact
discovery requests are only compared to the smaller set SD.

On the client side, the additional storage overhead is
introduced by the need to store a timestamp of the last sync
to select the appropriate set to sync with, as well as a set of
previously unsynced contacts CD.

Improvement. To evaluate our construction, we compare
it to the leaky bucket approach currently deployed by Signal.
Concretely, we compare the discovery rate of the schemes, i.e.,
the number of users that can be found by a single client within
one day with a random lookup strategy. Rate-limiting schemes
should minimize this rate for attackers without impacting
usability for legitimate users. For Signal, the discovery rate
is r = s · 4 · 50,000/day, where s is the success rate for
a single lookup, i.e., the ratio between registered users and
all possible (mobile) phone numbers. Based on our findings
in § IV-H, we assume s = 0.5%, which results in a discovery
rate of r = 1,000/day for Signal’s leaky bucket approach.

For our construction, the discovery rate is the sum of the
rates rF and rD for the buckets SF and SD, respectively.
While rF is calculated (similar to Signal) as rF = s ·m/TF ,
rD is calculated as rD = s · m · c · TF /TD, where c is the
change rate of the server database. To minimize r, we have
to set TF =

√
TD/c. With Signal’s parameters s = 0.5%,

m = 50,000, and TD = 0.25 days, the total discovery rate
for our construction therefore is r = 1,000 ·

√
c/day, and the

improvement factor is exactly 1/
√
c.

In reality, the expected change rate depends on the popular-
ity of the platform: Telegram saw 1.5 M new registrations
per day while growing from 300 M to 400 M users [23],
corresponding to a daily change rate of ≈0.5 %. WhatsApp,
reporting 2 billion users in February 2020 [25] (up from 1.5 bil-
lion in January 2018 [18]), increases its userbase by an average
of 0.05 % per day. Compared to Signal’s rate limiting scheme,
incremental contact discovery results in an improvement
of 14.1x and 44.7x for Telegram’s and WhatsApp’s change
rate, respectively (cf. Tab. V). Even at a theoretical change rate
of 25 % per day, incremental discovery is twice as effective
as Signal’s current approach. Crawling entire countries would

c (in %/d) TF (in d) r (in #contacts/d) Improvement

0.01 50.0 10.0 100.0x
0.05 22.4 22.4 44.7x
0.1 15.8 31.6 31.6x
0.5 7.1 70.7 14.1x
1.0 5.0 100.0 10.0x
2.0 3.5 141.4 7.1x

Table V: Effect of change rate c on the optimal choice for TF ,
the discovery rate r for our incremental contact discovery, and
the improvement compared to Signal’s leaky bucket approach.

only be feasible for very powerful attackers, as it would require
over 100k registered accounts (at c = 0.05%) to crawl, e.g.,
the US in 24 hours. It should be noted that in practice the
change rate c will fluctuate over time. The resulting efficiency
impact of non-optimal choices for TF is further analyzed in § E.

Privacy Considerations. If attackers can cover the whole
number space every TF days, it is possible to find all newly
registered users and to maintain an accurate database. This is not
different from today, as attackers with this capacity can sweep
the full number space as well. Using the result from Alg. 2,
users learn if a contact in their set has (un)registered in the
last TF days, but this information can currently also be retrieved
by simply storing past discovery results.

D. Generalization

Our construction can be generalized to further decrease an
attacker’s efficiency. This can be achieved by using multiple
sets containing the incremental changes of the server set over
different time periods (e.g., one month, week, and day) such
that the leak rate of SF can be further decreased. It is even
possible to use sets dynamically chosen by the service without
modifying the client: each client sends its timestamp of the
last sync to the service, which can be used to perform contact
discovery with the appropriate set.

VI. MITIGATION TECHNIQUES

We now discuss countermeasures and (mostly known)
mitigation techniques for both hash reversal and enumeration
attacks. We discuss further supplemental techniques in § F.

A. Hash Reversal Mitigations

Private set intersection (PSI) protocols (cf. § VII-A) can
compute the intersection between the registered user database
and the users’ address books in a privacy-preserving manner.
Thus, utilizing provably secure PSI protocols in contact discov-
ery entirely prevents attacks where curious service providers
can learn the user’s social graph when receiving hashes of
low-entropy contact identifiers such as phone numbers.

However, even with PSI, protocol participants can still
perform enumeration attacks. Even with actively secure con-
structions (where privacy is still guaranteed despite arbitrary
deviations from the protocol), it is possible to choose different
inputs for each execution. In fact, the privacy provided by PSI
interferes with efforts to detect if the respective other party
replaced the majority of inputs compared to the last execution.
Thus, these protocols must be combined with protections against
enumeration attacks by restricting the number of protocol
executions and inputs to the minimum (cf. § VI-B and § V).
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Moreover, PSI protocols currently do not achieve practical
performance for a very large number of users (cf. § VII-A). For
example, for the current amount of about 2 billion WhatsApp
users [25], each user has to initially download an encrypted
and compressed database of ≈8 GiB [37]. More practical PSI
designs either rely on rather unrealistic trust assumptions (e.g.,
non-colluding servers) or on trusted hardware [49] that provides
no provable security guarantees and often suffers from side-
channel vulnerabilities [9]. Hence, we discuss reasonable
performance/privacy trade-offs for contact discovery next.

Database Partitioning. To reduce the communication
overhead of PSI protocols to practical levels, the user database
can be partitioned based on number prefixes into continents,
countries, states, or even regions. This limits the service
provider to learning only incomplete information about a user’s
social graph [37]. There are limitations to the practicality of
this approach, mainly that users with diverse contacts will
incur a heavy performance penalty by having to match with
many partitions. For example, when partitioning based on
country prefixes, a German WhatsApp user with a single
contact from the US would have to additionally transfer more
than 200 MiB (based on our estimates of registered US users,
cf. § IV-H).13 Also, the mere fact that a user checks contacts
from a specific country might be privacy-sensitive.

Strengthened Hashing-based Protocols. Given the current
scalability issues of PSI protocols, a first step could be to patch
the currently deployed hashing-based protocols. One could
introduce a global salt for such protocols to prevent reusable
rainbow tables (cf. § III-C). Rotating the salt in short intervals
also makes hash databases (cf. § III-A) less attractive.

Another alternative is to increase the calculation time of each
hash, either by performing multiple rounds of the hash function
or by using hash functions like bcrypt [66] or Argon2 [6],
which are specifically designed to resist brute-force attacks.
Existing benchmarks show that with bcrypt only 2.9 kHashes/s
and with Argon2 only 2.6 Hashes/s can be computed on a GPU
compared to 794.6 MHashes/s with SHA-1 [31].

These measures will not be sufficient against very powerful
adversaries, but can at least increase the costs of hash reversal
attacks by a factor of even millions. However, the performance
penalty will also affect clients when hashing their contacts, as
well as the server, when updating the database.

Alternative Identifiers. It should be possible for privacy-
concerned users to provide another form of identifier (e.g.,
a user name or email address, as is the standard for social
networks) instead of their phone number. This increases the
search space for an attacker and also improves resistance
of hashes against reversal. Especially random or user-chosen
identifiers with high entropy would offer better protection.
However, this requires to share additional data when exchanging
contact information and therefore reduces usability. Signal
nevertheless plans to introduce alternative identifiers [51].

Selective Contact Permissions. iOS and Android require
apps to ask for permission to access the user’s address book,
which is currently an all or nothing choice. Mobile operating
systems could implement a functionality in their address book
apps to allow users to declare certain contacts as “sensitive”
or “private”, e.g., via a simple check box. Mobile messengers

13The PSI protocols of [37] initially transfer 4.19 MB per 1 M users.

then are not able to access such protected contacts and therefore
cannot leak them to the service provider.

Also the existing groups in the address book could be
extended for this, e.g., declare the group of health-related
contacts as sensitive and do not use them for contact discovery.
There already exist wrapper apps for specific messengers with
similar functionality (e.g., WhatsBox [3] for WhatsApp), but a
system-wide option would be preferable.

Furthermore, users may hide contacts they deem sensi-
tive (e.g., doctors) by not storing them in the phone’s address
book if messengers have access permissions. Alternatively,
users can revoke access permissions for such applications.

B. Crawling Mitigations

In the following, we discuss several possible mitigation
strategies that have the potential to increase resilience against
crawling attacks. Furthermore, since many messenger apps
give users the possibility to add additional information to their
profile, we also discuss countermeasures that can prevent, or
at least limit, the exposure of sensitive private information
through the scraping of user profiles.

Stricter Rate Limits. Rate limits are a trade-off between
user experience and protection of the service. If set too low,
users with no malicious intent but unusual usage patterns (e.g.,
a large number of contacts) will exceed these limits and suffer
from a bad user experience. This is especially likely for services
with a large and diverse user base.

However, we argue that private users have no more
than 10,000 contacts in their address book (Signal states similar
numbers [37] and Google’s contact management service limits
the maximum number to 25,000 [28]). Therefore, the contact
discovery service should not allow syncing more numbers than
in this order of magnitude at any point in time. Exceptions could
be made for businesses, non-profit organizations, or celebrities
after performing extended validation.

We furthermore argue that private users do not change many
of their contacts frequently. The operators of Writethat.name
observed that even professional users have only about 250
new contacts per year [83]. Therefore, service providers
could penalize users when detecting frequent contact changes.
Additional total limits for the number of contacts can detect
accounts crawling at slow rates.

Facebook (WhatsApp’s parent company) informed us during
responsible disclosure that they see legitimate use cases where
users synchronize more contacts (e.g., enterprises with 200,000
contacts)14. We recommend to handle such business customers
differently than private users. In response to our findings
showing that data scraping is currently possible even at a
country level scale (cf. § IV), Facebook informed us that they
have improved WhatsApp’s contact synchronization feature to
detect such attacks much earlier (cf. § VIII).

Limiting Exposure of Sensitive Information. Since pre-
venting enumeration attacks entirely is impossible, the infor-
mation collected about users through this process should be
kept minimal. While Signal behaves exemplarily and reveals
no public profile pictures or status information, WhatsApp

14This definition of “legitimate” is interesting, since WhatsApp’s terms of
service prohibit non-personal use of their services [81].
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and Telegram should set corresponding default settings. Further-
more, users themselves may take actions to protect themselves
from exposure of private information by thinking carefully
what information to include into public fields, such as profile
pictures and status text, and checking whether there are privacy
settings that can limit the visibility of this information.

Mutual Contacts. Mobile messengers could offer a setting
for users to let them only be discovered on the service by
contacts in their address book to prevent third parties from
obtaining any information about them.

VII. RELATED WORK

We review related work from four research domains: PSI
protocols, enumeration attacks, user tracking, and hash reversal.

A. Private Set Intersection (PSI)
PSI protocols can be used for mobile private contact

discovery to hinder hash reversal attacks (cf. § III). Most PSI
protocols consider a scenario where the input sets of both
parties have roughly the same size (e.g., [43], [60], [61], [62],
[63], [64]). However, in contact discovery, the provider has
orders of magnitude more entries in the server database than
users have contacts in their address book. Thus, there has been
research on unbalanced PSI protocols, where the input set of
one party is much larger than the other [10], [11], [37], [41].

Today’s best known protocols [37] also provide efficient im-
plementations with reasonable runtimes on modern smartphones.
Unfortunately, their limitation is the amount of data that needs
to be transferred to the client in order to obtain an encrypted
representation of the server’s database: for 228 registered
users (the estimated number of active users on Telegram [15])
it is necessary to transfer ≈1 GiB, for 231 registered users (a bit
more than the estimated number of users on WhatsApp [15])
even ≈8 GiB are necessary. Moreover, even PSI protocols
cannot prevent enumeration attacks, as discussed in § VI-A.

The Signal developers concluded that current PSI protocols
are not practical for deployment [49], and also argue that
the required non-collusion assumption for more efficient
solutions with multiple servers [37] is unrealistic. Instead, they
introduced a beta version [49] that utilizes Intel Software Guard
Extensions (SGX) for securely performing contact discovery in
a trusted execution environment. However, Intel SGX provides
no provable security guarantees and there have been many
severe attacks (most notably “Foreshadow” [9]). Given the
scope of such attacks and that fixes often require hardware
changes, the Intel SGX-based contact discovery service is less
secure than cryptographic PSI protocols.

B. Enumeration Attacks
Popular applications for enumeration attacks include, e.g.,

finding vulnerable devices by scanning all IPv4 addresses and
ports. In the following, we focus on such attacks on social
networks and mobile messengers.

For eight popular social networks, Balduzzi et al. [4] fed
about 10 million cleverly generated email addresses into the
search interface, allowing them to identify 1.2 million user
profiles without experiencing any form of countermeasure.
After crawling these profiles with methods similar to [5],
they correlated the profiles from different networks to obtain
a combined profile that in many cases contained friend

lists, location information, and sexual preferences. Upon the
responsible disclosure of their findings, Facebook and XING
quickly established reasonable rate limits for search queries. We
hope for similar deployment of countermeasures by responsively
disclosing our findings on mobile messengers (cf. § VIII).

Schrittwieser et al. [53], [71] were the first to investigate
enumeration attacks on mobile messengers, including Whats-
App. For the area code of San Diego, they automatically
tested 10 million numbers within 2.5 hours without noticing
severe limitations. Since then, service providers established at
least some countermeasures. We revisit enumeration attacks at
a substantially larger scale (cf. § IV) and demonstrate that the
currently deployed countermeasures are insufficient to prevent
large-scale enumeration attacks.

For the Korean messenger KakaoTalk, enumeration attacks
were demonstrated in [38], [39]. The authors automatically
collected ≈50,000 user profiles by enumerating 100,000 number
sequences that could potentially be phone numbers. They
discovered a method to obtain the user names associated with
these profiles and found that ≈70 % of users chose their real
name (or at least a name that could be a real name), allowing
identification of many users. As countermeasures, the authors
propose the detection of certain known misuse patterns as well
as anomaly detection for repeated queries. In contrast, in § IV
we automatically perform enumeration attacks at a much larger
scale on popular messaging applications used world-wide. By
testing only valid mobile phone numbers, we increase the
efficiency of our attacks. We propose further mitigations in § VI.

In [12], the authors describe a simple Android-based system
to automatically conduct enumeration attacks for different
mobile messengers by triggering and recording API calls via the
debug bridge. In their evaluation, they enumerate 100,000 Chi-
nese numbers for WeChat and correlate the results with other
messengers. We perform evaluations of different messengers at a
larger scale, also assessing currently deployed countermeasures
against enumeration attacks (cf. § IV).

Gupta et al. [29], [30] obtained personal information from
reverse-lookup services, which they correlated with public
profiles on social networks like Facebook, in order to then run
personalized phishing attacks on messengers like WhatsApp.
From about 1 million enumerated Indian numbers, they were
able to target about 250,000 users across different platforms.

Enumeration attacks were also used to automatically har-
vest Facebook profiles associated with phone numbers even
when the numbers are hidden in the profiles [40]. The authors
experienced rather strict countermeasures that limit the number
of possible queries to 300 before a “security check” in form of
a CAPTCHA is triggered. By automatically creating many fake
accounts and setting appropriately slow crawling rates, it was
still possible to test around 200,000 Californian and Korean
phone numbers within 15 days, leading to a success rate of 12 %
and 25 %, respectively. While acquiring phone numbers is more
cumbersome than generating email addresses, we nevertheless
report much faster enumeration attacks that harvest profiles of
mobile messenger users (cf. § IV).

In 2017, Loran Kloeze developed the Chrome exten-
sion “WhatsAllApp” that allows to misuse WhatsApp’s web
interface for enumeration attacks and collecting profile pictures,
display names, and status information [42]. After disclosing his
approach, Facebook pointed out (non-default) privacy settings
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available to the user to hide this information, and stated
that WhatsApp detects abuse based on measures that identify
and block data scraping [19]. In § IV, we investigate the
effectiveness of their measures and find that we can perform
attacks at a country-level scale, even with few resources. We
also observe that few users change the default settings.

There exist other open-source projects that enable auto-
mated crawling of WhatsApp users and extracting personal
information, e.g., [24], [65]. However, frequent changes of
the WhatsApp API and code often break these tools, which
are mostly abandoned after some time, or cease operation after
receiving legal threats [34].

C. User Tracking

In 2014, Buchenscheit et al. [8] conducted a user study
where they tracked online status of participants for one month,
which allowed them to infer much about the participants’ daily
routines and conversations (w.r.t. duration and chat partners).
Other user studies report the “Last Seen” feature as the users’
biggest privacy concern in WhatsApp [13], [69].

Researchers also monitored the online status of 1,000 ran-
domly selected users from different countries for 9 months [72].
They published statistics on the observed behavior w.r.t. the
average usage time per day and the usage throughout the day.
Despite the clearly anomalous usage patterns of the monitoring,
the authors did not experience any countermeasures.

“WhatsSpy” is an open-source tool that monitors the
online status, profile pictures, and status messages of selected
numbers—provided the default privacy options are set [87].
It abuses the fact that WhatsApp indicates whether a user is
online [88], even when the “Last Seen” feature is disabled. The
tool was discontinued in 2016 to prevent low-level abuse [89],
since the developer found more than 45,000 active installations
and companies trying to use the prototype commercially.

In this context, our user database crawling attacks could be
used to efficiently find new users to track and our discovery
of Telegram’s importer_count label gives even more
monitoring possibilities (cf. § IV).

D. Hash Reversal

Reversing hashes is mostly used for “recovering” passwords,
which are commonly stored only in hashed form. Various hash
reversal tools exist, either relying on brute-forcing [59], [74] or
rainbow tables [68]. The practice of adding a unique salt to each
hash makes reversal hard at a large scale, but is not suitable
for contact discovery [37], [48]. In contrast, our mitigation
proposed in § VI-A uses a global salt.

It is well known that hashing of personally identifiable
information (PII), including phone numbers, is not sufficient
due to the small pre-image space [20], [48]. The PSI literature
therefore has proposed many secure alternatives for match-
ing PII, which are currently orders of magnitudes slower than
insecure hashing-based protocols (cf. § VII-A).

In [50], the authors show that the specific structure
of PII makes attacks much easier in practice. Regarding
phone numbers, they give an upper bound of 811 trillion
possible numbers world-wide, for which brute-forcing takes
around 11 days assuming SHA-256 hashes and a hash rate
of 844 MH/s. For specific countries, they also run experiments

showing that reversing an MD5 or SHA-256 hash for a German
phone number takes at most 2.5 hours. In § II, we give much
more accurate estimations for the amount of possible (mobile)
phone numbers and show in § III that using novel techniques
and optimizations, hash reversal is much faster and can even
be performed on-the-fly.

VIII. CONCLUSION

Mobile contact discovery is a challenging topic for privacy
researchers in many aspects. In this paper, we took an attacker’s
perspective and scrutinized currently deployed contact discovery
services of three popular mobile messengers: WhatsApp, Signal,
and Telegram. We revisited known attacks and using novel
techniques we quantified the efforts required for curious service
providers and malicious users to collect sensitive user data at
a large scale. Shockingly, we were able to demonstrate that
still almost nothing prevents even resource-constraint attackers
from collecting data of billions of users that can be abused
for various purposes. While we proposed several technical
mitigations for service providers to prevent such attacks in the
future, currently the most effective protection measure for users
is to revise the existing privacy settings. Thus, we advocate to
raise awareness among regular users about the seriousness of
privacy issues in mobile messengers and educate them about
the precautions they can take right now.

Responsible Disclosure. In our paper, we demonstrate
methods that allow to invade the privacy of billions of mobile
messenger users by using only very few resources. We therefore
initiated the official responsible disclosure process with all
messengers we investigated (WhatsApp, Signal, and Telegram)
before the paper submission and shared our findings to prevent
exploitation by maleficent imitators.

Signal acknowledged the issue of enumeration attacks
as not fully preventable, yet nevertheless adjusted their rate
limits in the weeks following our disclosure and implemented
further defenses against crawling. Facebook acknowledged and
rewarded our findings as part of their bug bounty program, and
has deployed improved defenses for WhatsApp’s contact syn-
chronization. Telegram responded to our responsible disclosure
by elaborating on additional data scraping countermeasures
beyond the rate limits detected by us. They are allegedly
triggered when attackers use existing databases of active phone
numbers and higher conversion rates than ours occur. In such
cases, contact discovery is stopped after 20 to 100 matches,
instead of 5,000 as measured by us.

Ethical Considerations. The experiments in this work were
conducted in coordination with the ethical and legal departments
of our institution. Special care was taken to ensure the privacy
of the affected users, as detailed in § IV-D.
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[78] H. Tu, A. Doupé, Z. Zhao, and G. Ahn, “Users Really Do Answer
Telephone Scams,” in USENIX Security. USENIX, 2019, pp. 1327–1340.
[Online]. Available: https://www.usenix.org/system/files/sec19-tu.pdf

[79] L. Vaas, “Robocalls Now Flooding US Phones with 200m Calls per
Day,” 2019. [Online]. Available: https://nakedsecurity.sophos.com/2019/
09/17/robocalls-now-flooding-us-phones-with-200m-calls-per-day/

[80] J. van den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich, “Vuvuzela:
Scalable Private Messaging Resistant to Traffic Analysis,” in Symposium
on Operating Systems Principles (SOSP). ACM, 2015, pp. 137–152.
[Online]. Available: https://doi.org/10.1145/2815400.2815417

[81] WhatsApp Inc., “WhatsApp Legal Info,” 2019. [Online]. Available:
https://www.whatsapp.com/legal?eea=0#terms-of-service

[82] G. Wondracek, T. Holz, E. Kirda, and C. Kruegel, “A Practical Attack
to De-anonymize Social Network Users,” in S&P. IEEE, 2010, pp.
223–238. [Online]. Available: https://doi.org/10.1109/SP.2010.21

[83] WriteThat.Name, “Your Address Book Automagically Updated,” 2013.
[Online]. Available: http://writethat.name/

[84] x0rz, “A Look Into Signal’s Encrypted Profiles,” 2018. [Online].
Available: https://blog.0day.rocks/a-look-into-signals-encrypted-profiles
-5491908186c1

15

https://doi.org/10.1007/978-3-319-72359-4_41
https://doi.org/10.1515/popets-2017-0044
https://www.lorankloeze.nl/2017/05/07/collecting-huge-amounts-of-data-with-whatsapp/
https://www.lorankloeze.nl/2017/05/07/collecting-huge-amounts-of-data-with-whatsapp/
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.1007/978-3-642-04898-2_96
https://doi.org/10.1007/978-3-642-04898-2_96
https://signal.org/blog/signal-profiles-beta/
https://signal.org/blog/sealed-sender/
https://github.com/signalapp/Signal-Server
https://github.com/signalapp/Signal-Server
https://signal.org/blog/contact-discovery/
https://signal.org/blog/private-contact-discovery
https://doi.org/10.18420/sicherheit2018_04
https://signal.org/blog/signal-pins/
http://www.usenix.org/events/sec10/tech/full_papers/Motoyama.pdf
http://www.usenix.org/events/sec10/tech/full_papers/Motoyama.pdf
https://doi.org/10.1145/2684200.2684328
https://palletsprojects.com/p/flask
https://palletsprojects.com/p/flask
https://doi.org/10.1007/978-3-540-45146-4_36
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://www.openmp.org
https://www.openssl.org
https://www.openwall.com/john/
https://doi.org/10.1007/978-3-030-26954-8_13
http://ia.cr/2015/634
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-78372-7_5
http://ia.cr/2014/447
https://doi.org/10.1145/3154794
https://gitlab.com/jishnutp/whatsapp-crawler
https://gitlab.com/jishnutp/whatsapp-crawler
https://www.usenix.org/legacy/events/usenix99/provos/provos.pdf
https://www.usenix.org/legacy/events/usenix99/provos/provos.pdf
http://project-rainbowcrack.com/table.htm
http://project-rainbowcrack.com/
http://project-rainbowcrack.com/
https://www.ndss-symposium.org/wp-content/uploads/2017/09/understanding-saudis-privacy-concerns-when-using-whatsapp.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/understanding-saudis-privacy-concerns-when-using-whatsapp.pdf
https://redis.io/commands/get
https://www.ndss-symposium.org/wp-content/uploads/2017/09/07_1.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/07_1.pdf
https://onlinestatusmonitor.com/
https://www.ft.com/content/4da1117e-756c-11e9-be7d-6d846537acab
https://www.ft.com/content/4da1117e-756c-11e9-be7d-6d846537acab
https://hashcat.net/
https://core.telegram.org/tdlib/docs/classtd_1_1td__api_1_1imported_contacts.html
https://core.telegram.org/tdlib/docs/classtd_1_1td__api_1_1imported_contacts.html
https://core.telegram.org/tdlib
https://guild.co/blog/is-whatsapp-in-breach-of-the-gdpr-a-lawyers-view/
https://guild.co/blog/is-whatsapp-in-breach-of-the-gdpr-a-lawyers-view/
https://www.usenix.org/system/files/sec19-tu.pdf
https://nakedsecurity.sophos.com/2019/09/17/robocalls-now-flooding-us-phones-with-200m-calls-per-day/
https://nakedsecurity.sophos.com/2019/09/17/robocalls-now-flooding-us-phones-with-200m-calls-per-day/
https://doi.org/10.1145/2815400.2815417
https://www.whatsapp.com/legal?eea=0#terms-of-service
https://doi.org/10.1109/SP.2010.21
http://writethat.name/
https://blog.0day.rocks/a-look-into-signals-encrypted-profiles-5491908186c1
https://blog.0day.rocks/a-look-into-signals-encrypted-profiles-5491908186c1


[85] L. Yapparova and A. Kovalev, “Comrade Major,” 2019. [Online].
Available: https://meduza.io/en/feature/2019/08/11/comrade-major

[86] G. Ye, Z. Tang, D. Fang, Z. Zhu, Y. Feng, P. Xu, X. Chen,
and Z. Wang, “Yet Another Text CAPTCHA Solver: A Generative
Adversarial Network Based Approach,” in CCS. ACM, 2018, pp.
332–348. [Online]. Available: https://doi.org/10.1145/3243734.3243754

[87] M. Zweerink, “WhatsApp Privacy is Broken!” 2015. [Online]. Available:
https://maikel.pro/blog/en-whatsapp-privacy-options-are-illusions/

[88] ——, “WhatsApp Privacy Problem Explained in Detail,” 2015. [Online].
Available: https://maikel.pro/blog/en-whatsapp-privacy-problem-explain
ed-in-detail/

[89] ——, “PoC WhatsSpy Public Support Ending Today,” 2016. [Online].
Available: https://maikel.pro/blog/whatsspy-public-support-ending-today

APPENDIX

A. Differences in the Number Spaces

Interestingly, the amount of registrable mobile phone
numbers greatly differs between countries and is not necessarily
proportional to the country’s population. In Tab. VI we list
a selection of countries with their amount of registrable
mobile phone numbers (i.e., filtered by libphonenumber
and our WhatsApp registration API check) and set it in relation
to the population. The ratio between the number space and the
population indicates whether the amount of resources spent
enumerating the entire number space can yield a satisfactory
amount of matches. For example, while the US and Germany
have roughly the same amount of registrable mobile phone
numbers, one would expect to find many more active phone
numbers in the US due to the much larger population.

Our results show that small as well as less developed
countries often have a limited number space and therefore
can be crawled with very little effort. On the other hand,
we observe some outliers: Austria, for example, has such
a large number space that for every citizen there are more
than 10,000 registrable mobile phone numbers available. While
such a ratio seems to make crawling infeasible, one can still
exploit the fact that the phone numbers are typically not
uniformly distributed, but given away in blocks. Hence, one
could follow the strategy to first randomly check a few numbers
for each possible prefix and then focus on the most fruitful
prefixes to still cover a good portion of the population.

B. Reduction Function for Our Optimized Rainbow Tables

The reduction function for our optimized rainbow tables
converts a hash value back to a valid (mobile) phone num-
ber (cf. § III-C). A trivial reduction function could be defined

Country # Numbers (in million) # Numbers / Population

Cuba 0.3 0.03
Moldova 6.3 1.9
Australia 48.6 1.9
Canada 76.0 2.0
Japan 127.9 1.0
Russia 327.0 2.2
United States 505.7 1.5
Germany 538.3 6.5
China 4,496.0 3.2
Austria 93,658.7 10,573.4

Table VI: Comparison of countries with regard to their amount
and density of registrable mobile phone numbers.

by taking the first 64 bit h64 of hash h and calculating the
modulus with the total amount of phone numbers N , giving
us the index of the phone number in the table of all numbers.

However, the modulo operation introduces non-uniformity
in the output of the reduction function: The lower parts of the
number space are more likely to be chosen if N is not a divisor
of 264. We therefore introduce an offset into the calculation
that varies for every chain index iC . By choosing the offset
as the division of N by the chain length lC , each chunk of
the phone number space is more likely for one chain index,
producing a uniform distribution overall.

Another issue is collisions in the reduction function: As
soon as two different hashes produce the same phone number,
then all successive elements of the chain would be duplicate
entries. To prevent this, we vary our reduction function with
every chain index as well as with every table15.

Therefore, we define our reduction function as follows:

i =

(
h64 +

(⌊
N

lC

⌋
+ 65,536× iT

)
× iC

)
mod N,

where the different parameters are explained in Tab. VII.

Parameter Explanation

h64 First 64 bit of hash h encoded as an unsigned integer
N Number of possible plaintexts
lC Length of the chains
iT Index of the currently generated table
iC Current index in the chain

Table VII: Parameters for our reduction function.

The “magic” number 65,536 for the table offset was kept
from the original RainbowCrack implementation [35], since it
produces reasonable results.

C. A Note on Per-Character Alphabets

Rainbow table implementations like CryptoHaze [7] allow
to specify individual alphabets for each character position of
the input domain. While this might appear to be a solution
to optimize rainbow tables for (mobile) phone numbers, the
unique structure of phone numbers limits the usefulness of this
technique: the possibilities for each digit in a phone number
are strongly dependent on the preceding digits.

German mobile phone numbers can be used to illustrate
this point, since they always start with the digits +491. If
one were to limit the third character of the input domain only
to 1, the input space of the rainbow table could be reduced
by a factor of 10x. However, phone numbers from all other
countries where the third digit is not 1 would be missing from
the resulting table. While it would be possible to generate
rainbow tables with different alphabets for each country or
even mobile prefix, this would require considerable effort and
performance overhead, and ultimately closely resemble our
approach (at least conceptually).

15Rainbow tables are usually split into several files due to their large size.
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Figure 4: Minimal discovery rate for different change rates c
with optimal choices for TF (for Signal’s parameters) compared
to the discovery rate for fixed TF when estimating c = 0.1%/d.

D. Further Optimizations for Hash Reversal Methods

Given that the mobile number prefixes in our rainbow table
construction can be chosen freely (cf. § III-C), it is possible
to construct tables for arbitrary subsets of all phone numbers,
such as for one or multiple countries, or limited to a certain
length or type. As a result, storage space requirements and
lookup time can further be reduced for specific applications.

Splitting the tables into countries also allows probabilistic
searches based on some known or learned user distribution (e.g.,
if most users of a service are from the US, the rainbow table
containing US phone numbers will be searched first), or other
available meta data (e.g., IP addresses, or previously cracked
numbers from the same address book).

Our experiments also reveal non-uniform distributions of
phone numbers within single countries (cf. § IV), which could
be used to further speed up the reversal process.

Hybrid constructions of hash databases (cf. § III-A) and
brute-force (cf. § III-B) can outperform each individual method,
since small batches of numbers, for which hashcat has signifi-
cant overhead, can be handled efficiently by the hash database.

E. Optimal Parameters for Incremental Contact Discovery

Given that the popularity of mobile messengers fluctuates
over time, the change rate c of the server database is not a
fixed value but varies continuously. This results in different
optimal choices for the time TF . The inevitable non-optimal
values for TF between adjustments result in higher discovery
rates than the possible minimum: If c is higher than expected,
more users can be found by observing SD. If c is lower than
expected, the rate limits for SF are too generous.

The relative error between the minimal and the actual
discovery rate can be calculated as e = 0.5·|1−c/cest|, where c
is the actual change rate and cest is the estimated one used
for setting TF . Thus, if the real change rate is underestimated
by a factor of 2x, the discovery rate will be 50 % higher than
intended. For the parameters used by Signal (cf. § V), Fig. 4
shows how the discovery rate behaves compared to the minimal
one when a constant change rate of c = 0.1%/d is assumed.
Obviously, underestimating the change rate is more problematic
than overestimating it. In a production environment it therefore
may be beneficial to set c slightly higher than the expected value
to deal with fluctuations. An implementation with dynamic sets,
as outlined in § V, could be an option for platforms where the
change rate fluctuates more strongly and frequent adjustments
of TF are required.

F. Supplemental Mitigation Techniques
A number of additional strategies could potentially supple-

ment the mitigations discussed in § VI, such as CAPTCHAs
for users with unusual contact discovery patterns, honeypot
numbers [40] to detect enumeration attacks, modeling user
behavior for anomaly detection, or the increase of the phone
number space by telecommunications providers. Yet these
approaches are either impractical (larger phone number space),
can result in a high number of false positives (honeypot
numbers, behavioral analysis), require the processing of user
data (behavioral analysis), or decrease usability (CAPTCHAs).
For the sake of completeness, we nevertheless discuss each of
these techniques shortly in the following.

Increased Phone Number Entropy. In § A, we observed
that some countries have a much larger number space than
others, which makes crawling these countries much more
difficult. Telecommunication companies of vulnerable countries
could therefore agree to maintain larger number blocks to
increase the search space for attackers. However, it is important
that the numbers are randomly distributed such that there are
no clusters that can be efficiently crawled once detected by an
attacker. While this approach also makes hash reversal more
difficult, we demonstrated in § III that it is feasible even for
countries with a large number space (e.g., Austria).

CAPTCHAs. In countless web applications, CAPTCHAs
are in place to prevent automated API abuse. Even though there
are ways to circumvent CAPTCHAs [52], [86], they still can
significantly slow down an attack or at least increase the cost
of abuse. Therefore, we suggest to also use CAPTCHAs in
mobile messaging applications to differentiate legitimate users
with unusual contact discovery patterns from abusers.

Modeling User Behavior. Service providers could use
heuristics to detect abnormal user behavior that indicates a
crawling attempt. Such heuristics could include an unusually
large amount of contacts in the address book, exceptionally
many syncing requests, and constantly changing contacts.
However, using such heuristics to automatically ban accounts
is error-prone. This kind of detection can also be circumvented
by more sophisticated attackers that adapt their behavior to
evade detection.

Honeypot Numbers. Rate limits can be bypassed by
sophisticated attackers, e.g., by crawling with a low rate. As was
also suggested in [40], service providers could use honeypots
for detection of such attackers: They could acquire several
phone numbers themselves and detect if any of these numbers
are matched during contact discovery. A positive match would
indicate either a false positive (e.g., a typo when storing a
contact) or an attempt of crawling. Due to the potential of false
positives, it would be more reasonable to closely monitor the
activity of such accounts rather than blocking them instantly.

Educating Users. Users might not be aware of the fact
that their public information is indeed easily accessible to
third parties that perform data scraping. Messaging applications
therefore could show reminders about this fact whenever users
are in the process of sharing personal information publicly, e.g.,
when uploading a public profile picture.

Additionally, on-device machine learning techniques could
be applied to automatically educate users about the sensitivity
of shared content, e.g., when extended nudity or children are
detected in uploaded profile pictures.
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