
Master Thesis

Intrusion Detection Using Machine
Learning in Databases

Sebastian Schindler
Department of Computer Science
Chair of Computer Science II (Secure Software Systems)

Prof. Dr. Alexandra Dmitrienko
First Reviewer

Prof. Dr.-Ing. Samuel Kounev
Second Reviewer

Christoph Sendner, M.Sc.
First Advisor

Lukas Iffländer, M.Sc.
Second Advisor

Submission
30. April 2021 www.uni-wuerzburg.de

Abstract

Ransomware is a known threat that had a severe impact on computer security in the past
five years. This type of malware has caused financial losses of about $13 Billion in 2017
and 2018 combined. Ransomware makes a user’s data unavailable to them, only granting
access again when they pay a ransom. Traditionally, ransomware targeted the computer’s
filesystem. Database ransomware is a new variant of the same principle. Instead of tar-
geting individual files, it logs into DBMSs remotely and destroys the data, leaving only
a ransom message behind. In most cases, attackers do not create a backup copy of the
data. In this case, the data cannot be restored by the attackers, even if the ransom is paid.
In 2018, Jobst et al. presented DIMAQS, a MySQL plugin to mitigate these attacks by
detecting malicious activity through a Petri net classifier.

Our work recognizes the main drawback of this approach: The Petri net cannot be easily
adapted to new attack scenarios and has to be re-engineered manually. To solve this
problem, we design a machine learning classifier to replace the original one. This approach
yields a model that detects all attacks in our tests. Unfortunately, the model also produces
a high number of false positives when trying to detect attacks before any harmful queries
are issued. Overall, our approach achieves a 85.23% f1-score. The performance impact
of the revised plugin is nonexistent for OLAP workloads and stays under 15% for OLTP
tasks.

iii

Zusammenfassung

Die Bedrohung durch Ransomware hat sich in den letzten fünf Jahren deutlich auf die
globale IT-Sicherheit ausgewirkt. Zusammengenommen zerstörten solche Angriffe in den
Jahren 2017/18 über 13 Milliarden Dollar. Das Prinzip hinter den Angriffen ist simpel:
Eine Schadsoftware verhindert den Zugriff auf die Daten der Opfer, und gibt ihn erst
gegen ein Lösegeld wieder frei. Die meisten dieser Angriffe nutzten das Dateisystem um
Zugriff zu verhindern, jedoch existiert seit einiger Zeit eine Variante dieses Angriffes, der
Datenbanksoftware zum Ziel hat. Dabei erlangen Angreifer administrative Zugriffsrechte
auf ein Datenbanksystem, zerstören dort sämtliche Daten und hinterlassen eine Lösegeld-
forderung. In den meisten Fällen erstellen sie keine Sicherung der gelöschten Daten, sodass
die Daten, selbst wenn das Lösegeld bezahlt wird, unwiederbringlich verloren sind. Jobst
et al. präsentierten im Jahr 2018 DIMAQS, ein MySQL Plugin, das durch einen Petri Netz
schädliche SQL-Anfragen erkennt und betroffene Daten vorher sichert.

Diese Arbeit hat zum Ziel, ein grundlegendes Problem des DIMAQS Plugins zu lösen: Das
Petri Netz lässt sich nicht einfach an neue Angriffe anpassen. Um neuen Anforderungen
gerecht zu werden, muss die Struktur des Netzes manuell neu entworfen werden. Wir lösen
dieses Problem, indem wie das Petri Netz durch einen Klassifizierer ersetzen, der sich mit-
tels maschinellem Lernen an neue Angriffe anpassen lässt. Das trainierte Modell verhindert
in unseren Tests sämtliche Angriffe, erkennt jedoch einige Anfragen fälschlicherweise als
Angriff. Insgesamt erzielt das Modell ein F1-Maß von 85.23%. Dabei sind keine Auswir-
kungen auf die Geschwindigkeit für OLAP Anwendungen zu erkennen. Bei OLTP arbeitet
die Datenbank bis zu 15% langsamer.

v

Contents

1. Introduction 1

2. Background 5
2.1. Terminology & General Process . 5
2.2. Types of Learning . 6
2.3. Recurrent Neural Networks . 7
2.4. The Adam Optimizer . 9
2.5. Evaluating Machine Learning Models . 10

3. Related Work 11
3.1. Dynamic Identification of Malicious Query Sequences (DIMAQS) 11
3.2. Database Intrusion Detection . 12

3.2.1. Data Mining Approaches . 12
3.2.2. Machine Learning Approaches . 13

3.3. Ransomware Detection . 13
3.3.1. Analytic Approaches . 14
3.3.2. Machine Learning Approaches . 14

3.4. Summary . 15

4. Attack Analysis 17
4.1. Affected Parties . 17
4.2. Impact . 17
4.3. Threat Analysis . 18
4.4. Threat Model . 20

4.4.1. Areas of Reliance . 20
4.4.2. Attack Sequence . 20

5. Requirement Analysis 25
5.1. Classifier . 25
5.2. Data Preparation . 26
5.3. Training Executable . 26

5.3.1. Data Ingest . 27
5.3.2. Sequence Generation . 27
5.3.3. Training . 27
5.3.4. Evaluation . 28

5.4. MySQL Plugin . 28

6. Design 29
6.1. Plugin Architecture . 30

6.1.1. Database Query Interface . 31
6.1.2. Classifier Interface . 31
6.1.3. Action Policy . 31
6.1.4. Query Rewriter . 32

vii

viii Contents

6.1.5. Admin Handler . 32

6.1.6. Actions . 32

6.1.6.1. Admin Mode Action . 33

6.1.6.2. Rewrite Action . 33

6.1.6.3. Alert Action . 33

6.1.6.4. Backup Action . 33

6.2. RNN Classifier . 33

6.2.1. Feature Extraction . 34

6.2.2. Neural Network . 34

6.2.3. Orchestration . 34

6.3. Training Executable . 35

6.3.1. Data Ingest . 36

6.3.2. Feature Extraction . 37

6.3.3. Query Sequences . 37

6.3.3.1. Sequence Generation . 37

6.3.3.2. Streaming Query Sequence 38

6.3.4. Training Loop . 38

6.3.5. Model Evaluation . 39

7. Implementation 41

7.1. Plugin Architecture . 41

7.1.1. Controller . 43

7.1.1.1. Initialization . 43

7.1.1.2. Event Handling . 43

7.1.2. Database Query . 43

7.1.3. Query Rewriter . 43

7.1.4. Admin Handler . 44

7.1.5. Actions . 44

7.1.5.1. Admin Mode Action . 45

7.1.5.2. Rewrite Action . 45

7.1.5.3. Notification Action . 46

7.1.5.4. Backup Action . 46

7.1.6. Action Policy . 46

7.2. LSTM Classifier . 47

7.2.1. Feature Extraction . 47

7.2.2. Neural Network . 48

7.2.3. Neural Network Queue . 49

7.2.4. Orchestration . 49

7.3. Data Preparation . 52

7.3.1. Benign Query Traces . 52

7.3.2. Malicious Query Sequences . 55

7.4. Training Executable . 55

7.4.1. Data Ingest . 56

7.4.2. Feature Extraction . 56

7.4.3. Query Sequences . 56

7.4.3.1. Sequence Generation . 56

7.4.3.2. Streaming Query Sequence 59

7.4.4. Training Loop . 60

7.4.5. Model Evaluation . 61

7.4.6. Tuning . 61

viii

Contents ix

8. Evaluation 63
8.1. Testbed . 63
8.2. Detection Accuracy . 63
8.3. Performance . 67

8.3.1. TPC-H . 67
8.3.2. Sysbench . 68

8.4. Summary . 70

9. Conclusion and Future Work 71
9.1. Conclusion . 71
9.2. Future Work . 72

Acronyms 73

Bibliography 75

Appendix 81
A. Regular Expressions . 81
B. Raw Results . 82

ix

1. Introduction

The last two decades have seen a dramatic rise in the amount of data we collect [1]. Every
interaction with every online service generates a datapoint that is transmitted, stored and
analyzed. With the increasing availability of data, we are now able to use it for business
intelligence and prediction, providing smart recommendations, tailored advertisements, or
predicting human behavior. All of this information serves to monetize the vast amount of
data businesses can collect or generate. Today, there are whole industries focused on data
analytics, but also data protection. In short: Data is more important and more valuable
than ever.

While the aggregate of collected data becomes more and more valuable, single pieces of
data become less significant. The value lies in the information that can be extracted
from large datasets, rather than the data itself. Further degrading the value of individual
datapoints is anonymization mandated by recent privacy laws. These trends have made
attacks on data confidentiality and authenticity less economical and therefore less common.
The most successful attacks today target data availability. Attackers create and spread
ransomware, a type of malware that encrypts the victim’s data (crypto ransomware) or
locks them out of the system (locker ransomware). Access to the data is only granted again
after the victim pays a ransom, usually in the form of cryptocurrency. These ransomware
attacks have been in use for over 30 years [2], however, they have gained in popularity in
recent years.

Perhaps the most prominent example of a crypto ransomware attack was the WannaCry
malware, that affected large corporations like the Deutsche Bahn or FedEx [3]. The mal-
ware targeted the user’s file-system, encrypted their data and supplied the decryption key
in exchange for some amount of Bitcoin. By May 2017, WannaCry had affected more than
200.000 systems all over the world [4]. There are no accurate numbers of the malware’s
impact since then, but it is reported to be still spreading to unpatched systems [5].

The financial impact of these types of attacks is significant and still rising. The estimated
losses grew from $5 Billion in 2017 to about $8 Billion in 2018 [6], representing a 60% year
over year growth.

More recently though, attackers have shifted their attention towards Database Manage-
ment Systems (DBMSs). In the enterprise software context, database systems are mas-
sively popular. They provide fast, managed and reliable storage with a well-defined in-
terface, reducing complexity from the application itself. Most data today is stored in
databases, making it a prime target for ransomware attacks. In 2016, an attack called

1

2 1. Introduction

MongoDB Apocalypse affected over 28.000 databases [7]. The attack resurfaced in 2019,
over two years after the initial attacks, and infected about 3.000 new databases [8]. Sim-
ilar attack methods were later used on MySQL, ElasticSearch, Hadoop, CouchDB, and
Cassandra systems [9].

Although these attacks fall into the ransomware category, they are very different from the
traditional file-system-based attack schemes. The first difference is the lack of a malware
executable. As database software is designed to be accessed remotely, there is no need to
deploy an executable to a victim’s device. The attack can consist of only few Structured
Query Language (SQL) queries and can be distributed across multiple remote systems
and user sessions. Attackers gain access by obtaining passwords either by brute-force or
other methods. This also means that the data can’t be encrypted and kept on the victim’s
system easily. The data has to be downloaded to the attacker’s system instead. This leads
to the other difference: Database ransomware’s destructive nature [8]. The first attacks
copied the victim’s database to their computer, before destroying the original data and
leaving a ransom message in its place. After realizing that the amount of data was too
large to transfer and save, the attackers began to outright delete the data, without keeping
a copy, but not without still leaving a ransom message. This has lead many companies to
pay the ransom without getting their data restored.

The impact of database ransomware is potentially even higher than traditional ransomware.
The market analytics firm IDC predicts that by 2025, almost half of the world’s data will
be stored in public cloud environments [1]. Most cloud providers use DBMSs as backend
storage. Consequently, the number of new targets could be substantial. Past incidents
have also shown that businesses are more likely to pay a higher ransom, as data loss di-
rectly translates to a loss of revenue [10]. Finally, because information is destroyed rather
than encrypted, it can not be recovered by paying the ransom. Instead, victims have to
restore from backups, losing any information that has not been saved.

Existing database security solutions fall short for detecting database ransomware, as they
are mainly focused on analyzing single queries or detecting usage anomalies in specific
user sessions. Not considering the global security state of a DBMS leaves these solutions
unable to detect attacks that are distributed across multiple user sessions, physical origins
or queries. Ransomware attacks represent such a scenario, as they are comprised of several
actions:

• Query the Database for Structural Information
First, the attacker needs to get the identifiers of tables or databases to delete.

• Delete Tables or Databases
Deleting information is the critical part of the attack. It can happen before or after
the attacker creates the ransom message.

• Create a Table for the Ransom Message
To insert the ransom message, the attacker needs to create a database and/or table
that can hold the message.

• Insert the Ransom Message
The ransom message is likely to contain information about the ransom payment.

The Dynamic Identification of Malicious Query Sequences (DIMAQS) system [11] provides
a MySQL plugin to mitigate ransomware attacks on database systems. To counter attacks
across multiple user sessions or physical locations, DIMAQS analyzes every query that gets
issued to a MySQL instance. Currently, it identifies attacks by classifying queries using
a Petri net that models an attack pattern specific to ransomware. If the plugin detects
an intrusion, queries are rewritten to create a backup instead of deleting tables and the

2

3

system administrator is notified. With the DIMAQS plugin in place, attacks still incur an
outage, but no data is lost.

One issue with this approach is its specificity to one attack pattern. Changing the Petri
net to accommodate a new attack requires manually analyzing the attack and devising a
new structure for the net. This approach is not scalable to universal use. Furthermore,
there is no way to provide updates to users of the plugin, as the net is currently hard-coded
into the system. Utilizing a Petri net that can detect a wider variety of attack patterns
does not solve this problem, as it would likely introduce a high false positive detection
rate.

To overcome these shortcomings, we propose replacing the Petri net with a machine learn-
ing approach. A Long Short-Term Memory (LSTM) based neural network can be used
detect an attack in the sequence of recent queries. This approach eliminates the hard-
coded attack signature and enables us to adapt to new attacks by adding them to our
dataset, re-training the network and deploying a new model.

In particular, we make the following contributions in this thesis:

• Develop a model for detection of server-side ransomware attacks and evaluate it
using datasets provided in [11]. Our model detected all attacks during testing, but
produced some false positives. Overall, it achived an f1-score of 85.23%. The original
plugin was perfectly tailored to the attack samples and produced a 100% f1-score.

• Integrate the developed model with MySQL DB. To simplify the effort, the existing
plugin implementation from [11] will be re-used whenever possible, since it already
monitors incoming sequences and analyzes them for attack detection.

• Evaluate the performance overhead caused by the plugin. The revised plugin does not
affect the performance of Online Analytical Processing (OLAP) workloads, however,
Online Transactional Processing (OLTP) workloads suffer an impact of about 15%
in our testing. Compared to the original DIMAQS plugin, our version is slightly
faster in OLAP workloads, however, in OLTP tasks, it is significantly slower.

Outline. The remainder of this thesis is organized as follows: In Chapter 2, we give an
introduction to machine learning and LSTM networks. In Chapter 3 we put our work into
context by summarizing the existing DIMAQS system and exploring other works related to
machine learning and malware detection. Next, we re-iterate the attack scenario from [11],
which serves as our basis for evaluation, in Chapter 4. The requirements for the proposed
changes to the DIMAQS plugin are analyzed in Chapter 5. The design of our solution is
presented in Chapter 6, before a detailed description of the implementation in Chapter 7.
Chapter 8 evaluates the finished plugin, focusing on security and performance aspects and
comparing it to the original DIMAQS implementation. We conclude the thesis in Chapter
9 by discussing the implications of our work, as well as possibilities for future research.

3

2. Background

This chapter will give a short introduction to machine learning and the specific type of
neural network we plan to use. Machine learning is a paradigm-shift in data processing.
Traditionally, programmers provided problems as input data, along with the algorithms
to solve that problem. Machine learning approaches are different: Their input data is a
large number of problems and solutions. The goal is to derive patterns from the data to
learn a model that can solve similar problems. Machine learning is a term that describes
a multitude of technologies. We will first go over the common terminology and learning
process in Section 2.1, before we look at each of the general categories: supervised, un-
supervised, semi-supervised and reinforcement learning in Section 2.2. Section 2.3 will
explain the specific type of machine learning algorithm we plan to use in this project. In
Section 2.4, we discuss the optimizer we use in our work, before we go over the metrics
used to evaluate a model in Section 2.5.

2.1. Terminology & General Process

Edwards [12] identifies four most commonly used terms when talking about machine learn-
ing:

• Dataset
This is the set of example problems and solutions from which the model is derived.

• Feature
Features are important characteristics that describe the data in the dataset.

• Model
The model is the result of the learning process. Using the model, problems that are
similar to the ones in the dataset can be solved.

• Neural Networks
Neural Networks are comprised of one or more connected layers of neurons. Each
neuron has inputs and outputs. Inputs can be amplified or diminished using ad-
justable weights and biases. These parameters are optimized during the training
phase. Each output is passed through an activation function, usually a sigmoid or
tanh function, that normalizes the output.

Learning a model to solve future problems involves five high-level steps:

5

6 2. Background

1. Data Collection
First, we need to compile a dataset to train our model.

2. Data Preparation
To prepare the data, we need to extract all the important features from it and format
them appropriately.

3. Training
During the training phase, the prepared data is entered into the machine learning
algorithm to train the model. Comparing the known true label to the output from
the machine learning algorithm yields an error. This error is used by an optimizer to
refine the parameters of the machine learning algorithm to improve its accuracy. For
neural networks, this process is called backpropagation, as the error is propagated
backwards through the network, adjusting weights and biases.

4. Evaluation
With the trained model, we can evaluate its performance. Important statistics are
false and true positive and negative detection rates. From these, we can calculate
common metrics like precision, recall and the f1-score.

5. Tuning
The last step is to fine-tune the model to perform optimally.

This process should yield a functional model that can be used to solve problems like those
in the dataset. If the model does not perform well, the machine learning method or the
extracted features can be adjusted and the process repeated.

2.2. Types of Learning

According to Edwards [12], training a machine learning model can be done through several
methods:

• Supervised Learning
Supervised learning algorithms train using labeled data. The goal is to train a model
that can predict the label for a new piece of data. Labels can be chosen from a finite
set of categories (classification) or they can be a scalar (regression).

As we can generate a lot of labeled data by combining benign query sets and attack
sequences, this is our learning method of choice.

• Unsupervised Learning
Unsupervised learning feeds a lot of unlabeled data into the algorithm. The method
is used to find instances that are similar to each other (clustering). Using clustering,
we can find related instances or anomalies. Unsupervised learning is more complex
than supervised learning, but has the benefit of not requiring the effort of labeling
data. Additionally, removing biases that stem from the labels of the input data can
be beneficial.

• Semi-Supervised Learning
One problem with supervised learning is collecting and labeling enough data. Semi-
supervised learning reduces the need for labeled data, as the dataset can be a mix
of labeled and unlabeled instances. This hybrid approach for supervision enables
machine learning to be used on more problems, even if there is less labeled input
data for them.

• Deep Learning
Deep learning refers to neural network algorithms with a high number of layers. The

6

2.3. Recurrent Neural Networks 7

Figure 2.1.: The basic loop of an RNN [13]

key difference to more shallow networks is that deep learning networks do not need
manual feature extraction. They train on and classify input data directly, reducing
the amount of manual engineering. However, as these algorithms are more complex,
they require more computational resources.

• Reinforcement Learning
Reinforcement learning is modeled after the way humans learn. The input data
for the algorithm is the state of the world around it. Every time the algorithm
performs an action that influences that state, it gets positive or negative feedback.
The algorithm strives to maximize the positive feedback. An example for this would
be games. Every move will influence the score, the feedback can be derived from the
score change. By repeatedly playing the game, a machine learning algorithm will
learn the best strategies to maximize its score.

2.3. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are neural networks specifically designed to process
sequences. Fundamentally, RNNs process a sequence piece by piece inside a loop. For
every piece, the network generates an output. This output is the result of the network
processing the sequence up to the current entry, but it also serves as a second input for
the next iteration of the loop. By incorporating the last result, the network can retain
information from previous iterations of the loop. The loop and its unrolled form is depicted
in Figure 2.1.

Figure 2.2.: The structure of an LSTM network [13]

The issue with RNNs is, that the information from loops further in the past get overridden
by more recent iterations. LSTMs solve this by maintaining an additional cell state and
deciding which data to keep during each iteration. Olah details the structure of LSTM
networks in detail in [13]. Figure 2.2 shows a general overview. The flow of information

7

8 2. Background

from iteration to iteration through the cell state is visible in the top horizontal line. Ad-
ditionally, the last output is also forwarded to the next iteration in the bottom line. We
will now look at each component of the network and explain its purpose:

Figure 2.3.: Flow of information [13]

Flow of Information

This is the basic principle of LSTMs.
The cell state C is not created new ev-
ery time, but instead, the previous state
Ct−1 is modified during each iteration.
In each iteration, there are two interac-
tions with the cell state. The first de-
cides which information to discard, and
the second interaction updates the state
with the information from the current it-
eration, yielding the new state Ct.

Figure 2.4.: Forget Gate [13]

Forget Gate

To decide which information to forget,
the output of the previous iteration ht−1

and the current input xt are concate-
nated and run through a sigmoid layer.
The output ft is calculated using the
weights Wf and biases bf :

ft = σ(Wf · [ht−1, xt] + bf)

Figure 2.5.: Candidates and Filtering [13]

Creating Information Candidates and
Filtering

Next, new information is selected to be
stored in the state. A tanh layer creates
information candidates C̃t. The sigmoid
layer is called the ”input gate layer”. It
creates a vector it that filters the infor-
mation candidates generated by the tanh
layer.

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−i, xt] + bC)

Figure 2.6.: Updating the State [13]

Updating the State

After figuring out what to forget and
what to input into the state, it is time
to update the values. The new state val-
ues are calculated as follows:

Ct = ft ∗ Ct−1 + it ∗ C̃t

8

2.4. The Adam Optimizer 9

Figure 2.7.: Output [13]

Output

The output of this iteration is based on
the updated cell state, but filtered. The
sigmoid layer filters the state values, af-
ter they are normalized by passing them
through tanh:

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

This configuration allows information to be carried forward across many iterations. As the
output of the LSTM is not a simple scalar that denotes the classification of the current
query, the LSTM’s output can be passed to a linear layer. The linear layer takes an input
vector A and applies a linear function to it:

y = w ·AT + b

The weight w and bias b are learned during the training phase. The result y will be a
single scalar that can directly be interpreted as the label.

Some data can be classified into disjoint categories. Each of these categories can be
represented by one component of the feature vector, meaning every component has a zero
value, except the component corresponding to the instance’s class. This encoding style is
called one-hot-vector encoding. We plan to use this style to encode the type of queries
issued to the DBMS. The structure of LSTMs is especially suited to to recount occurrences
of one-hot-vector-encoded instances, making it easy for us to recognize queries that delete
data, or queries for the database structure, that can signify the start of an attack.

2.4. The Adam Optimizer

The optimizer is responsible for refining the model during the training phase. It compares
the known true label to the output of the machine learning algorithm and changes the
algorithm’s parameters to reduce the prediction error. Most optimizers can be influenced
using a learning rate. This parameter describes the severity of the changes the optimizer
makes to the machine learning algorithm.

The Adam optimizer was first described by Kingma et al. in [14]. Pseudocode for the
optimizer is shown in Algorithm 1. The Adam optimizer has proven to reduce the necessary
training time significantly, by starting with a high learning rate and reducing it over time.
The default parameters for β1 and β2 are 0.9 and 0.999.

9

10 2. Background

Algorithm 1 The Adam optimization algorithm from [14]

Require: α: Stepsize
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector
1: m0 ← 0 (Initialize 1st-moment vector)
2: v0 ← 0 (Initialize 2nd-moment vector)
3: t← 0 (Initialize timestep)
4: while θ0 not converged do
5: t← t+ 1
6: gt ←5θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
7: mt ← β1 ·mt−1 + (1− β1) · gt (Update biased 1st-moment estimate)
8: vt ← β2 · vt−1 + (1− β2) · g2t (Update biased second raw moment estimate)
9: m̂t ← mt/(1− βt1) (Compute bias-corrected first moment estimate)

10: v̂t ← vt/(1− βt2) (Compute bias-corrected second raw moment estimate)
11: θt ← θt−1 − α · m̂t/(

√
v̂t + ε) (Update parameters)

return θt (Resulting parameters)

2.5. Evaluating Machine Learning Models

When a model is trained, one needs to evaluate its accuracy. The f1-score is a simple
measure of a binary classifier’s accuracy and can be calculated as follows:

tp =number of samples correctly classified as positive

p =total number of positive samples

cp =total number of samples classified as positive

precision =
tp

p

recall =
tp

cp

f1 =2 · precision · recall
precision+ recall

When evaluating a multi-class classifier, these metrics can be calculated for every class.
To get a score for the overall model, the individual class’s f1-scores can then be averaged.
If the classes do not occur with the same probabilities, one can also calculate the weighted
average:

f1macro =
f11 + f12 + f13 + ...+ f1n

n

f1weighted =
cp1 · f11 + cp2 · f12 + cp3 · f13 + ...+ cpn · f1n∑n

i=1 cpi

10

3. Related Work

This section will provide an overview of the previous work done by our group, and examine
other works surrounding ours. Section 3.1 will first detail the existing DIMAQS system,
to illustrate our point of origin. As DIMAQS serves as the basis for our project, it is of
some importance to understand how it works. Afterwards, we investigate other database
intrusion detection approaches, both with and without using machine learning, in Section
3.2 and do the same for ransomware detection in the subsequent Section 3.3.

3.1. Dynamic Identification of Malicious Query Sequences (DIMAQS)

The intrusion detection system this work is based on is called DIMAQS and is introduced
in [11]. It is important to this work for two reasons: It serves as a base MySQL plugin
that we can adapt to our malware detection scheme, and it also provides the training data
and attack signature for our work. The system uses the MySQL plugin architecture to
monitor incoming queries and detect malicious actions. Upon detection, the affected data
is backed up and the system administrator is notified. Currently, the detection mechanism
employs a Petri net that models a common attack scenario:

1. Query Structural Information
The attacker executes queries that return information about the databases or database
tables present in the system.

2. Delete Information
The attacker drops databases or tables that were returned in step 1.

3. Leave Ransom Message
The attacker creates a new database or table that contains a message asking for
payment to restore the data.

The order of steps 2 and 3. is not fixed, as an attacker could leave the ransom message
before deleting anything or even in between deleting multiple databases. The structure
of the Petri net can be seen in Figure 3.1. The net perfectly identifies the given attack
scenario without any false positives or negatives.

The attacker’s actions can happen across several sessions and from several sources. It is
therefore not sufficient to monitor queries on a per-session, per-user or per-endpoint basis.
Instead the Petri net represents the security state of the overall system.

11

12 3. Related Work

Initial1

Initial2

Initial3

DBListed

TabListed

ColListed

TabCreated

Ob jDel

MsgInserted

Noti fyAdmin

ListDB

ListTab

ListCol

CreateTab

DelDB

DelTab

ModTab

InsertMsg

Always

Figure 3.1.: Structure of the Petri net used by DIMAQS [11]

If an attack is detected, queries that drop databases or tables are rewritten, unbeknownst
to the attacker, to rename tables rather than delete them. The databases or tables are
prefixed with ”dimaqs ”. All queries for databases or tables that are present in the system
are rewritten to exclude the renamed ones.

The issue with this implementation is that hard-coding the attack, even in this generalized
way, makes the system hard to adapt to new attack strategies. We plan to use machine
learning techniques to alleviate this issue. Our approach makes it easier to adapt to new
attacks, as they can simply be included in the training dataset. To that end, we have
designed an easily extensible way to store the training data. With a newly observed
attack added to the dataset, a new model can be trained and deployed.

3.2. Database Intrusion Detection

This section will discuss some of the work regarding intrusion detection in database sys-
tems. The first Intrusion Detection System (IDS) was built in 1998 by Hofmeyr et al. [15].
Their system used UNIX system calls of benign processes to create signatures. These were
compared to running processes to identify malicious applications.

The idea of finding unusual usage patterns to identify intruders is also used by modern
IDSs. The practice is now called anomaly detection. Patcha and Park summarized and
categorized existing database IDSs in 2007 [16]. According to their work, there are two
types of approaches for analyzing these usage patterns: data mining and machine learning.
We will look at examples for both categories in the following subsections.

3.2.1. Data Mining Approaches

The following works are based on data mining techniques to find signs of intrusions in usage
patterns. Data mining is the algorithmic extraction of information from large amounts of
data. Accordingly, these systems all need a trace of the database’s normal operation to
analyze off-line before operation.

Chung et al. propose DEMIDS [17], an IDS that identifies working itemsets for each
user and application using a DBMS. It also defines a distance function between itemsets.
Abnormal behavior is identified by an itemset with a high distance to its nearest neighbor.
The DEMIDS system is based on user profiles and could be circumvented by distributing
an attack across several users. Unfortunately, Chung et al. do not provide an evaluation
of their system.

In [18, 19], Hu et al. propose and implement an IDS based on a Petri net classifier. They
were able to identify a surrounding itemset for each write operation on a database. Their

12

3.3. Ransomware Detection 13

Petri net models read, pre-write and post-write itemsets for write operations. The classifier
could discover anomalous transactions if they did not conform to this model. Compared
to our work, this system only considers the immediate vicinity of an SQL statement and
might not be able to identify attacks that play out over longer time periods. While they
did not provide any precision numbers in their evaluation, we can infer a maximum f1-score
of 94.8% from their recall.

The DIWeDa system by Roichman and Gudes in [20] creates fingerprints of user sessions.
These fingerprints are compared to a set of previously collected ones. If a session’s finger-
print is too distant from known ones, it is likely compromised. The focus on sessions could
enable an attacker to avoid detection by using multiple sessions. In their evaluation, they
achieved an f1-score of 88.7%.

DIDAFIT [21] by Lup et al. builds a fingerprint of a specific application. This fingerprint
consists of a set of previously seen SQL queries which were turned into regular expressions
that match queries of the same structure. Any query that does not match the fingerprint
is flagged as malicious. This approach is specific to the fingerprinted application and can’t
be directly deployed in a different environment. While they provided an evaluation of the
systems performance, no detection accuracy numbers were present in the publication.

3.2.2. Machine Learning Approaches

Machine learning works by discovering and refining an algorithm with experience gained
from training data. For more detail on this, refer to Chapter 2.

To identify intrusion in database systems with managed roles, Bertino et al. trained a
Näıve Bayes classifier with the usage patterns of users from each role [22]. If a user’s
behavior does not fit their role, the account is likely compromised. Only considering
individual users could leave attacks that involve several accounts undetected. In their
evaluation, the system achieved an f1-score of 90.9%.

The focus of the work done by Valeur et al. in [23] was intrusions through SQL injection
attacks from websites. They constructed several classifiers for individual queries, each
one specific to a data type. The publication gave no detail on the algorithm used by
the classifiers, but stated that they would likely need to be adapted to the environment
where they are deployed. Classifying only individual queries makes the system exploitable
by attacks comprised of several queries. The system achieved an f1-score of 90%. They
later refined their work in [24] to also include the HTTP requests for classification. The
improved classifier achieved a 99.4% f1-score.

3.3. Ransomware Detection

Ransomware that is focused on database systems is still a new development. Accordingly,
we did not find any research focused specifically on DBMSs. However, the work put
into detecting file-system based ransomware is extensive in comparison. To detect this
type of malware, two approaches are wide-spread: static analysis of malware binaries and
behavioral analysis of processes. The former does not apply to this work, as we have
no binaries to analyze. Inspecting process behavior can also be done in several ways:
Analytic approaches are created manually by analyzing the features by which ransomware
can be identified and creating software to exploit these features, while machine learning
approaches classify processes based on similarity to their training samples. We will look
into both categories below.

13

14 3. Related Work

3.3.1. Analytic Approaches

Analytic approaches to ransomware detection are manually crafted solutions that exploit
behavioral characteristics unique to ransomware.

In [25], Scaife et al. created a system that monitors file system changes. Specifically, it
looked for file type changes, changes to the amount of entropy in a file (encrypted data has
high entropy) and the similarity of changed files to the previous version. Their evaluation
produced a very high f1-score of 99.9%. However, the benign set of applications they used
to test for false positives was flawed. There were not applications present that encrypt
data. As the only false positive they recorded was produced by a compression software,
which also produce files with high entropy, it is likely that including more software like
this would lower their precision significantly.

UNVEIL is a system that creates artificial user environments and monitors them for
changes [26]. Activity in those environments is likely not caused by the user, as they
are not aware of them. This activity may be malicious. The UNVEIL software as evalu-
ated to produce an f1-score of 97.7%. This principle would be applicable to DBMSs, by
creating canary databases. Activity in them would indicate an intrusion. However, as a
whole database can be dropped with a single SQL command, it is likely that a significant
amount of data is already deleted before the malicious activity is detected.

Almashhadani et al. found that most crypto ransomware connects to remote command
and control servers upon execution [27]. Their approach is to analyze network traffic to
detect ransomware before it is able to execute. To prove the feasibility of this approach,
they built an application that is able to detect the Locky ransomware before it was able
to encrypt any files by analyzing the network traffic of the system.

3.3.2. Machine Learning Approaches

Machine learning solutions to ransomware detection look at some features of benign soft-
ware and ransomware to learn the characteristics of malware behavior. The machine
learning approaches we found either looked at a process’ network activity or its Operating
System (OS) Application Programming Interface (API) calls.

A similar traffic analysis system to Almashhadani et al.’s is used in [28]. They train
a decision tree based classifier to find indications of ransomware activity. The classifier
achieved an f1-score of 99.2%.

ShieldFS a file-system that can detect and mitigate ransomware attacks by monitoring
file-system API calls [29, 30]. ShieldFS implements a copy-on-write (COW) mechanism
on top of the windows-native filesystem. File changes are made reversible through that
COW mechanism. Process’s activities are classified by several random forest classifiers, if
malicious activity is detected, affected files can be restored. The ability to restore affected
databases is also a goal of this work, but a COW mechanism is hard to implement on
databases, hence we create backups of affected tables. The ShieldFS system achieved a
98.8% f1-score.

Similarly to ShieldFS, Ransomwall is able to restore files affected by a ransomware attack
[31]. Their system also uses a machine learning approach for classification, but they con-
sider information from static analysis of the malware executable in addition to OS API
calls. To further increase accuracy, they set monitored honey files to find malicious activ-
ity. RansomWall combines several strategies to achieve robust ransomware identification.
Their Gradient Tree Boosting classifier achieved a 98.25% detection rate.

Maniath et al. built a system that can detect ransomware by classifying OS API call
sequences [32]. This approach is conceptually very close to our work, only applied to a

14

3.4. Summary 15

different system. To train an LSTM network, they logged the API calls of 157 malware
samples and some benign software. As features, they used the API call type. The classifier
produced an accuracy of 96.7% in their evaluation.

To further improve the accuracy, Agrawal et al. propose using an attention mechanism
in [33]. Attention mechanisms can amplify the importance of single datapoints in a long
sequence. This might prove especially useful for us, as we handle sequences that contain
many benign queries and few important malicious ones. For them, the modified LSTM
boosted the accuracy from 87% up to 93%.

3.4. Summary

The previous sections summarized a multitude of intrusion and ransomware detection
methods. When looking at database intrusion detection, we see that all current methods
either consider only single database queries or user sessions. DIMAQS tries to remedy
that by monitoring queries across all sessions.

As this work is mainly concerned with ransomware classification, surveyed several ran-
somware detection projects and identified machine learning algorithms as a promising
method for classifying sequences of API calls. Particularly the work done by Maniath et
al. in [32] seems similar to our work. LSTMs seem especially suited to classify sequences
of queries that are dominated by noise with only few important elements.

15

4. Attack Analysis

In this chapter, we analyze typical ransomware attacks this work aims to counter. First,
we look at parties affected by ransomware attacks in Section 4.1. We then describe the
impact of these attacks in Section 4.2 before analyzing typical attack scenarios in Section
4.3. Finally, we condense that knowledge into the threat model used by this work in
Section 4.4.

4.1. Affected Parties

In this section, we investigate which parties could potentially be affected by ransomware
and which ones are especially vulnerable. We also try to estimate how many targets for
ransomware attacks there are today.

As discussed in Chapter 1, while ransomware attacks affect many private persons, there is
a bigger incentive for attackers to target businesses. The loss of data translates directly to
financial loss, making businesses more motivated to pay the comparatively small ransom to
get their data back. There were some high-profile cases of large companies, like Deutsche
Bahn [34] or FedEx [3] being hit by ransomware, as well as hospitals [35] and city councils
[36]. Smaller entities, like public institutions or small businesses present an enticing target
to ransomware attackers, as they rarely have the means to defend themselves or recover
from a catastrophic data loss [37].

The list of potential targets for ransomware attacks is vast. In 2019, BinaryEdge [38], a
data provider for threat intelligence and security reporting, conducted a search for database
servers in Iran [39]. They were interested in servers, that were accessible without protec-
tion from the internet. 547 databases were vulnerable, with about 1.8TB of information
exposed. The accessible databases account for roughly 4.9% of all Iranian database sys-
tems with remote access. If we extrapolate that number to the rest of the world, we get
more than 145.000 vulnerable DBMSs.

4.2. Impact

This section looks into the impact of ransomware. We mainly focus on the financial cost
of these attacks, but also mention the first human casualty linked to a ransomware attack.

The cases of ransomware attacks have seen a dramatic increase in the last five years.
The estimated cost of these incidents range in the $20 Billions for the year 2020 [40], an

17

18 4. Attack Analysis

count name

18613 WARNING
8153 PLEASE READ
7267 admin
5699 local
3082 README MISSING DATABASES
2961 READ1
2412 PLEASE READ ME
1404 README
1259 README YOU DB IS INSECURE
1128 CONTACTME
1057 ENCRYPTED
1053 PWNED SECURE YOUR STUFF SILLY
905 test
345 immutables
345 piinpoint
259 mr9as main
258 mr9as article
257 cache
220 config
198 logs

(a) Scan from 2018-01-16

count name

19051 PLEASE READ
7984 admin
6987 local
6561 READ1
1891 README MISSING DATABASES
1096 test
312 WARNING
304 README
289 CONTACTME
274 README YOU DB IS INSECURE
266 cache
258 mr9as main
257 mr9as article
249 config
209 logs
192 ceilometer
175 ENCRYPTED
163 bbks
153 gpsreal
145 alarmreal

(b) Scan from 2018-01-17

Table 4.1.: Scans for most used database names in unprotected MongoDB instances

individual attack is quoted at roughly $4 Million. In total, 36% of victims paid to have
their data restored, of which 83% regained access to their data.

The situation for database ransomware looks worse. Security specialist Victor Gevers
surveyed database ransomware attacks in the first half of January 2017. For these 15
days, he lists 124 cases from companies all over the world, as seen in Figure 4.1c. Figure
4.1b shows that only about 8% of affected companies paid the ransom, none of which
had their data returned to them. The two cases seen in Figure 4.1d, where data could be
restored without recent backups were through a replicated DBMS instance and forensic file
recovery. An investigation [41] into MongoDB attacks also shows that ransom information
is overwritten quickly, presumably by other ransomware attackers. Table 4.1 shows that
table names for ransom messages change daily, if the database is not taken offline. As only
the original attacker can provide a backup of the data, this makes paying the ransom to
them to restore the data more difficult.

In summary, this means that the only viable strategy to recover from a ransomware attack
is to perform regular backups. As shown in Figure 4.1a, only 11.3% of affected businesses
followed that practice, leading to high financial impact in a majority of cases.

Looking at human cost, rather than financial, shows a much lower impact. The first
ransomware-related death only just occurred in September 2020 in Germany [42]. A hos-
pital was hit with a ransomware attack and could not care for a critical patient. Perpe-
trators of ransomware attacks have since publicly pledged to avoid attacking healthcare
facilities. Although this is certainly an improvement, there are other computer systems,
whose failure could cause human casualties, like traffic or airport control systems.

4.3. Threat Analysis

To create a realistic model of a typical ransomware attack, we investigate some examples of
past attacks. This work is not concerned with how attackers gained access to the DBMS,
consequently, we only look at the sequence of SQL queries issued by the attackers.

18

4.3. Threat Analysis 19

Yes

14

No

110

(a) Only 11.3% of victims had recent
backups to restore from

Paid

10

Not Paid

114

(b) Over 8% of victims paid the ransom

CN
7

FR

7

Other

21

UK

21

US

45

GE

6
JP

6
NL

11

(c) Affected companies by country

Data lost

108

Backups

14

Data restored

2

(d) Only 16 companies regained access
to their data

Figure 4.1.: Analysis of ransomware attacks

From an analysis [43] of a ransomware attack from 2017, we can identify the steps taken
by the attackers. To get a list of accessible database servers, services like Shodan [44] or
BinaryEdge [38] can be queried for free. Exploiting misconfigured systems with default or
weak passwords, the attackers then tried to brute-force the root password.

The administrative access was then used to first query information about the databases
and table present in the system. In MySQL, this can be accomplished through several
methods, like the SHOW DATABASES command or by querying the information from the
built-in information schema tables. In the analyzed attack, the perpetrators then created
a table named WARNING either in an existing database or in a new one named PLEASE_READ.
In the newly created table, the attacker inserts a message informing the victim that they
need to pay a certain amount of Bitcoin to a specified Bitcoin address and provide proof
via email to get their data restored. With the message in place, the attacker can optionally
download a dump of the stored data, before destroying it on the server and disconnecting.

While this scenario is only a description of one specific attack, the steps taken by the
attackers were the same in other attacks [45, 46]. They involve querying the DBMS for
information on stored databases and tables, creating a table for a ransom message and
inserting it, and deleting the stored information. Each of these steps can be accomplished
by several SQL commands. We will look into them in more detail in Section 4.4.2.

19

20 4. Attack Analysis

4.4. Threat Model

This chapter will form a threat model for the intrusion detection system. We first identify
the actors involved in the attack in Section 4.4.1, before we look at the attack sequence
and its variations in detail in Section 4.4.2.

4.4.1. Areas of Reliance

This section aims to identify all parts, human actors, hardware and software, that con-
tribute to a ransomware attack. In this section, we evaluate each of these components in
a top-down approach, from actors and software down to the hardware. The evaluation of
each component serves to determine their influence on the security of the overall system.

There are three potential actors: Database administrators, users of the database, and
attackers. The database administrators have a stand-out role, they are responsible for
deploying a securely configured DBMS. This is vital, as attackers rely on weak or default
root passwords to gain access. As system administrators usually have direct access to the
physical machine, we deem them trustworthy. The attacker is one of the database’s users
with remote access to the DBMS and enough privileges to carry out the attack. As the
revised DIMAQS plugin should be adaptable to a wide range of attacks, we do not specify
these privileges further. Consequently, we cannot distinguish between legitimate users and
attackers and have to treat both as untrusted.

The main software component is naturally the DBMS, but the operating system also
needs to be considered. On Windows systems, the DBMS can run as a service or be
started directly by a user. When run as a service, the database software can only be
accessed directly with administrative privileges. Using strong passwords and Windows’
User Account Control (UAC) mechanism can minimize the risk in this scenario. Starting
a DBMS directly from a user account is usually only practiced by developers, a scenario we
do not accommodate, as there is no valuable data to protect. On Unix systems, the same
two scenarios are possible, however, the DBMS usually runs under its own user account,
making it accessible only by a privileged user.

With these precautions, direct local access to the DBMS is not a concern. Communication
with database systems usually happens via TCP/IP networks and local sockets. As these
mechanisms are commonly used, we classify them as trustworthy.

We also classify the OS and the hardware itself as trusted. An attacker with the ability to
compromise those would have complete access to the system, including the configuration
of the DBMS and the DBMS’s storage files. It would enable them to destroy data directly
or change the configuration to disable our plugin.

4.4.2. Attack Sequence

After defining the components involved in a ransomware attack, we now look at the se-
quence of SQL queries required to carry out the attack. As discussed before, the attack
consists of three steps:

1. Gather Structural Information

2. Leave Ransom Message

3. Delete Information

It is of note, that the attacker might also delete information before leaving the ransom
message. The following paragraphs will discuss how an attacker might achieve each of
these steps in detail.

20

4.4. Threat Model 21

Gather Information

As discussed in the previous section, the previously observed ransomware attacks start by
querying the database system for structural information about schemas, tables or columns.
This information is necessary, as the deletion commands require the names of the targets
to be deleted. Jobst created a complete overview [47] of SQL commands that query return
this information, it can be seen in Table 4.2.

Delete Information

With the names of existing databases or tables known to the attacker, they can delete
them. This can be accomplished in several ways:

• Deleting a database
DROP {DATABASE | SCHEMA} <db_name>

• Deleting one or multiple tables
DROP TABLE [IF EXISTS] <tbl_name> [, <tbl_name>]

• Deleting all entries in a table
DELETE * FROM <tbl_name>

Create a Database for the Ransom Message

To create a database, the attacker has to issue the following SQL command:

CREATE DATABASE | SCHEMA [IF NOT EXISTS] <db_name>

Table 4.3 is a list of ransomware database names from multiple sources. These names were
all used in previous attacks.

However, there were also cases, where attackers left the ransom message in a pre-existing
database. Therefore, this step is not crucial for our attack model.

Create a Table for the Ransom Message

In contrast to the previous step, creating a table for the ransom message is always necessary,
as the message requires a specific table structure. The following commands create a new
table inside a database.

• CREATE TABLE [IF NOT EXISTS] <tbl_name> <tbl_definition>

• CREATE TABLE [IF NOT EXISTS] <tbl_name> [AS] <query_expression>

• CREATE TABLE [IF NOT EXISTS] <tbl_name>

{ LIKE <other_tbl_name> | (LIKE <other_tbl_name>)}

The only table name that was observed in past attacks was ”WARNING”, however, this is
not a reliable indicator for an attack, as it could be replaced easily. Instead, we consider
the database names from Table 4.3 as valid table names.

Insert Ransom Message

The last step in the attack is to insert a message, informing the victim that their databases
can be restored by paying some amount of Bitcoin to a specific address and contacting the
attackers.

There are two commands that insert values into a table:

21

22 4. Attack Analysis

Reference Exposed Information

Command Schema Table Column

SHOW {DATABASES | SCHEMAS}
SHOW TABLES
SHOW {COLUMNS | FIELDS}
SHOW TRIGGERS
SHOW OPEN TABLES
SHOW TABLE STATUS

Schema Table Schema Table Column

COLUMNS
COLUMM PRIVILEGES
EVENT
FILES
KEY COLUMN USAGE
PARAMETERS
PARTITIONS
REFERENTIAL CONSTRAINTS
ROUTINES
SCHEMATA
SCHEMA PRIVILEGES
TABLES
TABLE CONSTRAINTS
TABLE PRIVILEGES
TRIGGERS
VIEWS
INNODB BUFFER PAGE
INNODB BUFFER PAGE LRU
INNODB SYS COLUMNS
INNODB SYS DATAFILES
INNODB SYS FIELDS
INNODB SYS FOREIGN
INNODB SYS FOREIGN COLS
INNODB SYS TABLES
INNODB SYS TABLESPACES

information schema

INNODB SYS TABLESTATS

db
innodb index stats
innodb table stats
proc
procs priv

mysql

tables priv

file instances
file summary by instance
objects summary global by type
table handles
table io waits summary by index usage
table io waits summary by table

performance schema

table lock waits summary by table

Table 4.2.: Summary of SQL commands exposing structural information in MySQL.
Legend: Full Exposure

Partial Exposure

22

4.4. Threat Model 23

WARNING
README MISSING DATABASES
PLEASE READ
PWNED
PWNED SECURE YOUR STUFF SILLY
ReadmePlease
CONTACTME
WARNING ALERT
to get DB back send 1BTC to 1DGztzLNz1euFswtqMDWPMWSgwthdpxRtC
PLEASE READ 56b41cc944bd390932e79827
README
LEIA ME
AVISO LEIA ME
IHAVEYOURDATA
READ ME
READMEPLS
ENCRYPTED
READ1
README YOU DB IS INSECURE
AVISO
DB H4CK3D
PLEASEREAD
DB DROPPED
REQUEST YOUR DATA
BACKUP DB
Attention
PLEASE READ ME
PLEASEREADTHIS

Table 4.3.: Used ransom message table names in MongoDB [41, 48]

• Insert list of values
INSERT [INTO] <tbl_name> {VALUES | VALUE} <value_list> [, <value_list>]

• Insert select
INSERT [INTO] <tbl_name> SELECT ...

To be able to pay the ransom, a victim would require three pieces of information:

• Amount of Bitcoin to pay

• Bitcoin address to transfer the Bitcoin to

• A way to contact the attackers to restore the data

The type of digital currency is not necessarily Bitcoin, but it is the currency used in
almost all recorded attacks. The address to send the money to is a string of 36 characters,
containing digits, as well as upper- and lowercase characters. This is easily detectable in
the ransom message.

To contact the attackers, we found two variants [43]: Email or a tor hidden service. Both
are detectable in the ransom message, by looking for email addresses or .onion domains.

Downloading the Database

We previously discussed that attackers do not always perform a backup of the data they
destroy. Therefore, this step is not taken into account when detecting an attack.

23

5. Requirement Analysis

The aim of this work is to modify the original DIMAQS plugin to be more adaptable to
new attack scenarios. To accomplish this goal, we propose modifying the original plugin
to replace the Petri-net-based classifier with a machine learning algorithm.

This requires creating the new classifier, along with a separate executable that trains a
model for it. We must also modify the existing data samples to make them easier to read,
process and extend. Lastly, we must integrate the new classifier into the existing DIMAQS
MySQL plugin.

The following sections will gather the requirements for each of these steps and new com-
ponents.

5.1. Classifier

The classifier is the heart of the DIMAQS plugin. It processes each query as it is issued
to the system and produces on of three labels:

• Benign:
These queries are harmless and not part of a ransomware attack

• Alert:
These queries are likely part of an attack, but do not destroy any data. The system
administrator should be alerted

• Backup:
These queries are likely part of an attack and do destroy data. Perform a backup of
the affected databases and alert the administrator

The reaction to the classifier output is visualized in Figure 5.1.

The main aim of this project is to replace the Petri net classifier with a machine learning
algorithm that emits the same labels. The type of machine learning algorithm we chose
is an RNN, as they is designed to process sequential data of variable length. As RNNs
require numerical input data, we must create an embedding layer, that creates a feature
vector from a database query. The feature vector must contain the type of query, as well
as indicators for the presence of keywords that signify a ransom message, table or database
name.

25

26 5. Requirement Analysis

Classifier

Backup

Notify Admin

Execute Query

Backup

Alert

Benign

Figure 5.1.: Classifier Reaction Flow

Additionally, the Petri net in the original plugin was designed to only detect attacks
that take place over a timespan of less than five minutes. As the LSTM network stores
information about past queries in an internal state, we must develop a mechanism to reset
that state every five minutes.

The requirements we discussed above will recreate the behavior of the original classifier.
However, the machine learning approach is likely to cause an increased impact on perfor-
mance. To mitigate this issue, we should add the capability of handling incoming queries
asynchronously. For that, we need to implement a thread-safe queue of queries to be
processed asynchronously, and a mechanism to consume all queries in the queue before
processing a critical query synchronously.

5.2. Data Preparation

To create a system that is adaptable to different attack scenarios, we require a well-defined
data format to store both benign and malicious SQL query sequences. Defining this format
creates the framework to expand the dataset with new attacks in the future. The query
sequences will later be used to train the machine learning classifier.

Currently, the benign sequences are stored as raw text in several files, while the malicious
samples are generated by a bash script as they are needed. Both of these formats are not
easily machine-readable or expandable. As the data needs to be parsed by the training
algorithm, as well as humans to add new samples, we require an extensible, human and
machine-readable format.

The benign samples must be stored in a structured way, to represent dependencies between
different queries of same attack. This structure must be generalized enough to allow
different attacks to be expressed by it. For our purposes, an attack can consist of multiple
prerequisite queries, queries to alert the database administrator on, and queries that trigger
a backup of the affected databases.

As there is a significant amount data to process, we cannot perform the transformations
above manually and need a program that facilitates this task.

5.3. Training Executable

To train the machine learning model, we propose creating a separate executable. The
training process consists of four steps:

1. Read Benign and Malicious Samples from the Dataset

26

5.3. Training Executable 27

2. Create Random Sequences of SQL Queries

3. Train the Model

4. Evaluate the Model

We will give details on each of these steps in the following.

5.3.1. Data Ingest

In Section 5.2, we discussed creating a well-defined file format to store the training samples.
The training executable must read this data and parse it into its own internal representa-
tion that can be used in the subsequent steps.

5.3.2. Sequence Generation

To train the model, we must be able to generate sequences of SQL queries of varying
length and type. As machine learning usually benefits from realistic training data, the
sequences will be based a sequence of benign queries. Malicious sequence types have the
attack inserted into the benign sequence. There are six possible types of query sequence:

• Benign Clean
This is a sequence of only benign queries

• Benign Dirty
In addition to benign queries, this sequence contains either parts of an attack, or a
complete attack in the wrong order. These sequences serve to reduce false positive
intrusion detections.

• Alert Clean
This is a Benign Clean sequence, with the parts of an attack that should prompt an
Alert label inserted.

• Alert Dirty
This is a Benign Dirty sequence, with the parts of an attack that should prompt an
Alert label inserted after the defanged attack sequence.

• Backup Clean
This is a Benign Clean sequence, with the parts of an attack that should prompt a
Backup label inserted.

• Backup Dirty
This is a Benign Dirty sequence, with the parts of an attack that should prompt a
Backup label inserted after the defanged attack sequence.

These sequences will be generated randomly, however, it must be possible to set the ratio
of generated sequence type to produce a model with high detection accuracy.

Another requirement for the training sequences concerns its memory footprint. For eval-
uating the classifier, we will generate sequences of up to 10,000 queries. Storing those in
memory would cause significant overhead. To enable the generation of long sequences, we
must create a way to store them with constant memory consumption, regardless of length.

5.3.3. Training

Training a model requires four basic steps:

1. Generate training sequence

2. Extract the features for each query

27

28 5. Requirement Analysis

3. Classify each instance in the sequence

4. Calculate the error from the calculated and known true label

5. Optimize the model

These steps need to be executed in a loop, until the model is sufficiently accurate. To
accelerate the training, sequence generation and feature extraction may be run out of
band. The resulting feature-extracted sequences can then be entered into a work queue to
be processed in the main classify-optimize-loop.

5.3.4. Evaluation

To evaluate a trained model, we can generate and classify query sequences. The classifi-
cation accuracy will be calculated by comparing the label from the classifier to the known
true label. With the true and false positive/negative counts, the classifiers performance
can be summarized in a simple f1-score.

5.4. MySQL Plugin

In order to change the classifier in the original DIMAQS plugin, we must change its
structure to be able to accommodate the LSTM classifier. This will be done by defining
a clear interface to the classifier and rewriting the plugin to use it. This will make future
development of the classifier much easier. We must also create an exchangeable policy for
reacting to the classifier’s output.

One other requirement for the plugin redesign is preparation for porting it to a different
DBMS. This port is not in the scope of this work, however, it is part of future work on
the plugin. This future goal will also inform some of our design decisions throughout the
next chapter.

28

6. Design

The original DIMAQS system was the first ransomware detection system of its kind for
database systems. In this work, we aim to enhance the existing MySQL plugin with a
new machine learning classifier. The new system will be more adaptable to new attack
scenarios and could also be able to detect previously unseen attacks.

In the past, machine learning has been used to counter ransomware attacks. Researchers
used LSTM neural networks to detect suspicious activity in OS API call sequences in
[32] and [33]. As we discussed in Chapter 3.3.2, these approaches produced a flexible
system with high detection accuracies. However, their research focused on file-system
based ransomware instead of DBMSs. File-system ransomware is far more recognizable,
as it usually encrypts the files instead of simply deleting information the way database
ransomware does. The key difference is the number of API calls needed to carry out the
attack. The encryption process happens on a per-file basis, meaning even if the intrusion
detection system only detects the complete procedure, at most a few files are lost, as can
be seen in [25]. This is not an option for database ransomware, as entire databases can be
destroyed with only a single SQL query.

Bringing the flexibility of machine learning ransomware detection systems to database
systems is the main goal of this work. To accomplish it, we will first re-design the exist-
ing DIMAQS plugin to be more modular. This is necessary, as the original design was
highly integrated without well-defined interfaces to its individual components. Section 6.1
describes the individual components of the plugin and how they can interact with each
other.

In the subsequent Section 6.2, we detail the new classifier that represents our main con-
tribution to the plugin. We will go over the feature extraction in Section 6.2.1, the neural
network in Section 6.2.2 and how the individual parts work together in Section 6.2.3.

Finally, we must create a separate program to use the training samples to train the classi-
fier. The design for this program is detailed in Section 6.3. The application must be able
to read the training data, crate realistic query sequences and use them to train and eval-
uate the machine learning model. Additionally, as the neural network and the algorithms
have some variable parameters that can be tuned, the training application must have the
functionality to evaluate different combinations of these parameters.

29

30 6. Design

6.1. Plugin Architecture

This section serves to describe the high-level structure of the improved DIMAQS plugin.
We will mainly focus on the changes that we are implementing, instead of a complete
overview of the plugin’s architecture, which is already described in [47].

The existing code is tightly integrated and interconnected, making it hard to work with.
We will refactor it to make it more modular, enabling us to change its components more
easily. We identify seven core components in the existing plugin:

• MySQL Interface
This is the part of the code that interfaces directly with the MySQL plugin API. It
translates calls and received data into the internal representation. This component
is kept as-is, as it fits our needs perfectly.

• MySQL Query
The internal representation of a single query. It contains information on query type,
affected databases and tables, as well as inserted values. The query representation
fits our needs well, however, we define a clear interface to it, so that the plugin can
be adapted to different DBMSs more easily.

• Controller
The Controller is the central point of the plugin. It initializes the plugin and controls
the flow of execution and data flow during its execution. This component has to be
adapted to our classifier, as it currently contains a lot of code that is specific to the
Petri net classifier.

• Petri Net Classifier
This is the original classifier of the DIMAQS plugin. It is deeply integrated into the
system, making it hard to change. As we completely replace this classifier, we define
a general classifier interface, making it easier to change the classifier implementation
in future efforts.

• Actions
The actions are a set of pre-defined reactions to incoming queries. They include no-
tifying the administrator, performing backups and rewriting data queries to exclude
existing backups. These are be kept as-is, as they already have a largely generic
interface and can be reused.

• Query Rewriter
The query rewriter is a helper class to facilitate easier modifications of incoming
queries. It will be kept as-is.

• Admin Handler
The admin handler is a helper class that keeps track of all database connections and
is able to elevate a connection’s privileges. Privileged connections can bypass the
plugin’s security mechanisms and access previously backed-up data. Connections
can attain these privileges by presenting a pre-set secret to the admin helper. This
component is kept as-is.

We aim to refactor the program to put the Controller at the center of the flow of execution.
Figure 6.1 shows our revised flow of data and execution. All incoming queries are passed
to the Controller (1), which first directs it to the classifier (2) to generate a classification
label for it (3). The original query and the label are then passed to the action policy (4),
which emits the correct reactions to them (5). If there are actions to perform, they are
subsequently executed (6). This might entail calling the admin notifier (7) or rewriting the
query. The latter involves calling MySQL’s built-in parser with the new query (8) to get a

30

6.1. Plugin Architecture 31

Server Parser

Controller

DIMAQS

Classifier Action Policy

Action Execution

Notifier

(1) Query (11) (Rewritten) Query

(2) Query

(3) Label

(4) Query, Label (5) Actions

(6) Query, Actions

(10) (Rewritten) Query

(7) Notify

(8) Rewrite (9) Rewritten

Query

Figure 6.1.: Simplified DIMAQS data flow

parsed query object back (9). The possibly rewritten query is returned to the Controller
(10), which passes it back to the MySQL server (11) to be executed.

To make the revised plugin more modular, we will define interfaces to each major compo-
nent. The following subsections will describe each interface in detail.

6.1.1. Database Query Interface

The interface to a single database query is kept as simple as possible. The Classifier
only requires access to the query type, and raw query string. Executing some actions
additionally requires access to affected databases, tables and inserted values.

The query type returned by the database query are used by the classifier and the action
policy. The possible query types are listed in Table 6.1.

6.1.2. Classifier Interface

The Classifier itself only has two points of interaction: a constructor and a method to
classify incoming DatabaseQueries and return a Label for them. Figure 6.1 shows that this
is the only interaction required. The possible Labels are defined by an enum with three
instances: Benign, Alert and Backup. We will cover the internal design of the classifier in
further detail in Section 6.2.

6.1.3. Action Policy

The ActionPolicy has a similar interface. The constructor requires a QueryRewriter, Ad-
minHandler and the email address of the administrator to deliver notifications. The pri-

31

32 6. Design

Access Type Structural Data Administrative

Query StructuralQuery DataQuery ShowVariable
ListColumn
ListTable

Creation StructuralCreation DataCreation
CreateTable

Deletion StructuralDeletion DataDeletion
DeleteDatabase DataMassDeletion

DropTable

Update StructuralUpdate DataUpdate SetVariable

Other Administrative
Other

Table 6.1.: Database query types

mary point of interaction is called get actions and emits a list of Actions from a Database-
Query and a Label.

Creating the Actions to emit follows the prototype pattern. When the ActionPolicy is
created, it constructs a prototype for every possible Action it can emit. The concrete
Actions are then created by copying the prototype and customizing it with information
from the current query.

6.1.4. Query Rewriter

The QueryRewriter is a helper class that interfaces with MySQL’s query parser to facilitate
modifying queries that were issued to the system. It can manipulate queries to hide the
backed-up tables or create backups of tables and databases. To accomplish the former,
there is a single method that takes the MySQL connection identifier, the original query
and the type of rewrite to perform. To back up tables, the backup method takes the same
connection information, the original query, a database name and optionally, a table name.
If the table name is omitted, all tables of the database are copied to the backup location.
If the table name is set, only that table is copied.

6.1.5. Admin Handler

The AdminHandler is a helper class to store information about privileged connections. A
database administrator can elevate their session by supplying a secret known to DIMAQS.
Elevated sessions circumvent the plugin’s security mechanism and view or restore backed-
up tables. The AdminHandler has methods add and remove MySQL connection identifiers,
and methods to get and set a connections elevation state. It is constructed with the secret
to verify database administrators.

6.1.6. Actions

Actions are objects that define the reaction to query and its classification. Actions follow
the command design pattern. Each Action is an object that encapsulates all necessary
data to execute a function at a later time. The creation of individual Actions follows the
prototype pattern. The ActionPolicy holds a base instance of every action type. Whenever
the ActionPolicy has to emit an Action, a concrete instance is created from its prototype
via a copy constructor. This concrete instance is then completed with information specific
to the current query. Usually, these Actions are executed before the database query they
react to. Each of the Actions below implements a common interface: There is a default

32

6.2. RNN Classifier 33

and a copy constructor, a getter and setter for the executeLater property and an execute
method to call the action. If the executeLater property is set, the reaction will be executed
after the database query instead of before. Some Actions have additional methods or
properties. Because these properties are different between Actions, we cannot define a
universal method to set them in the interface. However, as a convention, every Action has
a create method that takes the additional parameters.

6.1.6.1. Admin Mode Action

The AdminModeAction can toggle DIMAQS’s admin mode on and off for specific sessions.
Admin mode allows the administrator to view and restore backed-up databases and tables
that are normally excluded from queries through the RewriteAction. Access to the admin
mode is only granted if the user supplies a secret value which can be verified by DIMAQS.
To store and manage privileged session identifiers, the prototype AdminModeAction has the
a companion AdminHandler object which is inherited by the concrete instance. That way,
every AdminModeAction has the same AdminHandler to manage privileged connections
globally. The AdminHandler is passed to the prototype in the constructor. Upon creation
of the concrete Action, the correct secret to identify administrators, as well as the database
connection identifier are set.

6.1.6.2. Rewrite Action

The RewriteAction controls how queries are changed to perform certain actions. Queries
can be adapted to hide backed-up data and to perform database backups or table backups.
The implementation for rewriting queries is encapsulated inside a QueryRewriter object,
which is passed to the RewriteAction in the constructor. The database connection infor-
mation, original query and the type of query rewrite are set when the concrete instance is
created.

6.1.6.3. Alert Action

The AlertAction sends notifications to the database administrator. Its base instance is con-
structed with the email address of the administrator, there are no further customizations
necessary for the concrete instance.

6.1.6.4. Backup Action

The BackupAction serves to rewrite queries that delete database tables or databases into
queries that move them to a secure location. The base version is created with only a
QueryRewriter. To create a backup of an entire database, a concrete instance requires a
database name and the MySQL session identifier. If the instance is also supplied with a
table name, only the table is backed up.

6.2. RNN Classifier

The new classifier represents the bulk of our efforts. It will be included in both the
DIMAQS MySQL plugin and a separate executable that is used to generate a model for
the neural network. The classifier has to process a database query and classify it as Benign,
Alert or Backup. Because attacks play out over several queries, the classifier must store
knowledge about prior queries.

To keep the plugin as modular as possible, the classifier can only called through the
interface described in Section 6.1.2. In this Section, we will first describe how a database
query will be transformed into a feature vector in 6.2.1, before we go over the structure of
the neural network in 6.2.2 and how both components are used in 6.2.3.

33

34 6. Design

Access Type Structural Data Other

Query StructuralQuery DataQuery

Creation StructuralCreation DataCreation

Deletion StructuralDeletion DataDeletion
DataMassDeletion

Update StructuralUpdate DataUpdate

Other Administrative

Table 6.2.: Internal query types used by the classifier

6.2.1. Feature Extraction

Feature extraction is the first processing step to classify a query. Its purpose is to transform
a raw database query into a numerical feature vector that can be processed by the neural
network. This component can be called via its featurize method, passing the database
query as argument. The feature vector is made up of 27 binary dimensions that represent
two characteristics of the original query: Its type and the presence of certain keywords
in the query. The query type is encoded as a one-hot vector that makes up the first 10
dimensions of the complete feature vector. The remaining 17 dimensions each indicate
the presence of a specific keyword. To generate the first part, we translate the type given
by the DBMS’s query representation into a more generalized query type. These basic
operations are shown in Table 6.2 and should be supported by any DBMS, making the
shape of the feature vector universal across most database systems.

Keywords that indicate a ransomware attack are detected by trying to match regular
expressions against the raw query. This ensures complete flexibility to define even complex
keyword sequences to be detected. The keywords include phrases from the ransom message
table names in Tables 4.3 and 4.1, as well as the ransom messages compiled by the original
DIMAQS project in [47]. All of these expressions are defined as case-insensitive to allow
matching against differently capitalized text.

6.2.2. Neural Network

The neural network itself is accessed through a single method, which takes a feature vector
and produces one of the three labels we defined in 5.1. As we cannot know the structure
of the neural network beforehand, it is kept as flexible as possible. The network consists of
a variable number of LSTM layers. We can also define a dropout between the LSTMs. As
these networks do not produce a single label but rather a vector of the same dimensionality
as the input data, they are followed by a linear layer that reduces those 27 dimensions to
one scalar. This structure is shown in 6.2 We then interpret that scalar as follows: Values
lower than 0.5 result in a Benign label. Everything that rounds to a value of 1 will produce
the Alert label, and anything equal of higher than 1.5 results in a Backup classification.

6.2.3. Orchestration

The QueryQueue is the encapsulating object around the neural network, that allows for
asynchronous processing of non-critical database queries. We classify all queries that
do not modify data as non-critical. The resulting label for these queries will always be
Benign, however, they still have to be processed by the neural network to capture the
overall security state of the DBMS. To accomplish this, queries can be entered into a
producer-consumer queue. The neural network consumes these queries off the critical
path of execution on a separate thread. The labels produced by elements from the queue
are discarded.

34

6.3. Training Executable 35

Figure 6.2.: Visual representation of the machine learning model

If a critical query arrives at the system, the queue is first locked, to prevent further queries
from being entered. We then wait for the neural network to run through every query in
the queue, before the critical query can be processed. Its label is returned by the classifier
after unlocking the queue again.

As discussed in Section 5.1, the classifier is required to discard information about queries
that were processed more than 5 minutes ago. LSTMs do not have a mechanism to forget
information gradually, their internal state can only be reset completely. Our solution to
this problem is to use multiple QueryQueues and accordingly, multiple neural networks
internal to the classifier. We can have multiple inactive QueryQueues and one active queue.
Inactive queues still receive and process all incoming queries, but even critical queries are
handled off the critical path. All labels returned by inactive queues are discarded. Active
queues are the ones used to create the labels which are returned by the classifier. This is
visualized in Figure 6.3.

After an initial warm-up time of 5 minutes, the algorithm shown in Algorithm 2 manages
how we activate and deactivate queues. It essentially rotates through the queues in fixed
intervals that depend on the amount of QueryQueues used.

This results in the time-to-forget varying between 5min and
n · 5min
n− 1

. This system is

designed to minimize the overhead from several neural networks processing each query.
We propose to use 3 instances of the neural network, swapping the active one every 2.5
minutes to have a time-to-forget of 5 to 7.5 minutes.

6.3. Training Executable

In addition to the plugin, we also need to design a separate component to train and
evaluate the machine learning model. As we cannot foresee how parameters like training

35

36 6. Design

Figure 6.3.: Discarding information by using multiple query queues and neural networks

Algorithm 2 Algorithm for the classifier rotation strategy

Require: QueryQueues[]: Array of QueryQueues
Require: n: Length of QueryQueues[]
Require: i: Index of the currently active QueryQueue
Require: switch lock: Global lock for the classifier
1: loop
2: wait(5min/(n− 1))
3: switch lock.lock()
4: QueryQueues[i].emptyQueue()
5: QueryQueues[i].resetNeuralNet()
6: i← (i+ 1) mod n
7: switch lock.unlock()

time, number of LSTM layers, or learning rate influence the performance of the model,
this program also serves as a testbed to evaluate various configurations.

During the tuning process, we train and evaluate many different models. This means that
the components below must be thread save, to allow us to parallelize the tuning process
and reduce the tuning time.

In this section, we will first look into the steps required to train the model. To that end,
we will describe how the training data is read and represented in the program in Section
6.3.1, how we extract features from queries without MySQL’s query parser in Section 6.3.2,
how we generate query sequences in Section 6.3.3 and how the machine learning algorithm
is used to train a model in Section 6.3.4. Building on these components, we discuss how
models are evaluated in Section 6.3.5.

6.3.1. Data Ingest

This is the initial step of the program. During the data ingest phase, we read all training
data into the main memory. This is done to eliminate performance bottlenecks from disk
accesses during the training phase. First, each of the two samples of benign data are read
into a simple list of strings. The malicious samples are parsed into MaliciousSequence
structures that are mirroring the structure of the samples stored on disk.

2/3 of the malicious samples are used for training, the other 1/3 for evaluating the trained
model. To simplify the flow of data, we create two TrainingData structures. Both of

36

6.3. Training Executable 37

these hold all the benign training samples, but one of them only references the malicious
samples used for training, while the other holds the samples for the evaluation phase. As
these structures will be referenced from multiple threads while multiple models are being
trained simultaneously, they will be heap-allocated and will not be written to after the
initial creation.

6.3.2. Feature Extraction

The feature extraction mechanism described in Section 6.2.1 is not applicable to the train-
ing executable. The executable is designed to function independently from a DBMS,
therefore it can not use MySQL’s built-in query parsing functionality. Without a query
type supplied by the DBMS, we must emulate that functionality. The training executable
determines the query type by matching regular expressions against it.

6.3.3. Query Sequences

Machine learning algorithms benefit from training data that is as close to the real world as
possible. To that end, we must combine benign and malicious queries into a realistic query
sequence, where the attack is intermixed with queries from regular database operations.
The algorithm to accomplish this is detailed in Section 6.3.3.1.

To evaluate the trained models, we have to generate query sequences of significant length.
If we want to test for the full attack window of 5 minutes, the sequence will have to be
at least 600.000 queries in length. Therefore, can not store the full sequence in memory.
We instead opt to create an iterator-like interface to the query sequence that calculates
the next query from list indices and references to the training data. The logic behind this
streaming sequence is described in Section 6.3.3.2.

6.3.3.1. Sequence Generation

This section details how we generate realistic query sequences. We differentiate three
principal types of query sequence:

• Benign Sequence
This sequence does not contain any queries from the attack samples. Every query
from this sequence should be classified as Benign.

• Alert Sequence
This sequence contains the general prerequisites, as well as the prerequisites for an
alert. The last query from the sequence is the query that should raise an Alert.

• Backup Sequence
This sequence contains the general prerequisites, as well as the prerequisites for a
backup classification. The last query from the sequence is the query that should
result in a Backup classification.

The type the algorithm generates is chosen at random, however, the ratio between types
is influenced by weights that can be attached to them. The algorithm receives the length
of the sequence to generate, as well as the weights as input parameters. Every query type
is based on a benign sequence with the target length. It is created by randomly indexing
into the benign dataset.

To build Alert or Backup sequences, we choose the positions of the attack queries in the
sequence randomly, but in order. The attack queries are inserted into the sequence, moving
the benign queries down the list. The queries that exceed the target length are cut off.

37

38 6. Design

Additionally, we can modify each of the three sequence types above to be dirty. This is
what we call inserting queries from the attack samples into the sequence in a way that
should not trigger a classification other than Benign. This can be done by intentionally
breaking the dependencies between queries in an attack, for example by reversing their
order or omitting the prerequisites. To build a dirty Alert or Attack sequence, we chose
a pivot element in the sequence at random. We insert the queries to dirty the sequence
before the pivot and the attack queries after the pivot.

6.3.3.2. Streaming Query Sequence

The StreamingQuerySequence is the object that stores query sequences. The design goal
of this component is a near-constant memory footprint independent of sequence length.
To that end, we do not store a copy of the individual queries in the sequence. Because
the vast majority of a long query sequence consists of benign queries, we can achieve this
low memory footprint by storing a pointer to the complete list of benign queries, as well
as a current index into that list. To insert attacks or dirty queries, we store the queries
to insert as lists. We also store lists of insertion indices to place the queries at the correct
position in the sequence.

The interface to the StreamingQuerySequence only has three methods:

• hasNext()
This method returns true if there is another element in the sequence and false oth-
erwise.

• next()
This method returns the feature vector of the next query, as well as the correct label
for it. It uses the feature extractor described in Section 6.3.2.

• compact()
This method returns a matrix of all feature vectors left in the sequence, as well as
a vector of all correct labels. While there is another query left, it calls next() and
appends the vector to the output matrix. This will consume the entire Streaming-
QuerySequence.

6.3.4. Training Loop

The training loop is where the program spends the most time. The general principle is
described in Section 2. In general, a training loop for a neural network classifier repeats
the following steps:

1. Reset network state

2. Fetch training data and target labels

3. Classify training data yielding the classifier labels

4. Calculate the error between classifier and target labels using an error function

5. Optimize the model using an optimizer

Usually, one iteration of this loop is called an epoch. Epochs are used to measure the
training time. During each epoch, the machine learning algorithm runs through the entire
set of training data. However, as we generate query sequences randomly, the number of
possible instances is near-infinite. Therefore, we process only one query sequence during
each iteration of the loop. The training time is measured by the number of processed
query sequences.

38

6.3. Training Executable 39

As error function, we use the mean squared error. The error between a vector of target
labels t and input labels i is calculated as follows:

~e =

(t1 − i1)2
(t2 − i2)2
(t3 − i3)2

...
(tn − in)2

Mean squared error is a standard error function and has proven to work well for our
purposes.

To optimize the model, we use the Adam optimizer, which we described in Section 2.4.
The Adam optimizer has proven to reduce the necessary training time significantly.

To speed up the training process, query sequences are generated in parallel to the training
loop by a thread pool. The compacted sequence is placed in a bounded queue to be used for
training. The feature extraction of many queries is quite expensive, as each query needs
to be matched to 27 regular expressions. Therefore, parallelizing this step is massively
beneficial.

6.3.5. Model Evaluation

When a model is trained, we need to evaluate its accuracy. For easy comparison, we break
the results down into f1-scores for each class. From these, we can calculate an overall
macro and weighted f1-score for the trained model. These metrics described in Section
2.5. We calculate the f1-scores for each of our three classes, as well as the arithmetic and
weighted averages.

As almost all queries in a long sequence will be benign, a lower weighted average will be
indicative of a higher false-positive intrusion detection rate, while the macro f1-score is
more sensitive towards a high false-negative rate.

With these metrics, we can effectively evaluate and compare different models. The concrete
steps for evaluating a trained model are shown in Algorithm 3. We loop for n iterations.
Each iteration, we reset the neural network and generate a new query sequence. For each
query in the sequence, we generate a label using the neural network. The generated label
and the known true label are compared to update the statistical information.

Algorithm 3 The algorithm used for evaluating a trained model

Require: n: Number of iterations for the evaluation loop
Require: NeuralNet: Neural net with the trained model applied
1: Stats.init() : Object to gather the statistics from the evaluation run
2: for n times do
3: QuerySequence ← generateSequence()
4: NeuralNet.reset()
5: while QuerySequence.hasNext() do
6: (query, targetLabel) ← QuerySequence.next()
7: classifierLabel ← NeuralNet.classify(query)
8: Stats.update(classifierLabel, targetLabel)

return Stats

39

7. Implementation

In this Chapter, we will detail how the components described in Chapter 6 are imple-
mented. To achieve our goal of creating a system that is easy to adapt to new attack
techniques and to prepare porting the plugin to different DBMSs, we will continue to
focus on modularity.

The outline of this chapter is similar to the previous one: As they are the most important
components, we will start with the general architecture of the plugin in Section 7.1, before
drilling down into the classifier itself in Section 7.2. The subsequent Sections 7.3 and 7.4
will cover the data preparation procedure and the training executable.

7.1. Plugin Architecture

In this chapter, we will describe the implementation details of the DIMAQS plugin. The
programming language of the original DIMAQS plugin was C++, as it enables modern,
object-oriented programming and can interface with the MySQL plugin’s C API. As we
are merely modifying the plugin, this will not change. One of the design goals for the
plugin was to accomplish better modularity by creating well-defined interfaces to each
component. This way, future research can adapt the plugin more easily to new databases,
or change out individual components.

As the plugin’s interface to the DBMS has been described in detail by Jobst in [47], we will
refrain from duplicating the description. We will however explain two key objects generated
by MySQL, as they are important for the comprehension of this chapter. MySQL’s LEX
object is its internal representation of a query. It specifies, among other things, the query
type and -parameters. We use the LEX object to gather information about the query and
optionally change it. The MYSQL THD object is an identifier for the database connection
that issued a query. This context is required to promote a certain database user to have
administrative privileges to manage the backups created by DIMAQS. It is also necessary
to execute rewritten database queries in the correct context.

Each of the following subsections will cover one of the major components of the DIMAQS
plugin we identified in Section 6.1. The components are visually represented in a Unified
Modeling Language (UML) class diagram in Figure 7.1. To simplify the diagram, we
omitted the interface to the DBMS. There are also no details on the new classifier, a
detailed description of it will follow in Section 7.2.

41

42 7. Implementation

Actions

Action
-
+
+
+
+

executeLater: bool
clone(): Action
execute(): void
setExecuteLater(executeLater: bool): void
getExecuteLater(): bool

AdminModeAction
-
~
-
+
~

secret: string
thd: MYSQL_THD
adminHandler: AdminHandler
setSecret(secret: string): void
setTHD(thd: MYSQL_THD): void

BackupAction
-
-
-
-
+
+
+

databaseName: string
tableName: string
rewriter: QueryRewriter
thd: MYSQL_THD
setDatabaseName(databaseName: string): void
setTableName(tableName: string): void
setTHD(thd: MYSQL_THD)

NotificationAction
-
+

recipient: string
setRecipient(recipient: string): void

RewriteQueryAction
-
-
-
-
+
+
+

rewriter: QueryRewriter
rewriteType: RewriteQueryType
query: DatabaseQuery
thd: MYSQL_THD
setTHD(thd: MYSQL_THD): void
setRewriteType(rewriteType: RewriteQueryType): void
setQuery(query: DatabaseQuery): void

<<enumeration>>

RewriteQueryType
Database
Table
Column
Variable

QueryRewriter
-
-
+
+

objext_prefix: string
storagespace: string
rewrite(thd: MYSQL_THD, rewriteType: RewriteQueryType, query: MysqlDatabaseQuery): RewriteResult
backup(thd: MYSQL_THD, databaseName: string, tableName: string): RewriteResult

DatabaseQuery
+
-
-
-
+
+
+
+

insertedValues: vector<string>
query: string
dbname: string
tablename: string
query(): string
queryType(): QueryType
databaseName(): string
tableName(): string

MysqlDatabaseQuery

AdminHandler
-
-
-
+
+
+
+
-

list: Map<MYSQL_THD, bool>
secret: string
lock: mutex
addConnection(thd: MYSQL_THD): void
removeConnection(thd: MYSQL_THD): void
setIsAdmin(thd: MYSQL_THD, secret: string, isAdmin: bool): bool
getIsAdmin(thd: MYSQL_THD): bool
checkSecret(secret: String): bool

ActionPolicy
-
-
-
-
+

admin_mode_action: AdminModeAction
backup_action: BackupAction
notification_action: NotificationAction
rewrite_query_action: RewriteQueryAction
getActions(thd: MYSQL_THD, label: Label, query: DatabaseQuery)

Controller
-
-
+
-

classifier: Classifier
policy: ActionPolicy
handle(query: DatabaseQuery): void
executeActions(actions: list<Action>): void

LstmClassifier

Classifier

+ handle(query: DatabaseQuery): Label

RewriteResult
+
+

was_rewritten: bool
new_query: string

<<enumeration>>

Label
Benign
Alert
Backup

produces

1

1

produces 1
1

produces

0..*

1

Figure 7.1.: Simplified UML class diagram of the DIMAQS plugin

42

7.1. Plugin Architecture 43

7.1.1. Controller

The controller is the central component of the plugin. It manages the calls to all other
components and is also responsible for initializing the plugin.

7.1.1.1. Initialization

The initialization routine creates the plugin’s Classifier and ActionPolicy objects that are
used at run-time. During the initialization phase, we also interface with MySQL and set
up triggers to get notified when queries are issued to the system.

7.1.1.2. Event Handling

As soon as an event, we created triggers for happens, the controller’s audit notify method
is called. The procedure will check the event and do one of three things:

• If the event was the creation of a new connection, it is added to the AdminHandler.

• If the event was the completion of a database query, any post-query Actions are
executed.

• If the event was the parsing of a new query, we classify and react to the query as
described below.

When a new query is finished being parsed by the DBMS, we create our own DatabaseQuery
object for it. This is then passed to the classifier, producing a label to the query. From the
query type and the label, the ActionPolicy emits the appropriate reactions to the query.
These are either executed before the original query or after it is completed.

7.1.2. Database Query

The interface to the database query component we described in Section 6.1.1 is imple-
mented as the abstract class shown in Listing 7.1.

The QueryType returned by the database query is implemented as an enumeration with
possible instances as described in Section 6.1.1.

The only implementor of this interface is the MysqlDatabaseQuery class. It represents a
database query specific to the MySQL DBMS. To implement the queryType method, the
implementation needs to translate the query type returned by MySQL’s LEX object into a
more generalized QueryType instance. To accomplish this, we introduce the isCreateTable,
isListColumn, isListDatabase, isListTable, and isListVariable helper methods, as these
commands cannot be directly inferred from the given query types and can have a more
complex syntax. All other query types can be directly translated.

The MysqlDatabaseQuery also holds references to MySQL’s internal query representation
and the MySQL connection identifier, as well as getters and setters for both.

7.1.3. Query Rewriter

The QueryRewriter is a helper class that facilitates rewrite operations for database queries.
It has two public methods to access its functionality.

The rewrite method takes a query, MYSQL THD, and RewriteQueryType and changes
the original query to exclude the previously backed-up tables and databases. This is
accomplished by appending ” WHERE ‘Database‘ not like ’dmaqs’” to the end of the
SQL statement.

The backup method takes the MYSQL THD, a database name, and optionally a table
name. If the table name is supplied, only that table is backed up, otherwise, we perform
a backup of the whole database. As there is no easy way to rename or move tables, the
procedure copies the affected tables into a new database that is hidden from end-users.

43

44 7. Implementation

Listing 7.1: Interface to the database query defined in an abstract class

1 class AbstractDatabaseQuery

2 {

3 public:

4 AbstractDatabaseQuery ();

5 virtual ~AbstractDatabaseQuery ();

6
7 virtual string query() const = 0;

8 virtual QueryType queryType () const = 0;

9 const string& databaseName () const { return dbname_; }

10 const string& tableName () const { return tablename_; }

11
12 vector <string > inserted_values_;

13
14 private:

15 string dbname_;

16 string tablename_;

17 string query_;

18 };

7.1.4. Admin Handler

The AdminHandler is another helper component. It stores information about every
database connection in one location. Whenever a client connects to the DBMS, the con-
nection identifier gets added to a Map in the AdminHandler. If the client presents a secret
value to the DIMAQS plugin, the AdminHandler verifies that secret and marks the con-
nection as elevated. Connections with elevated privileges can access backed-up databases
by circumventing the query rewrite mechanism.

Implementing this functionality requires a private checkSecret method to verify the se-
cret supplied by the client, and four public methods: addConnection, removeConnection,
setAdmin, and checkAdmin.

The checkSecret method simply compares the known correct secret value to the supplied
one, by way of string comparison. This is implemented as a separate function to allow
for more complex verification methods in the future, like hashing the secret value first, so
that it is not stored in clear-text form.

AddConnection and removeConnection manage the list of active database connections.
They both take a connection identifier (MYSQL THD) and add it to, or remove it from a
Map. Each entry in the Map is identified by the MYSQL THD and saves the privileged
state as a Boolean.

SetAdmin takes a MYSQL THD and a Boolean and sets the entry corresponding to the
connection identifier to the value of the Boolean. This is the only mechanism that can
elevate a connection’s privileges. The checkAdmin method takes a connection’s identifier
and retrieves that connection’s privileged state from the Map.

7.1.5. Actions

Actions follow the command design pattern, each Action is an object that holds all neces-
sary data to execute a function at a later time. These functions are reactions to incoming

44

7.1. Plugin Architecture 45

Listing 7.2: Interface to an Action

1 class AbstractAction {

2 public:

3 AbstractAction ();

4 AbstractAction(const AbstractAction& other);

5 virtual ~AbstractAction ();

6
7 virtual void execute () = 0;

8
9 virtual bool equals(const AbstractAction& other) const

= 0;

10
11 void setExecuteLater(bool executeLater) {

executeLater_ = executeLater; }

12 bool getExecuteLater () const { return executeLater_; }

13 private:

14 bool executeLater_;

15 }

database queries. As shown in Listing 7.2, the interface to an Action is defined in an ab-
stract class that serves as parent class for every specific Action and has to be implemented
by them.

As the ActionPolicy follows the prototype patterns when creating Actions, each Action
has to provide a default and a copy-constructor. The setExecuteLater and getExecute-
Later methods manage the executeLater property that specifies that the Action has to be
executed after the query that caused its creation.

In addition to these methods, every Action can define its own fields and methods to set all
the parameters required for its execution. As a convention, the Action implements a create
method that takes all additional parameters. The execute method executes the action.

7.1.5.1. Admin Mode Action

The AdminModeAction is responsible for changing a connection’s privileges. In addition
to the default executeLater property, it holds an AdminHandler, a MYSQL THD, and the
supplied secret. The AdminHandler is passed to the Action in the constructor. The other
parameters are set when the concrete instance is created from the prototype: A create
method takes the values for the connection identifier and secret, copies the prototype, sets
the values in the concrete instance, and returns it.

The execute method of the AdminModeAction calls the AdminHandler to verify the secret
and set the privileged state of the connection.

7.1.5.2. Rewrite Action

The RewriteQueryAction is responsible for hiding the backed-up tables from the end-
user or attacker. It is designed with flexibility in mind and can be extended to per-
form more complex rewrite operations. The prototype of the RewriteQueryAction holds
a QueryRewriter that is passed to it in the constructor. A concrete instance holds the
MysqlDatabaseQuery to rewrite, a MYSQL THD, and a RewriteQueryType. The last is
an enumeration of all possible types of rewrite operations. Currently, these are Database,

45

46 7. Implementation

Table, Column, and Variable. Each type instructs the QueryRewriter to exclude instances
of the corresponding object type that were created by the plugin from the query results.
The current plugin design only uses the Database and Variable rewrite types. The Mysql-
DatabaseQuery, MYSQL THD, and RewriteQueryType are passed to the RewriteQuery-
Action in the create method, that copies the prototype, applies the given parameters to
the instance, and returns it.

The execute method passes the database query, connection identifier, and rewrite type to
the QueryRewriter to perform the rewrite operation.

7.1.5.3. Notification Action

The NotificationAction is responsible for alerting the database administrator when an
attack is suspected. The prototype Action holds the email address of the recipient as a
string, it requires no additional parameters at run-time, consequently, the create method
only calls the copy constructor to return the concrete instance.

The execute method calls sendmail to send a message to the administrator. The message is
currently hard-coded and reads: ”DIMAQS: Incident appeared. Please check your MySQL
server.” This behavior can be easily customized in the future.

7.1.5.4. Backup Action

The BackupAction performs the backup of databases or tables before they can be deleted
by an attacker. To perform the backup task, the prototype holds a QueryRewriter which is
passed to it in the constructor. The concrete instance requires a MYSQL THD, a database
name, and optionally, a table name to back up. These are passed in the create function,
the table name is an optional parameter with an empty string as the default value.

When executed, the Action passes database connection identifier, database name, and
table name are passed to the QueryRewriter ’s backup method which either copies the
entire database or, if a table name is provided, only one table to a hidden location.

7.1.6. Action Policy

The ActionPolicy is the object that controls which reaction is appropriate for a labeled
query.

The ActionPolicy ’s constructor requires a QueryRewriter, AdminHandler, and the email
address of the database administrator as a string. These parameters are necessary to
create the prototype Actions that serve as templates for the concrete Actions the policy
emits at run-time.

The get actions method is the only public method of the ActionPolicy. It takes the
database connection identifier, the DatabaseQuery, and its label. The procedure first
creates an empty list of actions. It then considers the type of DatabaseQuery :

• ShowVariable
If the command will leak internal DIMAQS variables to the end-user, they are ex-
cluded from the output by adding a QueryRewriteAction of type Variable to the
output list.

• SetVariable
The SetVariable SQL command is used to provide the administrator’s secret to
DIMAQS. Consequently, we add an AdminModeAction to the output list.

46

7.2. LSTM Classifier 47

• ListDatabases
The ListDatabases command could leak information about backed-up tables to the
end-user. To mitigate this, we add a QueryRewriteAction of type Database to the
output list.

Next, the policy considers the classifier label for the query:

• Benign
No further actions are required

• Alert
The database administrator needs to be informed about a suspected attack. We add
a NotificationAction to the output list.

• Backup
This label means we suspect a malicious deletion of data. The policy consequently
adds a NotificationAction and a BackupAction to the output list to perform a backup
and inform the database administrator about the attack.

The Actions in the output list get created by calling their prototype’s create method with
all necessary information about the current query. After all Actions are added to the
output list, it is returned by the function.

7.2. LSTM Classifier

The new classifier is the core of our efforts to bring machine learning to the DIMAQS
database intrusion detection system. We already described the interface and design goals
of the classifier in Sections 6.1.2 and 6.2, the following sections will cover every component
of the classifier in detail.

To implement the neural network component, we decided to use PyTorch’s C++ library
LibTorch [49]. It has the same functionality as PyTorch’s Python library, but can be di-
rectly integrated into the existing DIMAQS C++ codebase. Pytorch’s advantage over other
machine learning frameworks is its simple configuration and pre-existing LSTM implemen-
tation. The decision to use PyTorch also influences the feature extraction component, as
it dictates the file formats to use for feature vectors.

7.2.1. Feature Extraction

The feature extraction component is responsible for transforming the DatabaseQuery into
a feature vector. The format required by PyTorch is a Tensor, a multi-dimensional matrix.
In the case of LSTMs, we require a 3-dimensional Tensor. The first dimension specifies a
batch number, the second a mini-batch number, and the last a component in the feature
vector. As we are only processing single queries, there is no need for batches or mini-
batches, but the shape of the matrix is still required by the built-in LSTM implementation.
Hence, we only construct Tensors with the shape {1, 1, 27}.

As we discussed in Section 6.2.1, features are comprised of 27 binary dimensions, 10 to
encode the type of database query, 17 to indicate the presence of certain keywords. The
regular expressions used to detect the ransomware keywords are listed in Appendix A.2.

The featurize method is the only method that gets called to transform a query into a feature
Tensor. Its first action is to translate the QueryType returned by the database query into
an LstmQueryType that can be used internally by the classifier. Because the classifier
should be functional on different DBMSs, the query type used by the classifier is not the
same as the one that is returned by the MysqlDatabaseQuery. The translateQueryType
method simplifies the original query type to be one of the more generalized operations
possible on most DBMSs with the following mapping:

47

48 7. Implementation

• StructuralQuery, ListColumn, ListDatabase, ListTable → StructuralQuery

• StructuralCreation, CreateTable → StructuralCreation

• StructuralDeletion, DropDatabase, DropTable → StructuralDeletion

• StructuralUpdate → StructuralUpdate

• DataQuery → DataQuery

• DataCreation → DataCreation

• DataDeletion → DataDeletion

• DataMassDeletion → DataMassDeletion

• DataUpdate → DataUpdate

• SetVariable, ShowVariable, Administrative, Other → Administrative

These types are stored as an enumeration. As every instance in a C++ enumeration gets
assigned an integer according to its position in the enumeration, we assign the index in
the feature tensor that corresponds to that integer to 1:

1 tensor.index_put_ ({0, 0, queryType}, 1);

The presence of keywords that signify a ransomware attack is detected by matching mul-
tiple regular expressions against the query. These regular expressions are listed in Section
6.2.1. In a loop, we go over the regular expressions and update the correct index in the
Tensor :

1 int i = LstmQueryType :: Administrative + 1;

2 for (const std::regex ®ex: ransom_regexs) {

3 out.index_put_ ({0, 0, i}, std:: regex_match(query , regex));

4 i++;

5 }

The resulting Tensor is returned by the featurize method.

7.2.2. Neural Network

The neural network is the heart of the classifier. It takes feature vectors as input and
produces labels for them. The feature vectors have to be presented as PyTorch Tensors
with the following shape: {x, y, z}, where x denotes the number of batches, y the number
of mini-batches, and z the number of features. The network returns a Tensor that contains
only a single integer, which corresponds to the label of the query: 0 for Benign, 1 for Alert,
and 2 for Backup.

Neural networks are initialized by loading the trained model from a file. The load method
performs this function, taking only a file path as a parameter and returning an initialized
neural network:

1 Net* load(const std:: string &path) {

2 torch:: serialize :: InputArchive input_archive;

3 input_archive.load_from(path);

4 Net* net = new Net();

5 net ->load(input_archive);

6 return net;

7 }

48

7.2. LSTM Classifier 49

A slightly simplified version of the code enabling the operation of the network is shown
in Listing 7.3. For better readability, we left lines specific to GPU acceleration out of the
code snippet.

The neural network has an LSTM layer and a linear layer. The LSTM layer takes the
27-dimensional input and produces an output of the same dimensionality, as well as an
internal state. The internal state is stored in the network and the output is transformed
into a single number by the linear layer. This is all done in the step method. A mutex
ensures that the network can only be used by one thread simultaneously. The forward
method is slightly more complex, as it takes a batch of featurized queries and processes
them as a batch operation. This enables some parallelization in PyTorch and can improve
performance during the training phase.

7.2.3. Neural Network Queue

The NeuralNetQueue is the buffer in front of the neural network. It is designed to decouple
the neural network from the rest of the system, so that its performance impact is minimal
for most queries. To accomplish this, we use Cameron Desrochers Concurrentqueue library
[50]. It is a very fast, lock-free Multi-Producer, Multi-Consumer (MPMC) queue. Its
design is described in [51].

The NeuralNetQueue is initialized by passing the path to the machine learning model to
the constructor. The constructor then creates a new neural network and MPMC queue.
From those elements, a new consumer thread is created that continuously takes queries
from the queue and passes them to the neural network. Access to the queue is governed by
a shared mutex. This allows us to access the queue from multiple threads simultaneously,
but still have the ability to lock it, if necessary.

The queue has a method to change its state from active to inactive. The set inactive
method locks the queue for all other threads, empties the queue, and resets the neural
network. Afterward, the queue is unlocked again. This procedure is shown in Listing 7.5.

To enqueue new queries that can be handled asynchronously, the handle async method
acquires a shared lock on the mutex, enqueues the query, and frees the lock. If a query
classification is required immediately, the handle now method locks the queue and pro-
cesses every element still enqueued. This is necessary to bring the neural network’s state
up to date with all queries the system encountered. After the queue is emptied, the new
query is presented to the neural network and the queue is unlocked. The network’s output
is transformed into a Label which is returned by the method. Code for this procedure is
presented in Listing 7.4.

The final piece of the NeuralNetQueue is the consumer thread. It is created in the construc-
tor and processes every enqueued query in an infinite loop. The consumer first acquires a
shared lock on the queue’s mutex and fetches an element from the queue. Then it runs the
feature extraction and presents the Tensor to the neural network. The result is discarded,
queries in the queue are merely necessary to update the neural network’s internal state.
The last step in the loop is to free the shared lock.

7.2.4. Orchestration

In this section, we aim to describe how all the components of the new classifier work
together. The LstmClassifier object is the entry point to the classifier. It holds several
NeuralNetQueues and provides the public handle method that takes a database query and
produces a Label.

The LstmClassifier ’s constructor initializes the set of NeuralNetQueues and a mutex that
is locked during query handling and switching of active queues. The algorithm discussed

49

50 7. Implementation

Listing 7.3: Simplified code for the neural network

1 struct Net : torch::nn:: Module {

2 torch::nn::LSTM lstm;

3 torch::nn:: Linear linear;

4 tuple <Tensor , Tensor > hidden_state;

5 bool initialized;

6 std::mutex* netlock;

7
8 // Produce labels for a single query

9 torch:: Tensor step(const torch :: Tensor &input) {

10 tuple <Tensor , tuple <Tensor , Tensor >> lstm_out;

11 netlock ->lock();

12 if (initialized) {

13 lstm_out = lstm(input , hidden_state);

14 } else {

15 lstm_out = lstm(input);

16 initialized = true;

17 }

18 hidden_state = get <1>(lstm_out);

19
20 torch :: Tensor out = linear(get <0>(lstm_out));

21 netlock ->unlock ();

22 return out;

23 }

24
25 // Produce labels for a sequence of queries

26 torch:: Tensor forward(const torch:: Tensor &input) {

27 tuple <Tensor , tuple <Tensor , Tensor >> lstm_out;

28 netlock ->lock();

29 if (initialized) {

30 lstm_out = lstm(input , hidden_state);

31 } else {

32 lstm_out = lstm(input);

33 initialized = true;

34 }

35 hidden_state = make_tuple(

36 get <0>(get <1>(lstm_out)).index({get <0>(get <1>(

lstm_out)).size (0) - 1, 0}).view({1, 1, 27}),

37 get <1>(get <1>(lstm_out)).index({get <0>(get <1>(

lstm_out)).size (0) - 1, 0}).view({1, 1, 27}));

38
39 Tensor out = linear(get <0>(lstm_out));

40 netlock ->unlock ();

41 return out;

42 }

43 };

50

7.2. LSTM Classifier 51

Listing 7.4: Processing a critical query synchronously

1 Label handle_now(const DatabaseQuery& query) {

2 add_lock ->lock();

3 MysqlDatabaseQuery queries [100];

4 int count;

5 while (queue ->size_approx () > 0) {

6 // process all elements in queue in bulk

7 count = queue ->try_dequeue_bulk(queries , 100);

8 net ->forward(featurize_bulk(queries , count));

9 }

10 float result = net ->step(featurize(query));

11 add_lock ->unlock ();

12 if (result < 0.5) {

13 return Label:: Benign;

14 } else if (result >= 1.5) {

15 return Label:: Backup;

16 } else {

17 return Label::Alert;

18 }

19 }

Listing 7.5: Setting a NeuralNetQueue inactive by emptying it and resetting the neural
network

1 void set_inactive () {

2 add_lock ->lock();

3 MysqlDatabaseQuery queries [100];

4 while (queue ->size_approx () > 0) {

5 // dequeue everything

6 queue ->try_dequeue_bulk(queries , 100);

7 }

8 net ->initialized = false;

9 add_lock ->unlock ();

10 }

in Section 6.2.3 and shown in Algorithm 2 is implemented in a separate thread to minimize
its impact on the classifier’s performance. The constructor also starts that thread, which
updates the active net pointer that identifies the active NeuralNetQueue.

Listing 7.6 shows the main handle method of the LstmClassifier. The default output is
the Benign label. A loop runs through every NeuralNetQueue. If the query is critical and
the current NeuralNetQueue is the active one, the query is processed immediately and
the output is changed to the returned Label. Inactive NeuralNetQueues handle the query
asynchronously, non-critical queries are added asynchronously to all NeuralNetQueues. In
the end, the resulting Label is returned.

The query is critical method is the policy that decides which query is potentially destruc-
tive, making it necessary to label that query immediately. The decision is based on the
simplified LstmQueryType introduced in Section 7.2.1. Queries of type StructuralDeletion,
DataCreation, DataDeletion, DataMassDeletion, DataUpdate, and Administrative are con-
sidered critical.

51

52 7. Implementation

Listing 7.6: The classifier’s main procedure to handle queries

1 Label handle(const DatabaseQuery& query)

2 {

3 Label result = Label :: Benign;

4 switch_lock ->lock();

5 for (auto & net : nets) {

6 if (&net == active_net && query_is_critical(query)) {

7 result = net.handle_now(query);

8 } else {

9 net.handle_async(query);

10 }

11 }

12 switch_lock ->unlock ();

13 return result;

14 }

The last piece of the LstmClassifier is the thread that manages the active states of the
NeuralNetQueues. Its code differs slightly from the algorithm we showed in Algorithm 2.
Instead of maintaining the index of the active queue into the array that stores all queues,
the implementation maintains a pointer to the active NeuralNetQueue. This slight change
makes identifying the active queue independent from the data structure that stores the
queues. Switching queues is also protected by the switch_lock mutex already shown in
Listing 7.6. The lock is necessary to eliminate the possibility of the active queue changing
while a query is being processed.

7.3. Data Preparation

In this section, we detail the transformation of the test data from the original DIMAQS
project into formats that suit our purpose of use as training data. The data formats have
to be human- and machine-readable to enable manual intervention if necessary. We also
aim to design formats that are easy to expand and as generalized as possible. This allows
future works to include new attack sequences.

There are two principal data types, namely traces of benign query sequences and definitions
of malicious query sequences. For the benign samples, we only need to store a sequence of
raw SQL queries. There is no additional structure to the data. Therefore, a simple storage
format will suffice. In contrast, the malicious sequences consist of interdependent queries
that can have a variable execution order. We need to consider these dependencies in our
storage format to accurately model the attack sequences.

The following subsections will describe the source and destination data format for each
datatype, as well as the steps required for transforming the data. To implement them, we
chose the Rust programming language [52]. It allows for easy handling of mixed text and
binary data with a string-like interface through the bstr library [53]. This is necessary, as
the benign traces contain some binary data inserts.

7.3.1. Benign Query Traces

Benign query sequences were originally gathered by exporting traces of database accesses
from two applications [47]: MediaWiki and Bibspace. Both traces are stored in multiple
files with the following layout: Each query is preceded by a semicolon followed by a space.

52

7.3. Data Preparation 53

Queries can span across multiple lines and contain comments or binary data. A query
always ends with a newline character. The last line of each file only contains a single
semicolon.

The Bibspace trace contains 58,112 queries across across 40 files, one for each day the
software was observed. The MediaWiki trace only consists of 3 files, however, they are
substantially larger and total 2,742,570 queries.

The target format is a single file for each trace. Every query should start with a new
line and be concluded with a semicolon. Unnecessary line breaks are eliminated, only
line breaks present in inserted data remain. This is accomplished by ignoring newline
characters in between quotation marks. Comments are also eliminated from the dataset,
as they may contain ransomware keywords that would falsely match against the regular
expressions to detect them. Multi-line comments are enclosed in ”/* ... */”, making them
easy to find and remove. We also checked for single-line comments manually, but found
none.

The challenge when processing the benign query traces is separating them into individual
queries and removing any comments, as they may influence the keyword-matching regular
expressions. For each file, we keep six variables:

• open cite double
This variable is true when we encountered an uneven number of double quotes (”).
This means we are potentially between two quotes.

• open cite single
This variable is true when we encountered an uneven number of single quotes (’).
This means we are potentially between two quotes.

• opening comment
The opening comment variable is true if the last byte we read was a forward slash
(/). Comments are initiated with /*, this variable indicates that the next byte may
open a comment.

• closing comment
The closing comment variable is true if the last byte we read was an asterisk (*).
Comments are closed with */, this variable indicates that the next byte may close a
comment.

• comment open
This variable indicates that the current byte is part of a comment.

• escaping
The escaping variable indicates that the last byte we encountered was a backslash
(\). This means the next character cannot be part of a control sequence that starts
or ends a quote.

Every file is processed byte-by-byte. The algorithm shown in Algorithm 4 builds a list of
SQL commands without comments from each original file, while ensuring that everything
between quotation marks is kept as-is. Persisting the variables listed above across lines
enables us to filter out multi-line comments and detect quotes that span multiple lines.
If we encounter a semicolon outside of any quotation marks or comments, we assume it
marks the end of the SQL command. We then trim any whitespace from the start and
end of the current query and add it to the list of commands. In the end, we write the list
of queries to a file, starting each query with a new line.

53

54 7. Implementation

Algorithm 4 Algorithm for eliminating comments from query traces

Require: bytes: the query trace as byte array
1: sql query ← empty string
2: all queries ← empty list of strings
3: comment open ← false
4: opening comment ← false
5: closing comment ← false
6: escaping ← false
7: cite open single ← false
8: cite open double ← false
9: while bytes.hasNext() do

10: byte ← bytes.next()
11: if comment open then
12: if closing comment AND byte == 0x2F then
13: comment open ← false
14: opening comment ← false
15: closing comment ← false
16: continue
17: else
18: closing comment ← byte == 0x2A
19: continue
20: else
21: if !escaping AND byte == 0x22 then
22: cite open double ← !cite open double

23: if !escaping AND byte == 0x27 then
24: cite open single ← !cite open single

25: escaping ← byte == 0x5C
26: if cite open double OR cite open single then
27: sql query.append(byte)
28: continue
29: else
30: if byte == 0x3B then
31: sql query.append(byte)
32: sql query.trim()
33: all queries.append(sql query)
34: sql query ← empty string
35: continue
36: if byte == 0xA then
37: continue
38: if opening comment AND byte == 0x2A then
39: comment open ← true
40: opening comment ← false
41: closing comment ← false
42: continue
43: else
44: if opening comment AND byte != 0x2A then
45: sql query.append(/)

46: opening comment ← byte == 0x2F
47: if opening comment then
48: continue
49: else
50: sql query.append(byte)
51: continue

return all queries

54

7.4. Training Executable 55

7.3.2. Malicious Query Sequences

The malicious training samples are generated by parsing a list of malicious table names and
ransom messages created by Jobst in [47]. Combined with the information on valid attack
sequences we compiled in Section 4.4.2, we create an object that can be serialized into
the JavaScript Object Notation (JSON) structure we introduced in Section 7.3.2 for every
possible query sequence. The serialization is done by the serde library [54] and committed
to a separate file for every object. Listing 7.7 shows the structure of these JSON files.

Listing 7.7: JSON structure for malicious training samples

1 {

2 "prerequisites": [String],

3 "alert_on": {

4 "prerequisites": [String],

5 "act_on": [String]

6 },

7 "backup_on": {

8 "prerequisites": [String],

9 "act_on": [String]

10 }

11 }

The first first set of prerequisites is an array of SQL queries. These are general prerequi-
sites for an attack, the entirety of which have to be issued to the system in-order. The
alert on and backup on objects model actionable sequences. Their prerequisites have to
be executed in addition to the general prerequisites, likewise entirely and in order. Each
query from their act on array must trigger an appropriate reaction when it is encountered
by the DIMAQS plugin. For alert on, this reaction is notifying the system administra-
tor, for backup on, it has to trigger a backup of the affected data and notify the system
administrator.

This structure models our attack scenario perfectly while being generalized enough to be
used on other attacks. Storing each attack sequence in a separate file gives us the ability
to easily add new attack sequences to our dataset. The JSON file format can also be
read and written by most programming languages, making the attack definitions highly
portable. This enables future work to export attack definitions from almost any source.
The human-readable nature of the JSON format allows us to easily inspect and verify the
generated sequences, removing a possible source of errors.

For our attack scenario, as described in Section 4.4, the general prerequisites array contains
a single query for information about the database structure. The alert on prerequisites
contain all the necessary queries to create a database and table to insert the ransom
message in. act on holds an array of data insertion queries, one for each observed ransom
message. The backup on prerequisites are empty, the act on array contains commands to
delete either a database or database table.

7.4. Training Executable

Training the model for the neural network is completely separate from the plugin’s op-
eration. Therefore, the code for training is not included in the plugin, but rather in a
separate executable that is only used to create the model. As the training executable and

55

56 7. Implementation

Listing 7.8: Structure for all training samples

1 struct TrainingData {

2 list <MaliciousSequence > Malicious;

3 list <list <string >> Benign;

4 };

plugin share the code for the neural network detailed in Section 7.2.2, this component is
also implemented in the C++ programming language.

The components necessary to train, evaluate and tune a neural network are data ingest,
feature extraction, sequence generation, the training loop, model evaluation, and a special
operation mode for tuning. The implementation details for each of these components are
detailed in the following sections.

7.4.1. Data Ingest

The benign and malicious data samples are stored in different formats. Accordingly, we
built two different file parsers for them.

Each benign data sample is first read into a string. We then split that string at each
occurrence of the substring ”;\n”. That way, we separate the individual SQL query in
the file. We re-add the semicolon to each of the individual strings resulting from the split
and enter the strings into a list. This procedure is repeated for each benign data sample,
resulting in a list of lists of SQL queries.

Malicious samples are stored as JSON files. The structure of these files is described in
Section 7.3.2. Each file is opened and parsed into C++ structs using Jørgen Lind’s
json struct library [55]. It was chosen because of its simple interface and because it is a
single-header library, making it easy to integrate into the existing project. Reading and
parsing each malicious sample results in another list.

The benign and malicious data samples are then stored as a single object that is shown in
Listing 7.8.

7.4.2. Feature Extraction

In Section 6.3.2, we already discussed the design of the feature extraction component. The
query’s type and presence of keywords are both detected by matching regular expressions
against the query. All of them are listed in Appendix A.1 and A.2. We first iterate over the
regular expressions that identify the query type, before we construct the feature Tensor by
iterating over the expressions that identify ransom attack keywords and combining both
as shown in Listing 7.9

7.4.3. Query Sequences

As we discussed in Section 6.3.3, there are two components involved in query sequences:
Sequence generation and the StreamingQuerySequence. In this chapter, we will talk about
the implementation of both.

7.4.3.1. Sequence Generation

The random sequence method of the sequence generation component creates a new Stream-
ingQuerySequence. It is called with a pointer to the dataset, the desired length of the

56

7.4. Training Executable 57

Listing 7.9: Constructing a feature Tensor from query type and keyword presence

1 Tensor featurize(std:: string query) {

2 Tensor out = zeros({1, 1, 27});

3 LstmQueryType type = get_query_type(query);

4
5 out.index_put_ ({0, 0, type}, 1);

6
7 int i = LstmQueryType :: Administrative + 1;

8 for (const regex ®ex: ransom_regexs) {

9 bool match = regex_match(query , regex);

10 out.index_put_ ({0, 0, i}, match);

11 i++;

12 }

13 return out;

14 }

sequence and the weights of the different sequence types. The last parameter is a boolean
that, if set, leads to the length of the generated sequences being randomized. In this case,
the provided length parameter is treated as the maximum length of the sequence. The
minimum length is 20 queries, to make sure an attack fits in the sequence. Under the fol-
lowing headings, we will discuss four aspects of generating these random query sequences:
Sequence type creation, adding malicious query sequences, dirtying sequences, and random
number generation.

Sequence Type Creation:
In Section 6.3.3.1, we defined three sequence types, benign, alert, and attack. Each type
comes with the possibility of being dirtied, our term for adding parts of the attack samples
to a sequence that should still result in a Benign classification.

To decide which kind of sequence to generate, we fetch a random number between zero
and the sum of all weights. The weights for each sequence dictate ranges for the random
number to be in, to result in that sequence. The table below shows an example for the
accepted ranges of a random number r for each query type:

Sequence Type Weight Range

Benign 1 r = 0
Benign Dirty 5 0 < r 6 5

Alert 1 5 < r 6 6
Alert Dirty 3 6 < r 6 9

Backup 1 9 < r 6 10
Backup Dirty 3 10 < r 6 13

Each sequence type is based on a benign sequence. This base is generated by drawing a
random slice out of a randomly chosen benign data sample. The length of the slice can
either be exactly the length provided by the function parameter or random with a minimum
length of 20 and a maximum length equal to the length provided by the parameter.

To generate a dirtied benign sequence, we create dirty inserts that may be positioned at
any point in the sequence. We proceed similarly for alert and backup sequences, inserting
the attack at any point in the sequence. To generate dirtied alert and backup sequences
however, we need to ensure that the dirty inserts are placed before the attack sequence.

57

58 7. Implementation

Listing 7.10: Object holding all information about an inserted attack

1 struct ActionableInserts {

2 vector <string > Prerequisites;

3 vector <string > ActionablePrerequisites;

4 string Actionable;

5 vector <uint64_t > PrerequisitePositions;

6 vector <uint64_t > ActionablePrereqPositions;

7 vector <uint64_t > ActionablePositions;

8 };

If this is not ensured, actionable queries from the dirty inserts can cause a false positive
intrusion detection, as the prerequisites are also present from the inserted attack. There-
fore, we chose a random pivot, before which we insert the dirtying queries and after which
we insert the attack.

Adding Malicious Query Sequences:
The method make action inserts is responsible for generating query sequences that will
result in an Alert or Backup classification. This method requires a pointer to the training
samples, the range in which to insert the sequence, and a boolean that switches between
the Alert and Backup sequence types.

We can insert three kinds of queries into the sequences: General prerequisites, actionable
prerequisites and the actionable queries that will raise an alert or cause a backup. At
the start of the procedure, we will define random position ranges for each kind. We then
generate positions for each query of each kind within its respective range and chose a
random actionable. The queries and positions are then compiled into an ActionableInserts
object and returned. The definition of the ActionableInserts object is shown in Listing
7.10.

Dirtying Sequences:
The make dirty inserts method takes a pointer to the dataset and an index before which
the dirtying queries must be inserted. It then produces a list of actionables and prerequisite
queries, along with lists of indices where each query should be inserted into the sequence.
The dirty inserts come in 28 different types:

• Type 1: Include general prerequisites

• Type 2: Include alert prerequisites

• Type 3: Include backup prerequisites

• Type 4: Include general and alert prerequisites

• Type 5: Include general and backup prerequisites

• Type 6: Include alert and backup prerequisites

• Type 7: Include general, alert, and backup prerequisites

• Types 8-14: Include alert actionables before one of Type 1-7

• Types 15-21: Include backup actionables before one of Type 1-7

• Types 22-28: Include alert and backup actionables before one of Type 1-7

We first randomly chose an attack sample to draw queries from. To decide between the
types, we draw a random number and match it to the scenario. According to the scenario,

58

7.4. Training Executable 59

Listing 7.11: Object holding all information about dirty inserts

1 struct DirtyInserts {

2 vector <string > Actionables;

3 vector <string > Prerequisites;

4 vector <uint64_t > ActionablePositions;

5 vector <uint64_t > PrerequisitePositions;

6 };

we then build lists of prerequisite and actionable queries. We now have the choice of flipping
the order of actionables and prerequisites, if certain criteria are met. For scenarios 8, 9,
12, and 13, the list of alert prerequisites in the attack cannot be empty, for scenarios 15,
16, 17, 18, and 20, the backup prerequisites cannot be empty. We can also flip in scenario
22 if both lists are not empty. Each of these criteria identifies a scenario where general
or actionable prerequisites are required to raise an alert, but are missing from the dirty
insertables. If any of these criteria are met, we flip with a 50% probability.

With the order of queries decided, we decide randomly how many queries of each category
(prerequisite or actionable) to insert and generate positions for them. These are then
compiled into the data object shown in Listing 7.11 and returned.

Random Number Generation:
For the purpose of training the network with randomized sequences, the random numbers
we generate do not have to be of high quality. We chose the Mersenne Twister 19937
generator because of its speed. The random number function takes an inclusive minimum
value and an exclusive maximum value. If it is not already initialized, it creates the random
number generator and seeds it with a random number obtained from a hardware random
number generator.

To get the output number, we create a uniform integer distribution with the desired range
and draw a random number from it. This number is then returned.

7.4.3.2. Streaming Query Sequence

The StreamingQuerySequence implements a query sequence with a memory footprint that
is independent of the sequence length. To accomplish this, the StreamingQuerySequence
only holds a reference to the benign query sequence, along with an index where the se-
quence starts and the size. If an attack or a dirtying query sequence is to be inserted, the
StreamingQuerySequence holds those queries and their positions in the sequence.

The interface to the sequence only has four methods: hasNext, next, compact, and size.

hasNext simply checks if the sequence still has queries to return, size returns the total
length of the sequence. The method called next returns one query as a SingleQuery object
shown in Listing 7.12. To create it, the featurize method detailed in Section 7.4.2 is called.
The target label is also encoded as a Tensor, so that classifier output and desired output
can be directly compared.

The compact method enables batch processing of query sequences. It creates two output
tensors, one containing the feature vectors of all queries left in the sequence, one containing
all target classifier outputs. These tensors can be used directly by the neural network
component to speed up training. To create these tensors, the procedure loops while the
sequence can still produce queries. In every iteration, feature and target tensors are created
by the next method. These are then accumulated in the output tensors. After calling the
compact method, the sequence is consumed and will no longer return any queries.

59

60 7. Implementation

Listing 7.12: Representation of a single query after feature extraction with the targeted
classifier output

1 struct SingleQuery {

2 Tensor features;

3 Tensor target;

4 };

7.4.4. Training Loop

The training loop is the part of the program that trains the model for the classifier. It
is where the training executable spends the most time. During testing, we found that
compacting larger query sequences takes a considerable amount of time. Therefore, we
decided to implement the sequence generation and feature extraction for the training loop
out-of-band. Sequences are generated by four worker threads that also perform the feature
extraction. The resulting feature and target tensors are then entered into a queue that is
processed by the main training loop. To keep the memory footprint low, we only buffer
four prepared sequences in the queue.

Filling the queue with prepared sequences involves seven steps:

1. Call random sequence to get a new StreamingQuerySequence

2. Call the new sequence’s compact method to get features and target classifications
for all queries in the sequence

3. Acquire a write lock for the queue

4. Check the total number of created sequences, release the lock and return if no more
sequences are necessary

5. Wait until the queue holds less than 4 items

6. Enqueue the new sequence

7. Release the lock

The train model method is the entry point to training the network. It requires a pointer
to a neural network, the number of sequences to train on, the weights for each sequence
type, and the initial learning rate. The method first creates four threads that run the
steps above in a loop. On the main thread, we then enter another loop that performs the
following steps:

1. Reset the neural network

2. Get a new item from the queue

3. Run the feature tensor through the classifier, yielding a Tensor that contains an
output for each query

4. Calculate the loss from the target and classifier’s label

5. Optimize the neural network

This loop repeats for every sequence we generate. In the end, we join the worker threads
that created the sequences and return.

60

7.4. Training Executable 61

7.4.5. Model Evaluation

Evaluating a trained model works by generating multiple query sequences and classifying
each query. By comparing the label generated by the classifier to the known true label, we
can generate some statistical information. The Algorithm for this was shown in Algorithm
3. The statistical information we gather for every query class includes total occurrences
p, true-positive classifications tp, and false-positive classifications fp. We also record the
total number of queries and the time the classifier took to classify them. This was done
to get a first impression of the classifier’s performance.

With the gathered statistical information, we can compute the metrics we described in Sec-
tion 6.3.5. The configuration used when the model was trained, the statistical informatio,n
and computed metrics are then printed to the screen.

7.4.6. Tuning

The tuning process is not involved in the regular operations of the DIMAQS plugin or
the training process. We use it to test different configurations of the various variable
parameters involved in training the model. We do this to find the configuration that
performs best for our attack scenario. The parameters we can adjust during this phase
are:

• Neural network: Number of LSTM layers
As intrusion detection is not a very complex problem, we expect to get good results
for 1 to 3 consecutive LSTM layers in the neural network that processes the queries.
This parameter applies to the neural network directly and needs to be mirrored in
the training executable and DIMAQS plugin.

• Neural network: Dropout between LSTM layers [0,1]
The dropout defines a probability with which the output of a neuron is ignored by the
next layer. For LSTMs, this always means discarding information about the current
query or past queries. Therefore, we expect to get the best results for dropout values
near or at zero. This parameter also has to be mirrored in the training executable
and plugin.

• Training loop: Optimizer stepsize [0,1]
The stepsize defines the initial learning rate for the Adam optimizer. As the learning
rate decays over time, we can start with a higher value. We estimate a stepsize of
0.3 to result in fast training times and accurate classification.

• Training loop: Training time in number of iterations
The training time directly influences the accuracy of the model. The longer the
training, the more accurate the model gets. We expect 600.000 iterations to be
sufficient for our purposes.

• Sequence generation: Weights of sequence types
There are 6 sequence types in total: benign, benign dirty, alert, alert dirty, backup,
and backup dirty. Each of these types has a variable weight attached to it, that
influences the ratio of types we generate. The weights in the table below are our
starting point, as they balance benign and attack samples while oversampling the
dirtied sequences. This is done to counter a high false-positive rate.

Benign Benign Dirty Alert Alert Dirty Backup Backup Dirty

1 3 1 2 1 2
1 5 1 3 1 3

61

62 7. Implementation

• Sequence generation: Training sequence length
The training sequence length also influences the balance between benign and ma-
licious queries. The number of malicious queries is not dependent on the sequence
length. Therefore, longer sequences contain more benign queries. For training, se-
quence lengths of less than 1000 queries should be sufficient for our goals.

• Sequence generation: Evaluation sequence length
The sequence length during evaluation speaks mainly to the applicability of the
model in the real world. As we consider an attack window of 5 minutes, we estimate
the maximum realistic sequence length to be around 600.000. This is based on the
time the classifier takes to classify a single query, which is about 0.5ms. We want to
evaluate our model with differing sequence lengths to ensure it is also applicable to
less utilized DBMSs.

To find the best possible combination of these parameters, we enter a number of values for
each variable into the training program. The program then trains and evaluates a model for
every possible combination of these values, printing the configuration and evaluation results
described in Section 6.3.5 to a CSV file. This information is then evaluated manually by
us to find the best configuration.

The general steps to test a single configuration are:

1. Instantiate a neural network

2. Train the network with this configuration

3. Run the evaluation

4. Print the configuration and evaluation results to a file

To test many different combinations of parameters, we first create a work-queue containing
every configuration we want to evaluate. This work queue is implemented as a simple list,
along with an integer that provides the index of the next configuration to test. As we want
to run many tests in parallel, the index is protected by a mutex. After the list is filled
with configurations, we create multiple threads that grab configurations from the queue
and evaluate them through the steps above.

The output is also protected with a mutex, to prevent two threads from writing to the file
simultaneously. As output format, we chose a CSV file, as it is easy to create and can be
manually evaluated.

62

8. Evaluation

In this chapter, we describe the metrics and methodology we used to evaluate the revised
DIMAQS plugin in detail. When evaluating an IDS, two characteristics are of importance:
Detection accuracy and performance impact. Accordingly, after describing the testbed in
Section 8.1, Section 8.2 describes how we trained the classifier model, what metrics we
used to determine its accuracy, and lists our results. The subsequent Section 8.3 shows
the impact the plugin has on the DBMS’s performance.

8.1. Testbed

All of the tests below were run on a machine equipped with an Intel Core i7-6700HQ
processor [56] and 32GB of main memory.

The programs ran inside a Docker container and were compiled using cmake 3.18.4 [57]
and gcc 10.2.0 [58]. The version of the boost library used was 1.74 [59], the MySQL server
version was 5.7.28 [60]. The libTorch library used was version 1.7.0+cpu [49].

The dependencies and Dockerfiles to build and run the software are included with the
provided source.

8.2. Detection Accuracy

In this section, we detail our methodology and metrics for training and evaluating the
classifier model. In the end, we arrive at the final model used in our plugin and show its
detection accuracy.

The metrics we use to judge the accuracy of a model are the weighted and macro f1-
scores, as detailed in Section 6.3.5. The parameters we need to optimize to generate the
best-possible model are already described in Section 7.4.6.

Testing a single combination of these parameters involves

1. Read the dataset
Read the attack and benign samples from the disk

2. Split the dataset
Split the malicious queries into separate sets for training and evaluating. This is a
standard step in training machine-learning algorithms, as we do not want to evaluate

63

64 8. Evaluation

the classifier with data it has already seen during the training phase. As the attack
samples are somewhat sorted, we first shuffle them. We use the first 2/3 of the
samples for training and the remaining 1/3 for the evaluation. Splitting the benign
samples is not necessary, as they only represent noise in the sequence and are not
relevant for detecting attacks.

3. Train the classifier
The classifier is trained with a fixed configuration and the training dataset.

4. Evaluate the model
The trained model is evaluated using the evaluation dataset.

5. Compute metrics and save
The metrics we use to judge the accuracy are computed and saved to a file, along
with the configuration.

We ran these steps for 232 different configurations. Training and evaluating 8 configura-
tions in parallel takes about 28h. For all 232 configurations, the procedure ran for almost
35 days. The complete results of all tuning runs can be found in Appendix B.1.

The graphs in Figure 8.1 show how different tuning parameters influence the model’s
accuracy. They show the mean macro f1-score and standard deviation for each parameter
value. As we honed in on our final model, the number of tested configurations for each
parameter value decreased, leading to smaller deviations from the mean accuracy. This
reduces the significance of the standard deviation. We concentrated the analysis on the
macro f1-score, as the weighted variant was very similar across all configurations. This
was due to the dominance of benign queries in the long testing sequences.

Figure 8.1a shows a steady improvement of the model with longer training times. This is
expected with machine learning algorithms. Figure 8.1b shows that the algorithm benefited
from shorter training sequences. As shorter sequences contain fewer benign queries but
the same amount of malicious ones, the shorter length balances the data more towards the
malicious samples, improving detection rates.

Figure 8.1c illustrates the model accuracy when trained with different sequence type
weights. Reducing the amount of benign sequences improves detection rate. As the de-
tection rate for the Alert class was low, oversampling samples that produce this label
improved the model significantly.

As Figure 8.1d illustrates, the step size had a negligible effect on the model’s accuracy.
Higher numbers of LSTM layers improved the detection rates slightly, as Figure 8.1e shows.

The dropout between LSTM layers also had little effect. The significant improvement with
a dropout of 0.15 shown in Figure 8.1f is due to the fact that this parameter value was
only tested with a sequence type balance of ”0 0 3 5 11 3”.

After comparing all tested configuration, we arrived at the simple configuration detailed
in Table 8.1.

The resulting model is visualized in Figure 8.2. It produced the statistics shown in the
confusion matrix in Table 8.2 and achieved the following scores:

• Benign f1-score: 99.9663%

• Alert f1-score: 60.8626%

• Backup f1-score: 94.8704%

• Macro f1-score: 85.2331%

64

8.2. Detection Accuracy 65

50,000
100,000

200,000
800,000

2,000,000

Training Iterations

50

60

70

80

90

100
M

ac
ro

 F
1-

Sc
or

e
(%

)

(a) Model accuracy at different training iterations

20 50 200
Training Sequence Length

50

60

70

80

90

100

M
ac

ro
 F

1-
Sc

or
e

(%
)

(b) Model Accuracy at different training sequence
lengths

0 0 3 5 11 3

0 0 3 5 14 0
0 0 3 5 5 9

1 3 1 2 1 2
1 3 3 5 5 5

1 3 3 5 5 7
1 3 3 5 5 9

Sequence Type Weights

50

60

70

80

90

100

M
ac

ro
 F

1-
Sc

or
e

(%
)

(c) Model accuracy at different sequence type
weights

0.03 0.05 0.1 0.15
Step Size

50

60

70

80

90

100
M

ac
ro

 F
1-

Sc
or

e
(%

)

(d) Model Accuracy at Different Step Sizes

1 2 3 4
LSTM Layer Count

50

60

70

80

90

100

M
ac

ro
 F

1-
Sc

or
e

(%
)

(e) Model accuracy at different LSTM layer
counts

0.0 0.05 0.1 0.15
Dropout

50

60

70

80

90

100

M
ac

ro
 F

1-
Sc

or
e

(%
)

(f) Model accuracy at different dropouts

Figure 8.1.: Mean f1-score for different tuning parameters

65

66 8. Evaluation

Parameter Value

Training
Iterations

200,000

Training
Sequence Length

50

Number of
LSTM Layers

1

Dropout between
LSTM Layers

not applicable

Optimizer
Step Size

0.15

Benign Benign Dirty Alert Alert Dirty Backup Backup Dirty
Sequence Type Weights

0 0 14 0 3 5
Evaluation
Iterations

1000

Evaluation
Sequence Length

6000

Table 8.1.: Configuration of the final model

Figure 8.2.: Visual representation of the machine learning model

Predicted
True

Benign Alert Backup

Benign 3050489 0 0

Alert 1960 1524 0

Backup 97 0 897

Table 8.2.: Confusion matrix of the final model

66

8.3. Performance 67

• Weighted f1-score: 99.9453%

These results show good detection rates when the attacker starts deleting data. We de-
tected malicious deletions with close to 95% accuracy. However, the accuracy for detecting
when the attacker leaves a ransom message is not sufficient. While the model detects ev-
ery attack during the evaluation, it produces a very high false-positive rate for the alert
class. This problem may be corrected by re-examining the keywords used to detect these
actions or by investing more time into exploring different configurations. Unfortunately,
time constraints did not allow us to train and evaluate more models.

8.3. Performance

In this section, we evaluate the revised plugin’s impact on the performance of the MySQL
server. To get an estimate of the real-world performance of our plugin, we used two
benchmarks to cover two different scenarios: Sysbench [61] and TCP-H [62]. The former
is an OLTP-focused benchmark, while TCP-H focuses on OLAP. These different scenarios
give us insight into the performance of the DBMS in different situations. Together, they
cover the bulk of database use cases.

We ran each of the benchmarks in three configurations: Vanilla MySQL, MySQL with the
original DIMAQS plugin, and MySQL with the revised DIMAQS plugin. We ran each
benchmark for each configuration 50 times to get reliable results. The complete results for
all runs can be found in the Appendix Tables B.2 and B.3.

8.3.1. TPC-H

TPC-H is one of the standardized workloads provided by the Transaction Processing Per-
formance Council (TPC). TPC-H consists of a binary to fill a database with sample data
and an executable that creates SQL queries that emulate an OLAP workload. Online
Analytical Processing processes large amounts of data to derive information from it. This
type of workload generates a high load from very few queries. Therefore, we do not expect
a significant performance impact from our plugin.

To set up the benchmark, we first generated data by running the dbgen utility with a
scaling factor of 10. This resulted in approximately 10GB of data that is then imported
into a MySQL database. The qgen executable is run to generate all 22 query types. These
queries are saved to a file that can be piped into mysql to execute them.

Executing the benchmark is done by running the following bash script:

Listing 8.1: Code to run the TPC-H benchmark

1 start=‘date +%s%3N‘

2 for i in {1..22}; do

3 mysql -u root -p[root password] -h [db host] -D [tpch db]

< query -$i.sql &> /dev/null

4 done

5 end=‘date +%s%3N‘

6 echo $((end -start))

This script is run 51 times. The first run is discarded, as the database fill load required
data into the main memory and warm-up caches the first time a query is executed. The
runtimes of the subsequent 50 runs are logged to a file. Figure 8.3 shows the mean runtime
of the benchmark in seconds for each configuration. The error bars represent the standard
deviation. Compared to the vanilla MySQL server, the Petri-net-based classifier leads

67

68 8. Evaluation

Figure 8.3.: Runtimes of the TPC-H benchmark (lower is better)

to a statistically significant performance degradation of 0.96%. The revised plugin per-
forms better, with the mean runtime decreasing by 0.24% compared to the vanilla MySQL
system. However, this change is not statistically significant.

These results are a strong indication, that the machine-learning-based classifier does not
negatively impact the performance of a database system that mainly performs OLAP-
related work.

8.3.2. Sysbench

Sysbench comes with a suite of benchmarks for SQL databases related to OLTP. OLTP
workloads consist of many queries that perform smaller operations in the database, like
adding or removing single rows of data. With the higher query frequency, the classifier
is invoked more often, therefore, we expect the machine-learning-based classifier to incur
a higher impact on the DBMS’s performance. As the Petri-net-based classifier was only
invoked for a small subset of queries, we expect it to perform better than the new classifier.

The Sysbench suite contains 8 benchmarks related to OLTP:

• Delete
This benchmark will repeatedly execute only DELETE statements based on primary
keys.

• Insert
This benchmark will repeatedly execute only INSERT statements.

• Point Select
This benchmark repeatedly executes SELECT statements based on a primary key.

• Read-Only
This benchmark executes the following queries repeatedly in a row:

68

8.3. Performance 69

1. One SELECT statement based on a primary key.

2. One SELECT statement based on a range of primary keys.

3. One SELECT SUM statement that filters rows based on a range of primary keys
and sums up the values in a column that is used in an index.

4. One SELECT statement that filters rows based on a range of primary keys and
produces an ordered list of values contained in a column that is not used in an
index.

5. One SELECT DISTINCT statement based on a range of primary keys.

• Write-Only
This benchmark executes the following queries repeatedly in a row:

1. One UPDATE statement that updates a column that is used in an index, the row
to update is selected based on the primary key.

2. One UPDATE statement that updates a column that is not used in an index, the
row to update is selected based on the primary key.

3. One DELETE statement that deletes a row based on the primary key.

4. One INSERT statement that inserts a single row.

• Read-Write
This benchmark executes the statements from the Read-Only benchmark, followed
by the statements from the Write-Only benchmark repeatedly.

• Update Index
This benchmark updates a column that is used in an index. It selects the row based
on the primary key.

• Update Non-Index
This benchmark updates a column that is not used in an index. It selects the row
based on the primary key.

As with the TPC-H benchmark, we ran each of the Sysbench tests 51 times. Once to warm
up caches and main memory, and 50 times to gather results. Sysbench runs each test in a
loop for about a second and reports the completed transactions per second afterward. We
will use this metric to estimate the DBMS’s performance.

The reported transactions per second vary a lot between benchmark types, therefore, we
opted to calculate the performance relative to the vanilla MySQL system for each type, as
well as the standard deviation. The results can be seen in Figure 8.4.

The results show that the Petri net classifier does impact the performance slightly, but the
decline is not statistically significant. Our results for the machine-learning classifier indi-
cate that the performance impact of the new plugin is highly dependent on the workload.
On average, the execution speed decreased by about 14%. However, the Delete, Point
Select, Update Index and Update Non-Index benchmarks show almost no performance
degradation. The Insert and Read-Only benchmarks lose almost 44% of their performance
when the machine-learning classifier is enabled. The Write-Only benchmark degrades by
almost 18% compared to the vanilla MySQL server. The performance losses are likely due
to some false-positive alert classifications that cause additional overhead.

The Read-Write benchmark is a noteworthy case. Although it only executes the queries of
the Read-Only and Write-Only benchmark, the benchmark’s performance impact is lower
than the impact of the individual benchmarks. This leads us to believe that MySQL can
mask some of the performance impact when queries of different types are executed at the
same time.

69

70 8. Evaluation

Delete Insert Point
Select

Read-
Only

Read-
Write

Update
Index

Update
Non-
Index

Write-
Only

Average

Benchmarks

0

20

40

60

80

100

120

Re
la

tiv
e

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

(%
)

Performance Comparison for Sysbench
Vanilla MySQL
With Petri Net Classifier
With ML Classifier

Figure 8.4.: Relative transactions per second for all Sysbench benchmarks (higher is better)

8.4. Summary

During the evaluation phase, we found the optimal configuration for training the classifier.
With this configuration, we created a model that can detect malicious data deletions with
almost 95% confidence and detect some attacks before any attempt to delete data occurs.
These early alerts triggered many false positives, in a real-world scenario, we would likely
disable them. The time between an attacker leaving a ransom message and the attacker
deleting data is likely short, eliminating the possibility of manual intervention between
alert and attempted deletion. For that reason, disabling the early alerts would likely not
impact the security of our solution negatively.

We tested the performance of the plugin and compared it to a MySQL server without an
intrusion detection system and to the performance of the original DIMAQS plugin with the
Petri net classifier. We conclude that the performance impact of both plugins is minimal
for OLAP workloads. In OLTP workloads, the Petri net classifier also caused almost no
slow-downs. However, we saw some performance degradation with the machine-learning
classifier in specific OLTP tasks. These were masked by the DBMS when multiple different
query types were processed at the same time. While the average performance impact across
all OLTP tests was about 14%, we estimate the real-world performance to be much better,
as scenarios, where only one query type is being processed, are very unlikely.

70

9. Conclusion and Future Work

In this chapter, we conclude our work by summarizing our contributions and the results we
archived In Section 9.1. The subsequent Section 9.2 will look into potential future works
and improvements of the DIMAQS project.

9.1. Conclusion

The recently emerged server-side ransomware attacks are a growing threat to the security
of database systems. These new attacks are more destructive than traditional ransomware,
as attackers usually don’t create a backup of the data before deleting it. This means, that
even if the victim pays the ransom, the affected data can not be restored. Our research
showed that only 11.3% of past victims had recent backups to mitigate the data loss caused
by such an attack.

Previous work [47] addressed this issue by creating the DIMAQS (Dynamic Identification
of Malicious Query Sequences) MySQL plugin to detect intrusions in the DBMS. The
original plugin uses a Petri net classifier to detect query sequences that are typical for
ransomware attacks. However, this approach was limited to a specific attack sequence.
Adding the ability to detect other attacks would require manually re-engineering a new
Petri net after analyzing the attack.

In our work, we replaced the Petri net classifier with a new LSTM-based algorithm. This
eliminates the manual effort of creating a new Petri net when a new attack emerges, as the
machine-learning classifier can be easily re-trained with the new attack. We then trained
and evaluated a model for the classifier. Our new plugin achieved an f1-score of 85.23%.
However, the detection rate for malicious data deletions were much higher, at close to
95%. The performance degradation was nonexistent for OLAP workloads and under 14%
on average for OLTP workloads.

In our research, we came across multiple works related to ransomware detection and
database intrusion detection. However, we found nothing specifically on database ran-
somware prevention. To our knowledge, our revised MySQL plugin is the only approach
that incorporates all of these technologies, making it the first of its kind.

71

72 9. Conclusion and Future Work

9.2. Future Work

The developed classifier model is the key piece to our work. As it is currently, the detection
accuracy is not optimal. Especially the detection of an intruder leaving a ransom message
is still lacking. More time to optimize the model would be required to eliminate these
shortcomings and arrive at a solution that is ready for widespread adoption.

Another future improvement is performance-related. The plugin we developed is a proof
of concept. For use in a real-world scenario, it should be refined into a more performant
and maintainable product.

Adapting the plugin to different DBMSs is also necessary to maximize its usefulness. There
are many database systems in use today, protecting only one of them is not enough to stop
database ransomware attacks.

The last improvement we want to propose concerns the project’s long-term operation. To
be able to constantly improve the classifier, a system that reports attacks is required.
These new attacks would be included in the dataset and a new model can be trained
and deployed. However, there are concerns about data privacy, as attacks are mixed with
regular queries that may contain privileged information. To further improve this process, a
federated learning approach could be employed. Eliminating the need for a central training
and model distribution system and crowd-sourcing this process would create a system that
constantly adapts to new attack scenarios, yet is cheap and easy to maintain.

72

Acronyms

DIMAQS Dynamic Identification of Malicious Query Sequences

LSTM Long Short-Term Memory

RNN Recurrent Neural Network

DBMS Database Management System

SQL Structured Query Language

IDS Intrusion Detection System

HTTP HyperText Transfer Protocol

API Application Programming Interface

OS Operating System

COW copy-on-write

UAC User Account Control

TCP Transmission Control Protocol

IP Internet Protocol

JSON JavaScript Object Notation

UML Unified Modeling Language

MPMC Multi-Producer, Multi-Consumer

OLTP Online Transactional Processing

OLAP Online Analytical Processing

TPC Transaction Processing Performance Council

73

Bibliography

[1] D. Reinsel, J. Gantz, and J. Rydning, “The Digitization of the World From Edge to
Core,”Seagate, Tech. Rep., 2018. [Online]. Available: https://www.seagate.com/files/
www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf [Accessed:
2020-04-27]

[2] R. Richardson and M. M. North, “Ransomware: Evolution, Mitigation and
Prevention,” 2017. [Online]. Available: https://digitalcommons.kennesaw.edu/
facpubs/4276 [Accessed: 2020-04-27]

[3] S. Mohurle and M. Patil, “A brief study of Wannacry Threat: Ransomware Attack
2017,” International Journal of Advanced Research in Computer Science, vol. 8, no. 5,
2017.

[4] “Cyber attack hits 200,000 in at least 150 countries: Europol | Reuters.” [Online].
Available: https://www.reuters.com/article/us-cyber-attack-europol/cyber-attack-
hits-200000-in-at-least-150-countries-europol-idUSKCN18A0FX [Accessed: 2020-12-
15]

[5] “WannaCry – the worm that just won’t die – Naked Security.” [Online].
Available: https://nakedsecurity.sophos.com/2019/09/18/wannacry-the-worm-that-
just-wont-die/ [Accessed: 2020-12-15]

[6] S. Radu, “Financial Losses From Cybercrimes Rose in 2018,
Group Says | Best Countries | US News,” 2019. [Online]. Avail-
able: https://www.usnews.com/news/best-countries/articles/2019-07-12/financial-
losses-from-cybercrimes-rose-in-2018-group-says [Accessed: 2020-06-29]

[7] “MongoDB Apocalypse: Professional Ransomware Group Gets
Involved, Infections Reach 28K Servers.” [Online]. Avail-
able: https://www.bleepingcomputer.com/news/security/mongodb-apocalypse-
professional-ransomware-group-gets-involved-infections-reach-28k-servers/ [Ac-
cessed: 2020-12-15]

[8] C. Cimpanu, “MongoDB databases still being held for ransom, two years after at-
tacks started,” 2019. [Online]. Available: https://www.zdnet.com/article/mongodb-
databases-still-being-held-for-ransom-two-years-after-attacks-started/ [Accessed:
2020-12-15]

[9] “Database Ransom Attacks Have Now Hit MySQL Servers.” [Online]. Avail-
able: https://www.bleepingcomputer.com/news/security/database-ransom-attacks-
have-now-hit-mysql-servers/ [Accessed: 2020-12-15]

[10] “South Korean hosting co. pays $1m ransom to end eight-day outage |
The Register.” [Online]. Available: https://www.theregister.com/2017/06/20/
south korean webhost nayana pays ransom/ [Accessed: 2020-12-15]

75

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://digitalcommons.kennesaw.edu/facpubs/4276
https://digitalcommons.kennesaw.edu/facpubs/4276
https://www.reuters.com/article/us-cyber-attack-europol/cyber-attack-hits-200000-in-at-least-150-countries-europol-idUSKCN18A0FX
https://www.reuters.com/article/us-cyber-attack-europol/cyber-attack-hits-200000-in-at-least-150-countries-europol-idUSKCN18A0FX
https://nakedsecurity.sophos.com/2019/09/18/wannacry-the-worm-that-just-wont-die/
https://nakedsecurity.sophos.com/2019/09/18/wannacry-the-worm-that-just-wont-die/
https://www.usnews.com/news/best-countries/articles/2019-07-12/financial-losses-from-cybercrimes-rose-in-2018-group-says
https://www.usnews.com/news/best-countries/articles/2019-07-12/financial-losses-from-cybercrimes-rose-in-2018-group-says
https://www.bleepingcomputer.com/news/security/mongodb-apocalypse-professional-ransomware-group-gets-involved-infections-reach-28k-servers/
https://www.bleepingcomputer.com/news/security/mongodb-apocalypse-professional-ransomware-group-gets-involved-infections-reach-28k-servers/
https://www.zdnet.com/article/mongodb-databases-still-being-held-for-ransom-two-years-after-attacks-started/
https://www.zdnet.com/article/mongodb-databases-still-being-held-for-ransom-two-years-after-attacks-started/
https://www.bleepingcomputer.com/news/security/database-ransom-attacks-have-now-hit-mysql-servers/
https://www.bleepingcomputer.com/news/security/database-ransom-attacks-have-now-hit-mysql-servers/
https://www.theregister.com/2017/06/20/south_korean_webhost_nayana_pays_ransom/
https://www.theregister.com/2017/06/20/south_korean_webhost_nayana_pays_ransom/

76 Bibliography

[11] L. Iffländer, A. Dmitrienko, C. Hagen, M. Jobst, and S. Kounev, “Hands Off my
Database: Ransomware Detection in Databases through Dynamic Analysis of Query
Sequences,” 2019. [Online]. Available: http://arxiv.org/abs/1907.06775 [Accessed:
2020-04-27]

[12] G. Edwards, “Machine Learning | An Introduction | Towards Data Science.” [On-
line]. Available: https://towardsdatascience.com/machine-learning-an-introduction-
23b84d51e6d0 [Accessed: 2020-07-21]

[13] C. Olah, “Understanding LSTM Networks – colah’s blog.” [Online]. Available:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/ [Accessed: 2020-07-
22]

[14] D. P. Kingma and J. Lei Ba, “Adam: A Method for Stochastic Optimization,” in
ICLR 2015, 2015.

[15] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion Detection using Sequences of
System Calls,” Journal of Computer Security, 1998.

[16] A. Patcha and J.-M. Park, “An overview of anomaly detection techniques: Existing
solutions and latest technological trends,” Computer Networks, 2007.

[17] C. Y. Chung, M. Gertz, and K. Levitt, “DEMIDS: A Misuse Detection System for
Database Systems,” Working Conference on Integrity and Internal Control in Infor-
mation Systems, 1999.

[18] Y. Hu and B. Panda, “Identification of malicious transactions in database systems,”
Proceedings of the International Database Engineering and Applications Symposium,
IDEAS, 2003.

[19] ——, “A data mining approach for database intrusion detection,” Proceedings of the
ACM Symposium on Applied Computing, 2004.

[20] A. Roichman and E. Gudes, “DIWeDa - Detecting Intrusions in Web Databases.”
Working Conference on Data and Applications Security, 2008.

[21] W. Lup, J. Lee, and P. Teoh, “DIDAFIT: Detecting Intrusions in Databases Through
Fingerprinting Transactions,” ICEIS, 2002.

[22] E. Bertino, A. Kamra, E. Terzi, and A. Vakali, “Intrusion detection in RBAC-
administered databases,” Proceedings - Annual Computer Security Applications Con-
ference, ACSAC, 2005.

[23] F. Valeur, D. Mutz, and G. Vigna, “A Learning-Based Approach to the Detection
of SQL Attacks,” International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, 2005.

[24] G. Vigna, F. Valeur, D. Balzarotti, W. Robertson, C. Kruegel, and E. Kirda, “Reduc-
ing errors in the anomaly-based detection of web-based attacks through the combined
analysis of web requests and SQL queries,” Journal of Computer Security, vol. 17,
2009.

[25] N. Scaife, H. Carter, P. Traynor, and K. R. B. Butler, “CryptoLock (and Drop
It): Stopping Ransomware Attacks on User Data,” International Conference on Dis-
tributed Computing Systems (ICDCS), 2016.

[26] A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda, “UNVEIL: A
large-scale, automated approach to detecting ransomware,” in 25th USENIX Security
Symposium (USENIX Security 16). Austin, TX: USENIX Association, 2016.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/kharaz [Accessed: 2020-04-27]

76

http://arxiv.org/abs/1907.06775
https://towardsdatascience.com/machine-learning-an-introduction-23b84d51e6d0
https://towardsdatascience.com/machine-learning-an-introduction-23b84d51e6d0
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz

Bibliography 77

[27] A. O. Almashhadani, M. Kaiiali, S. Sezer, and P. O’Kane, “A Multi-Classifier
Network-Based Crypto Ransomware Detection System: A Case Study of Locky Ran-
somware,” IEEE Access, vol. 7, 2019.

[28] R. Moussaileb, N. Cuppens, J. L. Lanet, and H. Le Bouder, “Ransomware Network
Traffic Analysis for Pre-encryption Alert,” in Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), vol. 12056 LNCS. Springer, nov 2020.

[29] A. Continella, A. Guagnelli, G. Zingaro, G. De Pasquale, A. Barenghi, S. Zanero,
and F. Maggi, “ShieldFS: A self-healing, ransomware-aware file system,” in ACM
International Conference Proceeding Series, vol. 5-9-Decemb. New York, NY, USA:
Association for Computing Machinery, dec 2016.

[30] A. Continella, P. Di Milano, A. Guagnelli, G. Zingaro, P. Di, M. Giulio, D. E.
Pasquale, D. Milano, A. Barenghi, S. Zanero, and F. Maggi, “ShieldFS: The Last
Word In Ransomware Resilient Filesystems,” Black Hat USA, 2017.

[31] S. K. Shaukat and V. J. Ribeiro, “RansomWall: A layered defense system against
cryptographic ransomware attacks using machine learning,” in 2018 10th International
Conference on Communication Systems and Networks, COMSNETS 2018, vol. 2018-
January. Institute of Electrical and Electronics Engineers Inc., mar 2018.

[32] S. Maniath, A. Ashok, P. Poornachandran, V. G. Sujadevi, A. U. Sankar, and S. Jan,
“Deep learning LSTM based ransomware detection,” in 2017 Recent Developments in
Control, Automation and Power Engineering, RDCAPE 2017. Institute of Electrical
and Electronics Engineers Inc., may 2018.

[33] R. Agrawal, J. W. Stokes, K. Selvaraj, and M. Marinescu, “Attention in Recurrent
Neural Networks for Ransomware Detection,” in ICASSP, IEEE International Con-
ference on Acoustics, Speech and Signal Processing - Proceedings, vol. 2019-May. In-
stitute of Electrical and Electronics Engineers Inc., may 2019.

[34] “Ransomware WannaCry befällt Rechner der Deutschen Bahn | heise on-
line.” [Online]. Available: https://www.heise.de/newsticker/meldung/Ransomware-
WannaCry-befaellt-Rechner-der-Deutschen-Bahn-3713426.html [Accessed: 2020-12-
18]

[35] “Ransomware Hits Dozens of Hospitals in an Unprecedented Wave | WIRED.” [On-
line]. Available: https://www.wired.com/story/ransomware-hospitals-ryuk-trickbot/
[Accessed: 2020-12-18]

[36] “Cities that have been crippled by cyberattacks and their responses - Business
Insider.” [Online]. Available: https://www.businessinsider.com/cyberattacks-on-
american-cities-responses-2020-1?r=DE&IR=T [Accessed: 2020-12-18]

[37] “‘Ransomware’ a Growing Threat to Small Businesses - WSJ.” [Online].
Available: https://www.wsj.com/articles/ransomware-a-growing-threat-to-small-
businesses-1429127403 [Accessed: 2020-12-18]

[38] “BinaryEdge.” [Online]. Available: https://www.binaryedge.io/ [Accessed: 2020-12-
18]

[39] “Database exposed in Iran.” [Online]. Available: https://blog.binaryedge.io/2019/
04/18/database-exposed-in-iran/ [Accessed: 2020-12-18]

[40] “The impact and cost of ransomware in 2020.” [Online]. Available: https:
//betanews.com/2020/10/09/ransomware-in-2020/ [Accessed: 2020-12-18]

77

https://www.heise.de/newsticker/meldung/Ransomware-WannaCry-befaellt-Rechner-der-Deutschen-Bahn-3713426.html
https://www.heise.de/newsticker/meldung/Ransomware-WannaCry-befaellt-Rechner-der-Deutschen-Bahn-3713426.html
https://www.wired.com/story/ransomware-hospitals-ryuk-trickbot/
https://www.businessinsider.com/cyberattacks-on-american-cities-responses-2020-1?r=DE&IR=T
https://www.businessinsider.com/cyberattacks-on-american-cities-responses-2020-1?r=DE&IR=T
https://www.wsj.com/articles/ransomware-a-growing-threat-to-small-businesses-1429127403
https://www.wsj.com/articles/ransomware-a-growing-threat-to-small-businesses-1429127403
https://www.binaryedge.io/
https://blog.binaryedge.io/2019/04/18/database-exposed-in-iran/
https://blog.binaryedge.io/2019/04/18/database-exposed-in-iran/
https://betanews.com/2020/10/09/ransomware-in-2020/
https://betanews.com/2020/10/09/ransomware-in-2020/

78 Bibliography

[41] “The compendium of database ransomware.” [Online]. Available: https:
//blog.binaryedge.io/2017/01/18/the-compendium-of-database-ransomware/ [Ac-
cessed: 2020-12-18]

[42] “Cyberattack On A Hospital Leads To The First Ransomware-Linked
Death.” [Online]. Available: https://www.forbes.com/sites/leemathews/2020/09/
17/ransomware-attack-hospital-leads-to-death/ [Accessed: 2020-12-18]

[43] “0.2 BTC Strikes Back, Now Attacking MySQL Databases | GuardiCore.”
[Online]. Available: https://www.guardicore.com/2017/02/0-2-btc-strikes-back-now-
attacking-mysql-databases/ [Accessed: 2020-12-21]

[44] “0.2 BTC Strikes Back, Now Attacking MySQL Databases | GuardiCore.”
[Online]. Available: https://www.guardicore.com/2017/02/0-2-btc-strikes-back-now-
attacking-mysql-databases/ [Accessed: 2020-12-21]

[45] “PLEASE READ ME Ransomware Attacks 85K MySQL Servers | Threatpost.” [On-
line]. Available: https://threatpost.com/please read me-ransomware-mysql-servers/
162136/ [Accessed: 2021-04-22]

[46] “Hacker ransoms 23k MongoDB databases and threatens to contact GDPR au-
thorities.” [Online]. Available: https://www.zdnet.com/article/hacker-ransoms-23k-
mongodb-databases-and-threatens-to-contact-gdpr-authorities/ [Accessed: 2021-04-
22]

[47] M. Jobst, “DIMAQS - Dynamic Identification of Malicious Query Sequences,” 2018.

[48] “MongoDB ransacking - Google Tables.” [On-
line]. Available: https://docs.google.com/spreadsheets/d/
1QonE9oeMOQHVh8heFIyeqrjfKEViL0poLnY8mAakKhM/edit#gid=2122582863
[Accessed: 2020-12-18]

[49] “PyTorch.” [Online]. Available: https://pytorch.org/ [Accessed: 2021-02-02]

[50] C. Desrochers, “cameron314/concurrentqueue: A fast multi-producer, multi-
consumer lock-free concurrent queue for C++11,” 2014. [Online]. Available:
https://github.com/cameron314/concurrentqueue [Accessed: 2021-02-03]

[51] ——, “Detailed Design of a Lock-Free Queue,” 2014. [Online]. Avail-
able: https://moodycamel.com/blog/2014/detailed-design-of-a-lock-free-queue.htm
[Accessed: 2021-02-03]

[52] “Rust Programming Language.” [Online]. Available: https://www.rust-lang.org/
[Accessed: 2021-02-03]

[53] “bstr - Rust Library.” [Online]. Available: https://docs.rs/bstr/0.2.14/bstr/
[Accessed: 2021-02-03]

[54] “serde - Rust Library.” [Online]. Available: https://docs.serde.rs/serde/ [Accessed:
2021-02-03]

[55] “Github: joergen/json struct.” [Online]. Available: https://github.com/jorgen/
json struct/ [Accessed: 2021-02-04]

[56] “Intel® Core™ i7-6700HQ Processor (6M Cache, up to 3.50 GHz) Product Spec-
ifications.” [Online]. Available: https://ark.intel.com/content/www/us/en/ark/
products/88967/intel-core-i7-6700hq-processor-6m-cache-up-to-3-50-ghz.html [Ac-
cessed: 2021-04-23]

[57] “CMake.” [Online]. Available: https://cmake.org/ [Accessed: 2021-04-23]

78

https://blog.binaryedge.io/2017/01/18/the-compendium-of-database-ransomware/
https://blog.binaryedge.io/2017/01/18/the-compendium-of-database-ransomware/
https://www.forbes.com/sites/leemathews/2020/09/17/ransomware-attack-hospital-leads-to-death/
https://www.forbes.com/sites/leemathews/2020/09/17/ransomware-attack-hospital-leads-to-death/
https://www.guardicore.com/2017/02/0-2-btc-strikes-back-now-attacking-mysql-databases/
https://www.guardicore.com/2017/02/0-2-btc-strikes-back-now-attacking-mysql-databases/
https://www.guardicore.com/2017/02/0-2-btc-strikes-back-now-attacking-mysql-databases/
https://www.guardicore.com/2017/02/0-2-btc-strikes-back-now-attacking-mysql-databases/
https://threatpost.com/please_read_me-ransomware-mysql-servers/162136/
https://threatpost.com/please_read_me-ransomware-mysql-servers/162136/
https://www.zdnet.com/article/hacker-ransoms-23k-mongodb-databases-and-threatens-to-contact-gdpr-authorities/
https://www.zdnet.com/article/hacker-ransoms-23k-mongodb-databases-and-threatens-to-contact-gdpr-authorities/
https://docs.google.com/spreadsheets/d/1QonE9oeMOQHVh8heFIyeqrjfKEViL0poLnY8mAakKhM/edit#gid=2122582863
https://docs.google.com/spreadsheets/d/1QonE9oeMOQHVh8heFIyeqrjfKEViL0poLnY8mAakKhM/edit#gid=2122582863
https://pytorch.org/
https://github.com/cameron314/concurrentqueue
https://moodycamel.com/blog/2014/detailed-design-of-a-lock-free-queue.htm
https://www.rust-lang.org/
https://docs.rs/bstr/0.2.14/bstr/
https://docs.serde.rs/serde/
https://github.com/jorgen/json_struct/
https://github.com/jorgen/json_struct/
https://ark.intel.com/content/www/us/en/ark/products/88967/intel-core-i7-6700hq-processor-6m-cache-up-to-3-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/88967/intel-core-i7-6700hq-processor-6m-cache-up-to-3-50-ghz.html
https://cmake.org/

Bibliography 79

[58] “GCC, the GNU Compiler Collection - GNU Project - Free Software Foundation
(FSF).” [Online]. Available: https://gcc.gnu.org/ [Accessed: 2021-04-23]

[59] “Boost C++ Libraries.” [Online]. Available: https://www.boost.org/ [Accessed:
2021-04-23]

[60] “MySQL.” [Online]. Available: https://www.mysql.com/de/ [Accessed: 2021-04-23]

[61] “akopytov/sysbench: Scriptable database and system performance benchmark.”
[Online]. Available: https://github.com/akopytov/sysbench [Accessed: 2021-04-20]

[62] “TPC-H Homepage.” [Online]. Available: http://www.tpc.org/tpch/ [Accessed:
2021-04-21]

79

https://gcc.gnu.org/
https://www.boost.org/
https://www.mysql.com/de/
https://github.com/akopytov/sysbench
http://www.tpc.org/tpch/

Appendix

A. Regular Expressions

• Structural Query
(^\s*(show\s*databases|show\s+.*\s*tables|show\s*schemas|select\s+.*

\s+from\s*information_schema\.).*)

• Structural Creation
(^\s*create\s*(table|database|index|view).*)

• Structural Deletion
(^\s*(alter\s*table.*)?drop\s*(database|index|view|table).*)

• Structural Update
(^alter\s*table.*)

• Data Query
(^\s*select\s*.*\s*from.*)

• Data Creation
(^\s*insert\s*into\s.*)

• Data Deletion
(^\s*delete(\s**)?\s*from.*)

• Data Mass Deletion
(^\s*(truncate\s*table|delete\s**\s*from).*)

• Data Update
(^\s*update\s*.*\s*set.*)

Figure A.1.: Regular expressions that determine the query type

81

82 9. Appendix

• (.*\sbitcoin[,;\.:\s_-]*.*)

• (.*wallet.*)

• (.*btc.*)

• (.*pwned.*)

• (.*\s(address|adress).*)

• (.*restore.*)

• (.*(email|e-mail).*)

• (.*send.*)

• (.*\s-?\d+(,\d+)*(\.\d+(e\d+)?)?.*(bitcoin|btc).*)

Note: This regular expression matches against a bitcoin amount

• (.*warning.*)

• (.*please.*read.*)

• (.*leia.*me.*)

• (.*read.*me.*)

• (.*contact.*me.*)

• (.*encrypted.*)

• (.*aviso.*)

• (i.*have.*your.*data.*)

Figure A.2.: Regular expressions that determine the presence of keywords

B. Raw Results

82

B
.

R
aw

R
esu

lts
83

Table B.1.: Configuration and results of all tuning runs
Training Testing LSTM Sequence

Type Balance
Statistics Scores

iterations sequence len iterations sequence len layers dropout step size total queries benign tp benign fp alert tp alert fp backup tp backup fp benign f1 alert f1 backup f1 macro f1 weighted f1
50000 200 1000 6000 1 0 0.15 1 3 1 2 1 2 2977363 2975851 248 0 502 714 48 0.999874 -nan 0.841485 -nan -nan
50000 200 1000 6000 1 0 0.03 1 3 1 2 1 2 3106179 3104646 231 0 539 761 2 0.999876 -nan 0.867236 -nan -nan
50000 200 1000 6000 1 0 0.05 1 3 1 2 1 2 2965772 2964289 207 0 493 778 5 0.999882 -nan 0.881087 -nan -nan
50000 200 1000 6000 1 0 0.1 1 3 1 2 1 2 3055569 3054153 244 0 477 694 1 0.999882 -nan 0.851012 -nan -nan
100000 200 1000 6000 1 0 0.15 1 3 1 2 1 2 2886098 2884637 240 0 474 746 1 0.999876 -nan 0.865932 -nan -nan
100000 200 1000 6000 1 0 0.1 1 3 1 2 1 2 2954122 2952539 269 0 505 808 1 0.999869 -nan 0.862787 -nan -nan
100000 200 1000 6000 1 0 0.05 1 3 1 2 1 2 2970933 2969518 236 0 468 182 529 0.999881 -nan 0.392665 -nan -nan
100000 200 1000 6000 1 0 0.03 1 3 1 2 1 2 3041973 3040420 315 0 536 130 572 0.999860 -nan 0.311751 -nan -nan
50000 200 1000 6000 2 0 0.15 1 3 1 2 1 2 2947829 2945762 802 268 307 488 202 0.999812 0.311991 0.747320 0.686374 0.999618
50000 200 1000 6000 2 0.05 0.15 1 3 1 2 1 2 2986596 2983137 2151 466 103 719 20 0.999622 0.302401 0.908976 0.737000 0.999467
200000 200 1000 6000 1 0 0.15 1 3 1 2 1 2 3070732 3069210 242 0 513 766 1 0.999877 -nan 0.874929 -nan -nan
200000 200 1000 6000 1 0 0.1 1 3 1 2 1 2 3094928 3093361 244 0 590 724 9 0.999865 -nan 0.853774 -nan -nan
200000 200 1000 6000 1 0 0.05 1 3 1 2 1 2 3020710 3019257 241 0 488 719 5 0.999879 -nan 0.880049 -nan -nan
200000 200 1000 6000 1 0 0.03 1 3 1 2 1 2 3067752 3066203 239 0 468 841 1 0.999885 -nan 0.875130 -nan -nan
50000 200 1000 6000 2 0 0.1 1 3 1 2 1 2 3039342 3037666 442 33 470 730 1 0.999850 0.088472 0.861865 0.650062 0.999666
50000 200 1000 6000 2 0.1 0.15 1 3 1 2 1 2 3008636 3007192 249 0 512 679 4 0.999873 -nan 0.842955 -nan -nan
50000 200 1000 6000 2 0.05 0.1 1 3 1 2 1 2 2943691 2940614 1772 396 139 759 11 0.999675 0.306146 0.916667 0.740829 0.999527
50000 200 1000 6000 2 0.1 0.1 1 3 1 2 1 2 3034967 3033503 226 0 479 635 124 0.999884 -nan 0.814625 -nan -nan
50000 200 1000 6000 2 0 0.05 1 3 1 2 1 2 3070454 3068908 245 0 514 787 0 0.999876 -nan 0.875904 -nan -nan
50000 200 1000 6000 2 0.05 0.05 1 3 1 2 1 2 2868097 2865076 1696 482 93 750 0 0.999688 0.380877 0.871080 0.750548 0.999530
50000 200 1000 6000 2 0 0.03 1 3 1 2 1 2 3112278 3109289 1725 352 202 699 11 0.999690 0.281375 0.902518 0.727861 0.999540
50000 200 1000 6000 2 0.1 0.05 1 3 1 2 1 2 3051731 3050214 254 0 477 670 116 0.999880 -nan 0.868438 -nan -nan
50000 200 1000 6000 2 0.05 0.03 1 3 1 2 1 2 2965508 2964020 214 2 588 682 2 0.999865 0.006483 0.876044 0.627464 0.999639
50000 200 1000 6000 2 0.1 0.03 1 3 1 2 1 2 3027765 3023626 2880 382 118 751 8 0.999504 0.213289 0.884570 0.699121 0.999346
100000 200 1000 6000 2 0 0.15 1 3 1 2 1 2 2972447 2970642 536 67 428 764 10 0.999837 0.145022 0.888889 0.677916 0.999666
100000 200 1000 6000 2 0.05 0.15 1 3 1 2 1 2 2976077 2972381 2482 413 88 600 113 0.999568 0.247676 0.806994 0.684746 0.999395
100000 200 1000 6000 2 0 0.1 1 3 1 2 1 2 2960900 2959400 245 0 498 757 0 0.999874 -nan 0.860716 -nan -nan
100000 200 1000 6000 2 0.1 0.15 1 3 1 2 1 2 3016283 3014919 253 0 459 453 199 0.999882 -nan 0.753117 -nan -nan
100000 200 1000 6000 2 0.1 0.1 1 3 1 2 1 2 3051899 3050406 247 0 501 738 7 0.999877 -nan 0.858140 -nan -nan
100000 200 1000 6000 2 0.05 0.1 1 3 1 2 1 2 2998079 2996597 249 0 447 785 1 0.999884 -nan 0.874165 -nan -nan
100000 200 1000 6000 2 0 0.05 1 3 1 2 1 2 3017932 3016427 269 0 469 767 0 0.999878 -nan 0.880092 -nan -nan
100000 200 1000 6000 2 0.05 0.05 1 3 1 2 1 2 3078360 3076869 241 0 495 751 4 0.999880 -nan 0.877336 -nan -nan
100000 200 1000 6000 2 0 0.03 1 3 1 2 1 2 2996427 2990553 4657 30 470 714 3 0.999220 0.028626 0.286689 0.438178 0.998887
100000 200 1000 6000 2 0.1 0.05 1 3 1 2 1 2 3036083 3034524 284 0 512 763 0 0.999869 -nan 0.843094 -nan -nan
100000 200 1000 6000 2 0.05 0.03 1 3 1 2 1 2 2995481 2994006 235 0 505 734 1 0.999876 -nan 0.872771 -nan -nan
100000 200 1000 6000 2 0.1 0.03 1 3 1 2 1 2 3017084 3014962 824 129 388 776 5 0.999799 0.197097 0.901278 0.699391 0.999636
200000 200 1000 6000 2 0 0.15 1 3 1 2 1 2 3126018 3124834 0 0 490 0 694 0.999811 -nan -nan -nan -nan
200000 200 1000 6000 2 0.05 0.15 1 3 1 2 1 2 3061503 3060183 0 0 520 0 800 0.999784 -nan -nan -nan -nan
200000 200 1000 6000 2 0.1 0.15 1 3 1 2 1 2 3105335 3103833 221 0 520 536 225 0.999881 -nan 0.820827 -nan -nan
200000 200 1000 6000 2 0 0.1 1 3 1 2 1 2 2977256 2976021 0 0 532 0 703 0.999793 -nan -nan -nan -nan

83

8
4

9.
A

p
p

en
d
ix

200000 200 1000 6000 2 0.1 0.1 1 3 1 2 1 2 3040653 3039144 242 0 478 779 10 0.999882 -nan 0.864595 -nan -nan
200000 200 1000 6000 2 0.05 0.1 1 3 1 2 1 2 3012995 3011800 0 0 484 0 711 0.999802 -nan -nan -nan -nan
200000 200 1000 6000 2 0 0.05 1 3 1 2 1 2 3062127 3060117 714 270 265 707 54 0.999840 0.392727 0.848739 0.747102 0.999696
200000 200 1000 6000 2 0.05 0.05 1 3 1 2 1 2 3028495 3027025 220 0 518 521 211 0.999878 -nan 0.826984 -nan -nan
200000 200 1000 6000 2 0 0.03 1 3 1 2 1 2 2959317 2956186 1888 314 205 549 175 0.999646 0.223726 0.804985 0.676119 0.999463
200000 200 1000 6000 2 0.1 0.05 1 3 1 2 1 2 3036765 3035090 475 32 514 527 127 0.999837 0.055411 0.873964 0.643071 0.999640
200000 200 1000 6000 2 0.05 0.03 1 3 1 2 1 2 3030731 3029115 366 68 437 708 37 0.999867 0.166463 0.878412 0.681581 0.999699
200000 200 1000 6000 2 0.1 0.03 1 3 1 2 1 2 2978869 2976805 735 164 374 784 7 0.999814 0.263242 0.884377 0.715811 0.999650
50000 200 1000 6000 3 0 0.15 1 3 1 2 1 2 3023479 3019211 3034 488 42 693 11 0.999491 0.248283 0.906475 0.718083 0.999338
50000 200 1000 6000 3 0.05 0.15 1 3 1 2 1 2 3049642 3048188 230 0 475 243 506 0.999884 -nan 0.475073 -nan -nan
50000 200 1000 6000 3 0.1 0.15 1 3 1 2 1 2 2957509 2956041 207 0 550 706 5 0.999872 -nan 0.883605 -nan -nan
50000 200 1000 6000 3 0 0.1 1 3 1 2 1 2 3064791 3061789 1745 214 274 768 1 0.999670 0.191928 0.875214 0.688937 0.999511
50000 200 1000 6000 3 0.05 0.1 1 3 1 2 1 2 2942141 2939001 1921 428 81 710 0 0.999660 0.322532 0.874384 0.732192 0.999512
50000 200 1000 6000 3 0.1 0.1 1 3 1 2 1 2 2997040 2992642 3131 446 65 756 0 0.999466 0.231568 0.864989 0.698674 0.999301
50000 200 1000 6000 3 0 0.05 1 3 1 2 1 2 2929755 2924315 4225 82 417 714 2 0.999274 0.051218 0.416205 0.488899 0.998970
50000 200 1000 6000 3 0.05 0.05 1 3 1 2 1 2 2934330 2930533 2565 311 154 743 24 0.999536 0.195536 0.877214 0.690762 0.999377
50000 200 1000 6000 3 0 0.03 1 3 1 2 1 2 2978372 2975812 1312 311 185 703 49 0.999749 0.321115 0.833926 0.718263 0.999594
50000 200 1000 6000 3 0.1 0.05 1 3 1 2 1 2 3010425 3008917 240 0 502 627 139 0.999877 -nan 0.848444 -nan -nan
50000 200 1000 6000 3 0.05 0.03 1 3 1 2 1 2 2983912 2982356 291 31 521 622 91 0.999864 0.076449 0.835460 0.637258 0.999654
50000 200 1000 6000 3 0.1 0.03 1 3 1 2 1 2 3055146 3053669 220 0 535 679 43 0.999876 -nan 0.910798 -nan -nan
100000 200 1000 6000 3 0 0.15 1 3 1 2 1 2 2937638 2936294 0 0 560 0 784 0.999771 -nan -nan -nan -nan
100000 200 1000 6000 3 0.05 0.15 1 3 1 2 1 2 3103189 3101732 217 0 494 746 0 0.999885 -nan 0.874048 -nan -nan
100000 200 1000 6000 3 0 0.1 1 3 1 2 1 2 2970267 2966673 2451 321 102 524 196 0.999570 0.198700 0.746439 0.648236 0.999394
100000 200 1000 6000 3 0.1 0.15 1 3 1 2 1 2 3067170 3065960 0 0 427 0 783 0.999803 -nan -nan -nan -nan
100000 200 1000 6000 3 0.05 0.1 1 3 1 2 1 2 2934748 2928919 4545 484 11 788 1 0.999223 0.181409 0.892412 0.691015 0.999056
100000 200 1000 6000 3 0.1 0.1 1 3 1 2 1 2 2982389 2980881 232 0 439 837 0 0.999887 -nan 0.878279 -nan -nan
100000 200 1000 6000 3 0 0.05 1 3 1 2 1 2 2937266 2936040 0 0 509 0 717 0.999791 -nan -nan -nan -nan
100000 200 1000 6000 3 0.05 0.05 1 3 1 2 1 2 2989029 2987574 241 0 456 753 5 0.999883 -nan 0.873550 -nan -nan
100000 200 1000 6000 3 0 0.03 1 3 1 2 1 2 3189261 3186442 1541 102 410 766 0 0.999694 0.105426 0.874429 0.659850 0.999520
100000 200 1000 6000 3 0.1 0.05 1 3 1 2 1 2 2973141 2971632 256 0 506 540 207 0.999872 -nan 0.834621 -nan -nan
100000 200 1000 6000 3 0.05 0.03 1 3 1 2 1 2 3091259 3089385 564 55 484 736 35 0.999830 0.105566 0.887817 0.664404 0.999647
100000 200 1000 6000 3 0.1 0.03 1 3 1 2 1 2 3020367 3018489 659 274 209 733 3 0.999856 0.433544 0.903266 0.778889 0.999742
200000 200 1000 6000 3 0 0.15 1 3 1 2 1 2 3011410 3010192 0 0 469 0 749 0.999798 -nan -nan -nan -nan
200000 200 1000 6000 3 0.05 0.15 1 3 1 2 1 2 3001251 2999968 0 0 557 0 726 0.999786 -nan -nan -nan -nan
200000 200 1000 6000 3 0 0.1 1 3 1 2 1 2 2953658 2952420 0 0 481 0 757 0.999790 -nan -nan -nan -nan
200000 200 1000 6000 3 0.1 0.15 1 3 1 2 1 2 2920945 2919191 454 111 425 764 0 0.999849 0.262722 0.856502 0.706358 0.999677
200000 200 1000 6000 3 0.1 0.1 1 3 1 2 1 2 3115252 3113844 214 5 458 551 180 0.999892 0.012165 0.833585 0.615214 0.999706
200000 200 1000 6000 3 0.05 0.1 1 3 1 2 1 2 2997232 2996052 0 0 508 0 672 0.999803 -nan -nan -nan -nan
200000 200 1000 6000 3 0 0.05 1 3 1 2 1 2 3005958 3004682 0 0 521 0 755 0.999788 -nan -nan -nan -nan
50000 200 1000 6000 1 0 0.15 1 3 3 5 5 7 2958768 2953284 3604 721 341 785 33 0.999329 0.276087 0.882518 0.719311 0.999037
200000 200 1000 6000 3 0.05 0.05 1 3 1 2 1 2 3117861 3112627 3949 525 12 747 1 0.999364 0.217571 0.888757 0.701897 0.999203
200000 200 1000 6000 3 0 0.03 1 3 1 2 1 2 2981904 2980191 414 60 493 736 10 0.999848 0.144578 0.871522 0.671983 0.999657
200000 200 1000 6000 3 0.1 0.05 1 3 1 2 1 2 2924340 2919388 3685 443 45 772 7 0.999362 0.198922 0.897674 0.698653 0.999201
50000 200 1000 6000 1 0 0.1 1 3 3 5 5 7 3022800 3017280 3559 943 228 790 0 0.999373 0.346500 0.872928 0.739600 0.999087

84

B
.

R
aw

R
esu

lts
85

50000 200 1000 6000 1 0 0.05 1 3 3 5 5 7 2908270 2905979 270 0 1173 848 0 0.999752 -nan 0.864424 -nan -nan
50000 200 1000 6000 1 0 0.03 1 3 3 5 5 7 2956545 2954294 274 3 1161 813 0 0.999757 0.005080 0.862142 0.622327 0.999328
200000 200 1000 6000 3 0.05 0.03 1 3 1 2 1 2 2956923 2955429 290 4 479 504 217 0.999870 0.008197 0.812248 0.606771 0.999662
200000 200 1000 6000 3 0.1 0.03 1 3 1 2 1 2 3024131 3021294 1549 359 149 772 8 0.999719 0.319679 0.892486 0.737295 0.999577
100000 200 1000 6000 1 0 0.15 1 3 3 5 5 7 3123592 3121337 236 0 1187 832 0 0.999772 -nan 0.875789 -nan -nan
100000 200 1000 6000 1 0 0.1 1 3 3 5 5 7 2976795 2974567 247 0 1127 854 0 0.999769 -nan 0.873657 -nan -nan
100000 200 1000 6000 1 0 0.05 1 3 3 5 5 7 3012698 3006163 4590 1063 33 849 0 0.999232 0.326775 0.874807 0.733605 0.998952
100000 200 1000 6000 1 0 0.03 1 3 3 5 5 7 3070092 3063778 4334 1138 54 788 0 0.999284 0.354021 0.870237 0.741181 0.999001
50000 200 1000 6000 2 0 0.15 1 3 3 5 5 7 3026348 3019575 4855 1078 0 840 0 0.999197 0.316593 0.893142 0.736311 0.998924
50000 200 1000 6000 2 0.05 0.15 1 3 3 5 5 7 3054954 3048353 4604 1021 65 911 0 0.999235 0.315026 0.888347 0.734203 0.998958
200000 200 1000 6000 1 0 0.15 1 3 3 5 5 7 3092226 3090035 247 0 1173 524 247 0.999770 -nan 0.806774 -nan -nan
200000 200 1000 6000 1 0 0.1 1 3 3 5 5 7 2962292 2960143 226 0 1118 804 1 0.999773 -nan 0.878689 -nan -nan
200000 200 1000 6000 1 0 0.05 1 3 3 5 5 7 2979274 2973131 4209 1021 77 835 1 0.999280 0.334370 0.882664 0.738771 0.999002
200000 200 1000 6000 1 0 0.03 1 3 3 5 5 7 3020533 3018233 362 25 1092 165 656 0.999759 0.023148 0.334686 0.452531 0.999217
50000 200 1000 6000 2 0.1 0.15 1 3 3 5 5 7 2939707 2937062 634 111 1034 865 1 0.999716 0.132458 0.889460 0.673878 0.999346
50000 200 1000 6000 2 0 0.1 1 3 3 5 5 7 2946780 2940909 3869 928 286 786 2 0.999339 0.316724 0.789157 0.701740 0.999002
50000 200 1000 6000 2 0.05 0.1 1 3 3 5 5 7 3011568 3005643 3958 1055 66 841 5 0.999331 0.354920 0.895157 0.749803 0.999062
50000 200 1000 6000 2 0.1 0.1 1 3 3 5 5 7 3110801 3104726 4045 1159 21 846 4 0.999345 0.373811 0.899522 0.757559 0.999081
50000 200 1000 6000 2 0 0.05 1 3 3 5 5 7 3045984 3039929 4016 1093 28 917 1 0.999335 0.360310 0.917459 0.759035 0.999075
50000 200 1000 6000 2 0.05 0.05 1 3 3 5 5 7 3017674 3010805 4853 1240 22 754 0 0.999191 0.348217 0.866169 0.737859 0.998886
50000 200 1000 6000 2 0 0.03 1 3 3 5 5 7 2968983 2963350 3696 1033 32 858 14 0.999372 0.366377 0.902208 0.755986 0.999116
50000 200 1000 6000 2 0.1 0.05 1 3 3 5 5 7 3033315 3026516 4824 1190 3 781 1 0.999203 0.340340 0.878515 0.739353 0.998913
50000 200 1000 6000 2 0.05 0.03 1 3 3 5 5 7 3052523 3045952 4633 1047 0 889 2 0.999240 0.319548 0.908998 0.742595 0.998981
50000 200 1000 6000 2 0.1 0.03 1 3 3 5 5 7 3021280 3015414 3831 970 215 809 41 0.999330 0.328981 0.904416 0.744242 0.999040
100000 200 1000 6000 2 0 0.15 1 3 3 5 5 7 3013111 3006323 4825 1063 75 819 6 0.999186 0.313893 0.860746 0.724608 0.998889
100000 200 1000 6000 2 0.05 0.15 1 3 3 5 5 7 3036781 3034623 220 0 1125 813 0 0.999778 -nan 0.880823 -nan -nan
100000 200 1000 6000 2 0 0.1 1 3 3 5 5 7 2999245 2992526 4699 1102 61 840 17 0.999205 0.326229 0.874089 0.733174 0.998909
100000 200 1000 6000 2 0.1 0.15 1 3 3 5 5 7 3014320 3009655 2639 1123 80 820 3 0.999548 0.467722 0.906578 0.791283 0.999311
100000 200 1000 6000 2 0.05 0.1 1 3 3 5 5 7 3003889 2999534 2380 813 318 690 154 0.999550 0.372594 0.837887 0.736677 0.999269
100000 200 1000 6000 2 0.1 0.1 1 3 3 5 5 7 2956942 2950571 4307 1163 51 850 0 0.999262 0.360676 0.878553 0.746164 0.998965
100000 200 1000 6000 2 0 0.05 1 3 3 5 5 7 2959310 2953967 3415 883 198 818 29 0.999389 0.338249 0.883369 0.740336 0.999114
100000 200 1000 6000 2 0 0.03 1 3 3 5 5 7 2978233 2972238 4002 1121 17 855 0 0.999324 0.368629 0.905241 0.757731 0.999056
100000 200 1000 6000 2 0.05 0.05 1 3 3 5 5 7 3043015 3036281 4798 1147 11 774 4 0.999209 0.331359 0.891705 0.740758 0.998927
100000 200 1000 6000 2 0.1 0.05 1 3 3 5 5 7 3040570 3034524 4048 1148 28 822 0 0.999329 0.370741 0.901810 0.757293 0.999059
100000 200 1000 6000 2 0.05 0.03 1 3 3 5 5 7 3091479 3085970 3471 1152 38 841 7 0.999432 0.410695 0.884797 0.764975 0.999174
100000 200 1000 6000 2 0.1 0.03 1 3 3 5 5 7 2952414 2946763 3720 1091 14 810 16 0.999367 0.381802 0.874258 0.751809 0.999101
200000 200 1000 6000 2 0 0.15 1 3 3 5 5 7 3058094 3056115 0 0 1116 0 863 0.999676 -nan -nan -nan -nan
200000 200 1000 6000 2 0 0.1 1 3 3 5 5 7 3126642 3124396 249 0 1160 837 0 0.999775 -nan 0.871421 -nan -nan
200000 200 1000 6000 2 0.05 0.15 1 3 3 5 5 7 3041969 3040041 0 0 1136 0 792 0.999683 -nan -nan -nan -nan
200000 200 1000 6000 2 0.1 0.15 1 3 3 5 5 7 2939627 2933159 4567 1047 38 0 816 0.999215 0.278717 -nan -nan -nan
200000 200 1000 6000 2 0.05 0.1 1 3 3 5 5 7 3062997 3057673 3310 1048 81 880 5 0.999446 0.393837 0.909561 0.767614 0.999197
200000 200 1000 6000 2 0.1 0.1 1 3 3 5 5 7 3147109 3144892 221 0 1231 763 2 0.999769 -nan 0.890835 -nan -nan
200000 200 1000 6000 2 0 0.05 1 3 3 5 5 7 3061983 3058300 1689 856 307 831 0 0.999674 0.492095 0.878900 0.790223 0.999448
200000 200 1000 6000 2 0 0.03 1 3 3 5 5 7 3015779 3010284 3556 1043 74 820 2 0.999397 0.377625 0.893246 0.756756 0.999138

85

8
6

9.
A

p
p

en
d
ix

200000 200 1000 6000 2 0.05 0.05 1 3 3 5 5 7 2998270 2991676 4646 1102 1 550 295 0.999224 0.310817 0.758621 0.689554 0.998903
200000 200 1000 6000 2 0.1 0.05 1 3 3 5 5 7 3098828 3092429 4386 1116 53 694 150 0.999283 0.331551 0.853104 0.727979 0.998991
200000 200 1000 6000 2 0.05 0.03 1 3 3 5 5 7 3007664 3002049 3669 1023 83 839 1 0.999375 0.365357 0.893504 0.752745 0.999113
200000 200 1000 6000 2 0.1 0.03 1 3 3 5 5 7 3069001 3064153 2818 979 201 844 6 0.999507 0.407917 0.900747 0.769390 0.999252
50000 200 1000 6000 3 0 0.15 1 3 3 5 5 7 3048207 3044561 1631 170 1046 6 793 0.999561 0.089262 0.014888 0.367904 0.998939
50000 200 1000 6000 3 0.05 0.15 1 3 3 5 5 7 3063270 3056379 4881 1097 52 861 0 0.999194 0.318248 0.880818 0.732753 0.998905
50000 200 1000 6000 3 0.1 0.15 1 3 3 5 5 7 3054769 3047798 5025 1095 34 817 0 0.999171 0.310903 0.888526 0.732867 0.998887
50000 200 1000 6000 3 0 0.1 1 3 3 5 5 7 3065390 3058855 4561 1143 3 828 0 0.999255 0.344692 0.883671 0.742539 0.998979
50000 200 1000 6000 3 0.05 0.1 1 3 3 5 5 7 3093469 3091314 207 0 1205 743 0 0.999772 -nan 0.877732 -nan -nan
50000 200 1000 6000 3 0.1 0.1 1 3 3 5 5 7 3015154 3009888 3255 1052 137 811 11 0.999439 0.394377 0.892680 0.762165 0.999171
50000 200 1000 6000 3 0 0.05 1 3 3 5 5 7 3013900 3007357 4560 1080 20 883 0 0.999242 0.332154 0.874257 0.735218 0.998962
50000 200 1000 6000 3 0 0.03 1 3 3 5 5 7 2926790 2920614 4197 955 155 869 0 0.999256 0.315130 0.896338 0.736908 0.998965
50000 200 1000 6000 3 0.05 0.05 1 3 3 5 5 7 3059944 3057696 226 0 1178 843 1 0.999770 -nan 0.893482 -nan -nan
50000 200 1000 6000 3 0.1 0.05 1 3 3 5 5 7 2986381 2979947 4464 1091 11 868 0 0.999250 0.337928 0.896694 0.744624 0.998976
50000 200 1000 6000 3 0.05 0.03 1 3 3 5 5 7 2992831 2987320 3547 1174 6 783 1 0.999406 0.410059 0.898451 0.769305 0.999147
50000 200 1000 6000 3 0.1 0.03 1 3 3 5 5 7 2979023 2973093 3958 1087 16 869 0 0.999332 0.364276 0.906152 0.756587 0.999070
100000 200 1000 6000 3 0 0.15 1 3 3 5 5 7 3025376 3023338 0 0 1161 0 877 0.999663 -nan -nan -nan -nan
100000 200 1000 6000 3 0 0.1 1 3 3 5 5 7 3007294 3000951 4362 1130 47 803 1 0.999266 0.349197 0.889751 0.746071 0.998982
100000 200 1000 6000 3 0.1 0.15 1 3 3 5 5 7 2967021 2961268 3760 1184 5 803 1 0.999365 0.398787 0.890738 0.762963 0.999095
100000 200 1000 6000 3 0.05 0.15 1 3 3 5 5 7 3024097 3018419 3720 1099 34 824 1 0.999379 0.384400 0.874735 0.752838 0.999114
100000 200 1000 6000 3 0.1 0.1 1 3 3 5 5 7 2967057 2964906 216 15 1104 816 0 0.999777 0.026178 0.888889 0.638281 0.999380
100000 200 1000 6000 3 0.05 0.1 1 3 3 5 5 7 2928704 2921586 5174 1110 0 0 834 0.999115 0.269810 -nan -nan -nan
100000 200 1000 6000 3 0 0.05 1 3 3 5 5 7 2923694 2919471 2204 1027 178 811 3 0.999592 0.482726 0.896628 0.792982 0.999351
100000 200 1000 6000 3 0 0.03 1 3 3 5 5 7 2926106 2920221 3961 1092 9 822 1 0.999321 0.367553 0.884346 0.750407 0.999051
100000 200 1000 6000 3 0.05 0.05 1 3 3 5 5 7 3022790 3016444 4344 976 85 404 537 0.999266 0.285213 0.569415 0.617965 0.998882
100000 200 1000 6000 3 0.1 0.05 1 3 3 5 5 7 2911318 2904732 4543 1178 14 851 0 0.999216 0.352062 0.885075 0.745451 0.998918
100000 200 1000 6000 3 0.05 0.03 1 3 3 5 5 7 3041191 3035105 4123 1090 19 852 2 0.999318 0.356326 0.891213 0.748952 0.999053
100000 200 1000 6000 3 0.1 0.03 1 3 3 5 5 7 3023772 3017360 4475 1097 5 823 12 0.999258 0.336968 0.897981 0.744736 0.998989
200000 200 1000 6000 3 0 0.15 1 3 3 5 5 7 3029600 3027651 0 0 1142 0 807 0.999678 -nan -nan -nan -nan
200000 200 1000 6000 3 0.1 0.15 1 3 3 5 5 7 2927139 2925129 0 0 1140 0 870 0.999657 -nan -nan -nan -nan
200000 200 1000 6000 3 0 0.1 1 3 3 5 5 7 3056806 3054838 0 0 1083 0 885 0.999678 -nan -nan -nan -nan
200000 200 1000 6000 3 0.05 0.15 1 3 3 5 5 7 3137357 3135366 0 0 1204 0 787 0.999683 -nan -nan -nan -nan
200000 200 1000 6000 3 0.05 0.1 1 3 3 5 5 7 2984944 2982943 0 0 1135 0 866 0.999665 -nan -nan -nan -nan
200000 200 1000 6000 3 0.1 0.1 1 3 3 5 5 7 2965674 2958921 4760 1140 35 764 54 0.999190 0.328957 0.858427 0.728858 0.998886
200000 200 1000 6000 3 0 0.05 1 3 3 5 5 7 3046434 3039830 4599 1216 48 738 3 0.999236 0.354003 0.873373 0.742204 0.998938
50000 200 1000 6000 1 0 0.15 1 3 3 5 5 5 3146963 3144801 381 49 889 843 0 0.999798 0.085143 0.885970 0.656970 0.999495
200000 200 1000 6000 3 0 0.03 1 3 3 5 5 7 2937252 2931376 3913 1192 10 759 2 0.999331 0.389224 0.890845 0.759800 0.999054
50000 200 1000 6000 1 0 0.1 1 3 3 5 5 5 3039349 3036852 474 78 992 953 0 0.999759 0.111270 0.896519 0.669183 0.999414
200000 200 1000 6000 3 0.05 0.05 1 3 3 5 5 7 3014914 3010349 2650 893 174 848 0 0.999531 0.405725 0.890756 0.765337 0.999290
200000 200 1000 6000 3 0.1 0.05 1 3 3 5 5 7 3090699 3084888 3853 1121 77 757 3 0.999363 0.373542 0.896388 0.756431 0.999095
50000 200 1000 6000 1 0 0.05 1 3 3 5 5 5 3019428 3017279 247 0 983 919 0 0.999796 -nan 0.881535 -nan -nan
200000 200 1000 6000 3 0.05 0.03 1 3 3 5 5 7 2904322 2898536 3771 1157 34 824 0 0.999344 0.391407 0.888410 0.759720 0.999063
50000 200 1000 6000 1 0 0.03 1 3 3 5 5 5 2989487 2987320 205 5 1024 933 0 0.999794 0.009606 0.904070 0.637823 0.999424
200000 200 1000 6000 3 0.1 0.03 1 3 3 5 5 7 2977989 2972069 4019 928 117 856 0 0.999305 0.321943 0.882929 0.734726 0.999034

86

B
.

R
aw

R
esu

lts
87

100000 200 1000 6000 1 0 0.15 1 3 3 5 5 5 3065095 3062942 219 0 1028 905 1 0.999796 -nan 0.891626 -nan -nan
100000 200 1000 6000 1 0 0.1 1 3 3 5 5 5 3021239 3016685 2583 706 360 905 0 0.999512 0.341228 0.892945 0.744562 0.999248
100000 200 1000 6000 1 0 0.05 1 3 3 5 5 5 3015258 3013101 260 8 985 904 0 0.999793 0.015595 0.884973 0.633454 0.999435
100000 200 1000 6000 1 0 0.03 1 3 3 5 5 5 2957765 2954843 895 119 930 975 3 0.999691 0.131057 0.885157 0.671968 0.999345
50000 200 1000 6000 2 0 0.15 1 3 3 5 5 5 2996878 2990772 4113 1042 35 915 1 0.999307 0.344748 0.906389 0.750148 0.999043
50000 200 1000 6000 2 0.05 0.15 1 3 3 5 5 5 3048157 3042792 3485 906 49 925 0 0.999420 0.351435 0.906863 0.752573 0.999189
200000 200 1000 6000 1 0 0.15 1 3 3 5 5 5 2888602 2886074 580 87 981 880 0 0.999730 0.115308 0.886203 0.667080 0.999368
200000 200 1000 6000 1 0 0.1 1 3 3 5 5 5 2901133 2898935 227 0 1003 968 0 0.999788 -nan 0.895882 -nan -nan
200000 200 1000 6000 1 0 0.05 1 3 3 5 5 5 2945212 2941442 1773 365 681 951 0 0.999583 0.246622 0.894638 0.713614 0.999282
200000 200 1000 6000 1 0 0.03 1 3 3 5 5 5 2912397 2909919 534 89 877 975 3 0.999758 0.130403 0.894495 0.674885 0.999434
200000 200 1000 6000 2 0 0.15 1 3 3 5 5 9 2973906 2968134 3767 1081 115 808 1 0.999346 0.368000 0.904309 0.757218 0.999067
200000 200 1000 6000 2 0.05 0.05 1 3 3 5 5 9 2963776 2956586 5156 1263 2 769 0 0.999128 0.338742 0.871388 0.736420 0.998813
200000 200 1000 6000 2 0 0.05 1 3 3 5 5 9 3000536 2994339 4202 1194 73 717 11 0.999287 0.368007 0.879755 0.749016 0.998991
200000 200 1000 6000 2 0.1 0.15 1 3 3 5 5 9 3028765 3022476 4240 1167 83 793 6 0.999285 0.362873 0.871908 0.744688 0.998988
200000 200 1000 6000 2 0.05 0.15 1 3 3 5 5 9 3004666 2998279 4390 1148 82 762 5 0.999254 0.349361 0.881944 0.743520 0.998958
200000 200 1000 6000 2 0.1 0.05 1 3 3 5 5 9 3069987 3063389 4574 1180 51 781 12 0.999246 0.347110 0.881490 0.742615 0.998954
200000 200 1000 6000 3 0 0.15 1 3 3 5 5 9 3033761 3031711 0 0 1271 0 779 0.999662 -nan -nan -nan -nan
200000 200 1000 6000 3 0.05 0.15 1 3 3 5 5 9 3063322 3061281 0 0 1297 0 744 0.999667 -nan -nan -nan -nan
200000 200 1000 6000 3 0 0.05 1 3 3 5 5 9 3002711 2996612 4071 1246 3 773 6 0.999321 0.389619 0.895194 0.761378 0.999040
200000 200 1000 6000 3 0.1 0.05 1 3 3 5 5 9 3039532 3032555 4943 1214 56 764 0 0.999176 0.339248 0.849833 0.729419 0.998863
200000 200 1000 6000 3 0.05 0.05 1 3 3 5 5 9 2938850 2932419 4427 1131 118 755 0 0.999226 0.344030 0.866820 0.736692 0.998913
200000 200 1000 6000 3 0.1 0.15 1 3 3 5 5 9 3049823 3047766 0 0 1211 0 846 0.999663 -nan -nan -nan -nan
200000 200 1000 6000 4 0 0.15 1 3 3 5 5 9 3055862 3050358 3555 1125 69 751 4 0.999406 0.397527 0.871230 0.756054 0.999139
200000 200 1000 6000 4 0.05 0.15 1 3 3 5 5 9 3042508 3040523 0 0 1282 0 703 0.999674 -nan -nan -nan -nan
200000 200 1000 6000 4 0 0.05 1 3 3 5 5 9 3020830 3018797 0 0 1291 0 742 0.999663 -nan -nan -nan -nan
200000 200 1000 6000 4 0.1 0.15 1 3 3 5 5 9 3009588 3007538 0 0 1217 0 833 0.999659 -nan -nan -nan -nan
200000 200 1000 6000 4 0.05 0.05 1 3 3 5 5 9 2991104 2984949 4209 1107 95 720 24 0.999279 0.349708 0.860729 0.736572 0.998984
200000 200 1000 6000 4 0.1 0.05 1 3 3 5 5 9 2954554 2947652 4865 1184 53 666 134 0.999166 0.323012 0.856592 0.726257 0.998845
2000000 200 1000 6000 3 0 0.05 1 3 3 5 5 9 2987573 2985533 0 0 1297 0 743 0.999658 -nan -nan -nan -nan
2000000 200 1000 6000 3 0 0.15 1 3 3 5 5 9 3101160 3099115 0 0 1291 0 754 0.999670 -nan -nan -nan -nan
2000000 200 1000 6000 3 0.05 0.05 1 3 3 5 5 9 3006419 3004163 242 0 1261 682 71 0.999750 -nan 0.913597 -nan -nan
2000000 200 1000 6000 3 0.1 0.05 1 3 3 5 5 9 3050173 3043006 5217 1212 34 704 0 0.999138 0.326465 0.849216 0.724940 0.998829
2000000 200 1000 6000 3 0.1 0.15 1 3 3 5 5 9 3005863 2999657 4193 1251 13 749 0 0.999299 0.383155 0.893795 0.758750 0.999014
2000000 200 1000 6000 3 0.05 0.15 1 3 3 5 5 9 2988656 2986650 0 0 1279 0 727 0.999664 -nan -nan -nan -nan
200000 50 1000 6000 1 0 0.05 0 0 3 5 14 0 2981114 2976503 2269 1496 0 846 0 0.999619 0.579620 0.944724 0.841321 0.999393
200000 50 1000 6000 1 0 0.15 0 0 3 5 14 0 3054967 3050489 2057 1524 0 897 0 0.999663 0.608626 0.948704 0.852331 0.999453
200000 50 1000 6000 3 0 0.15 0 0 3 5 14 0 2993411 2988915 2134 1404 0 958 0 0.999643 0.580165 0.949455 0.843088 0.999430
200000 50 1000 6000 3 0.1 0.15 0 0 3 5 14 0 3092444 3087458 2662 1444 0 880 0 0.999569 0.530687 0.942184 0.824147 0.999334
200000 50 1000 6000 3 0 0.05 0 0 3 5 14 0 2994326 2990083 1842 1516 8 877 0 0.999692 0.643327 0.908338 0.850452 0.999484
200000 50 1000 6000 3 0.05 0.15 0 0 3 5 14 0 3034817 3030153 2230 1512 0 922 0 0.999632 0.586729 0.948560 0.844974 0.999411
200000 50 1000 6000 3 0.05 0.05 0 0 3 5 14 0 3052259 3047372 2488 1417 44 938 0 0.999585 0.537353 0.953252 0.830063 0.999349
200000 50 1000 6000 3 0.1 0.05 0 0 3 5 14 0 3085090 3080581 2130 1549 0 830 0 0.999654 0.603193 0.947489 0.850112 0.999441
800000 50 1000 6000 1 0 0.05 0 0 3 5 5 9 3067936 3059975 5513 1506 0 942 0 0.999100 0.364428 0.878731 0.747420 0.998751
800000 50 1000 6000 1 0 0.15 0 0 3 5 5 9 3145107 3137050 5729 1442 0 886 0 0.999088 0.344235 0.882910 0.742077 0.998755

87

8
8

9.
A

p
p

en
d
ix

800000 50 1000 6000 3 0 0.15 0 0 3 5 5 9 3050678 3048354 0 0 1396 0 928 0.999619 -nan -nan -nan -nan
800000 50 1000 6000 3 0 0.05 0 0 3 5 5 9 3086500 3078570 5509 1451 2 968 0 0.999106 0.355681 0.883615 0.746134 0.998767
800000 50 1000 6000 3 0.05 0.05 0 0 3 5 5 9 2961195 2953548 5219 1544 0 884 0 0.999117 0.383745 0.871795 0.751553 0.998758
800000 50 1000 6000 3 0.1 0.05 0 0 3 5 5 9 2975197 2967926 4919 1418 0 934 0 0.999172 0.374884 0.907677 0.760578 0.998846
800000 50 1000 6000 3 0.1 0.15 0 0 3 5 5 9 3002585 2993731 6470 1515 6 863 0 0.998920 0.341063 0.735094 0.691692 0.998511
800000 50 1000 6000 3 0.05 0.15 0 0 3 5 5 9 3122207 3114957 4858 1470 15 907 0 0.999218 0.386893 0.894477 0.760196 0.998897
2000000 20 1000 6000 1 0 0.05 0 0 3 5 11 3 3005986 2999749 3777 1438 0 1022 0 0.999371 0.442189 0.932057 0.791206 0.999081
2000000 20 1000 6000 1 0 0.15 0 0 3 5 11 3 3005612 2999913 3294 1522 0 883 0 0.999451 0.490335 0.931435 0.807074 0.999173
2000000 20 1000 6000 3 0 0.15 0 0 3 5 11 3 2966421 2960982 2997 1495 0 947 0 0.999494 0.511111 0.932546 0.814384 0.999227
2000000 20 1000 6000 3 0 0.05 0 0 3 5 11 3 2870309 2864784 3110 1509 0 906 0 0.999457 0.503420 0.931620 0.811499 0.999175
2000000 20 1000 6000 3 0.05 0.15 0 0 3 5 11 3 2988082 2982378 3267 1511 0 926 0 0.999453 0.490903 0.932997 0.807784 0.999175
2000000 20 1000 6000 3 0.15 0.15 0 0 3 5 11 3 3037340 3031758 3251 1412 0 919 0 0.999464 0.476946 0.922691 0.799700 0.999198
2000000 20 1000 6000 3 0.1 0.15 0 0 3 5 11 3 2998518 2993221 2913 1475 0 909 0 0.999514 0.514924 0.931352 0.815263 0.999255
2000000 20 1000 6000 3 0.05 0.05 0 0 3 5 11 3 3145033 3139448 3229 1532 0 824 0 0.999486 0.497160 0.926884 0.807844 0.999222
2000000 20 1000 6000 3 0.1 0.05 0 0 3 5 11 3 3002449 2996631 3470 1422 0 926 0 0.999421 0.461913 0.921852 0.794395 0.999143
2000000 20 1000 6000 3 0.15 0.05 0 0 3 5 11 3 2979734 2974403 2870 1543 0 916 2 0.999518 0.528515 0.938044 0.822026 0.999255

88

B. Raw Results 89

Table B.2.: Results of all TPC-H runs

Run Vanilla Original Plugin With New Machine Learning Plugin

1 1042658 1054007 1036182
2 1039925 1050762 1034200
3 1035200 1048119 1035120
4 1042403 1044674 1036611
5 1041397 1049328 1035628
6 1041351 1051518 1037412
7 1039175 1055153 1033510
8 1045547 1049618 1037504
9 1042099 1046696 1037705
10 1040021 1048140 1036597
11 1040775 1047674 1037161
12 1043359 1046899 1035756
13 1044932 1048048 1036199
14 1038196 1049510 1031695
15 1041640 1048792 1035186
16 1044502 1047157 1036083
17 1045897 1047395 1037151
18 1040179 1047033 1037719
19 1042933 1048465 1037381
20 1042540 1046888 1035049
21 1037441 1052230 1035620
22 1035923 1047602 1033994
23 1040443 1050589 1036850
24 1040374 1047381 1035636
25 1036788 1050823 1035076
26 1037901 1046013 1041343
27 1035382 1047982 1042648
28 1034830 1047639 1034271
29 1038869 1045581 1032974
30 1035616 1050994 1035132
31 1038062 1049426 1037158
32 1036523 1049702 1032722
33 1037392 1044023 1035265
34 1037892 1046949 1038293
35 1037497 1048342 1036540
36 1037372 1047188 1036681
37 1037144 1049830 1039298
38 1035350 1045764 1037855
39 1043482 1048842 1033883
40 1039243 1045275 1034179
41 1037274 1044753 1036005
42 1032720 1045669 1034621
43 1036054 1045343 1032747
44 1035408 1044741 1036430
45 1037938 1043600 1041133
46 1033760 1045493 1039737
47 1036132 1046627 1036902
48 1036517 1046081 1037377
49 1034635 1052677 1040130
50 1035028 1090480 1039972

89

9
0

9.
A

p
p

en
d
ix

Table B.3.: Results of all sysbench runs
Run Delete Insert Point-Select Read-Only Read-Write Update-Index Update-Non-Index Write-Only

vanilla original new vanilla original new vanilla original new vanilla original new vanilla original new vanilla original new vanilla original new vanilla original new
1 132.30 127.49 125.96 108.30 102.31 59.28 8508.06 8757.72 8840.78 442.02 449.48 250.66 42.59 39.74 39.68 88.49 87.10 89.88 127.48 105.37 112.96 67.96 63.84 55.75
2 125.08 128.36 129.91 99.97 103.15 63.75 9054.78 8906.29 8808.24 455.18 435.73 250.09 40.84 39.73 37.19 88.06 92.28 91.05 127.15 123.88 124.59 63.73 60.86 51.23
3 130.67 125.04 127.36 105.24 102.35 68.03 9083.01 8851.26 8876.19 443.06 438.47 246.07 39.84 38.38 38.95 90.65 91.36 90.54 131.13 122.29 130.85 64.04 64.34 52.69
4 130.33 129.08 129.52 107.62 101.08 61.53 8906.92 8690.09 8922.66 446.98 436.12 246.54 40.41 37.53 40.96 91.79 89.80 90.31 132.98 126.85 128.73 62.46 58.38 53.06
5 131.15 127.26 129.94 107.12 107.45 61.05 8973.72 8841.15 9011.88 442.40 443.78 245.06 40.27 40.46 38.06 92.31 88.99 92.52 131.86 132.48 128.07 61.78 63.95 53.04
6 131.52 124.99 132.31 110.66 106.73 63.75 8807.95 8994.07 8906.64 448.25 450.79 246.51 39.65 41.36 39.87 91.81 93.81 93.45 132.05 129.81 128.80 63.29 61.97 52.36
7 129.64 129.16 127.73 106.22 104.92 65.64 8698.24 8693.76 8951.87 444.82 438.23 251.42 41.62 39.61 38.28 92.55 90.85 94.65 132.31 132.50 134.01 63.49 62.86 53.79
8 133.14 124.13 129.11 110.13 107.25 63.75 9005.99 8637.47 8995.17 456.82 439.22 251.18 40.88 38.97 38.54 90.46 94.15 92.74 133.21 130.38 128.87 62.98 63.66 52.81
9 133.87 126.88 130.79 110.36 111.63 67.84 8817.83 9007.22 8862.38 449.70 437.86 252.78 40.84 38.77 37.16 96.44 94.87 94.98 133.45 131.56 129.53 63.72 64.33 52.89
10 131.53 131.68 128.94 110.77 108.56 65.97 8969.94 8839.79 8913.46 449.51 439.60 247.79 41.64 40.59 38.03 95.25 91.19 100.91 134.46 132.61 134.51 68.77 64.57 54.74
11 130.16 126.73 129.22 112.73 111.72 63.75 8922.44 8774.82 8662.79 457.91 453.39 248.95 43.67 39.38 38.85 91.53 92.38 93.12 130.28 133.19 132.31 64.53 65.38 56.12
12 129.77 128.44 128.76 111.57 108.00 61.78 8913.86 8790.80 9019.84 451.05 444.96 251.89 43.13 40.33 39.47 94.89 95.69 92.26 135.75 132.83 135.46 66.45 62.16 54.57
13 131.86 126.27 129.17 112.69 109.48 68.44 8889.68 8878.51 9080.52 450.43 439.56 251.34 42.08 41.01 41.86 93.88 95.93 93.69 133.93 131.92 132.64 65.29 69.76 55.63
14 131.64 127.93 130.41 117.31 111.96 64.04 8900.07 8847.68 8938.95 442.48 446.37 264.10 41.03 41.64 41.15 95.51 91.47 94.99 135.08 133.47 137.28 62.82 62.53 53.64
15 131.72 131.32 130.88 114.76 116.65 70.28 8795.49 8930.65 8846.47 451.80 435.90 254.12 44.21 39.92 40.09 91.89 94.73 90.89 131.87 132.61 130.42 67.44 60.23 53.54
16 130.27 127.03 129.58 119.24 115.88 70.17 9054.54 8954.43 8896.41 452.91 445.76 257.77 40.83 42.81 41.83 96.25 92.73 96.37 132.69 132.67 131.55 66.15 66.67 51.88
17 132.81 127.99 129.68 121.21 118.93 66.77 8943.83 8840.31 8982.41 439.65 439.50 257.18 42.48 40.89 40.59 94.64 92.28 94.38 134.89 132.70 135.25 67.65 64.59 54.19
18 129.71 130.47 129.23 119.99 119.43 68.94 9060.79 8877.02 8958.73 448.34 443.17 248.62 42.33 41.93 38.72 96.27 94.28 94.53 133.16 132.14 131.98 68.96 65.55 55.66
19 130.45 129.08 129.64 118.48 113.41 71.56 9045.63 8750.58 8860.95 443.95 444.37 256.01 42.94 43.65 41.41 96.77 95.11 97.32 133.25 132.25 137.14 67.78 66.41 51.29
20 132.03 130.00 130.64 120.31 119.13 72.29 8926.55 8741.79 8893.41 443.23 447.76 260.83 42.50 41.98 40.77 93.52 96.27 93.46 133.89 136.45 136.01 64.29 69.76 58.62
21 133.40 134.00 134.62 119.07 120.14 68.82 9073.98 8862.44 8837.69 442.76 438.98 249.54 41.50 40.34 40.99 95.59 94.63 91.50 135.79 136.06 136.09 68.47 63.96 53.15
22 136.84 132.26 131.95 120.04 115.67 68.09 8977.62 8793.25 9035.41 437.95 451.11 245.70 42.29 41.24 41.15 97.54 94.18 97.18 137.45 137.82 140.41 66.83 68.23 55.48
23 132.92 130.85 130.96 122.72 119.93 69.70 8978.59 8976.32 8952.36 440.88 449.88 251.58 42.95 38.54 39.74 95.03 96.08 96.93 139.17 137.42 139.41 65.37 72.98 57.54
24 133.94 128.97 130.04 124.58 120.98 70.38 8996.64 8660.92 8944.66 440.20 448.15 251.68 40.81 41.77 40.74 96.45 90.75 94.76 139.33 137.78 139.65 64.53 67.77 52.65
25 134.70 132.24 133.23 124.28 122.44 70.58 9199.26 8896.11 8830.84 437.41 441.21 254.47 42.17 41.73 39.49 92.48 96.78 93.95 136.04 137.33 137.45 68.07 64.36 58.33
26 132.28 127.04 133.16 127.80 119.50 69.04 8886.83 8954.55 8758.52 458.48 446.09 250.17 43.75 40.40 39.36 95.11 92.17 95.33 135.50 133.41 136.69 71.93 69.52 59.88
27 134.93 133.08 130.45 124.92 122.44 70.69 8980.90 8779.47 8964.33 444.59 434.69 249.42 44.03 42.59 40.55 99.46 96.65 93.19 138.38 137.18 134.06 66.98 68.84 55.59
28 131.87 129.11 130.45 128.02 125.87 71.38 9159.90 8921.92 8922.48 448.18 446.94 248.86 42.05 43.96 41.20 95.78 93.42 97.04 136.75 136.45 135.95 70.32 68.37 54.77
29 132.02 130.08 130.92 128.04 125.68 70.63 9075.71 8670.05 9028.41 446.88 458.30 255.10 43.95 42.65 41.02 96.47 95.37 98.81 136.27 134.43 136.22 68.46 70.68 57.28
30 131.92 130.88 131.54 127.73 125.68 68.57 9039.48 8937.80 9039.76 448.04 439.30 247.67 42.93 42.69 40.67 100.16 93.45 93.78 136.86 136.28 135.98 69.68 69.32 54.54
31 133.31 130.29 132.39 130.04 125.86 72.97 8806.66 8843.95 9017.60 444.85 445.77 253.27 41.66 42.91 42.38 93.26 93.36 98.76 136.77 135.12 135.26 70.18 65.24 53.48
32 131.42 132.17 129.72 129.82 124.55 70.66 9065.69 8551.51 8998.57 442.66 444.73 252.38 45.15 41.11 39.48 99.57 90.06 91.87 133.72 138.18 137.45 70.09 69.28 56.74
33 131.56 129.93 132.38 128.07 126.40 71.99 8818.75 8829.30 8789.38 440.74 442.88 248.19 42.07 41.79 41.56 93.96 98.25 95.98 137.68 133.64 136.11 68.45 71.47 56.04
34 129.57 130.06 129.73 130.37 124.15 67.48 9114.51 8866.82 9030.12 446.39 433.90 248.47 41.13 41.95 39.22 96.83 92.17 95.08 135.83 133.97 136.02 67.71 70.93 54.58
35 128.33 125.77 132.03 128.52 126.65 73.04 9176.00 8941.59 8835.98 444.67 444.07 254.86 44.32 41.75 42.64 93.62 93.85 95.45 137.38 135.98 136.15 71.38 72.67 58.93
36 130.24 132.12 133.17 129.34 128.14 70.56 8979.83 8735.76 8939.24 447.71 447.68 250.59 42.58 41.39 39.86 94.87 97.49 94.69 136.24 138.38 136.93 62.89 72.76 56.36
37 130.33 131.07 129.19 126.95 128.36 72.42 9027.38 8840.22 9081.30 448.35 441.45 249.27 42.95 42.77 40.97 98.34 95.29 100.12 135.27 136.27 136.57 67.84 67.34 59.84
38 131.12 128.97 128.75 128.90 126.05 69.35 8816.54 8843.19 8683.46 444.65 441.11 259.08 43.52 42.48 38.88 95.59 93.87 95.46 135.01 136.25 137.26 74.48 70.74 57.94
39 131.41 131.12 133.44 131.32 127.68 72.38 9145.00 8857.26 8831.26 451.99 436.25 256.46 42.11 41.71 41.80 95.36 95.69 95.28 133.02 133.55 135.67 71.27 71.56 61.15
40 132.05 131.44 131.43 133.31 128.08 73.34 8834.25 8744.05 8778.14 449.09 433.18 252.91 43.09 44.35 40.72 98.55 95.43 97.14 138.99 136.08 137.33 69.23 69.60 57.98

90

B
.

R
aw

R
esu

lts
91

41 128.82 132.36 134.44 133.95 130.69 73.49 9116.60 8844.98 8835.79 451.11 451.36 255.15 43.15 42.04 40.98 95.13 94.67 93.32 137.18 135.39 136.36 69.61 76.12 58.93
42 129.77 132.58 130.18 134.00 129.53 71.29 8959.18 8958.38 9011.73 443.78 446.73 253.07 43.59 42.96 41.47 97.75 91.84 97.42 135.86 135.01 135.57 73.12 72.79 59.64
43 130.93 131.97 128.63 134.12 131.27 72.42 9032.67 8918.00 9016.69 459.73 438.55 253.19 43.15 41.54 42.19 99.91 96.33 95.29 135.94 136.23 136.25 68.65 74.17 58.23
44 129.66 127.73 135.91 132.66 135.18 70.43 8927.71 8820.17 8898.59 451.36 436.13 246.00 43.73 42.17 41.44 97.57 96.29 98.66 136.31 135.45 135.51 73.98 69.94 59.93
45 133.36 131.10 131.52 133.20 131.94 75.75 8947.12 8899.52 8698.47 436.07 436.00 252.56 43.99 44.68 40.58 93.91 96.23 95.64 134.09 136.54 136.56 73.57 73.88 60.53
46 132.26 130.03 130.71 136.87 128.18 70.05 9029.86 8853.28 8715.59 448.46 447.09 255.58 43.85 42.96 40.86 95.09 93.36 95.15 135.65 135.68 137.37 74.08 73.97 58.96
47 128.11 128.98 134.01 135.06 132.84 70.19 8973.92 8717.69 9124.49 445.56 443.43 256.48 41.82 41.39 42.22 98.31 96.72 90.85 134.41 135.20 134.88 71.56 75.45 59.97
48 130.76 128.54 134.04 136.06 135.09 70.84 9108.98 8921.14 8952.36 449.26 436.61 252.64 44.46 42.44 40.58 96.09 94.54 94.09 135.98 135.51 134.67 77.46 72.57 59.83
49 132.55 131.22 130.47 135.94 131.58 74.89 8857.52 8774.31 8905.09 448.35 442.31 255.99 44.44 41.63 41.65 99.76 94.71 96.89 137.78 135.93 137.68 76.64 72.42 57.76
50 131.13 130.35 129.02 132.61 132.25 72.48 8935.56 8875.99 9012.18 447.29 435.41 245.09 41.98 43.76 41.01 94.79 94.44 97.65 137.41 135.91 135.15 74.79 72.26 59.22

91

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Edingen-Neckarhausen, 30. April 2021

. .
(Sebastian Schindler)

	Contents
	1 Introduction
	2 Background
	2.1 Terminology & General Process
	2.2 Types of Learning
	2.3 Recurrent Neural Networks
	2.4 The Adam Optimizer
	2.5 Evaluating Machine Learning Models

	3 Related Work
	3.1 Dynamic Identification of Malicious Query Sequences (DIMAQS)
	3.2 Database Intrusion Detection
	3.2.1 Data Mining Approaches
	3.2.2 Machine Learning Approaches

	3.3 Ransomware Detection
	3.3.1 Analytic Approaches
	3.3.2 Machine Learning Approaches

	3.4 Summary

	4 Attack Analysis
	4.1 Affected Parties
	4.2 Impact
	4.3 Threat Analysis
	4.4 Threat Model
	4.4.1 Areas of Reliance
	4.4.2 Attack Sequence

	5 Requirement Analysis
	5.1 Classifier
	5.2 Data Preparation
	5.3 Training Executable
	5.3.1 Data Ingest
	5.3.2 Sequence Generation
	5.3.3 Training
	5.3.4 Evaluation

	5.4 MySQL Plugin

	6 Design
	6.1 Plugin Architecture
	6.1.1 Database Query Interface
	6.1.2 Classifier Interface
	6.1.3 Action Policy
	6.1.4 Query Rewriter
	6.1.5 Admin Handler
	6.1.6 Actions
	6.1.6.1 Admin Mode Action
	6.1.6.2 Rewrite Action
	6.1.6.3 Alert Action
	6.1.6.4 Backup Action

	6.2 RNN Classifier
	6.2.1 Feature Extraction
	6.2.2 Neural Network
	6.2.3 Orchestration

	6.3 Training Executable
	6.3.1 Data Ingest
	6.3.2 Feature Extraction
	6.3.3 Query Sequences
	6.3.3.1 Sequence Generation
	6.3.3.2 Streaming Query Sequence

	6.3.4 Training Loop
	6.3.5 Model Evaluation

	7 Implementation
	7.1 Plugin Architecture
	7.1.1 Controller
	7.1.1.1 Initialization
	7.1.1.2 Event Handling

	7.1.2 Database Query
	7.1.3 Query Rewriter
	7.1.4 Admin Handler
	7.1.5 Actions
	7.1.5.1 Admin Mode Action
	7.1.5.2 Rewrite Action
	7.1.5.3 Notification Action
	7.1.5.4 Backup Action

	7.1.6 Action Policy

	7.2 LSTM Classifier
	7.2.1 Feature Extraction
	7.2.2 Neural Network
	7.2.3 Neural Network Queue
	7.2.4 Orchestration

	7.3 Data Preparation
	7.3.1 Benign Query Traces
	7.3.2 Malicious Query Sequences

	7.4 Training Executable
	7.4.1 Data Ingest
	7.4.2 Feature Extraction
	7.4.3 Query Sequences
	7.4.3.1 Sequence Generation
	7.4.3.2 Streaming Query Sequence

	7.4.4 Training Loop
	7.4.5 Model Evaluation
	7.4.6 Tuning

	8 Evaluation
	8.1 Testbed
	8.2 Detection Accuracy
	8.3 Performance
	8.3.1 TPC-H
	8.3.2 Sysbench

	8.4 Summary

	9 Conclusion and Future Work
	9.1 Conclusion
	9.2 Future Work

	Acronyms
	Bibliography
	Appendix
	A Regular Expressions
	B Raw Results

