
Cloud-Based Machine Learning Models as Covert
Communication Channels

Torsten Krauß
University of Würzburg
Würzburg, Germany

torsten.krauss@uni-wuerzburg.de

Jasper Stang
University of Würzburg
Würzburg, Germany

jasper.stang@uni-wuerzburg.de

Alexandra Dmitrienko
University of Würzburg
Würzburg, Germany

alexandra.dmitrienko@uni-
wuerzburg.de

ABSTRACT
While Machine Learning (ML) is one of the most promising tech-
nologies in our era, it is prone to a variety of attacks. One of them is
covert channels, that enable two parties to stealthily transmit infor-
mation through carriers intended for different purposes. Existing
works only explore covert channels for federated ML. Thereby, com-
munication is established among multiple entities that collaborate
to train a model, while relying on access to model internals.

This paper presents covert channels within ML models trained
and publicly deployed in cloud-based (black-box) environments.
The approach relies on targeted poisoning, or backdoor, attacks
to encode messages into the model. It incorporates multiple well-
chosen backdoors only through dataset poisoning and without
requiring access to model internals or the training process. After
model deployment, messages can be extracted via inference.

We propose three covert channel versions with varying levels
of message robustness and capacity while emphasizing minimal
extraction effort, minimal pre-shared knowledge, or maximummes-
sage stealthiness. We investigate influencing factors affecting em-
bedded backdoors and propose novel techniques to incorporate
numerous backdoors simultaneously for message encoding. Experi-
ments across various datasets and model architectures demonstrate
message transmission of 20 to 66 bits with minimal error rates.

CCS CONCEPTS
• Security and privacy; • Computing methodologies → Ma-
chine learning;

KEYWORDS
covert channel; machine learning; poisoning attacks; backdoors

ACM Reference Format:
Torsten Krauß, Jasper Stang, and Alexandra Dmitrienko. 2024. Cloud-Based
Machine Learning Models as Covert Communication Channels. In ACM
Asia Conference on Computer and Communications Security (ASIA CCS ’24),
July 1–5, 2024, Singapore, Singapore. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3634737.3657026

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0482-6/24/07. . . $15.00
https://doi.org/10.1145/3634737.3657026

1 INTRODUCTION
A recently emerged technology is Machine Learning (ML), a fast-
growing field that has significantly impacted various areas, e.g,
speech recognition [8], object detection [17, 26, 30], and predictive
analysis [2]. Such models trained by an ML process designed to
streamline and automate various tasks are increasingly deployed
in critical applications such as healthcare [33] and national secu-
rity [40, 43]. However, it has also become a target for adversaries
performing a variety of attacks. In one of the malicious attacks on
ML models, the adversary can misuse the model to embed a hidden
message that is concealed within the model. Those messages can
then be extracted by a third party, essentially forming a covert com-
munication channel misusing the ML model as a message carrier.
A covert channel [38] is a communication pathway designed to
operate stealthily, often with the intent of circumventing conven-
tional security measures and remaining undetected. These channels
facilitate the concealed exchange of information or data, posing
challenges for security mechanisms in detecting their existence or
monitoring the transmitted data. The first historical covert channel
dates back to Histiaeus, a tyrannical leader who needed to secretly
convey a strategy to his nephew. He shaved the head of a messenger,
inscribed the message on the man’s scalp, and waited for the hair
to regrow, concealing the secret. Upon the messenger’s arrival, the
nephew shaved the messenger’s head, thus revealing the hidden
plans [15]. A modern example is the TV series "The Americans",
which is based on real-life spy stories, in which spies embed en-
crypted data within images stored on public websites, making the
data imperceptible to a human observer [9]. Covert channels in
the information technology domain take on diverse forms, such as
covert data transmission within seemingly innocuous network pro-
tocols [38], obscure encodings integrated into legitimate files [11],
or the exploitation of hidden communication within a computer
system’s architecture [42]. Thereby, the channels focus on con-
temporary and innovative techniques and serve various purposes
centered around hidden communication between malicious actors.
Problem Statement. Covert channels have evolved over time,
adapting to the prevailing media and communication methods of
their respective eras. Detecting these covert channels is crucial to be
aware of the potential of malicious activities facilitated by emerging
technologies. Further, it is the first step towards mitigation of covert
channels, which is pivotal for maintaining security and reliability
of computer systems and networks. Security professionals and
researchers employ various techniques and strategies to unveil and
prevent the illicit use of covert channels, ensuring the protection
of sensitive information and the identification and prevention of
unauthorized activities. As one emerging technology these days

https://orcid.org/0000-0003-0810-6646
https://orcid.org/0009-0005-0329-5849
https://orcid.org/0000-0001-5637-7016
https://doi.org/10.1145/3634737.3657026
https://doi.org/10.1145/3634737.3657026

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Torsten Krauß, Jasper Stang, and Alexandra Dmitrienko

is ML, a pivotal question that arises is the potential misuse of
ML models as covert channels for hidden message transmission
between two remotely situated, collaborating entities unable to
communicate directly. However, covert channels leveraging ML
models as message carriers have not been thoroughly explored.
Existing Works. Prior research that delves into covert channels
using ML models [4, 7, 18, 23] exclusively centers around Feder-
ated Learning (FL) [32], a framework in which multiple clients
collaborate in successive rounds to collectively train a model using
their local datasets, managed by a central server. In this context,
the covert message exchange takes place between two or more
distinct clients. The majority of these approaches require access to
the model’s weights, which can be directly manipulated to conceal
and extract the message [4, 18, 23]. Besides, Costa et al. [7] use a
specifically poisoned dataset to tweak the model’s predictions for
some specific pre-shared samples, which can be used to extract one
bit for each sample only with inference access to the model.
Approach. This paper is the first work that investigates the feasibil-
ity of establishing an efficient covert channel between two entities
leveraging a centralized cloud-based ML environment, namely a
Machine Learning as a Service (MLaaS) provider. We seek to uti-
lize the trained ML model as a carrier for covert communication.
For message embedding, contrary to the research conducted in FL,
we restrict ourselves to manipulations of the training data. The
model internals and the training process remain unaltered as they
are executed by the MLaaS provider. By submitting a manipulated
training dataset that includes an encoded message to the MLaaS
platform, the sender of the covert message incurs incorporation of
the message along with the regular task into the model. To real-
ize the message embedding within the training data, we leverage
targeted poisoning attacks [13, 27], so-called backdoors. These back-
doors introduce concealed, attacker-defined behaviors, typically
manifesting as erroneous predictions, that are activated through
the inclusion of a pre-defined trigger in the model’s input. After the
public deployment of the trained model, a receiver with the knowl-
edge of the pre-defined backdoor triggers should be able to extract
the hidden message through inference on the deployed model. This
scenario allows the realization of a covert communication channel
in the domain of ML akin to the concept of an image containing a
hidden message stored on a public website, as exemplified earlier.
Contributions. In particular, this paper contributes the following:

• We are the first to explore the problem of covert channels in
MLaaS settings, which disallow access to model internals or
the training process and solely rely on dataset manipulations
and inference for message embedding and extraction.

• We develop three covert channels with distinct message en-
coding techniques centered around the embedding of back-
doors. The techniques use different encoding rules based on
varying backdoor trigger locations and appearances and of-
fer a high degree of flexibility to both senders and receivers
of covert messages, enabling them to choose the specific
instantiation that aligns with the application’s requirements,
encompassing the size of pre-shared knowledge, inference
complexity for extraction, and the channel’s stealthiness
within the model’s regular task.

• We propose novel and robust dataset poisoning strategies
for backdoor injection that allow the simultaneous embed-
ding of multiple backdoors into a single model. The strategy
carefully selects suitable samples and systemically poisons
them to facilitate the model’s ability to discern the subtle
differences in the trigger’s appearance.

• We introduce a covert channel, that uses ineffective back-
doors, a novel concept, that implants information into the
model by embedding backdoors with only poisoning a negli-
gible dataset portion. As a result, the small changes in the
model caused by the poisoned samples do not change the
benign predictions but can be used to transmit information.

• Throughout this work, we are the first to explore various
influence factors that affect the effectiveness of injected back-
doors when systematically embedding multiple backdoors
within a single model in a structured manner. This includes
the trigger type, appearance attributes (such as shape and
color), and the location within the sample. The results of our
study are of independent interest and could be leveraged in
other areas of research, such as backdoor attacks and model
watermarking.

• We conduct a systematic large-scale study leveraging dif-
ferent datasets (CIFAR-10 [25], STL-10[6]) and model archi-
tectures (ResNet-18 [17], SqueezeNet [20]) validating the
effectiveness of the three proposed covert channels. This
study demonstrates the channels’ capacity with remarkably
low error rates, enabling robust transmission of long genuine
messages ranging from 20 to 66 bits.

2 BACKGROUND
Backdoor Attacks. Poisoning attacks empower adversaries to ma-
nipulate model predictions. These attacks are either untargeted [31,
36] or targeted [13, 27]. Untargeted attacks aim to reduce model per-
formance, while targeted attacks, known as backdoors, introduce
hidden behavior while preserving main utility of the model.
A backdoor comprises two components: A trigger and an attacker-
chosen target label, called target. The former is injected into a
training sample provoking the malicious prediction, while the latter
specifies the desired misprediction for triggered samples. Triggers
can take various types, including mask triggers which are subtle
noise overlays [5], visible pixel patterns [13], or the like.
Adversaries can embed backdoors through data poisoning, which
involves manipulating samples from the training dataset by in-
troducing triggers and changing the assigned labels towards the
backdoors target label. The poison data rate (PDR) determines the
proportion of data samples within the training dataset that get con-
taminated with backdoors during dataset poisoning. Alternatively,
the adversary can directly modify the training process by adjusting
hyperparameters or excluding certain parameters from training, a
technique referred to as model poisoning.
Clean-label backdoors [39] are a unique subset of targeted poison-
ing attacks, where the labels associated with triggered samples
remain unaltered instead of mislabeling the sample to the attacker-
chosen target label. The model establishes a connection between
the trigger and the sample’s original (clean) label, which is the
backdoor target class. During inference, a sample from a different

Cloud-Based Machine Learning Models as Covert Communication Channels ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

class, armed with the trigger, is misclassified into the backdoor’s
target class. Clean-label attacks exhibit the advantage of having
limited adverse effects on the model’s performance because the
poisoned samples are still labeled with the ground-truth class.
The backdoor’s impact on the model’s main task can be evaluated
by comparing the model’s prediction performance on the training
or test set, the so-called accuracy, with that of an unpoisoned model,
which also gives insight into the backdoor’s stealthiness. The attack
success rate (ASR) quantifies the extent to which the backdoor
targets are successfully predicted for a set of triggered samples.
In this paper, we leverage clean-label backdoors to establish a covert
communication channel within a model.
Covert Channels.A covert channel [38], in the context of informa-
tion security, serves as a concealed communication path, designed
to operate discreetly with the aim of evading security measures and
remaining undetected. These channels enable parties (authorized
or unauthorized) to exchange information or data covertly, making
it challenging for security mechanisms or external observers to
monitor or at least identify the presence of transmitted data. Covert
channels can take on various forms, e.g., transmitting hidden data
through seemingly benign network protocols [38] or exploiting
hidden channels within a computer system’s architecture [42].
Covert channels are utilized for multiple objectives all centered
around secret communication among malicious entities. Conse-
quently, detecting and mitigating covert channels is of paramount
importance for safeguarding the security of and trust in the relia-
bility of computer systems and networks.
In assessing channel performance, one metric is the bit error rate
(BER) [37], which quantifies the ratio of incorrect bits to received
bits. However, when the length of the received message differs
from the original message, calculating the BER becomes imprac-
tical. Then, the Levenshtein distance (LD) [46] can measure the
dissimilarity between two strings of varying lengths by quantify-
ing the minimum number of edit operations (insertions, deletions,
or replacements) necessary to transform one string into the other.
For two identical bit sequences, LD is zero; conversely, differing
sequences entail operations to align them. By dividing the LD by
the maximum sequences length, the Levenshtein error rate (LER),
can be computed, offering a meaningful metric for covert channel
performance. A LER of 0.0 indicates errorless transmission, a LER
of 1.0 that all bits were incorrect.
In this paper, we establish a covert channel within an ML model
and evaluate the performance using BER and LER.

3 COVERT CHANNEL CONCEPT
In this section, we describe the core concept of our approach. We
begin with presenting our system model and objectives in Sect. 3.1,
followed by the description of general approach in Sect. 3.2.

3.1 System Model
Our systemmodel involves two main actors: a sender and a receiver
of the covert message. They aim to (mis)use amachine learning (ML)
model that has been trained and hosted in a cloud-based environ-
ment. The collaborating entities share a finite amount of pre-shared
knowledge. Subsequently, they are physically separated, with no

(a) Traverse (TP) (b) Spiral (SP)

Figure 1: Location patterns with 𝛿 = 2 for a 8 × 8 image.

possibility for direct communication, as any traceable or visible
interaction is to be avoided.1 The sender has the goal of sending
a hidden message to the receiver. Therefore, the sender utilizes
an ML model trained and deployed in a cloud-based environment,
such as a Machine Learning as a Service (MLaaS) provider. Thereby,
the cloud provider is considered a trustworthy black box service,
meaning that direct access to the model’s weights is not permitted
and the requested ML training is reliably executed.2 In this scenario,
the sender provides a dataset on which the model is trained and the
receiver performs inference on the trained model. Consequently,
the concealed message must be exclusively integrated within the
training dataset provided by the sender, and it should be retriev-
able through model inference by the receiver. As the dataset is
provided by the sender, it can be manipulated arbitrarily to embed
the message before upload to the MLaaS provider.
Objectives. The selection of message encoding and dataset ma-
nipulation techniques is pivotal, as they must align with the re-
quirements of the covert channel to ensure the success of this
new communication method allowing message extraction by only
leveraging the pre-shared knowledge. Critical objectives are high
transmission capacity, as well as high fidelity, meaning that the
model’s regular task is not significantly impacted. Further, the mes-
sage extraction should be reliable achieving lowmessage error rates.
Moreover, the approach should be generalizable allowing for covert
channel instantiation in different application scenarios.

3.2 General Approach
In a nutshell, our method utilizes targeted poisoning attacks, so-
called backdoors (cf. Sect. 2), which are discreetly embedded into
the DNNs, for establishing the covert channel. Based on pre-shared
knowledge that contains the structural characteristics of these em-
bedded backdoors, we embed a series of carefully designed back-
doors into the DNN. These backdoors are crafted to encapsulate the
intended message we aim to convey.3 By leveraging the pre-shared
knowledge, the receiver can analyze the presence or absence of
these backdoors, essentially extracting the encoded message. A
major challenge is how to embed a maximum amount of effective
1E.g., the receiver can be located in another country. The communication should be
hidden from the infrastructure-owning party, e.g., an internet service provider.
2In any covert channel, detection is possible if the transmission medium owner, e.g.,
the MLaaS provider, is aware of the transmission and has an incentive to intervene,
e.g., conducting message erasure, alteration, or insertion. However, integrity measures
like HMAC [24], implemented by the sender, can mitigate these risks. Nevertheless,
such a malicious entity is out-of-scope of this work.
3The backdoor’s stealthiness influences the channel’s stealthiness. An MLaaS provider
that is aware of the covert channel could use dataset-cleaning methods to detect and
manipulate the message. However, such an entity is not considered in this work.

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Torsten Krauß, Jasper Stang, and Alexandra Dmitrienko

and distinguishable backdoors within the model to fulfill the trans-
mission capacity objective of the covert channel. This is achieved
by varying backdoor trigger locations, and a specifically crafted
dataset poisoning methods.
Our general approach encompasses two distinct phases: (i) Estab-
lishing a pre-shared knowledge, and (ii) covert communication. In
the first phase, the sender and receiver exchange pre-shared knowl-
edge functioning as keys for the covert channel. In a second phase,
the channel is established with the help of the pre-shared keys.

Pre-Shared Knowledge. As our covert channel design hinges on
backdoors, it is imperative to pre-define the backdoor strategy and
its specifications before initiating communication. The pre-shared
knowledge is composed of two parts. First, the backdoor specifica-
tion comprising of the trigger type, appearance, and location, and,
second, a mapping between backdoor targets and bits.
Backdoor Trigger Type. Our covert channel is agnostic to the trigger
method, which we refer to as "type". As an illustrative example, we
predominantly focus on monochromatic pixel triggers [13]. The
sample sketches containing a bird in App. Fig. 10 visualize examples
of such triggers that inject a red square into an image. In addition,
we discuss mask triggers [5, 41] in App. C.
Backdoor Trigger Appearance. Pixel triggers allow a variety of pos-
sible shapes, such as squares, triangles, and crosses. We also cate-
gorize their color as a defining aspect of their appearance.
Backdoor Trigger Location. If multiple backdoors are embedded into
a model, we expect the precise location of the trigger’s pixels within
the sample to be highly important, as otherwise overlapping trig-
gers might not be distinguishable. Hence, it is essential to establish
a spatial sequence of distinct trigger locations in advance. We define
the "traverse pattern" (TP) and the "spiral pattern" (SP), which we
depict in Fig. 1. TP traverses from the top-left corner to the bottom-
right corner, while maintaining a spacing of 𝛿 between adjacent
triggers. SP follows a spiral movement starting from the top left
corner continuing clockwise towards the center of the image. Defin-
ing such a pattern reduces the amount of pre-shared knowledge
compared to sharing the complete set of points directly.
Backdoor Target Mapping. In our approach, we place particular
emphasis on clean-label backdoor attacks [39], wherein the labels
associated with the tainted data remain unchanged, and the samples
are not randomly generated. Consequently, the DNN establishes
a connection between the trigger and the corresponding clean
label, which is the original label of the (triggered) training sample.
Subsequently, during inference, a sample from a different label class
that is equipped with the trigger is misclassified into the backdoor’s
target, which is the clean label class. One noteworthy advantage of
employing clean-label attacks lies in their limited adverse impact
on the model’s performance as the training data are not mislabeled.

Covert Communication Once the sender and receiver establish
pre-shared knowledge, they can establish covert communication
channel. We depict the process in Fig. 2, which comprises encoding
and decoding phases and includes the following steps:

(1) Encoding. The sender converts the message into an encoded
representation that adheres to the covert channel’s protocol.
This encompasses the message encoding process where the
message is transformed into a binary sequence.

(2) Dataset Poisoning.Next, the encodedmessage is integrated
into the training dataset, such that both, the dataset’s regular
task and the hidden message are comprised. In particular, the
bit sequence is mapped to various backdoors, aligning with
the backdoor strategy outlined in the pre-shared knowledge.
This mapping results in a set of triggers and corresponding
targets forming trigger-target pairs that encode the message.
We depict them as backdoor definitions in Fig. 2. During
dataset poisoning, as many backdoors as possible, adhering
to the sender-defined PDR are embedded.

(3) Dataset Submission. The poisoned dataset, along with hy-
perparameters, is sent to the MLaaS provider for training.

(4) Model Training. After submission to an MLaaS provider,
the modified dataset is used to train anMLmodel, preserving
the encoded message within.

(5) Sample Generation. Next, the message extraction phase
begins. Here, the receiver initially creates a corresponding
inference sample using one part of the pre-shared knowledge.
In particular, an evaluation sample is sequentially equipped
with the different triggers as specified by the backdoor strat-
egy. Once a trigger is present in the input sample, the corre-
sponding backdoor can be activated.

(6) Inference Loop. Upon using this sample for inference, the
prediction result containing the hidden encoded message
from the covert channel can be obtained. In particular, the
triggered sample utilized for inference will generate the re-
spective sender-chosen prediction. This prediction contains
the target associated with the embedded backdoor. Depend-
ing on the target labels in the backdoor strategy and the
prediction result, it can be inferred whether the message is
complete or not. If incomplete, a new subsequent triggered
sample is generated, and the inference process of step 6 is
repeated with a fresh trigger.

(7) Decoding & Error Correction. Afterward, the observed
backdoor targets are translated into the transmitted binary
bit sequence, adhering to the backdoor strategy defined in
the pre-shared knowledge. Once the message is complete,
error correction techniques can be applied to enhance trans-
mission reliability. Using the second part of the pre-shared
knowledge, the receiver decodes the message embedded in
the prediction result to retrieve the original message.

After clarifying the fundamentals above, we present three specific
instantiations in the next section, each employing distinct encoding
and decoding strategies leveraging different pre-shared knowledge.

4 COVERT CHANNEL INSTANTIATIONS
Below, we present three covert channel variations, namely single-
trigger backdoors (STB), multi-trigger backdoors (MTB), and light-
trigger backdoors (LTB), that instantiate our general approach and
are characterized by a unique way to define type, appearance, lo-
cation patterns, and target labels that map bits to backdoors. Each
method focuses on specific covert channel properties. While STB is
the most straightforward approach with high robustness, the size
of the pre-shared knowledge increases for classification tasks with
more classes. Therefore, we design an alternative approach, MTB,

Cloud-Based Machine Learning Models as Covert Communication Channels ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Location

Train

MLaaS

Pre-Shared Knowledge

Training
Dataset

Evaluation Sample

4

6 7

1.15 8.55 … 3.12 Prediction Vector

Encoding Phase (Sender-Side)

Type

Appearance
Backdoor Strategy

Target
Labels

Trigger /

/

/

/ …

/ …

/ …

=

Triggered Sample
5

Message
Complete?

Error Correction

Extraction Phase (Receiver-Side)

Poisoned
Dataset

1

Bit Encoding

Backdoor Definitions

Message

3

Bit Encoding Message
2

/

/

/ …

/ …

Figure 2: Visualization of the encoding and decoding steps of our covert communication channel based on backdoors.

Backdoor Encoding

Bits Backdoor Location Target

00 1 (0,0) 0

01 2 (5,0) 1

11 3 (10,0) 3

11 4 (15,0) 3

01 5 (20,0) 1

OQ 00 01 11 11 01
ITA-2

𝑇𝑃𝛿=5

Trigger Specification
Type, Appearance
Location Pattern

0
1
2
3

Target Label
Codebook

00
01
10
11

Encoded Bits

Pre-shared knowledge

Figure 3: Example of STB encoding "OQ" into five backdoors.
The model’s main classification task has four classes (0-3).

which rely on a fixed amount of pre-shared knowledge. A draw-
back from both approaches is the negative impact on the model’s
performance on the main task, which is addressed by LTB. Hence,
each approach has strengths and weaknesses and the sender can
choose the concrete instantiation that fits best the specific use-case.

4.1 Single-Trigger
First, we consider an intuitive approach based on a bit-encoding
codebook. The approach relies on one specific trigger appearance,
hence we name it single-trigger backdoors (STB).
Encoding. For illustrative purposes, we opt for a monochromatic
(red) square pixel as trigger appearance. The trigger specification
includes the designated location pattern and an associated code-
book, responsible for mapping backdoor targets to specific bits.
They constitute integral components of the pre-shared knowledge.
Note, that the size of the codebook is dependent on the number of
classes within the classification task, where more classes could lead
to an increased codebook size. This, however, has the advantage
that a single target label can encode a longer bit sequence.
Fig. 3 depicts the concept of STB for an example with a 4-class
classification task (target labels 0, 1, 2, and 3) and a text message
consisting of the two characters "OQ". This message is encoded
into a binary string using the ITA-2 encoding [21], as applied in
our experimental setup and discussed in App. A. As the codebook
accommodates bit-tuples, a single backdoor represents two bits.

The backdoor location is systematically adjusted based on the TP
location pattern. For instance, for the spacing 𝛿 = 5 the coordinates
for for the first and the second backdoor would be (0,0) and (5,0).
The backdoor targets align with the codebook-defined bits.4

Dataset Poisoning. The backdoors are then embedded onto separate
samples from within the train dataset via clean-label backdoor
attacks [39] using data poisoning (cf. Sect. 2). For instance, all five
backdoors in Fig. 3 are injected into different samples. Even if
backdoor 2 and 5 with different trigger locations (5,0) and (20,0)
have the same target label 1, the backdoors are not injected onto
the same samples. The overall amount of poisoned samples results
from the poison data rate (PDR) chosen by the message sender.
Extraction & Decoding. For decoding, the trigger defined in the
pre-shared knowledge is injected into an arbitrary sample, which
subsequently undergoes inference. By systematically adjusting the
trigger’s location in accordance with the pre-shared location pat-
tern, the receiver can derive a sequence of corresponding predic-
tions, e.g., 0-1-3-3-1 for the example illustrated in Fig. 3. These
prediction targets can then be transformed into the original binary
representation with the help of the codebook. We elaborate on error
correction methods, like Hamming Codes [16], in App. D.3.

4.2 Multi-Trigger
To minimize the amount of pre-shared knowledge and eliminate
the need for a codebook, which tends to expand with the number of
classes within the classification task due to the need to list all pos-
sible bit combinations, we propose to rely on a conversion protocol.
This protocol, essentially addressing STB’s downsides, operates on
a fixed set of rules, enabling the seamless encoding between bits
and backdoors and vice versa. It is based on the general capability
of DNNs to distinguish between subtle differences in the trigger
appearances. To encode different bit sequences, we leverage mul-
tiple colors of backdoor triggers and, hence, name the technique
multi-trigger backdoors (MTB) approach.

4We do not introduce a fixed rule for message termination to maintain flexibility.
Message termination can be inferred from the decoded content, indicated by a specific
bit sequence, or tied to a designated target label. Alternatively, initial backdoors or
bits may indicate message length.

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Torsten Krauß, Jasper Stang, and Alexandra Dmitrienko

Backdoor Encoding

Bits Backdoor Color Location Target

1000 1 (0,0) 3

111 2 (5,0) 0

110 3 (10,0) 1

1 4 (15,0) 0

OQ 00 01 11 11 01
ITA-2

𝑇𝑃𝛿=5

Trigger Specification
Type, Appearance
Location Pattern

Pre-shared knowledge

Rule 6) append 1 bitColor
Color Mapping

1
2
3

1-bit Count

Conversion Protocol

Rule 1-6

1000 111 110 1

Figure 4: Example ofMTB encoding "OQ" into four backdoors.
The model’s main classification task has ten classes.

To realize MTB, we need to design a concrete set of rules within
the conversion protocol. Second, we need to address the challenge
of forcing the model to distinguish between backdoor triggers of
different colors that reside in the same location on the evaluation
sample. Otherwise, if the model cannot distinguish between such
triggers, the bit sequences of the original message can’t be decoded.
Conversion Protocol. The encoding method relies on a color mapping
(pre-shared ordered list of colors), that links counts of subsequent
"1" bits in the bit encoding sequence of the message to different
colors. Fig. 4 shows the three colors: Red, green, and blue associated
with 1, 2, and 3 subsequent "1" bits, respectively. Subsequent "0"
bits in the message are encoded using the target of the backdoors.
Next, we describe the protocol consisting of six concrete rules for
encoding "1" and "0" bit sequences into backdoors considering a
classification task with 𝑛 classes: 1) Subsequent "1" bits are encoded
with different colors dependent on their count. 2) "1" bit sequences
that exceed the available count in the color mapping are split into
sub-sequences and encoded in additional backdoors. 3) Subsequent
"0" bits are encoded using the target label of the backdoor, again
dependent on their count. Thereby, target label 0 in indicates the
absence of any subsequent "0" bit, whereas the following target
labels (1, 2,..., 𝑛-2) indicate the presence of different numbers of "0"
bits. Hence, the first 𝑛-2 target labels can be used to encode between
zero and 𝑛-3 subsequent "0" bits, as visualized in App. Fig. 8. 4) "0"
bit sequences that exceed the amount of subsequent "0" bits that
can be handled by rule 3, are encoded in additional backdoors using
the second but last target class (cf. App. Fig. 8). 5) A sample from the
last class is excluded from being used for encoding and is utilized
for evaluation purposes. 6) To ensure proper encoding, the message
must start with a "1" bit. Therefore, a single "1" bit is appended
to the beginning of each message and removed on the receiver
introducing a negligible overhead of one bit.
Encoding. Initially, a "1" bit is appended to the complete bit sequence
(rule 6). Afterward, as visualized in the example in Fig. 4, the bits
are processed sequentially. For instance, the first four bits, "1000",
are encoded with a red trigger denoting the presence of a single "1"
bit at the sequence’s beginning, as indicated by the color mapping.
The associated backdoor is assigned a target value of 3, effectively
encoding the three consecutive "0" bits. Next, the bits "111" are
encoded using a blue trigger to represent three "1" bits, and a target
label of 0 is applied, indicating the absence of any subsequent "0"
bits within this particular set of three bits. This process is seamlessly

repeated until the end of the bit sequence. The worst-case scenario
would be a set of bits that solely consists of "0" bits exceeding
the number of available target labels. Hence, those bits cannot be
decoded with one backdoor, which we discuss in App. B.
Dataset Poisoning. The backdoors are embedded similarly to STB,
but with a modification based on the used colors. Given that a
single location may accommodate multiple potential color triggers
(cf. the three colors in Fig. 4), the model must effectively discrimi-
nate between these triggers, which is challenging. The objective
is to ensure that an injected backdoor with a red trigger does not
result in a misclassification when a green trigger is introduced
on the evaluation sample at the same location. To maintain this
distinction and guarantee that solely one trigger color produces
targeted misclassification, the unused trigger colors should yield
high prediction confidence towards the evaluation (last available)
class for the identical trigger location. Hence, the model must be
compelled to consider both, the color and the location of the trigger.
This challenge is tackled by introducing triggers with the unused
trigger colors to samples belonging to the evaluation class, essen-
tially offering the model an incentive to distinguish trigger colors
and leading to genuine predictions during the inference process.
We name this technique "color distinction" in the paper.
Extraction & Decoding. According to rule 6 of the conversion proto-
col, the inference process involves selecting an inferrence sample
from the last label class, (cf. App. Fig. 8). The remaining label classes
are reserved for clean-label backdoors. The receiver selects a sam-
ple that is correctly classified in the evaluation class without an
injected trigger. Consequently, if the introduction of a trigger leads
to any misclassification, it indicates the presence of an embedded
backdoor that encodes specific bits. For inference, the receiver must
introduce all possible triggers, denoted by distinct trigger colors,
corresponding to the actual position defined by the location pat-
tern. The example in Fig. 4 entails the usage of three distinct colors.
Through an analysis of the misclassified prediction target and the
color of the trigger that caused it, the receiver extracts the con-
cealed bits. When the receiver successfully receives the genuine
class of the evaluation sample for all possible triggers, indicating
the absence of all backdoors, the message end is reached.
Error Correction. For MTB, the message length behind a single back-
door is not fixed, e.g., color encodes 1-3 bits in Fig. 4, rendering
conventional error-correction codes unsuitable, as they operate on
fixed-length sequences. Therefore, we add two specially crafted
backdoors to the message beginning that encode message lengths
up to 99 bits using backdoor targets and introduce a specially de-
signed beam-search-based [10] algorithm. Besides the addition of
the two backdoors, this algorithm is solely applied on the receiver
side, and, hence, less invasive than other methods like Hamming
Codes [16] used for STB in App. D.3 and imposes negligible over-
head. The approach leverages beam search [10] to explore a search
space by expanding the most promising paths. It allows exploring
paths that do not correspond to the actual observed backdoor. In-
stead of the correct output, the 𝑘 , e.g., 𝑘 = 2, most likely output
classes are considered and assumed to be correct. For an ineffective
backdoor, probably the groud-truth label is predicted instead of the
backdoor target. However, due to efforts made to embed the back-
door, it is likely, that the prediction for the backdoor target class

Cloud-Based Machine Learning Models as Covert Communication Channels ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

is higher than the prediction for all remaining classes, a concept
that we leverage later for the third covert channel instantiation.
Hence, setting the beam-search parameter 𝑘 = 2 is reasonable and
capable of correcting ineffective backdoors and with this correcting
a transmission error. The correction is performed by considering
two exclusion criteria that eliminate erroneous outcomes: 1) The
first condition hinges on the employed text encoding technique.
E.g., if the ITA-2 encoding [21] (cf. App. A) is used, each message
is translated into 5-bit sequences. Consequently, the final decoded
message must be divisible by 5. 2) Moreover, based on the two spe-
cific backdoors at the message beginning that encode the message
length, the algorithm conducts a message length verification check.
The algorithm assigns a probability to each possible outcome and se-
lects the message with the highest probability that also satisfies the
two exclusion criteria. While this may not always be the originally
sent message, errors can likely be identified and corrected.

4.3 Light-Trigger
Both, STB and MTB suffer from a notable limitation wherein caused
by the backdoors, that the operation of the covert channel results
in a model performance reduction, albeit a relatively minor one for
low poison data rates (PDRs).5 Further, the stealthiness of the covert
channel is negatively impacted. To address this drawback, we in-
troduce a novel category of backdoors, which we term light-trigger
backdoors (LTB). The underlying concept of LTBs revolves around
the utilization of distinct trigger pairs, such as a green and a red
square positioned in the same location, pre-shared between sender
and receiver. Depending on the specific bit to be encoded, either the
first or the second trigger is introduced at the actual location and
subsequently incorporated into the training dataset with an exceed-
ingly low PDR (below 1%). The fundamental premise here is that
the injected trigger will elicit higher classification confidence to-
wards the target label of the backdoor compared to the non-injected
trigger. Importantly, both triggers leave the genuine prediction of
the entire sample unaltered. Yet, the receiver is able to differentiate
which trigger was introduced and subsequently reconstructs the
concealed message, while the overall model performance remains
unaffected as no misclassification occurs.
To enable LTB, the sender and receiver must define the backdoor’s
target label class, a distinct evaluation label, a pair of triggers, and a
location pattern in the pre-shared knowledge as visualized in Fig. 5.
Encoding. In accordance with the specific bit to be encoded, the
sender selects one of the two available backdoors for insertion at
the designated location. As exemplified in Fig. 5, let’s consider the
character "B", which results in the bit sequence "10011". The encod-
ing process introduces the green trigger for the initial "1" in the bit
sequence, followed by the red trigger for the subsequent "0", and so
forth. This sequential encoding adheres to the schema defined in the
pre-shared knowledge. The target label of the backdoor, e.g., "dog"
as defined in the light trigger schema in Fig. 5, remains consistent
for all embedded backdoors.6

5The PDR trades off model performance and covert channel capacity and efficacy.
6The end of the message can be inferred by analyzing the decoded content. Alter-
natively, one can add a specific notifier that needs to be defined in the pre-shared
knowledge or encode the message length within the first backdoors or bits.

Decoding Backdoor 1

Backdoor Encoding

Bits Backdoor Color Location Target

1 1 (0,0) Dog

0 2 (5,0) Dog

… … … … …

B 10011
ITA-2

Pre-shared knowledge

𝑇𝑃𝛿=5

Light Trigger Schema
0-bit Trigger
1-bit Trigger
Target Label

Evaluation Label
Location Pattern

Dog
Bird

Target Prediction

Bird 0.98

0.02

Target Prediction

Bird 0.90

0.10

0.02 < 0.10 1-bit

Dog Dog

Figure 5: LTB encoding and decoding of the character "B".

Dataset Poisoning. To embed backdoors, we employ a strategy akin
to that of STB. In the example in Fig. 5, this strategy entails the in-
sertion of the green trigger into samples originating from the target
class "dog", thus introducing an effective clean-label backdoor. In
addition, we also incorporate the "color distinction" method of MTB.
This involves the simultaneous addition of the unused trigger, situ-
ated at the actual location, onto samples from the evaluation class
"bird". This facilitates the DNN’s ability to differentiate between
the two trigger colors during inference.
For LTB, it is essential to configure the PDR at a level where the
backdoor is ineffective, meaning the confidence in the output layer
for the benign class is still the highest. Moreover, the degree of dif-
ferentiation between the two triggers can be regulated by adjusting
the PDR, with a higher PDR rendering a more straightforward com-
parison between the two triggers. Consequently, the PDR serves
as an important parameter for the sender to balance between mini-
mizing decoding errors and maximizing backdoor stealthiness.
Extraction & Decoding. For message extraction, the receiver intro-
duces both triggers, red and green, onto the evaluation sample,
subsequently examining the results of both inference operations.
In the absence of any embedded backdoors, both predictions yield
comparably low values for the target label class "dog." However,
in the presence of an active backdoor, as exemplified by the green
trigger within the context of the first backdoor in Fig. 5, a noticeable
elevation in the classification confidence for the target label "dog"
is observed. Consequently, the receiver can decode the backdoor,
discerning a 1-bit based on the schema outlined in the pre-shared
knowledge. Note, that even in these circumstances, the ultimate
prediction of the correct class, "bird", remains intact essentially
maintaining the model’s main task performance. Regarding error
correction, this approach behaves similarly to STB.
Summary. We presented three covert channel instantiations: STB,
which focuses on robustness and low inference overhead but poten-
tially suffers from a high amount of pre-shared knowledge. MTB is
designed with a fixed amount of pre-shared knowledge but slightly
increases the inference overhead for the receiver. LTB reduces the
influence on the model’s main task accuracy and, hence, increases
the covert channel’s stealthiness while sacrificing channel capacity.
Based on these properties, the sender and receiver can choose the
most suitable approach for the targeted application scenario.

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Torsten Krauß, Jasper Stang, and Alexandra Dmitrienko

5 EVALUATION
In this section, we begin by describing our experimental setup
(cf. Sect. 5.2) and then report some preliminary experiments (cf.
Sect. 5.2) where we evaluate different poison data rates (PDRs),
dataset poisoning methods, and different triggers varying in types
and properties like size, colour, and shape. Afterward, we provide
a rigorous evaluation of STB, MTB, and LTB instantiations of our
general approach in Sect. 5.3, Sect. 5.4, and Sect. 5.5, respectively.

5.1 Hardware & Experimental Setup
Experiments are implemented in PyTorch [35] with an NVIDIA A16
GPU (accessible via CUDA [34]) with 4 virtual GPUs, each equipped
with 16GB memory. We employed the Adam optimizer (learning
rate 0.001, weight decay 0.0001), gradient clipping set at 0.1, and
a batch size of 512. We train models of different types and sizes,
namely ResNet-18 [17] and SqueezeNet [20] on CIFAR-10 [25] and
STL-10 [6], two common image classification datasets.
Bit Encoding. We structure our experiments around the use case
of covertly transmitting a text message within a DNN trained on
an image classification task. To encode text to bit sequences, we
use the ITA-2 encoding which uses five bits per character [21]. We
elaborate more on the choice of ITA-2 and alternatives in App. A.
PDRDistribution.The poison data rate (PDR) refers to the number
of poisoned samples in the entire dataset (cf. Sect. 2). Thereby, all
backdoor target labels are assigned the same fraction of the full
set of poisoned samples defined by the PDR and, hence, share the
same number of poisoned samples. This implies that the number
of backdoors and their target labels do not affect the total amount
of poisoned samples. In case multiple backdoors have the same
target label, we share the number of poisoned samples equally
among them, which is our PDR distribution. For instance, when
considering a dataset with 1,000 samples and a PDR of 0.02, 20
samples are poisoned. When embedding three backdoors, with
backdoors one (b1) and two (b2) targeting label 0 and backdoor (b3)
targeting label 1, the following poisonings will be applied: The first
two backdoors are assigned with 50% of the poisoned samples and
share them equally, such that b1 and b2 get 5 samples each. b3 gets
the remaining 50%, meaning 10 samples.

5.2 Preliminary Experiments
Dataset Poisoning Method. To evaluate the general effective-
ness of our dataset poisoning method introduced in the message
embedding strategy in Sect. 3.2, namely that we inject one trigger
per sample, we conducted two experiments with three triggers.
First, each of the three triggers (located at different positions) was
injected into separate samples. Each trigger poisoned the same
amount of samples, sharing the PDR equally as previously defined
in our PDR distribution. In the subsequent experiment, all three trig-
gers were simultaneously injected into the same samples using all
samples defined by the PDR leading to a consistent number of over-
all poisoned samples in both experiments. The results supported
our initial preposition: Triggers injected in the second experiment
exhibited notably lower performance compared to those in the first
experiment. Specifically, triggers injected into different samples
achieved mean attack success rate (ASR) values of 67.87%, 58.74%,
and 62.23%, while those injected into the same samples only attained

mean ASR values of 46.88%, 29.69%, and 28.58%. Hence, we maintain
the strategy of using distinct samples for all our experiments.
Trigger Appearance. To decide on the best trigger type for our
setup, we evaluated multiple simultaneously embedded mask trig-
gers and pixel triggers. Our findings indicate inferior performance
of mask triggers compared to pixel triggers (results detailed in
App. D.2). Hence, in the main part of the paper, we evaluate the
appearance of pixel triggers below.
Trigger Size. We examined the influence of trigger size on the back-
door ASR by training 16 ResNet-18 [17] instances on CIFAR-10 [25]
with red square pixel triggers of sizes 9, 16, 25, and 36 pixels, as
visualized in App. Fig. 10. The PDR ranged from 0.05 to 0.20 percent,
with a step size of 0.05, yielding consistent results. The location
pattern employed was TP with 𝛿 = 20. These models underwent
training for 100 epochs, with ASR assessed at each epoch. The find-
ings revealed increasing ASRs with larger trigger sizes, such as a
1.23% growth from size 9 to 16 pixels at a PDR of 0.15, as depicted in
App. Fig. 10. However, the ASR reached a plateau for trigger sizes
of 25 and 36, suggesting the existence of an optimal trigger size for
the covert channel. We believe, that this optimal size likely depends
on the kernel size of the convolutional layers, as the kernel size
defines the amount of pixels that are processed simultaneously and
combined into the layer output. Eventually, as a trigger with size 9
already has a high average ASR of 89%, we have chosen this size
for the use in further experiments.
Trigger Shape.We examined the impact of various trigger shapes by
training 42 ResNet-18 [17] models on CIFAR-10 [25] in the same
training setup as for trigger sizes. We used different monochromatic
red trigger shapes, as illustrated in App. Fig. 12. The ASR ranged
between 55% and 70%, varying with the specific trigger shape. In-
creasing trigger size yielded similar results as previously discussed.
These variations in ASR are attributed to the ease with which the
model recognizes different shapes, as convolutional kernels may
only capture parts of the shape’s structure. For example, the square
trigger proved to be the most efficient in our experiments, surpass-
ing other shapes and thus being chosen for our further experiments.
Color. In our color selection experiment, we assessed nine differ-
ent colors for backdoor triggers (cf. App. Fig. 12). We trained 63
ResNet-18 [17] models on CIFAR-10 [25] with a PDR varying from
0.05 to 0.20 (step size of 0.025), embedding backdoors with one of
the selected colors in each model. The ASR values ranged from
54.49% to 78.20%, with color 6 achieving the lowest and color 1 the
highest ASR. Rounded ASR values for colors 1 to 9 were as follows:
78%, 68%, 66%, 73%, 61%, 54%, 69%, 64%, and 77%. These results
suggest that the model is sensitive to extreme color values with
high contrast in any of the three channels (red, green, blue). We
deduce that such values are infrequent in real-world images, mak-
ing them easier for the model to recognize. As a result, we consider
the optimal color combination for triggers to be 3, 7, and 9. These
colors are mutually exclusive, achieving high ASRs when used in-
dependently and very low ASRs when another color is introduced.
Consequently, we selected these colors for the MTB approach. For
LTB, we utilized colors 3 and 7, as only two colors of triggers are
required for this approach.

Cloud-Based Machine Learning Models as Covert Communication Channels ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Table 1: Mean backdoor ASRs and mean model accuracies (rounded) in percent for different message lengths and PDRs.

Injected Message Accuracies in % Rounded ASRs for Backdoors in %
Length PDR Test Train B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18

0: - - 71 98
1:

9

0.05 66 90 77 68 60 - - - - - - - - - - - - - - -
2: 0.1 67 91 87 84 83 - - - - - - - - - - - - - - -
3: 0.15 65 89 88 88 86 - - - - - - - - - - - - - - -
4: 0.2 65 89 89 91 91 - - - - - - - - - - - - - - -
5:

54

0.05 65 89 81 63 69 53 72 64 81 76 75 59 68 75 48 48 66 66 48 72
6: 0.1 65 90 89 76 79 86 88 80 87 86 86 76 87 83 60 57 81 83 74 79
7: 0.15 65 90 91 82 83 91 94 88 90 90 89 89 89 83 75 69 81 83 85 89
8: 0.20 64 90 92 83 81 90 92 88 90 93 90 90 92 82 73 74 82 84 85 86

5.3 Single-Trigger
In this subsection, we provide a comprehensive analysis of the
factors influencing the STB approach.
Covert Channel Capacity. To establish a baseline for transmission
capacity, we injected various random messages (cf. App. D.3) with
lengths ranging from 9 to 54 bits (equivalent to 3 to 18 backdoors)
into a ResNet-18 [17] model trained on CIFAR-10 [25]. By default,
we employed red square pixel triggers and the TP location pattern
and compare with SP later on. PDRs ranging from 0.05 to 0.20 were
used with a step size of 0.05. The results are presented in Tab. 1
with an extended version in App. Tab. 4 and list the mean ASR
over all samples from the train dataset. It’s evident that the model
performance is significantly impacted compared to a benign model
depicted in line 0 in Tab. 1, as reflected in the accuracy values.
However, the impact of the message length itself is negligible. For
instance, comparing the 9-bit message with three backdoor target
classes to the 54-bit message with seven backdoor target classes,
there’s only a maximum difference of 3% in test accuracy and 3% in
train accuracy between lines 1-4 and lines 5-8 in Tab. 1. This occurs
because longer messages do not introduce more poisonings into
the dataset due to our data poisoning strategy. The primary factor
influencing the model’s performance is the PDR. Higher PDR with
more poisoned samples tends towards higher accuracy reductions.
The slight accuracy fluctuations (visualized in App. Fig. 13) may
stem from training process randomness, variations in the label
classes impacted by clean-label backdoors, or trigger positions.
Robustness & Reliability. Next, we analyze the binary error rates
(BERs, cf. Sect. 2) of the 54-bit message scenario for one random
evaluation sample. The results in App. Fig. 14 illustrate that as
the PDR increases, the communication becomes less error-prone
over successive training rounds. For instance, with a PDR of 0.05,
the BER fluctuates between 17% and 0% throughout the 100-epoch
training period. However, the range steadily diminishes as the
training time increases. Notably, when the PDR is at 0.2, the BER
reaches zero in the initial training rounds (< 4) and maintains this
level consistently in the subsequent epochs. This trend indicates
the method’s capability to establish a reliable covert channel.
Evaluation Sample for Message Retrieval. Furthermore, we
studied the influence of the evaluation sample on effectiveness
of the message retrieval. For that, we conducted an assessment
of the BERs across all samples in the train set on a label-wise
basis. In App. Fig. 15, we depict the outcomes for PDR values of
0.05 and 0.15, showing average BERs of 0.1619 (equivalent to 9
bits incorrect out of 54) and 0.0697 (4 bits incorrect out of 54),

respectively. These results highlight that, in principle, any sample
can serve for message retrieval. Nevertheless, noticeable variations
in performance emerge across different labels. Certain labels, such
as label 4 (’cat’ in CIFAR-10 [25]), exhibit BER values approaching
0%, while others, like labels 2 (’automobile’) and 9 (’truck’), display
higher BERs. The reason for this variance can be attributed to the
utilization of a red trigger. As the ’truck’ class comprises several
firetrucks in its ground-truth class, which naturally possess a red
color, a higher BER occurs. The same rationale applies to red cars in
the ’car’ class. Conversely, cats typically do not exhibit an intense
red color but are more commonly brown, black, or white. Hence,
samples that lack the color of the used trigger tend to perform
better in inference and, subsequently, message retrieval.
Location Pattern.We conducted an evaluation of the BER using
the same 54-bit message scenario with a PDR of 0.15, employing
the spiral pattern (SP) for trigger locations. Our findings revealed a
reduction in the average BER across all samples to 0.0335, a notable
improvement compared to the 0.0697 BER observed in the previous
experiment with the traverse pattern (TP). Importantly, test accura-
cies remained consistent, with a result of 65.02% for SP and 64.51%
for TP. As such, we can assert that SP is the preferred choice for
the STB approach due to a lower BER.
Application Independence To assess the adaptability of our ap-
proach to different application scenarios, we conducted an ex-
periment using another model, SqueezeNet [20]. In this experi-
ment, we injected the 54-bit message with a PDR of 0.15 into the
CIFAR-10 [25] dataset and trained the model for 100 epochs, em-
ploying the same hyperparameters as used for the ResNet-18 [17]
model. SqueezeNet achieved a test accuracy of 68.72%, which is sim-
ilar to the accuracy observed without a hidden message (69.85%).
The label-wise average BER is visualized in App. Fig. 17a with a
value of 0.029, equivalent to approximately 1.6 erroneous bits out of
54 bits. These results suggest that our approach is model-agnostic,
as it performed effectively with the SqueezeNet architecture. No-
tably, the improved performance with the SqueezeNet model may
be attributed to its simpler architecture, which simplifies the in-
jection of backdoors. Furthermore, the experiment revealed that
similar to the ResNet-18 [17], certain classes exhibited higher BERs,
such as classes ’truck’ and ’car,’ which often contain samples with
red colors, causing higher error rates. Conversely, class 4 (’cat’)
achieved a mean BER of nearly 0%, indicating reliable message ex-
traction for the majority of cases. Further, we conducted the same
experiment using the STL-10 [6] dataset yielding similar results as

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Torsten Krauß, Jasper Stang, and Alexandra Dmitrienko

(a) Data Poisoning (b) Color Distinct. (c) SP Pattern (d) Squeezenet [20]

Figure 6: Levenshtein error rates (LER) without (Plain) and with beam search error correction (BS) for varying scenarios.

visualized in App. Fig. 17b. Hence, we can argue that our approach
is both, model and dataset agnostic.

5.4 Multi-Trigger
To evaluate the MTB approach, due to space limitations, we do not
report the exact same experiments as for STB, which yielded similar
results, but focus on experiments, that give interesting insights into
the approach. For interested readers, we show the experimental
results for the same messages as reported in Tab. 1 for STB in App.
Tab. 5 for MTB. To provide a more insightful evaluation for MTB,
we embedded multiple text messages into the models, with the
longest message having 66 encoded bits (equivalent to 22 backdoors)
following ITA-2 [21] for text to bit encoding. We report the exact
messages utilized in App. D.4. As various messages show similar
results, we report the results for the longest message. Per default,
we used the red square trigger and TP for trigger locations. The
message length that we report is similar to those tested for STB,
showing that MTB can handle similar capacities. The models were
again trained for 100 epochs and various PDRs were employed,
ranging from 0.05 to 0.20 with a step size of 0.05.
Fidelity. We assessed the impact of MTB on the model’s regular
task performance, also called main task accuracy. As baseline, we
use a regular model with 70% accuracy. For comparison, we trained
models using different location patterns (TP and SP) and examined
the influence of the dataset poisoning strategy, namely the "color
distinction" method that injects unused triggers into clean samples
(cf. Sect. 4). The results for the longest message with 66 bits are
presented in App. Fig. 18. TP exhibited a slightly lower impact on the
model’s main task accuracy, achieving 65.99% accuracy compared
to SP, which reached 64.51%. Both experiments followed the naïve
injection strategy without embedding unused triggers as in the
"color distinction" method. When we utilized the "color distinction"
method during dataset poisoning, the main task accuracy further
decreased to 64.69% for TP, while for SP, the accuracy increased
to 65.21%. The slightly reduced main task accuracy compared to
the benign model is expected, as the strategy introduces additional
triggers into the samples. However, we could not detect any clear
indication that any setup performs significantly worse than others.
Covert Channel Capacity. For the 66-bit message, we assess
the MTB performance using Levenshtein error rate (LER) [46]
(cf. Sect. 2) instead of BERs due to potentially varying lengths
between the sent and decoded messages. Best results are yielded
for the highest PDR of 0.20. Fig. 6a to Fig. 6c illustrate the influ-
ence of the proposed beam-search error correction, the use of the
"color distinction" method, and the location patterns. First, when
employing naïve dataset poisoning without the "color distinction"
method, the median LERs are 0.1944 and 0.2317 for configurations
with and without error correction, respectively. Error correction

slightly increases Levenshtein’s error rate in ideal cases (error rate
of zero), where it reaches 0.029. However, it significantly reduces
the maximum error rate from 0.6818 to 0.4056, ultimately leading
to improved results. Applying the color distinction method has a
positive impact on the covert channel, resulting in improved metric
values. The LERs for configurations with and without error cor-
rection are as follows: Mean (0.1315, 0.1666), Minimum (0.014, 0),
and Maximum (0.360, 0.696). When shifting from the TP to the SP
location pattern and while retaining the color distinction method,
results deteriorate, with mean values of 0.333 and 0.3939. This sug-
gests that for MTB, the TP location strategy should be favored.
Application Independence We conducted an experiment us-
ing a SqueezeNet model [20], injecting the same 66-bit message
with PDR 0.20 and TP location pattern. SqueezeNet outperformed
ResNet-18 [17], likely due to its simpler architecture, which can
better detect backdoor triggers. With error correction applied, the
medians visualized in Fig. 6d were 0.0833, and without error cor-
rection, they were 0.1212. The minimum error rates were zero
in both cases, while the maximum error rate was 0.2222 with er-
ror correction and 0.6060 without error correction. Compared to
the best-performing ResNet-18 with a median of 0.1315, utilizing
SqueezeNet reduced the error rate by almost half. We can conclude,
that the approach is feasible on multiple model architectures. 7

5.5 Light-Trigger
For LTB, we conducted experiments injecting a 20-bit message
("JASP" encoded in ITA2 [21]) into a ResNet-18 [17] model trained
on CIFAR-10 [25] using a SP location pattern. We present results
for two specific PDRs, namely 0.0010 and 0.0016 that impact 50
and 80 samples per backdoor target class, respectively. We refer to
0.0010 and 0.0016 as low and high PDRs in the following, while both
PDRs are extremely low compared to 0.05 to 0.20 in the previous
experiments. The model was trained for 100 epochs.
Covert Channel Performance. The findings in Fig. 7 reveal that
lower PDRs result in proportionally lower ASRs. An ASR of 10%
serves as a baseline with no signs of an active backdoor, accounting
for the fact that 10% of the evaluation samples are from the target
class by default in CIFAR-10. Fig. 7a and Fig. 7b depict results for
2 out of 20 backdoors8, and show that a PDR of 0.0016 is already
high enough to increase the ASR from 10% to a significantly higher
value. Fig. 7c and Fig. 7d show the BER for two specific evaluation
samples. It is evident that even if backdoors with a lower PDR of
0.0010 do not achieve high ASRs, the message can still be restored
with minimal error rates. Over time, the BER converges to zero,
indicating the feasibility of injecting up to 20 bits into a ResNet-18

7We omitted the results for STL-10, which yield similar results, due to space limitations.
8The trends were consistent across all 20 backdoors.

Cloud-Based Machine Learning Models as Covert Communication Channels ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

(a) (b) (c) (d) (e) (f)

Figure 7: Results for LTB with 0.0016 PDR (orange) and 0.001 PDR (blue): a) and b) visualize the ASR for two different backdoors.
c) and d) show the BER for two different evaluation samples. e) and f) depict test and train accuracies respectively.

model using LTB. The effect on test and train accuracy, as depicted
in Fig. 7e and Fig. 7f, is negligible when using LTB. Unlike STB and
MTB, LTB does not lead to misclassifications of input data. This
underscores the capability of LTB for reliable covert communication
with minimal impact on the model’s main task accuracy.9

Summary.We showed, that all three covert channel instantiations
can be used effectively to transmit arbitrary bit sequences. While
STB achieves good robustness indicated by low BERs for low PDRs,
MTB provides similar capacity while relying on pre-shared knowl-
edge of fixed size. However, MTB requires more inference effort for
message extraction. LTB does not negatively impact the model’s
performance and, hence, provides a stealthy covert channel but
sacrifices capacity, as each backdoor only encodes one bit.

6 DISCUSSION
Capacity. The capacity of covert channels depends on two key
factors. Firstly, the number of classes within the classification task
has a significant influence. A higher number of classes provides
greater flexibility for embedding backdoors. Secondly, the sample
size plays a crucial role, with larger sample dimensions allowing
for more backdoor locations, regardless of the location pattern. The
model architecture certainly also plays a role, as it must be capable
of learning all backdoors simultaneously, although it is of greater
importance for ensuring robustness rather than enhancing capacity.
STB Approach. STB relies on a fixed codebook, which is constrained
by the number of classes. Hence, STB provides limited flexibility for
capacity enhancement. In cases involving expansive classification
tasks, the parties can decrease the number of classes in the code-
book, using only a subset to also reduce the pre-shared knowledge.
MTB Approach. MTB is notably affected by the number of colors in
the color mapping. Using more colors increases the bit encoding
capacity of a single backdoor, enhancing overall capacity. However,
it also increases the inference effort during decoding. Careful color
selection is pivotal, as certain colors may not be suitable due to
high similarity or the lack of extreme values in the RGB spectrum.
Balancing the number of colors is crucial for effective encoding and
manageable decoding. We strike a practical balance by using three
colors, optimizing encoding efficiency while mitigating decoding
complexity and potential suspicions arising from excessive probing.
LTB Approach. Expanding the capacity of LTB is achievable by using
more than two backdoor triggers, e.g., three or more colors. Further,
more than one evaluation and target label pair can be used, e.g., "bird
→ dog" and "airplane → cat". However, both proposed expansions
necessitate an increment in the corresponding schema within the

9We omitted the results for LTB due to space limitations, as they yield similar results.

pre-shared knowledge andmore probing during message extraction.
Hence, the communication parties must carefully determine the
number of backdoor triggers and evaluation samples to employ,
tailored to the requirements of targeted application scenarios.
Overall, the sender must decide how much of the regular task
performance of an unaltered model he is willing to sacrifice in
exchange for embedding backdoors. Naturally, a greater sacrifice
can lead to increased capacity and robustness for the covert channel.
Stealthiness. LTB is the most stealthy option, as it does not dimin-
ish the regular task performance. However, during inference, the
method’s stealthiness is limited as it requires the injection of appar-
ent pixel triggers. In scenarios where high stealthiness is critical,
alternative backdoor types, such as mask triggers (cf. App. C), can
enhance the overall stealthiness of all approaches.
Reusability. While our covert channels are designed for single-
use message transmission, sending a subsequent message needs
model updates, effectively requiring retraining. This can be handled
by retraining the model in the background in MLaaS setups with-
out causing downtime in the deployed model’s functionality. For
scenarios where the message is removed from a deployed model, un-
learning techniques could be employed to eliminate the embedded
backdoors, coupled with fine-tuning to embed a different message.

7 RELATEDWORK
To the best of our knowledge, there is no directly comparable related
work to ours. Covert channels in ML were only explored in the
context of Federated Learning (FL) [32], a very different scenario
from our MLaaS setting. Below, we discuss why ideas for covert
channels in FL are not directly applicable to the MLaaS scenario. We
then elaborate on model watermarking methods, as those, similarly
to covert channels, embed information into models.
Covert Channels in FL. In FL [32], multiple clients participate in
a federation managed by a central server for collaborative model
training. Each client trains on its local data and shares the trained
model with the central server. The server aggregates the contribu-
tions, typically through averaging, and then distributes the updated
global model. Existing works primarily focus on data transmis-
sion among distinct FL clients, which inherently exposes model
weights and allows manipulation of hyperparameters during train-
ing, facilitating model poisoning. The poisonings must withstand
the central server’s averaging process. To decode messages, the
receiver can examine the model’s weights since messages are often
embedded within them, resulting in a white-box approaches. Ad-
versaries can control multiple clients, effectively creating multiple
sender instances for a covert channel.

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Torsten Krauß, Jasper Stang, and Alexandra Dmitrienko

White-Box. FL-Talk [4] employs a white-box approach for encod-
ing messages within model weights using spectral steganography,
demonstrating errorless transmission of a 16-bit message. The dis-
tinct clients rely on a pre-shared communication schema, knowl-
edge of the layer where the message is embedded, and the two most
recent global models. FedComm [19] follows the same principle of
embedding bits into model weights, incorporating Code-Division
Multiple Access, a spread-spectrum channel-coding technique de-
signed for secure and stealthy military communications. The capac-
ity depends on the model architecture, and the authors achieved a
transmission of 7,904 bits for a VGG model. Kim et al. [23] presents
a scenario where the central server instead of a client sends a covert
message to clients by superimposing a Gaussian codeword onto
weights extracted by the clients. This approach requires server
control, which can undermine the trustworthiness of the entire
federation, as the server is typically considered a trusted entity. In
contrast to these works, our approach does not require access to
the model weights, relying solely on data poisoning and inference.
Black-Box. Costa et al. [7] rely on dataset poisoning for message em-
bedding and inference for extraction, even when complete control
of an FL client is available for sender and receiver. The approach
transmits one bit over multiple FL rounds by creating an edge case
sample at the decision boundary of a class, either mislabeled to a
predefined class or remaining benign, depending on the encoded
bit. However, its capacity is limited compared to our approaches, as
it can transmit only one bit per FL round, whereas our approaches
embed multiple structured backdoors simultaneously. While trans-
mitting a single bit over a covert channel makes sense in the context
of FL which involves multiple rounds of model training, in MLaaS
scenario it would require the sender to re-train the model for trans-
mitting every single bit, which is impractical.
Summarized, our covert channel operates in a different scenario
(black-box and cloud-based), where neither sender nor receiver has
access to model weights or training hyperparameters. Further, we
transmit multiple bits by embedding multiple backdoors.
DNNWatermarking. DNN watermarking [3, 28] is a technique
designed to embed a watermark within a DNN, enabling ownership
claim even after third-party model manipulations.10 Similarly to
covert channels, watermarking methods can be categorized into
white-box, requiring access to model weights, and black-box rely-
ing on inference only. Additionally, watermarking methods can be
categorized as 1-bit or multi-bit approaches. 1-bit methods claim
ownership based on the presence or absence of the watermark
after extraction, while multi-bit approaches embed additional in-
formation, such as a name of a model creator, within the extracted
watermark. For assigning existing works into the mentioned wa-
termarking categories, we refer the reader to [3, 28]. Among those
works, only black-box multi-bit watermarking methods are closely
related to our work. Hence, we discuss them in detail below.
Adi et al. [1] leverage backdoors to embed the watermark into the
model. Differently from our work, they embed only eight backdoors
using randomly generated input samples that produce specific out-
put classes, and without following a specific location pattern for
the backdoors. Zhang et al. [45] adpots a similar approach, varying

10While covert channels aim for maximal transmission capacity and covertness, the
main objectives for watermarks are robustness and fidelity.

the types of backdoor triggers while not limiting the numbers of
embedded backdoors. However, ownership verification is done by
calculating the percentage of effective backdoors during probing.
Hence, the approach is not directly applicable for covert communi-
cation, as ineffective backdoors hinder proper message decoding.

Zhang et al. [44] embed a watermark into a model, which can be
extracted by a second extractor model. Therefore, when adapting
the approach as covert channel, the extractor model needs to be
available to the receiver, essentially increasing the size of the pre-
shared knowledge excessively. Li et al. [29] use a generative model
to create one imperceptible backdoor trigger from a sample and
an image that is part of the pre-shared knowledge. The generated
trigger, essentially one backdoor, is used for ownership verification.

Guo et al. [14] presents a technique tailored for embedded devices.
This technique trains the DNN to behave significantly differently
on samples equipped with a particular perturbation. However, this
approach cannot be adapted as covert channel, as the perturbation is
used for ownership verification and only yields 1 bit of information.

EWE [22] relies on a specialized loss function to ensure the
entanglement of the watermark (consisting of a set of samples
with one specific backdoor) with the main task, making it difficult
to remove the watermark without negatively affecting the main
task. Similar to Zhang et al. [45] ownership verification relies on a
percentage of effective backdoors, making the approach unsuitable
for covert channels. Further, our scenario differs, as EWE requires
access to the model training to manipulate the loss function.
In general, DNNwatermarking prioritizes robustness against model
manipulations while maximizing capacity. Multiple bits are typi-
cally encoded using multiple unstructured backdoors that do not
align with a strategy similar to our location patterns. These ap-
proaches incorporate a big portion of information into the water-
mark key (backdoor trigger). Hence, the extraction phase (owner-
ship verification) yields limited information gain as the trigger is
already known and only the backdoor presence is validated. Our
covert channels are designed to minimize pre-shared knowledge
while optimizing information gain during the extraction process.

8 CONCLUSION
Within this work, we confirm that machine learning models trained
and deployed in public cloud-based environments can be misused as
covert channels by embedding multiple carefully crafted backdoors
simultaneously. Hence, we investigate the influence factors of back-
doors and propose novel embedding strategies, that allow message
encoding via backdoors in models without direct manipulation of
the training process or the model internals. We successfully show-
case message transmission of 20 to 66 bits for different application
scenarios leveraging three distinct channel instantiations that focus
either on minimal message extraction effort, minimal pre-shared
knowledge, or maximal message stealthiness.

ACKNOWLEDGMENTS
This research has been funded by the Federal Ministry of Educa-
tion and Research of Germany (BMBF) within the program „Dig-
ital. Sicher. Souverän.“ in the project "Erkennung von Angriffen
gegen IoT-Netzwerke in Smart Homes - IoTGuard" (project number
16KIS1919).

Cloud-Based Machine Learning Models as Covert Communication Channels ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

REFERENCES
[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet.

2018. Turning Your Weakness into a Strength: Watermarking Deep Neural
Networks by Backdooring. USENIX Security (2018).

[2] Elisabetta Benevento, Davide Aloini, and Nunzia Squicciarini. 2023. Towards a
real-time prediction of waiting times in emergency departments: A comparative
analysis of machine learning techniques. IJF (2023).

[3] Franziska Boenisch. 2021. A Systematic Review on Model Watermarking for
Neural Networks. Frontiers in Big Data (2021).

[4] Huili Chen and Farinaz Koushanfar. 2022. FL-Talk: Covert Communication in
Federated Learning via Spectral Steganography. NeurIPS (2022).

[5] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted
Backdoor Attacks on Deep Learning Systems Using Data Poisoning. arXiv
preprint arXiv:1712.05526 (2017).

[6] Adam Coates, Andrew Ng, and Honglak Lee. 2011. An Analysis of Single-Layer
Networks in Unsupervised Feature Learning. AISTATS (2011).

[7] Gabriele Costa, Fabio Pinelli, Simone Soderi, and Gabriele Tolomei. 2022. Turning
Federated Learning Systems Into Covert Channels. IEEE Access (2022).

[8] Amandeep Singh Dhanjal and Williamjeet Singh. 2023. A comprehensive survey
on automatic speech recognition using neural networks. Multimedia Tools and
Applications (2023).

[9] Federal Bureau of Investigation. 2023. Ghost Stories - Russian Foreign Intelli-
gence Service (SVR) Illegals. https://vault.fbi.gov/ghost-stories-russian-foreign-
intelligence-service-illegals

[10] Markus Freitag and Yaser Al-Onaizan. 2017. Beam Search Strategies for Neural
Machine Translation. arXiv preprint arXiv:1702.01806 (2017).

[11] Bin Gao and Jiangtao Zhai. 2016. A Survey of Covert Channels in BitTorrent
Network. IJISET (2016).

[12] S. Gorn. 1966. Code Extension in ASCII. Commun. ACM (1966).
[13] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. BadNets: Identify-

ing Vulnerabilities in the Machine Learning Model Supply Chain. arXiv preprint
arXiv:1708.06733 (2017).

[14] Jia Guo and Miodrag Potkonjak. 2018. Watermarking Deep Neural Networks for
Embedded Systems. ICCAD (2018).

[15] Nagham Hamid, Abid Yahya, R Badlishah Ahmad, and Osamah M Al-Qershi.
2012. Image Steganography Techniques: An Overview. IJCSS (2012).

[16] Richard W Hamming. 1950. Error Detecting and Error Correcting Codes. The
Bell system technical journal (1950).

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. CVPR (2016).

[18] Dorjan Hitaj, Giulio Pagnotta, Briland Hitaj, Fernando Perez-Cruz, and Luigi V.
Mancini. 2023. FedComm: Federated Learning as a Medium for Covert Commu-
nication. arXiv preprint arXiv:2201.08786 [cs.CR]. (2023).

[19] Dorjan Hitaj, Giulio Pagnotta, Briland Hitaj, Fernando Perez-Cruz, and Luigi V
Mancini. 2023. FedComm: Federated Learning as a Medium for Covert Commu-
nication. IEEE TDSC (2023).

[20] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J.
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and <0.5MB model size. arXiv preprint arXiv:1602.07360 (2016).

[21] INTERNATIONAL TELECOMMUNICATION UNION. 1993. International Tele-
graph Alphabet No. 2. https://www.itu.int/rec/T-REC-S.1-199303-I.

[22] Hengrui Jia, Christopher A. Choquette-Choo, Varun Chandrasekaran, and Nicolas
Papernot. 2021. Entangled Watermarks as a Defense against Model Extraction.
USENIX Security (2021).

[23] Sang Wu Kim. 2023. Covert Communication over Federated Learning Channel.
IMCOM (2023).

[24] Hugo Krawczyk. 1997. HMAC: Keyed-Hashing for Message Authentication. RFC
2104 (1997). https://tools.ietf.org/html/rfc2104 Internet Engineering Task Force
(IETF) Request for Comments (RFC).

[25] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning Multiple Layers of
Features from Tiny Images. Citeseer (2009).

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. NeurIPS (2012).

[27] Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. 2022. Backdoor Learning: A
Survey. IEEE Transactions on Neural Networks and Learning Systems (2022).

[28] Yue Li, Hongxia Wang, and Mauro Barni. 2021. A survey of Deep Neural Network
watermarking techniques. Neurocomputing (2021).

[29] Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing Guo. 2019. How to Prove
Your Model Belongs to You: A Blind-Watermark Based Framework to Protect
Intellectual Property of DNN. ACSAC (2019).

[30] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, and
Matti Pietikäinen. 2020. Deep Learning for Generic Object Detection: A Survey.
IJCV (2020).

[31] Chengxiao Luo, Yiming Li, Yong Jiang, and Shu-Tao Xia. 2023. Untargeted
Backdoor Attack Against Object Detection. ICASSP (2023).

[32] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Net-
works from Decentralized Data. AISTATS (2017).

[33] Dinh C. Nguyen, Quoc-Viet Pham, Pubudu N. Pathirana, Ming Ding, Aruna
Seneviratne, Zihuai Lin, Octavia Dobre, and Won-Joo Hwang. 2022. Federated
Learning for Smart Healthcare: A Survey. ACM Comput. Surv. (2022).

[34] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. 2020. CUDA, release: 10.2.89.
https://developer.nvidia.com/cuda-toolkit

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
PyTorch: An Imperative Style, High-Performance Deep Learning Library. NeurIPS
(2019).

[36] Benjamin IP Rubinstein, Blaine Nelson, Ling Huang, Anthony D Joseph, Shing-
hon Lau, Satish Rao, Nina Taft, and J Doug Tygar. 2009. ANTIDOTE: Understand-
ing and Defending against Poisoning of Anomaly Detectors. IMC (2009).

[37] Claude Elwood Shannon. 1948. A Mathematical Theory of Communication. The
Bell System Technical Journal (1948).

[38] Jing Tian, Gang Xiong, Zhen Li, and Gaopeng Gou. 2020. A Survey of Key Tech-
nologies for Constructing Network Covert Channel. Security and Communication
Networks (2020).

[39] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. 2019. Label-
Consistent Backdoor Attacks. arXiv preprint arXiv:1912.02771 (2019).

[40] Hugo M Verhelst, AW Stannat, and Giulio Mecacci. 2020. Machine Learn-
ing Against Terrorism: How Big Data Collection and Analysis Infuences the
Privacy-Security Dilemma. Science and Engineering Ethics (2020).

[41] Yulong Wang, Minghui Zhao, Shenghong Li, Xin Yuan, and Wei Ni. 2022. Dis-
persed Pixel Perturbation-Based Imperceptible Backdoor Trigger for Image Clas-
sifier Models. IEEE TIFS (2022).

[42] Zhenghong Wang and Ruby B. Lee. 2006. Covert and Side Channels Due to
Processor Architecture. ACSAC (2006).

[43] Chuck Young. 2022. How artificial intelligence is transforming national se-
curity. https://www.gao.gov/blog/how-artificial-intelligence-transforming-
national-security.

[44] Jie Zhang, Dongdong Chen, Jing Liao, Han Fang, Weiming Zhang, Wenbo Zhou,
Hao Cui, and Nenghai Yu. 2020. Model Watermarking for Image Processing
Networks. AAAI (2020).

[45] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph. Stoecklin, Heqing
Huang, and Ian Molloy. 2018. Protecting Intellectual Property of Deep Neural
Networks with Watermarking. ASIACCS (2018).

[46] Shengnan Zhang, Yan Hu, and Guangrong Bian. 2017. Research on String Simi-
larity Algorithm based on Levenshtein Distance. (2017).

A BIT ENCODING
ITA-2. Our covert channel design is agnostic to specific data types
and is intended for conveying arbitrary bit streams. In our exper-
iments detailed in Sect. 5, we choose to transmit text messages
through this channel. To achieve this, we utilize ITA-2 encod-
ing [21], a coding scheme employing five bits for each character.
This encoding accommodates a concise character set of 32 char-
acters, including numerals, uppercase letters, and various special
characters (cf. Tab. 2). Notably, many 5-bit representations serve
dual purposes, allowing the encoding of 64 characters while us-
ing just five bits per character. For instance, by preceding a 5-bit
word with the sequence "11011," it transitions to the special symbol
category, enabling efficient encoding with minimal bit usage.
Other Encoding Options. An alternative option is to use ASCII
encoding [12], which requires seven bits per character, allowing
for a character set of 128 distinct characters. However, due to its
higher bit consumption, ASCII encoding is inefficient for our spe-
cific use case. For instance, compared to ITA-2 encoding, ASCII
encoding requires two additional bits to encode the same letter "A"
(cf. Tab. 3), highlighting the superior efficiency of ITA-2 for our
covert communication needs.

https://vault.fbi.gov/ghost-stories-russian-foreign-intelligence-service-illegals
https://vault.fbi.gov/ghost-stories-russian-foreign-intelligence-service-illegals
https://www.itu.int/rec/T-REC-S.1-199303-I
https://tools.ietf.org/html/rfc2104
https://developer.nvidia.com/cuda-toolkit
https://www.gao.gov/blog/how-artificial-intelligence-transforming-national-security
https://www.gao.gov/blog/how-artificial-intelligence-transforming-national-security

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Torsten Krauß, Jasper Stang, and Alexandra Dmitrienko

Table 2: Characters in the ITA-2 encoding table [21].

Char Special 5-Bit Char Special 5-Bit
Char Char Word Char Char Word
A - 11000 N , 00110
B ? 10011 O 9 00011
C : 01110 P 0 01101
D $ 10010 Q 1 11101
E 3 10000 R 4 01010
F ! 10110 S ’ 10100
G & 01011 T 5 00001
H # 00101 U 7 11100
I 8 01100 V ; 01111
J BL 11010 W 2 11001
K (11110 X / 10111
L) 01001 Y 6 10101
M . 00111 Z ” 10001

Table 3: Encoding "A" with ASCII [12] and ITA-2 [21].

Encoding Bit Sequence Length
ASCII 01000001 8
ITA-2 11000 5

Used for
Evaluation

0 1 2 3 4 5 6 7 8 9

Used for 0 to 7
subsequent „0“ bits

Used for more than 7
subsequent „0“ bits

Target
Label

Figure 8: Utilization of target labels in the conversion proto-
col of MTB for a 10-class classification task (𝑛 = 10).

B DETAILS FOR MTB
Due to space limitations in the main part of the paper, we visualize
the utilization of the target labels in the conversion protocol of
MTB in Fig. 8. The concrete protocol is explained in detail in Sect. 4.
MTB Worst-Case One could argue that encoding single zero bits
with the label 𝑛-2 introduces a high overhead as it might not be
an efficient encoding. However, we justify this design choice by
considering the worst-case scenario for encoding. As shown in
Tab. 2, the 5-bit word with the most zeros following the ”1“ bit is
”E“ (”10000“). To construct the longest n-gram consisting of ”0“ bits
the character ”T“ is added, which has the most zero bits on the left
side. Now the message is ”1000000001“. According to rule 6 of the
conversion protocol, a single ”1“ bit will be added to the beginning
of the message to ensure proper encoding. Next, the bit string is
sequentially processed for encoding. Fig. 9 shows the encoding for
a classification task like CIFAR-10 [25] with 𝑛 = 10 label classes.
The second backdoor encodes a single zero with the 𝑛-2 label class,
8 in this case. Thus, we have shown that in the worst case for
text encoding, only a single zero bit is encoded on its own, which
we consider an acceptable overhead. In total, three backdoors are
required to represent the message.

C DIFFERENT TRIGGERS
Pixel Triggers. In the left side of Fig. 10, we visualize different
trigger sizes for a red square pixel trigger on CIFAR-10 [25] images.
Further, on the right side, we evaluate the influence of the trigger
size on the attack success rate (ASR) of the backdoors in Sect. 5.2.
Masked Triggers. Mask Triggers, also known as blended trig-
gers [5, 41], involve applying a matrix of values to an image. The

Backdoor Encoding

Bits Backdoor Color Location Target

11000
0000

1 (0,0) 7

0 2 (5,0) 8

1 3 (10,0) 0

TE 10 00 00 00 01
ITA-2

𝑇𝑃𝛿=5

Trigger Specification
Type, Appearance
Location Pattern

Pre-shared knowledge

Rule 6) append 1 bitColor
Color Mapping

1
2
3

1-bit Count

Conversion Protocol

Rule 1-6

110000000 0 1

Figure 9: Worst-case scenario for MTB encoding "TE" into
three backdoors. The classification task has 𝑛 = 10 classes.
Hence the single "0" bit is encoded with label 𝑛-2=8.

Figure 10: Left: Trigger of different sizes: 9, 16, 25, and 36 pix-
els. Right: Average ASR for ten backdoors with a red square
trigger of varying sizes (9 to 36 pixels) with a PDR of 0.15.
The dashed line represents the average value of 100 epochs.

goal is to subtly alter the image, making the trigger undetectable to
human observers while activating the desired response in the DNN.
These trigger values can be randomly generated and then merged
with the original image using an addition operation, as described
in Eq. 1.

©«
𝑟

𝑔

𝑏

ª®¬ = ©«
𝑟1
𝑔1
𝑏1

ª®¬ + ©«
𝛼1
𝛼2
𝛼3

ª®¬ (1)

In Eq. 1, 𝑟1, 𝑔1, and 𝑏1 denote the RGB color values of the original
image, while 𝛼1, 𝛼2, and 𝛼3 represent the RGB noise values. Lower
𝛼𝑖 parameters result in minimal visual deviations from the original
image, whereas higher values introduce more noticeable noise. Our
approach involves generating 𝛼𝑖 values uniformly at randomwithin
a specified range, following themethod proposed byWang et al. [41].
This allows for random pixel value adjustments, with the maximum
achievable value termed as "mask intensity." Mask backdoors offer
a covert communication channel option, exhibiting higher stealth
compared to pixel triggers. This increased stealthiness arises from
their concealment within the image’s background, making them
challenging to detect. Unlike the first trigger type, mask triggers do
not require a specific location pattern. However, multiple triggers
can still be introduced into a single model by defining different noise
values. These distinct noise values enable independent evaluation
and enhance their applicability within our approach.

D ADDITIONAL EXPERIMENTS
Below, we provide experimental details/results that we could not
include into the main part of the paper due to space limitations.

Cloud-Based Machine Learning Models as Covert Communication Channels ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Figure 11: Four CIFAR-10 [25] samples (top row) and versions
with a mask trigger (bottom). The perturbations contain 𝛼

values between -10% and 10% of the original values.

Figure 12: Tested trigger shapes (left) and colors (right).

D.1 Different Triggers
During evaluation we tested triggers with different shapes and
colors as visualized in Fig. 12.

D.2 Mask Backdoors
We tested the efficacy ofmask triggers by training ResNet-18 [17] on
CIFAR-10 [25] and embedding three distinct backdoors with target
labels 0, 1, and 2, utilizing a PDR of 0.25. Each backdoor trigger
employed a randomly generated mask with uniformly distributed
values between -0.1 and 0.1, altering pixel values by a maximum of
10%. An example of such a trigger is shown in Fig. 11. Our results
revealed a clear trend indicating limited effectiveness with the mean
ASR ranging from 0.15 to 0.3 for the three backdoors. Mask triggers,
providing more subtle and widespread image alterations compared
to the precise and localized effects of pixel triggers, yielded weaker
backdoors, especially when multiple backdoors were embedded. As
a result, while our approach isn’t restricted to a specific backdoor
type, we adhere to using pixel triggers in our experiments due to
their higher efficacy.

D.3 Single-Trigger
Below, we provide details of the experiments for STB.
RandomMessages. To establish a baseline for transmission capac-
ity, we embedded messages with varying length inside the model.
Here, we provide the exact messages ranging from 9 bits, corre-
sponding to 3 backdoors (due to the 10 output classes), to 54 bits,
which corresponds to 18 backdoors. The messages were generated
randomly.

• 𝑀1: 101000110 (9)
• 𝑀2: 001101010011 (12)
• 𝑀3: 000110101010001 (15)
• 𝑀4: 111111001001010111 (18)
• 𝑀5: 010111000101001011001 (21)
• 𝑀6: 110001010000110101000111 (24)
• 𝑀7: 101001100110001100110010100 (27)
• 𝑀8: 000101101000000100011001010001
001101100101101111000100 (54)

Covert Channel Performance. In Tab. 4, we report an extended
version of Tab. 1. Fig. 13 then shows the accuracy values for two
different PDRs of the same experiments, highlighting, that no sig-
nificant difference can be found for different message lengths. Note,

(a) PDR 0.05 (b) PDR 0.15

Figure 13: Impact on the mean test accuracy (ACC) over 100
epochs with messages with lengths ranging from 9 to 54 bits.

note that the y-axis scale ranges from 63% to 67% instead of 0% to
100% in Fig. 13.
Robustness & Reliability. Due to space regulations in the main
part of the paper, we provide Fig. 14 here. It shows the changes in
BERs for PDRs 0.05, 0.10, 0.15, and 0.20.
Different Evaluation Sample. We studied the influence of differ-
ent evaluation samples on the BER. We conducted an assessment
of the BERs across all samples in the train set on a label-wise basis.
The results are visualized in Fig. 15.
Error Correction. For STB, Hamming Codes, a well-established
error-detection and correction mechanism can be applied. Ham-
ming Codes entail the incorporation of parity bits, which are ap-
pended to the data at the receiver’s end. These parity bits serve the
purpose of rectifying single-bit errors during the decoding process
at the receiver’s end. To balance between communication overhead
and error detection capability, we have opted for the (7,4) Hamming
code. This specific Hamming code configuration encodes 4 data bits
with the addition of 3 parity bits, culminating in a code word of a
total length of 7 bits.11 We conducted an experiment to evaluate the
trade-off between the benefits of error correction and the additional
overhead introduced by parity bits. In this experiment, we injected
a 12-bit message (011100110000) into the CIFAR-10 [25] dataset and
trained a ResNet-18 [17] model for 100 epochs with the PDR set
to 0.05. The message was encoded using the (7,3) Hamming Code,
resulting in a message length of 21 bits. For comparison, we injected
the encoded message without Hamming Code into another model.
The results, as depicted in Fig. 16, revealed that the average BER
was 0.4058 (5 out of 12 bits) for the model without error correction
and 0.4813 (10 out of 21 bits) for the model with error correction.
This demonstrates that applying the Hamming error correction
approach doubled the number of bit errors (+100%) while only in-
creasing the message length by 75%. Based on these findings, we
conclude that implementing error correction for the STB approach
is not advantageous, as it slightly increases the error rate while also
increasing the message length.
Application Independence. In Sect. 5.3, we report results about
the application independence of STB. However, due to space limita-
tions, we visualize the results here. Fig. 17 visualizes the label-wise
BERs of an experiment showing the performance of STB for a
SqueezeNet [20] model architecture as well as for the STL-10 [6]
dataset.

11It is important to note that this approach is not constrained to encoding only 4 bits;
it can effectively handle multiples of 4 bits. In cases where the message length is not
divisible by 4, we implement zero padding to ensure compatibility with this encoding
scheme.

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Torsten Krauß, Jasper Stang, and Alexandra Dmitrienko

Table 4: Mean Backdoor ASRs and mean model accuracies (rounded) in percent for different message lengths and PDRs for STB.

Injected Message Accuracies in % Rounded ASRs for Backdoors in %
Length PDR Test Train B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18

0: - - 71 98
1:

9

0.05 66 90 77 68 60 - - - - - - - - - - - - - - -
2: 0.1 67 91 87 84 83 - - - - - - - - - - - - - - -
3: 0.15 65 89 88 88 86 - - - - - - - - - - - - - - -
4: 0.2 65 89 89 91 91 - - - - - - - - - - - - - - -
5:

12

0.05 64 88 77 73 80 71 - - - - - - - - - - - - - -
6: 0.1 67 91 87 89 88 88 - - - - - - - - - - - - - -
7: 0.15 65 89 90 89 89 87 - - - - - - - - - - - - - -
8: 0.2 64 89 91 87 89 87 - - - - - - - - - - - - - -
9:

15

0.05 65 89 79 70 77 77 67 - - - - - - - - - - - - -
10: 0.1 66 91 90 87 86 89 79 - - - - - - - - - - - - -
11: 0.15 66 92 88 87 86 87 85 - - - - - - - - - - - - -
12: 0.2 64 90 91 90 88 91 90 - - - - - - - - - - - - -
13:

18

0.05 65 89 65 31 22 50 74 56 - - - - - - - - - - - -
14: 0.1 66 90 73 63 66 72 85 75 - - - - - - - - - - - -
15: 0.15 65 90 83 73 71 79 86 82 - - - - - - - - - - - -
16: 0.2 67 91 79 73 79 88 89 85 - - - - - - - - - - - -
17:

21

0.05 66 90 89 86 75 83 49 85 58 - - - - - - - - - - -
18: 0.1 66 90 88 87 85 85 79 88 77 - - - - - - - - - - -
19: 0.15 65 91 90 92 90 89 83 89 80 - - - - - - - - - - -
20: 0.2 66 92 89 91 87 89 88 91 83 - - - - - - - - - - -
21:

24

0.05 66 90 75 78 80 61 63 79 60 76 - - - - - - - - - -
22: 0.1 65 90 87 90 86 80 83 86 80 81 - - - - - - - - - -
23: 0.15 66 91 86 90 88 84 84 90 79 87 - - - - - - - - - -
24: 0.2 66 92 86 89 90 84 86 90 87 89 - - - - - - - - - -
25:

27

0.05 65 89 83 59 66 62 59 55 62 76 61 - - - - - - - - -
26: 0.1 65 89 87 74 80 69 68 69 70 81 69 - - - - - - - - -
27: 0.15 66 93 88 87 85 81 83 81 82 86 81 - - - - - - - - -
28: 0.2 65 90 90 91 87 87 88 86 85 89 87 - - - - - - - - -
29:

54

0.05 65 89 81 63 69 53 72 64 81 76 75 59 68 75 48 48 66 66 48 72
30: 0.1 65 90 89 76 79 86 88 80 87 86 86 76 87 83 60 57 81 83 74 79
31: 0.15 65 90 91 82 83 91 94 88 90 90 89 89 89 83 75 69 81 83 85 89
32: 0.20 64 90 92 83 81 90 92 88 90 93 90 90 92 82 73 74 82 84 85 86

Table 5: Mean Backdoor ASRs and model accuracies (rounded) in percent for different message lengths and PDRs for MTB.

Injected Message Accuracies in % Rounded ASRs for Backdoors in %
Length PDR Test Train B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19

0: - - 71 98
1:

9

0.05 66 89 56 13 11 54 11 12 - - - - - - - - - - - - -
2: 0.10 65 89 88 76 55 84 59 60 - - - - - - - - - - - - -
3: 0.15 66 89 91 86 82 89 70 80 - - - - - - - - - - - - -
4: 0.20 65 91 93 90 85 90 80 84 - - - - - - - - - - - - -
5:

12

0.05 66 89 19 57 46 28 19 37 60 15 - - - - - - - - - - -
6: 0.10 66 90 58 84 78 77 62 75 75 67 - - - - - - - - - - -
7: 0.15 65 90 71 84 83 77 53 82 85 75 - - - - - - - - - - -
8: 0.20 65 91 83 90 86 83 71 86 89 81 - - - - - - - - - - -
9:

15

0.05 64 88 24 50 52 12 15 19 50 40 49 - - - - - - - - - -
10: 0.10 66 91 58 77 72 53 49 48 66 65 69 - - - - - - - - - -
11: 0.15 66 92 64 89 84 63 69 62 79 81 80 - - - - - - - - - -
12: 0.20 65 91 79 91 85 75 74 63 82 87 81 - - - - - - - - - -
13:

18

0.05 66 90 12 14 21 42 16 10 11 16 14 - - - - - - - - - -
14: 0.10 66 88 55 67 65 74 69 31 42 38 49 - - - - - - - - - -
15: 0.15 66 90 71 85 73 77 87 65 55 59 77 - - - - - - - - - -
16: 0.20 65 89 74 81 86 84 85 61 62 72 79 - - - - - - - - - -
17:

21

0.05 66 90 29 16 11 11 53 10 31 12 25 42 16 - - - - - - - -
18: 0.10 67 91 63 51 28 43 73 19 63 33 45 69 59 - - - - - - - -
19: 0.15 64 88 77 74 69 54 74 48 81 69 62 87 77 - - - - - - - -
20: 0.20 65 90 86 79 70 79 85 60 85 71 68 85 84 - - - - - - - -
21:

24

0.05 65 87 78 38 48 37 29 22 17 31 35 27 - - - - - - - - -
22: 0.10 65 88 85 66 64 62 72 43 54 57 59 69 - - - - - - - - -
23: 0.15 66 92 88 80 80 74 67 74 64 73 77 74 - - - - - - - - -
24: 0.20 64 90 90 88 84 87 79 88 81 86 87 88 - - - - - - - - -
25:

27

0.05 65 88 13 22 9 14 20 65 23 29 10 12 12 - - - - - - - -
26: 0.10 66 90 68 65 44 67 48 77 55 54 58 43 61 - - - - - - - -
27: 0.15 64 89 74 79 81 76 62 84 72 64 79 61 78 - - - - - - - -
28: 0.20 65 90 78 84 73 79 73 84 73 74 76 68 82 - - - - - - - -
29:

54

0.05 66 90 66 25 52 24 11 37 32 28 13 19 12 12 32 12 15 37 16 13 58
30: 0.10 66 90 79 44 73 52 13 77 63 48 19 44 41 15 53 18 21 59 43 38 81
31: 0.15 65 90 89 63 83 85 20 85 81 64 51 72 72 26 68 42 33 77 70 65 91
32: 0.20 63 89 90 77 85 83 58 88 82 76 71 78 75 64 76 71 74 82 80 74 91

Figure 14: BERs for one evaluation sample over 100 epochs, with PDRs 0.05, 0.10, 0.15, and 0.20 from left to right.

D.4 Multi-Trigger
Different Messages. For MTB, we provide the same table as for
STB, showing mean backdoor ASRs and model accuracies. Tab. 5

reports the results for the same messages as reported for STB in
Tab. 4. The most significant difference that we can observe ist, that
for low PDRs, e.g., PDR of 0.05, we get low ASRs for the backdoors.

Cloud-Based Machine Learning Models as Covert Communication Channels ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Table 6: Injected ITA-2 [21] encoded messages.

Text Bit Encoding Length (in bits)
HELLOWORLD 100101100000100101001000111100100011010100100110010 51
JASPERSTANG 11101011000101000110110000010101010000001110000011001011 56
TORSTENKRAUSS 100001000110101010100000011000000110111100101011000111001010010100 66

Figure 18: Mean accuracy on the test set (ACC) for a 66-
bit message embedded on a ResNet-18 [17] trained on
CIFAR-10 [25]. The figure shows the influence of TP and
SP location patterns and the "color distinction" dataset poi-
soning strategy for MTB.

(a) PDR 0.05 (b) PDR 0.15

Figure 15: Training dataset BERs per ground-truth label for
a message length of 54 (dashed line indicates mean value).

(a) No Hamming Code. (b) Hamming Code.

Figure 16: Impact of Hamming Code Error Correction for a
message of length 12 and a PDR of 0.05.

(a) SqueezNet [20] (b) PDR 0.15

Figure 17: (a) Label-wise BERs of SqueezeNet [20] trained
on CIFAR-10 [25]. A 54-bit message was embedded with a
PDR of 0.15. The dashed line indicates the mean BER over all
labels of 0.029. (b) ResNet-18 [17] trained on STL-10 [6]. The
same message was embedded with a PDR of 0.20 resulting in
a mean BER of 0.1126.

However, for PDR of 0.15 and 0.20, we can report high ASRs similar
to the STB approach.
TextMessages. To test the MTB approach, we report the results for
the longest out of three testedmessages in themain part of the paper.
However, all three messages yielded similar results. Specifically, we
injected the ITA-2 [21] encoded messages in Tab. 6.
Fidelity. In Fig. 18, we visualize the reportedmain task test accuracy
values reported in Sect. 5.4 showing the influence of MTB compared
to a clean model.

	Abstract
	1 Introduction
	2 Background
	3 Covert Channel Concept
	3.1 System Model
	3.2 General Approach

	4 Covert Channel Instantiations
	4.1 Single-Trigger
	4.2 Multi-Trigger
	4.3 Light-Trigger

	5 Evaluation
	5.1 Hardware & Experimental Setup
	5.2 Preliminary Experiments
	5.3 Single-Trigger
	5.4 Multi-Trigger
	5.5 Light-Trigger

	6 Discussion
	7 Related Work
	8 Conclusion
	References
	A Bit Encoding
	B Details for MTB
	C Different Triggers
	D Additional Experiments
	D.1 Different Triggers
	D.2 Mask Backdoors
	D.3 Single-Trigger
	D.4 Multi-Trigger

