
DNNShield: Embedding Identifiers for Deep Neural
Network Ownership Verification

Jasper Stang
University of Würzburg

jasper.stang@uni-wuerzburg.de

Torsten Krauß
University of Würzburg

torsten.krauss@uni-wuerzburg.de

Alexandra Dmitrienko
University of Würzburg

alexandra.dmitrienko@uni-wuerzburg.de

The surge in popularity of machine learning (ML) has
driven significant investments in training Deep Neural Net-
works (DNNs). However, these models that require resource-
intensive training are vulnerable to theft and unauthorized
use. This paper addresses this challenge by introducing
DNNShield, a novel approach for DNN protection that inte-
grates seamlessly before training. DNNShield embeds unique
identifiers within the model architecture using specialized
protection layers. These layers enable secure training and
deployment while offering high resilience against various
attacks, including fine-tuning, pruning, and adaptive adver-
sarial attacks. Notably, our approach achieves this security
with minimal performance and computational overhead (less
than 5% runtime increase). We validate the effectiveness and
efficiency of DNNShield through extensive evaluations across
three datasets and four model architectures. This practical
solution empowers developers to protect their DNNs and
intellectual property rights.

I. INTRODUCTION

Machine learning (ML) has become ubiquitous in our daily
lives, driving significant advancements in fields, e.g., speech
recognition [16], object detection [33], [30], [24], [26], natural
language processing [12], and predictive analysis [3]. During
model training, ML extracts generalized patterns from training
data. Those patterns, represented by model parameters, are
then used to generate predictions for unseen data. Recently,
larger ML models, so-called Deep Neural Networks (DNN),
with larger learning capacities providing more accurate pre-
dictions emerged. However, training DNNs necessitates ex-
tensive computational resources [45] and leverages proprietary
datasets. Hence, DNNs are valuable assets for model creators,
requiring intellectual property (IP) protection measures. Re-
lated IP protection methods are Watermarking and Passporting.

Existing DNN IP Protection Methods. Watermarking [47],
[31], [43], [50], [51], [14], [34], [2], [54], [32], [21], [27]
involves embedding stealthy but identifiable markers as ref-
erence watermarks within the model during training. The
watermarks (identifiers) can be extracted from a previously
marked model using a confidential method (also referred
to as key). The extracted identifiers serve as evidence of
ownership. In case of suspected model copyright infringement,
the watermark extracted from the suspected model (using the

secret key) can be compared to the model’s reference wa-
termark, proving the copyright infringement. However, many
DNN watermarking techniques [47], [31], [43], [50], [51],
[14], [34], [54], [32], [21], [27] require key secrecy within
their threat model. If ownership is proven by disclosing the
extraction key and watermark publicly, subsequent ownership
watermark verification is not legitimate because the key is
now accessible to anyone who observed the initial extraction.
Another method [2] does not require key disclosure but relies
on manipulating the dataset, which negatively impacts model
performance.

Passporting [19], [20] was also proposed, which embeds extra
trainable “Passporting” layers within the model architecture,
essentially entangling model and Passporting parameters. Re-
moving the trained Passporting layers degrades the model’s
prediction performance. Therefore, a model can only be effi-
ciently utilized with the untouched Passporting layers which
serve as a means for model identification. However, existing
Passporting schemes have four drawbacks: First, the trainable
Passporting layers introduce additional learning overhead.
Secondly, it has been shown to be prone to attacks [11],
where the Passporting layers are substituted with new layers
that mimic their functionality. Third, the proposed method is
limited to being used in conjunction with convolutional layers,
thus, making it applicable to only a limited set of model
architectures. Finally, the system does not adequately protect
unfinished training stages with decent prediction performance,
known as checkpoints, as the Passporting layers (identifier)
are continuously modified throughout the training process.
This presents a significant security risk for models with
lengthy training durations, as intermediate checkpoints are left
unprotected.

Summarized, Watermarking fundamentally relies on key se-
crecy allowing only for a single public ownership verification
or manipulates the dataset which degrades model performance.
Alternatively, Passporting introduces additional training over-
head, is vulnerable to adversarial attacks, is restricted to a
single type of layer, and cannot protect model checkpoints.

Approach. To address the limitations of existing DNN IP pro-
tection methods, we propose DNNShield , a novel approach
that integrates publicly known protection layers into the model
architecture. The layers are untrainable, and hence remain
unchanged during training. The approach seamlessly integrates

ar
X

iv
:2

40
3.

06
58

1v
1

 [
cs

.C
R

]
 1

1
M

ar
 2

02
4

two types of Protection layers into the model architecture,
namely Hadamard and Permutation layers allowing for usage
in conjunction with both convolutional and linear layers.
Similar to Passporting, the idea behind protection layers is
that the data flow through the model is altered, such that the
regular model layers are entangled with the Protection layers.
As a consequence, an adversary is faced with the dilemma of
either leaving the Protection layers unchanged, which allows
for reliable model ownership verification or manipulating the
Protection layers, resulting in a significant reduction in model
performance due to the entanglement of Protection layers with
the regular model parameters.
Contributions. In particular, we make the following contribu-
tions:

• We propose DNNShield , a novel DNN protection method
that eliminates the reliance on secret keys, allowing
for repeated public ownership claims, while maintaining
negligible impact on model performance and training
time.

• DNNShield relies on integrating untrainable protection
layers into the model architecture, that enable ownership
claims. The layers result in negligible training overhead
as DNNShield does not introduce additional trainable
parameters. Further, as the layers do not change during
training intermediate checkpoints and the final model are
secured.

• We present two types of untrainable Protection layers,
namely Hadamard and Permutation layers, that can be
seamlessly integrated into various architectures. The lay-
ers can be used in conjunction with convolutional or
linear layers, hence DNNShield is applicable to most
architectures.

• We evaluate DNNShield in diverse application scenarios,
in particular the approach is evaluated with four model
architectures, namely ResNet-18 [24], a Convolutional, a
Fully Connected model, and a Vision Transformer [17].
Further, it is evaluated on three datasets: MNIST [15],
CIFAR-10 [29], and GTSRB [41]. Moreover, the robust-
ness against third-party manipulation including adaptive
adversarial attacks is shown. DNNShield has negligible
impact on the model performance and a runtime overhead
of less than 5% for Hadamard layers in our experiments.

In summary, this work introduces a novel and efficient DNN
IP protection method, offering a robust defense against various
attacks. DNNShield adds novel protection layers into the
architecture, that do not rely on secrecy and are untrainable,
hence, do not introduce training overhead. As the layers
remain unchanged during training, both, intermediate check-
points and the final model, are secured. Further, they can be
used in conjunction with convolutional or linear layers, making
them applicable to most modern model architectures. Overall,
DNNShield addresses the limitations of existing DNN IP
protection approaches while providing an intuitive and robust
ownership verification.
Outline. We provide background information in Sect. II

and depict the considered scenario and threat model in
Sect. III. Sect. IV details the approach of DNNShield fol-
lowed by a security analysis in Sect. V. The evaluation
results are reported in Sect. VI and Sect. VII elaborates on
additional considerations. Finally, related works are discussed
in Sect. VIII before we draw a conclusion in Sect. IX.

II. BACKGROUND

Below, we provide information on data representations,
DNN layers, and important metrics necessary for understand-
ing our approach, as well as common attacks on DNN IP
protection.

A. Data Representations

Matrices are fundamental components in ML used to rep-
resent the data on which models are trained and run. Matrices
have dimensionalities ranging from one (referred to as a vec-
tor) to multiple dimensions. For image data, the representation
usually adheres to a three-dimensional arrangement: c, w,
and h, where c initially indicates the three color channels
red, green, and blue, while w and h represent the width and
height of the image. Certain layers, such as convolutional
layers, introduce additional channels, potentially expanding
the representation beyond the initial three channels. Unlike
convolutional layers, Fully-Connected layers typically abstract
away the spatial dimensions, aligning the input along the first
dimension. This knowledge is crucial as our approach operates
on matrices.

B. Neural Network Layers

To comprehend our approach, it is essential to have a
good understanding of certain model layers. Specifically, our
approach works in conjunction with linear and convolutional
layers. Hence, it is crucial to understand their inner workings.
Fully-Connected Layer. Those layers are commonly used
in most model architectures [24], [30], [26] and perform the
calculation y = x ·wT + b. The learnable parameters, namely
the weights and bias matrices, are represented by w and b,
while x and y denote the input and output matrices and · is
the dot product operation. The transposed operation (T) flips
the matrix over its diagonal.
Convolutional Layer. Fully-Connected (FC) layers, which
have a large number of parameters and perform computa-
tionally intensive dot product calculations, have limited ap-
plicability to image processing. To overcome this challenge,
convolutional layers have emerged as an alternative, especially
in DNN architectures such as ResNet [24]. Unlike FC layers,
which process information over the input simultaneously,
convolutional layers analyze the input data in a fragmented
and sequential manner. They operate on small receptive fields,
which are essentially windows that scan the input image. As
the receptive field moves across the image, a filter, also called
kernel, which is a small matrix of trainable weights, is applied
to each receptive field, effectively extracting relevant features
from the data. This sequential approach allows convolutional
layers to capture spatial relationships and patterns efficiently.

2

The underlying mathematical method, called cross-correlation,
can be used to process multiple input values and produce a
more compact output. The number of trainable parameters is
significantly reduced as the kernel only contains a fraction of
the weights of a FC layer. The input vector, x, undergoes a
cross-correlation operation denoted by ∗. The resulting output
vector, y, is calculated using y = (x ∗ f), where f denotes
the filter (kernel) used by the convolutional layer. In DNNs
a single convolutional layer typically incorporates multiple
kernels [24], [26], [30], each producing an output feature map
(w, h) that contributes to a distinct channel dimension c.

Element-Wise Multiplication Layer. The element-wise mul-
tiplication [13] takes a matrix and outputs a new matrix with
identical dimensions, performing element-wise multiplication
for each value. The layer calculates y = x ◦ k. Here, x
refers to the input matrix and k refers to the matrix by
which x is multiplied. The symbol ◦ denotes the element-wise
multiplication. Our approach utilizes those layers to embed
unique identifiers into the model architecture.

C. Metrics

In the following, we first introduce cosine similarity, which
is used for ownership verification. Then, we introduce the
accuracy metric used to evaluate the performance of DNNs.

Cosine Similarity. Cosine similarity is a fundamental metric
for analyzing data, measuring the similarity between two
vectors. It is used, for instance, to measure similarity of ML
models for backdoor detection [28], [38]. It is calculated by
dividing the dot product of two vectors by the product of their
magnitudes. Essentially, the alignment of two vectors within
an inner product space are measured which yields values
that range from -1 to 1. The formula to calculate the cosine
similarity is cos = x1·x2

max(∥x1∥2·∥x2∥2,ϵ) , with x1 and x2 being two
vectors. If the cosine similarity value is 1, this implies that the
vectors are identical and perfectly aligned. Conversely, if the
value is -1, the vectors point in opposite directions, indicating
complete dissimilarity. Additionally, if the cosine similarity
value equals 0, it means the vectors are orthogonal and lack
directional alignment. Our approach is based on measuring
the similarity between the parameters of two untrainable (fixed
parameters) protection layers to determine if one model closely
resembles the other.

Model Performance Metrics. The accuracy metric assesses
a model’s predictive capabilities, essentially expressing the
ratio of correct predictions for a set of input samples to the
total number of samples. A dataset is usually divided into
training and testing sets to train a DNN model. The training
set serves as the basis for model training, while the testing
set is utilized to evaluate the model’s performance (accuracy)
against new and unseen data. This metric is utilized in our
approach to determine the performance of a model and yields
an accuracy result from 0% to 100%. The formula for accuracy
is acc = True Predictions

All Predictions .

D. DNN IP Protection Attacks

Two common attacks on DNN IP protection methods are
presented below: Fine-Tuning [42], [40] and Pruning [23]. The
effectiveness of both attacks on our approach will be evaluated
in Sect. VI.

Fine-Tuning. In Fine-Tuning [42], [40], the objective is to
remove identifiers by continuing model training on a dataset
that is comparable to the initial training dataset, assuming
familiarity with the training process and hyperparameters to
modify the model accordingly [42], [40]. Typically, in Fine-
Tuning scenarios, a much smaller dataset than the one used for
training is utilized with the goal of minimizing adjustments to
the already learned features. Instead, only minor modifications
based on the new dataset are desired to attain high accuracy.
The learning rate (ratio how quickly a model adjusts its
parameters to improve its performance) is commonly lowered
in Fine-Tuning [40], [42] to preserve the learned features.

Pruning. Pruning [23] is a technique used to decrease the size
of DNNs for deployment in resource-limited environments.
By strategically removing model parameters, Pruning can
be employed to remove an embedded identifier while main-
taining acceptable model performance (cf. Sect. II-C) given
that adversaries can arbitrarily modify parameters. Pruning
entails selectively removing a predetermined percentage of
parameters, referred to as Pruning level. Usually, in model
Pruning, the focus is on removing the values with the lowest
absolute values, as these parameters are deemed to have the
least contribution on the overall performance of the model.

In the following, we will elaborate on the requirements and
the threat model for a DNN IP protection method.

III. REQUIREMENT ANALYSIS

Motivation. We aim to develop a novel ownership verifica-
tion method for ML models that addresses the limitations
of existing approaches. The method must be robust against
adversarial modifications, even if the verification process is
publicly known. Furthermore, it should not rely on key se-
crecy or introduce additional parameters to be trained. For
extended DNN training periods, intermediate model versions
with decent prediction performance are stored as checkpoints.
These checkpoints can be stolen and misused, so the novel
technique should maintain the same identifier used for veri-
fication throughout the entire training process, ensuring that
even model checkpoints are secure.

Considered Scenario. In our considered scenario, a data
owner develops a proprietary ML model trained on a private
dataset. The owner should be able to incorporate a unique non-
secret identifier into the model, essentially serving as a distinct
signature for ownership verification, which we call (non-
secret) key or identifier interchangeably. After training, the
model is deployed, either in a cloud environment or by selling
it to others. However, the model is subsequently misused, e.g.,
stolen or illegally distributed and put into production by a
third-party. It should be possible to identify the model by

3

analyzing the embedded key, regardless of any modifications,
such as Fine-Tuning (cf. Sect. II-D), Pruning (cf. Sect. II-D),
or key removal attempts, made by unauthorized third-parties. If
the key remains unchanged, the owner can establish legitimate
ownership and take action to claim their intellectual property.

Threat Model. The attacker has complete knowledge of the
model and its architecture, including parameters. This degree
of access is known as white-box access [39]. Furthermore, the
adversary can modify the model parameters and architecture,
an extremely powerful scenario that allows the attacker to
change the model arbitrarily. This level of access also allows
the adversary to partition the model at certain layers and
use only parts of the model. In addition, similar attacks can
be launched on the ownership verification method as those
employed on watermarking approaches [21], [7], [55]. For
instance, the attacker might modify the model by Fine-Tuning
(cf. Sect. II-D) its parameters on a small subset of the training
data. Furthermore, an adversary could fine-tune the model to
fit a different dataset, e.g., with different output classes. More-
over, the attacker can launch Pruning (cf. Sect. II-D) attacks
that entail eliminating specific connections among parameters
within the model. However, the attacker does not have access
to the original training data used to train the model, otherwise
the attacker could train his own model instead. Furthermore,
the attacker cannot tamper with the training and protection
process, nor with the training data itself, because the training
and protection are performed entirely on the model creator’s
side, without adversarial influence.

Adaptive Adversary. An adversary who is aware of the protec-
tion technique in place, may seek to manipulate or remove it.
An adaptive adversary can use arbitrary techniques, leveraging
the capabilities defined in the threat model, to remove the
identifier. He could launch attacks specifically tailored to the
protection method, adapting and extending known adaptive
adversary scenarios from the Watermarking and Passporting
domains. In general, the goal of the adaptive adversary would
be to remove or replace the identifier, e.g., insert an arbitrary
identifier. Removing the existing identifier would prevent the
model creator from claiming ownership, while replacing it
would give the adversary the ability to claim ownership.
Specific attack scenarios are discussed in Sect. V and Sect. VI.

Objectives. Ideally, protected models should preserve their
functionality and allow for unrestricted inference; however, the
primary requirement is to maintain a transparent and robust
identifier that can withstand attacks. Even as adversaries who
have stolen the model adapt it for their own purposes, it is
essential to preserve the identifier as evidence of copyright
infringement in a legal context. By incorporating unique
identifiers, the protection technique aims to secure the IP
contained in models while preserving the functionality and
performance of the model. Protection methods for DNNs must
address the following six fundamental challenges.
1. Transparency. The ownership verification should be trans-
parent, in particular, it should not rely on the secrecy of the
used key. This entails the ability to perform multiple ownership

claims.
2. Robustness. The protection technique should be resilient
to adversarial attacks to prevent tampering or compromise.
Specifically, the model’s distinctive identifier must remain
discernible, even after arbitrary adversarial attack attempts,
such as Fine-Tuning [42], [40] or Pruning [23] as described
above.
3. Fidelity. The protection should have negligible performance
impact, e.g., accuracy should be upheld to levels of unpro-
tected models.
4. Efficiency. The technique is expected to produce minimal
overhead related to complexity and latency, e.g., significant
training duration overhead should not occur for protected
models.
5. Reliability. The protection process should ensure that un-
protected models do not generate false positives, e.g., an
unprotected model should not be identified as a specific
protected one, while identifying protected models accurately.
6. Generalizability. The method should be versatile and adapt-
able to various datasets and model architectures. The flexibility
ensures smooth integration into multiple ML architectures,
making it valuable across various applications and scenarios.

In the following section we present our approach that solves
the aforementioned challenges and fulfills the objectives.

IV. DNNSHIELD DESIGN

To protect DNNs from unauthorized access, we propose
DNNShield, a method that facilitates reliable model identi-
fication after deployment by embedding unique identification
layers that do not require secrecy and, thus, allow for repeated
ownership verification of models. The method integrates non-
secret and untrainable protection layers (referred to as locks)
with fixed parameters (keys) well-distributed into the model
architecture before training, without disrupting functionality
or increasing training complexity. DNNShield is superior to
watermarking schemes [47], [31], [43], [50], [51], [14], [34],
[2], [54], [55], [32], [21], [27] because it does not require
a secret key for ownership verification and, thus, allow for
multiple verifications. The core novelty of DNNShield lies
in the design of novel protection layers. Contrary to existing
Passporting [20], [19] solutions, DNNShield has three ad-
vantages: The protection layers do not require training, which
avoids overhead. Further, our approach is not limited to models
that use convolutional layers and can also secure models that
only use linear layers. Moreover, DNNShield can secure the
model at any stage of the training process, including model
checkpoints, with the same key. This is important as models
become larger and their training time increases.

Each protection layer has a unique key (parameters) that is not
changed during training. The key determines how the protec-
tion layer input, which is the output of the previous layer, is
altered. For instance, the key defines how the data is scaled.
Therefore, static operations on the output of the previous layer
are applied and, hence, the behavior of subsequent layers is
influenced. The altered data introduced by protection layers

4

Protected Model

Key
Generation

Model
Training

Adversarial
Manipulation

Copyright
Decision

2

3

4 Model
Inference

5

6

Training-
data

Similarity

Valid key

Invalid key

Protection
Layer

Placement
1

Static &
Non-Secret

Fig. 1: Overview of the Approach.

ensures that the model parameters of subsequent layers are
entangled with the specific protection layer key. Therefore,
protection layers cause a significant model performance re-
duction if they are removed or their keys altered, rendering
the model inoperable. In particular, the data processed by the
manipulated model would deviate from the expected pattern,
resulting in unexpected inputs to the layers following the pro-
tection layers. We name this characteristic of protection layers
“protection property”. Effectively, adversaries are compelled
to maintain the integrity of the protection layers by using
identical or very similar keys, facilitating ownership verifica-
tion of legitimate owners by analyzing the used key. Similar
to Passporting [19], [20] ownership verification schemes, the
keys used by the suspected model are compared to the original
keys used by the model owner, and if there is a high degree
of similarity, model ownership can be claimed. Therefore, the
unique keys of the protection layers can be published along
with the model and then serve as a unique identifier, allowing
for multiple ownership claims. This fulfills the Transparency
requirement from Sect. III. To summarize, the protected model
can be deployed and the lock and key’s persistence allows the
model to be identified. If adversaries attempt to remove the
protection, the model performance is significantly degraded,
rendering the model inoperable. In the following, we present
the steps for protecting a model using DNNShield .

A. General Approach

Below, we present the life cycle of the DNNShield method
consisting of six stages. All stages are depicted in Fig. 1.

Protection Layer Placement. In the initial stage, visualized as
step 1 in Fig. 1, protection layers are incorporated at strategic
points in the model architecture after unprotected layers, such
as Convolutional or Fully-Connected (FC) layers (cf. Sect. II).
We elaborate on the exact placement and amount of protection
layers in Sect. IV-C.

The layers do not require training and, therefore, do not
introduce additional training overhead. A protection layer
modifies the output of the previous layer while maintaining
the same output dimensionality, making it compatible with
the following layer. This allows integration into existing model
architectures at any point.1 Therefore, the requirements Effi-
ciency and Generalizability from Sect. III are addressed. The
protection layer and its introduced data alteration become an
integral component of the model since in DNNs the following
layers rely on the output of the previous ones. Protection layers
protect the parts of the model that follow them. Therefore, inte-
grating multiple protection layers into a single model creates
a more comprehensive defense by increasing the protection
coverage.

Key Generation. Each protection layer is associated with a
unique non-secret key in the form of static parameters that
define how the data is altered. The protection layer serves
as a gatekeeper, guaranteeing proper functionality only when
the correct key is provided (referred to as protection property).
Therefore, the second stage (step 2 in Fig. 1) involves defining
a unique non-secret key for each of the previously defined
protection layers. The composition, quantity, and length of
the keys, which are the protection layer static parameters,
vary depending on the protection layer type and the model
architecture. In Sect. IV-B we will outline details of the
key generation process. Once generated, the keys remain
unchanged, including during model training and inference.

Model Training. Next, as shown in step 3 in Fig. 1, the model
is trained with the protection layers and corresponding keys
in place. The training process and the model creator’s data is
not manipulated. A model adjusts its parameters based on the
specific data alterations from the protection layers defined by
the used key. Thus, the parameters of the model are entangled
with the keys. In the subsequent step, the trained and protected
model along with the keys is then deployed, e.g., to the end-
user or a web service.

Model Inference. Model inference (step 4 in Fig. 1) uses
the keys defined in step 2 to unlock the protection layers. If
the correct keys are provided to the protection layers within
the model architecture, the data alteration will be identical to
the one during training and the model will exhibit high perfor-
mance. However, if the keys are not correct, e.g., manipulated,

1Otherwise, incorporating an extra dimension adapter layer would be
required to adjust the output to the appropriate dimensions, which is not
desired for easy integration and achieving minimal training overhead.

5

the performance will significantly decrease. This is caused by
the protection layers not producing the expected data, causing
subsequent layers that depend on the data produced by the
protection layers to fail. In essence, a mismatch between the
data from the protection layers and the learned parameters
from the following layers occurs. Therefore, an adversary
is compelled to use the keys defined in the second step;
otherwise, the model becomes useless in terms of exhibited
accuracy.
Adversarial Manipulation. In step 5 of Fig. 1, an adversary
obtains and misuses the model and is capable of perform-
ing arbitrary manipulations as defined in the threat model
in Sect. III. For instance, attempts to manipulate the utilized
keys, the parameters of the model or its architecture could be
performed (cf. Sect. III). The adversary’s goal is to unlock the
protection layers with different self-defined keys or remove
them while maintaining the model’s accuracy. This allows for
unrestricted use of the model as copyright claims can no longer
be made.
Verification. In step 6 of Fig. 1, all keys of a suspected model
are analyzed. A comparison is drawn between the original keys
from all protection layers and those from the suspected model.
Our approach employs metrics that are suitable for the novel
version of protection layers. Copyright infringement will be
evident if significant similarity is detected. We will elaborate
on how to reliably measure the similarity of different keys
in Sect. IV-B, by utilizing the cosine similarity and a newly
introduced metric.

B. Protection Layer Instantiations

In this section, we present two specific instantiations of
protection layers. One is based on element-wise multiplication
called “Hadamard layer”, while another one relies on shifting
the order of outputs called “Permutation layer”.
Hadamard Layer. Those layers perform an element-wise
multiplication (cf. Sect. II-B) between two matrices of equal
dimensions. The protection layer can be used in conjunction
with any convolutional or FC layer (addressing the General-
izability requirement of Sect. III). As shown in Fig. 2, the
protection property is implemented by using the output values
of the preceding layer as input for the protection layer and
multiplying each of them with the corresponding key value,
visualized by the green boxes and the keys in the center.
Thus, the key must have equal dimensionality as the output
(usually c, w, h for convolutional layers or w, h for FC layers
as explained in Sect. II-B) of the preceding layer. In essence,
every output value of the preceding layer, undergoes scaling
by a different key-defined constant factor. The following layers
adjust their functionality to the particular scaling introduced
by the Hadamard layer during model training.
Robustness. If the scaling defined by the key deviates signifi-
cantly during inference, it will result in changes to the output
values. As all subsequent layers rely on values produced by
the Hadamard layer during training changing the keys will
lead to decreased performance. This fulfills the Robustness

Unprotected
Layer

Following
Layer

Hadamard
Layer

…
…

*

*

Fig. 2: The Hadamard layer Building Block.

requirement from Sect. III, as the layers cannot handle values
that deviate from the known scale. A misalignment in value
scaling impacts the entire model, including all subsequent
layers, as each layer depends on the output values of the
previous layer. We show the functionality and robustness of
the Hadamard layer through an empiric evaluation in Sect. VI.
Key Generation. For every output value in the preceding layer,
an element-wise multiplication is executed with a specific
value provided by the non-trainable key. As such, the key has
to contain one scaling factor for each output value. While
there are no general limits on the values within the key, it is
important to choose value ranges carefully to prevent gradients
from exploding or vanishing [4]. Values that approach zero
create particularly small output values and can subsequently
lead to vanishing gradients. Similarly, excessively large key
values may lead to exploding gradients, and should therefore
be avoided as specified by the Fidelity requirement of Sect. III.
We propose to use randomly selected values that are uniformly
distributed within a range of -1.0 to 1.0. Negative and positive
values are included in the key to enable changing signs, which,
we believe, makes it more difficult to remove protection layers
due to the increased entanglement with model parameters. We
explore the effects of different key ranges in Sect. VI.
Copyright Verification. The keys of the Hadamard layers
serve as model identifiers. Therefore, the keys of a suspected
model are compared one by one to the original keys. For
copyright verification, the keys are represented as flattened
vectors and we suggest using cosine similarity (cf. Sect. II-C)
for comparison. While the specific comparison metric may
differ implementation-specific utilizing cosine similarity can
provide a reliable measure of similarity, essentially fulfilling
the Reliability requirement (cf. Sect. III). If there is a high
similarity between the original and suspected model keys, it is
likely that the entire model or parts of it were copied from the
original model, providing evidence of copyright infringement.
Similarity calculations can be performed for each Hadamard
protection layer key individually, providing a detailed under-
standing of which model layers were stolen. We establish
an insensitive guideline regarding the cosine similarity for
ownership verification through an empirical study in Sect. VI.
Furthermore, we empirically show that, despite third-party ma-
nipulation post-deployment, the following layer’s dependence
on a specific value range cannot be eliminated.
Next, we introduce the Permutation layer, a protection layer
that was specially crafted to be used with convolutional layers
(addressing the Generalizability requirement from Sect. III).
The robustness of the Permutation layer relies on its usage in

6

conjunction with convolutional layers. It could function as an
alternative or extension to the Hadamard protection layer.
Permutation Layer The Permutation layer shifts the order of
input data, making it an effective mechanism for implementing
a protection layer that adheres to the protection property. The
intuition behind the layer is to allow the convolution process
begin at a unique non-standard starting position, rather than
the top-left corner, while still processing the entire image
sequentially. The key defines the specific starting position for
each kernel. The resulting output retains the dimensions from
the unprotected layer and preserves local relationships between
adjacent output values while adopting a rearranged order. Re-
call, that each kernel in the convolutional layer (cf. Sect. II-B)
has its own output channel. Instead of modifying the starting
positions of the kernels, one can achieve the same effect by
shifting the outputs of the convolutional layer on a channel-
wise basis. An example of a shift from a single channel to
the right within a 3x3 matrix is shown in Fig. 3. The left
matrix indicates the original order, while the middle matrix
shows a shift to the right by one position and the right matrix
shows a shift by eight positions to the right. The non-trainable
and static key must have the same length as the number of
output channels (cf. Sect. II-B) of the preceding convolutional
layer to ensure proper operation. During training, subsequent
layers will adjust their parameters based on the output order
introduced by the Permutation layer.
Robustness A deviation from the altered order (defined by the
key) of the Permutation layer disrupts the learned features,
rendering the following layers incapable of accurate operation,
fulfilling the Robustness requirement of Sect. III and adhering
to the protection property. Random shuffling cannot be per-
formed because convolutional kernels may partially overlap
during the convolution operation, effectively operating on the
same pixels multiple times. Consequently, the outputs exhibit
a sensitivity to their order, meaning randomly shuffling them
can significantly impair the model performance as spatial
information is lost. To maintain the correct relative positions,
the values are shifted (addressing the Efficiency requirement
from Sect. III). We confirm the protection effectiveness of this
layer through empirical evaluation in Sect. VI.
Key Generation Recall, that the number of output channels
is dependent on the number of kernels utilized in the con-
volutional layer (cf. Sect. II-B). In the Permutation layer, all
outputs from a channel are shifted to the right by a certain
key-defined factor. For instance, the values in the first channel
will be shifted by three positions, while values from the second
channel will be shifted by five positions. Thus, the key consists
of a single integer value for each channel of the preceding
convolutional layer. The key values are randomly generated
between one and the number of output values minus one in
the respective channel. This indicates a shift to the right by
one position or a shift to the left by one position. The careful
selection ensures that the layer shifts at least one position to
the right and in each case alters the input’s order.
Copyright Verification. Instead of directly comparing the keys

1 2 3

4 5 6

7 8 9

2 3 4

5 6 7

8 9 1

9 1 2

3 4 5

6 7 8

Original Shift by 1 Shift by 8

Fig. 3: A shift to the right by 1 and 8 positions is shown.

of the Permutation layers as done with Hadamard layers, we
examine the outputs of Permutation layers to establish owner-
ship verification. This is done to mitigate adaptive adversary
attacks, which will be explained in Sect. V. To achieve this,
we first create a synthetic input sample where each value is
unique, such as a matrix with entries ranging from 0 to the
number of data points as shown in Fig. 3. Then, we analyze
the outputs of the input sample generated by two Permutation
layers. The first Permutation layer is used with the originally
employed key, while the second uses the key found in the
suspected model. Given the absence of suitable methods to
assess the similarity between two shifted outputs, we devised
a novel metric. This metric involves calculating the channel-
wise number of shifts required to move one of the outputs
to the left or right, maximizing the resemblance to the other.
Similar to brute-forcing, every possible shift is performed and
the output that produces the highest similarity is selected.
In particular, the cosine similarity is utilized to measure the
similarity between the two outputs.

We start by defining k = PossibleShifts
2 as the maximum

number of shifts (divided by two as shifting can be done to the
left or right side). Next, we define the Permutation Accuracy
(PAC) as PAC = 1−r/k. Here, r specifies the minimum count
of shifts that maximized the similarity between both outputs
(considering both left and right direction). This metric defines
the percentage of similarity between the output values of two
Permutation layers in terms of value order. As the output
order is defined by the key, essentially, the key’s similarities
are measured. Thus, ownership can be claimed based on the
similarity of the PAC metric.

C. Protection Layer Placement

In the following, we elaborate on the placement and number
of protection layers in model architectures. Protection layers
can be placed arbitrarily, as long as they are preceded by a con-
volutional or FC layer. Integrating multiple protection layers
distributed at different locations provides more comprehensive
protection, as each layer protects the parts of the model that
follow it.

DNN Models are often already split into architectural parts
as their architecture repeats itself, e.g. [24], [30], [26], [25].
For instance, the ResNet [24] models are constructed from a
number of basic blocks. Similarly, Transformer-based models
consist of a number of Transformer blocks [46], [5]. The
amount and exact placement of Protection layers is an in-
sensitive parameter as we show in Sect. VI-A. Nevertheless,

7

FC Layer Hadamard Layer

1 2

Merge

FC Layer

FC LayerFC Layer

Benign

Attack

Fig. 4: Merge of Hadamard layer into Fully-Connected (FC)
layers.

we propose placing one protection layer inside each model
block after the first FC or Convolutional layer, providing
comprehensive model protection. The last layer of a model
is the output layer, here no Protection layer is added as no
layer uses these outputs for further computation.
For instance, a ResNet-18 is divided into its nine Basic Blocks
where each block has roughly the same number of layers as
shown in Appendix Table VI. The first convolutional layer
of each block is preceded by a Protection Layer. Likewise, a
Transformer-based model is protected by placing one Protec-
tion layer after each FC layer from each Transformer block.
Smaller models can also intuitively be split into model parts
where each part has roughly the same amount of layers as
demonstrated in Appendix Table IV and Table V.

V. SECURITY ANALYSIS

In the following, we discuss attacks that merge the pro-
tection layer with neighboring layers and attacks that manip-
ulate convolutional kernel patterns to imitate the Permutation
layer. Additionally, the feasibility of partitioning the protection
layer and the robustness of the PAC similarity metric (cf.
Sect. IV-B) are discussed.
Merge. If a Hadamard layer is used in conjunction with a
Fully-Connected (FC) layer, an adversary could merge the
keys of the Hadamard layer with a FC layer (merge attack),
as illustrated in Fig. 4. The key of the Hadamard layer can
either be multiplied with the parameters of the preceding layer
(annotated with 1) or with the following FC layer (annotated
with 2). Merging one of the FC layers and the Hadamard
layer would allow for the removal of the Hadamard layer.
We elaborate on the mathematical details of the multiplication
in Sect. A. However, this attack still leaves identifiable traces
that can be used for copyright claims.
Assume that an adversary performs the merge attack and,
therefore, obtains a manipulated (FC) layer that does not
require the Hadamard layer for proper outputs anymore, as
visualized as the bottom left FC layer or the bottom right FC
layer in Fig. 4. The manipulated layer comprises of parameters
that are multiplied by the key of the Hadamard layer. For
example, in the lower left corner, the outgoing paths from the
first orange neuron are multiplied by the green factor of the
Hadamard key. The key of the Hadamard layer can still be
extracted from the manipulated layer by reversing the merge
attack. The key is obtained by dividing the parameters of the
manipulated layer by the parameters of the original FC layer.
As visualized in Fig. 4, each neuron has multiple paths and

Unprotected
Conv Layer

1 2

43

Permutation
Layer

Adversarial
Conv Layer

Modify Kernel Pattern

2 3

14

Fig. 5: Kernel pattern modification attack.

for a simple merge attack each parameter would yield the
same key factor. However, in case the adversary manipulates
a parameter, all the paths contributing to one output must
be considered. Hence, we average all multiplication factors
determined by all paths contributing to one output. The
division yields a multiplication factor corresponding to the
key for each path. The mathematical details of the reversal
process are outlined in Sect. B. After averaging, the obtained
values have identical dimensionality as the originally used key
and can be easily compared using the cosine similarity metric.
Furthermore, we demonstrate through a robustness evaluation
in Sect. VI-D that this attack combined with Fine-Tuning the
resulting manipulated model is also ineffective.

Convolutional layers cannot incorporate the Hadamard layer’s
key into the parameters, as convolutions share the same
parameters for multiple outputs. Therefore, the merge attack
would require multiplying a single parameter with different
factors simultaneously, which is not possible. We elaborate
on the precise details in Sect. C. Thus, the merge attack is
infeasible for both FC and convolutional layers.

Convolutional Pattern Modification. Permutation layers shift
output values by a certain factor (cf. Sect. IV-B). Rather
than modifying the order from the convolutional layer, the
same rearrangement could be produced by manipulating the
starting position of the convolutional kernel as shown in Fig. 5.
The figure visualizes, that modifying the order in which
the convolution is performed on the right-hand side results
in the same output order as introduced by the Permutation
layer in the center. This attack allows for removal of the
Permutation layer. However, ownership can still be proven.
This is done by calculating the PAC metric on the output
of the adversarial convolutional layer and the output of the
original convolutional layer combined with the Permutation
layer. As only the order of output values is important, the
parameters of the manipulated and original convolution layers
are unified, e.g., they have the same parameters. Thus, the
order in which the output is rearranged is analyzed for both
layers, and ownership can be claimed as the same order is
produced, rendering the attack infeasible.

Protection Layer Split. A potential attacker may try to bypass
the protection mechanism by dividing the protection layers
into multiple layers, each performing a part of the overall
function. However, the cumulative effect of these layers would
replicate the original protection layer. Therefore, it can be
identified by examining the architecture, as the layers would
need to be sequentially connected. Consequently, the separated
layers can be easily reassembled into a single layer, and

8

0

50

100
Ac

c
%

1

0

1

CO
S

(a) Random keys
0

50

100

Ac
c

%

0.0

0.5

1.0

PA
C

(b) Random keys
Keys25

50

75

Ac
c

%

1

0

1

CO
S

(c) Random value
Keys25

50

75

Ac
c

%

0.0

0.5

1.0

PA
C

(d) Random value
Keys

50

75

Ac
c

%

1

0

1

CO
S

(e) Add noise
Keys

50

75

Ac
c

%

0.0

0.5

1.0

PA
C

(f) Increment value

Fig. 6: CNN robustness protected by Hadamard(a,c,e)/Permutation layers(b,d,f) to key manipulation, e.g. random key, replacing
of key value, and, adding noise to key. Red line depicts key similarity, Green and Blue depict train and test accuracy.

ownership can be claimed.
Similarity Metric Resilience. The proposed PAC metric
relies on a minimal distance to assess the similarity between
Permutation layer outputs. This prevents an adversary from
subverting the PAC similarity metric by introducing a single
value that has not been shifted but rather randomly permuted.
Even if the injected value disrupts the alignment of the two
outputs, making it infeasible to align them with a shifting
operation alone, the PAC metric can still determine the number
of shifts required to maximize their resemblance. As a result,
this renders the attack ineffective.

VI. EVALUATION

Model Architectures and Datasets. Our approach was as-
sessed on various model architectures with differing sizes
commonly utilized in image classification domains, including
a Fully Connected network (FCN), a Convolutional network
(CNN), and the ResNet-18 [24] architecture. Further infor-
mation about these models can be found in Sect. D. We
chose the Vision domain to showcase the effectiveness and
robustness of DNNShield , aligning with prior research ([47],
[31], [43], [50], [14], [34], [2], [54], [32], [21]), leveraging
commonly used datasets that focus on image classification
namely MNIST [15], CIFAR-10 [29], and GTSRB [41].
Throughout the experiments, we varied the model architecture,
and training dataset systematically to showcase the Generaliz-
ability (cf. Sect. III) of our approach. The models underwent
ten epochs of training utilizing the Adam optimizer with a
learning rate of 0.001, unless explicitly stated otherwise. In all
experiments, the mean similarity of all keys is reported. The
experiments were conducted using PyTorch, a leading Python-
based machine learning library [44], [37], [48], on a server
equipped with 96 processing units, 128GB main memory, and
an AMD EPYC 7413 24-Core Processor (64-bit). We accessed
an NVIDIA A16 GPU via CUDA [36], which has four virtual
GPUs, each with 16GB of GDDR6 memory.

A. DNNShield ’s Functionality

To showcase the general functionality of DNNShield , we
employ Hadamard and Permutation protection layers to protect
the CNN model (cf. Sect. D). The comparison results with
an unprotected model, as well as the best key ranges, will
be evaluated in Sect. VI-B. After training on the CIFAR-10
dataset [29], training accuracies of 69.89% for the version
with Hadamard layers (H-Model) and 75.77% for the version
with Permutation layers (P-Model) were achieved, showing
that working models can be trained with protection layers in
place. The number of values in the key, e.g., the key size of the

H-Model was around 3.2% compared to all model parameters
and around 0.01% for the P-Model. First, the functionality of
the protection layers is evaluated with three experiments. The
goal is to ensure that the protection layers reduce the model
accuracy for keys that deviate from the reference keys (as
defined by the Robustness requirement from Sect. III) which
validates our claims that the protection layers adhere to the
protection property (cf. Sect. IV). These experiments showcase
that the keys are entangled with the model parameters and,
thus, have an impact on the model performance in case of
manipulation. In the first experiment, we establish a baseline
by replacing the key with randomly generated false keys
and showing which key similarity and model performance is
achieved. Next, we show that small deviations in the key’s
values have an impact on the model accuracy. Further, we
show the impact of adding different levels of noise to the key
of a protection layer.

Position and Amount of Protection Layers To assess the
impact of the number and placement of protection layers
within a model, all combinations of one, two, three, and
four protection layers integrated into the CNN model (cf.
Appendix Table V) were evaluated. The results, depicted in
Table I, show that neither the number of protection layers
nor their specific positions within the model seem to affect
the performance. In particular, the columns of the table show
the different combinations of active protection layers, e.g.
Protection Layer 1 to 4. The rows show the mean model
performance and its variance during 20 training epochs. It is
evident, that the performance does not change significantly
for any Protection Layer combination. This confirms, that the
placement and quantity of protection layers is an insensitive
parameter. To further showcase the position independence,
we evaluated placing the Protection layers after the first
within each Basic block of the ResNet-18 [24] as shown in
Table VI. We also place the Protection layer after the second
Convolutional layer within each block. Varying the position of
the Protection layers in the ResNet-18 [24] architecture did not
alter the outcome of performance or robustness experiments.

Model Refinement In scenarios involving data concept drift,
where fine-tuning the model is required at later stages to
adapt it to new data [22], it is crucial that the model can
be refined after it was protected without requiring re-training
from scratch. To evaluate the ability to fine-tune a protected
model, we conducted an experiment, training a ResNet-18
model on the GTSRB dataset for 10 epochs, achieving a
training accuracy of 86.95%. The last layer of the model was
then replaced to adapt it to the CIFAR-10 dataset. Afterward,

9

Combination {1} {2} {3} {4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4} {1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2,3,4}

Mean Accuracy 98.4 97.9 98.9 98.9 97.7 98.6 98.4 97.7 97.9 98.8 97.9 97.7 98.4 97.8 97.6
Accuracy Variance 0.9 1.1 0.9 0.9 1.5 1.1 1.0 2.1 1.1 1.0 1.9 2.3 1.4 1.7 3.0

TABLE I: Different Combination of protection layer P1, P2, P3, and, P4 for the CNN model trained on MNIST for 20 epochs.

the model was fine-tuned on the CIFAR-10 dataset for an
additional ten epochs starting at an accuracy of 71.59%
and ending with 93.5%. The used keys remained identical
throughout the whole process. These results demonstrate the
ease of refining existing models on new datasets, as long as
the legitimate keys are preserved. Thus, DNNShield enables
model refinement after protection, eliminating the need for
complete retraining, resulting in significant resource savings.
Key Replacement. To determine the functionality and validate
the protection property of the layers, we evaluated the trained
and protected models in a setup where the original key
was replaced with 100 different randomly generated false
keys. 2 We expect the key similarity to be low, however,
also the model performance should significantly drop as the
wrong key is used. In Fig. 6a the results are shown, we
omit the x-axis label due to space reasons. The green dots
represent the accuracy on the train set, while the blue dots
represent the accuracy on the test set. Note, that the blue
dots are barely visible as they overlap with the results from
the train set. The red dots represent the cosine similarity of
the randomly generated key compared to the original key.
The cosine similarity remains consistently low, as it is at
approximately 0 for all randomly generated keys, indicating
that no false positives occurred as desired by the Reliability
requirement from Sect. III. As expected, we can see, that the
H-Model exhibits poor performance, akin to that of a naı̈ve
classifier (around 10%) due to the usage of false keys, which
is represented by the green and blue dots at the bottom of
Fig. 6a. The drop in accuracy from around 70% to 10% partly
fulfills the Robustness requirement from Sect. III. Meanwhile,
for the P-Model, a comparable outcome is yielded as depicted
in Fig. 6b. Again, the green and blue dots represent the training
set and test set accuracies, while the red dots represent the PAC
(cf. Sect. IV-B) metric. The model exhibits poor accuracy of
around 30% (compared to 70% for the original key), while the
PAC (cf. Sect. IV-B) remains at 0.5. The PAC value can be
explained by the fact that a large sample of numbers from
a randomly and uniformly distributed population is taken.
Therefore, the average will tend to be close to the center of the
distribution. We conclude that the PAC value must be above
0.5 for reasonable ownership claims. In summary, we have
shown, that replacing the key with random keys yields poor
model performance as well as low key similarity. Showing
that both protection layers adhere to the protection property
(cf. Sect. IV).
Incremental Key Value Replacement. An attacker may
replace a single value instead of the entire key, with the goal of

2The keys were generated in a valid range, e.g., -1.0 to 1.0 for Hadamard
layers and 1 to the number of channels minus one for Permutation layers.

decreasing key similarity while maintaining high performance.
Therefore, we show that by iteratively replacing key values
with random values, either the model performance degrades
or the key’s similarity remains high. The generated key values
were again in a valid range. Thus, we performed an evaluation
that involved iteratively replacing zero to 100 randomly cho-
sen values within the original key with randomly generated
values, e.g., the first iteration did not change any values and
each subsequent iteration modified another random value. We
limited the evaluation to 100 generated keys since the trend
was already apparent. The results are depicted in Fig. 6c,
here the red line indicates the cosine similarity compared
to the reference key. The green and blue lines represent the
training and test set accuracies of the H-Model. It is visible
that the accuracy drops from 69% with the original key to
around 56% with just three values replaced. For the test set
an accuracy drop of the same magnitude can be observed. The
key similarity remains high above 0.99. The P-Model exhibits
a comparable outcome, as illustrated in Fig. 6d. Again, the
red line represents the key’s PAC, while the green and blue
lines denote the train and test set accuracies. The accuracy
declines from over 75% to around 27% for both the training
and testing sets. Still, a PAC of more than 0.66 is yielded. For
a PAC of 0.85 the model accuracy dropped to below 43%.
Both experiments indicate that the keys from the protection
layers are sensitive to small changes, as they result in a
significantly reduced model performance, indicating that the
keys are entangled with the model parameters.

Add Noise to Key. Another method to tamper with the key
is to add noise to the key’s values. Thus, we add different
levels of random noise in an iterative process to the keys of
the protection layers. In particular, for Hadamard layers, we
add randomly generated noise ten times in an interval of -0.2
to 0.2 to the key. For Permutation layers, 100 times a randomly
selected key value is increased by one. The results for the H-
model are shown in Fig. 6e. The meaning of the colors in the
figure is identical to the experiments for the H-model. The
leftmost point in Fig. 6e shows the result where no noise was
added. In subsequent experiments, the added noise was further
increased. In total, the random noise was added ten times
to the H-Model, which prompted a decrease in accuracy by
about 32% to a value below 37%, while the cosine similarity
of the keys remained high at more than 0.84. The results
for the P-Model are shown in Fig. 6f (the meaning of the
colors is identical to previous P-Model experiments). Further
incrementing random key values up to 100 times prompts a
drop in accuracy from around 69% to 54% for the training set
and 54% to 49% for the test set. The PAC remains at above
0.98. Both models appear to exhibit good resilience against

10

Model Unprotected Hadmard Permutation

CNN 99.826% 98.795% 99.861%
ResNet-18 [24] 98.894% 97.788% 97.756%

TABLE II: Accuracy results for CNN trained on MNIST [15]
dataset and ResNet-18 [24] trained on CIFAR-10 [29].

adding noise to the key values, as an accuracy drop is clearly
visible.
In summary, the experiments indicate a strong correlation
between the key similarity and model performance. A dis-
similarity between modified and original keys leads to a drop
in model accuracy. Furthermore, the key metrics only exhibit
high similarity in case very similar keys are utilized, fulfilling
the Reliability requirement from Sect. III. We conclude that
our approach is effective and reliable as the models achieve
high accuracies when the correct keys are utilized. However,
the model performance significantly declines and the key sim-
ilarity is poor if the keys significantly deviate from reference
keys, fulfilling the Robustness requirement from Sect. III.
Based on our experiments, we suggest that a similarity value
greater than 0.8 for both metrics could be used as a guideline
for ownership verification. This value provides a good balance
between robustness and reliability. However, the threshold is
an insensitive parameter.

B. Fidelity and Efficiency

In the following we first determine the best key range for the
Hadamard protection layer, exhibiting the best performance
and robustness. Afterward, we present evaluation results for
measuring the overhead induced by the protection method.
Key Range. We confirm the key parameters for the Hadamard
protection layer, by evaluating the potential influence of ex-
ploding and vanishing gradients [4] associated with high and
low values (cf. Sect. IV). Additionally, we assessed the extent
to which the inclusion of positive and negative values impacted
the performance of the protection layer. All experiments were
conducted with a ResNet-18 [24] model on the CIFAR-10
dataset [29].
Our experiments show that Hadamard Protection layers with
high key values (generated randomly between -10.0 to 10.0)
do not impact the protective capabilities. Nevertheless, they
resulted in a 2.57% decrease in accuracy compared to reg-
ular keys ranging from -1.0 to 1.0, and therefore, should
be avoided. Similarly, low key values (generated randomly
between -0.1 to 0.1) also resulted in a decrease of accuracy by
2.11%. The model performance is increased by 7.38%, using
only positive values ranging from 0.0 to 1.0. However, when
replacing the original key with randomly generated ones, the
model protected with the key that did not include negative
values (range from 0.0 to 1.0) exhibited about 5% higher
accuracy when used with random keys. Thus, the robustness,
e.g., the drop in accuracy when utilized with false keys is
positively impacted by including negative values. Therefore,
we argue that inclusion of negative values is beneficial due to
increased resilience. We conclude that adding negative values

enhances the entanglement between the key and model param-
eters, resulting in increased robustness. Thus, all experiments
are conducted with keys ranging from -1.0 to 1.0.
Fidelity. To measure the accuracy impact, we first trained
two unprotected baseline models: A ResNet-18 [24] on
CIFAR-10 [29] trained for 30 epochs and a CNN model trained
on MNIST [15] for 30 epochs. The training duration was
extended to demonstrate that the models are fully optimized,
meaning a high level of accuracy has been achieved with
little potential for further improvement. Next, we included
Hadamard and in the second run Permutation layers into the
models and again trained in the same manner. The results for
the training accuracies are visualized in Appendix Fig. 11. The
figure indicates a minimal difference between the models. In
the following, we report the evaluation of the whole dataset
(train and test combined) reported in Table II. After 30 training
epochs the unprotected ResNet-18 [24] model achieved an
accuracy of 98.89% while the configuration with Hadamard
and Permutation layers achieved accuracies of 97.79% and
97.76%. Accordingly, we have observed that both protection
layers cause a performance drop of around 1%, which we
consider negligible as this can also stem from training ran-
domness. Using another random seed leads the unprotected
ResNet-18 [24] model to achieve an accuracy of 97.20%
which shows that performance fluctuations occur. Similarly,
the overhead introduced by the Hadamard Protection layers in
the CNN model is around 1% and the version with Permutation
layers performs 0.035% better than the baseline. The impact of
protection layers is more pronounced during the initial stages
of training. However, their influence diminishes as training
progresses, and ultimately, models with and without protection
layers achieve almost identical accuracies. Both models, in all
three configurations, display a similar training accuracy curve
and accuracy values, leading us to believe that the impact of
our approach on the model performance is negligible fulfilling
the Efficiency requirement from Sect. III.

C. Generalizability

To demonstrate the generalizability, we protect a
ResNet-18 [24] model using Hadamard layers (H-ResNet)
followed by another version utilizing Permutation layers (P-
ResNet). We trained both model variations on the CIFAR-10
dataset [29] and the GTSRB dataset [41]. The H-ResNet
achieved a training set accuracy of 80.48% on CIFAR-10 [29]
and an accuracy of 94.89% on GTSRB [41]. Furthermore, the
P-ResNet achieved an accuracy of 82.06% on CIFAR-10 [29]
and 97.18% on GTSRB [41]. To ascertain the robustness
for the H-ResNet and P-ResNet trained on CIFAR-10 [29],
we again conducted the same experiments as in Sect. VI-A.
In particular, three experiments were conducted. The first
experiment replaced the original key with 100 randomly
generated keys. The second experiment replaced a single key
value, and the third experiment added noise to the key. The
results are depicted in Appendix Fig. 10 and show that the
ResNet-18 [24] model behaves very similar to the previously
assessed CNN model. Therefore, we conclude that both

11

All Params Key Params
Same LR 1/10 of LR Same LR 1/10 of LR

(1) COS 0.9975 0.9999 0.9855 0.9994
(2) Test Set Acc 97.14% 93.28% 76.03% 64.63%
(3) ∆ Train Acc -13.27% -1.74% -2.63% -1.64%

TABLE III: Fine-Tuning accuracy (Acc) for ResNet-18 [24]
protected using Hadamard layers. The table depicts results for
all parameters and only key parameters being tuned, both with
the same learning rate (LR) and 1/10 of the LR.

protection layers are applicable to multiple different datasets
and model architectures.

Applicability to Transformer-Based models To demonstrate
the applicability of DNNShield to Transformer-based models,
e.g. Large Language Models [49], [46], [5], we protect a
Vision Transformer [17]. Transformer models are naturally
divided into processing blocks. Our model consists of 7 Trans-
former blocks. The embedding size and the Fully-Connected
(FC) layers input dimension of the Transformer blocks are
384. Further, the model utilizes 12 Self-Attention modules.
We protect the model by inserting a Hadamard Protection layer
after the first FC Layer within each Transformer block. The un-
protected Vision Transformer achieved an accuracy of 83.45%
with protection layers in place. Similar to the ResNet-18 [24]
experiments, we evaluated the robustness of DNNShield with
three experiments. The first experiment was repeated 100 times
and evaluated the model’s performance using randomly gener-
ated keys, mimicking an adversary trying to utilize the model
with a different key. Each time, a significant performance
drop of around 70% occurred. Incrementally replacing single
key values (up to 100) resulted in a negligible performance
drop (less than 1%), however, the cosine similarity of the key
remained above 99.94%. Finally, adding noise to the key until
the cosine similarity dropped to 80% caused a performance
drop to around 20.59% (a decrease of approximately 62%).
These results are very similar to the other models exhibiting
the same behaviour. Thus, DNNShield can be effectively
applied to Transformer-based architectures as well.

D. Robustness and Reliability

In this section we evaluate the robustness of our approach
against more sophisticated adversarial modifications. Common
attacks, such as Fine-Tuning (cf. Sect. II-D) and Pruning
(cf. Sect. II-D), can only be applied for the Hadamard Pro-
tection layer since the Permutation Protection layer cannot be
optimized using gradient descent techniques. This is due to
the Permutation Protection layer simply rearranging the order
of outputs without modifying their values.

However, the Hadamard layer introduces key values (parame-
ters) that adversaries can directly optimize using gradient de-
scent, making it applicable to common attacks such as Pruning
and Fine-Tuning. Therefore, we evaluated the vulnerability of
the Hadamard Protection layer to these two scenarios.

Fine-Tuning. In fine-tuning attacks (cf. Sect. III), attackers
alter the parameters of trained models to circumvent security

Pruning Level0

50

Ac
c

%

1

0

1

Co
s

(a) All Parameters
Pruning Level0

50

Ac
c

%

1

0

1

Co
s

(b) Key Parameters

Fig. 7: Pruning from 5% to 90% for the H-ResNet trained
on CIFAR-10 [29]. The Red line depicts the cosine similarity,
while the Green/Blue lines depict train/test accuracy.

measures while preserving the accuracy. DNNShield is not
vulnerable to such attacks because its security is dependent
on the key layers that remain unchanged even if other model
parameters are manipulated. We considered two scenarios how
malicious actors may adapt Fine-Tuning to DNNShield . In
the first, adversaries treat the values in the key layer as if they
belong to the model parameters, e.g., make them trainable.
The goal is to compromise the protection mechanism by
Fine-Tuning all model parameters and key values. Second,
adversaries freeze all model parameters except for the key
values, which are then fine-tuned in order to alter them while
preserving the accuracy. The third scenario, training only the
model parameters without the key values, is not beneficial, as
in this case, the model identifier would remain unchanged.

To evaluate DNNShield ’s robustness against adapted Fine-
Tuning scenarios, we continued training the H-ResNet on the
CIFAR-10 [29] test set. We trained for another ten epochs
with the same learning rate, as well as with 1/10 of the original
learning rate (similarly to [47], [9], [52], [34], [2], [31]).
The evaluation results are depicted in Table III. In all tested
scenarios the cosine similarity between the modified key and
the original key was above 0.98 as can be seen in line 1 of
Table III. Furthermore, line 2 reports the accuracies of the
test set which was used for Fine-Tuning. Line 3 of Table III
shows the change in the training set accuracy. Therefore,
we argue that the approach is robust against Fine-Tuning a
protected model. To further evaluate the robustness of our
approach we fine-tune a ResNet-18 [24] model, protected
using Hadamard layers, and trained on GTSRB [41] for 10
epochs on the CIFAR-10 dataset [29] for another 10 epochs.
This process involved replacing the last layer of the model
as the number of output classes changed, therefore, we only
evaluated the scenario where all model parameters including
those of the key layer are fine-tuned. The learning rate was
set to 1/10 of the original learning rate as for higher learning
rates the accuracy results degraded. After the Fine-Tuning, the
cosine similarity of the key was above 0.99 while the train
and test accuracies of the GTSRB [41] dataset were 86.78%
and 94.18% respectively. Our results show that an adversary
can not remove the identifier by adapting the model to his
purposes. The approach exhibits strong resilience against adap-
tive adversaries performing Fine-Tuning attacks, essentially
fulfilling the Robustness requirement from Sect. III.

Pruning. Besides Fine-Tuning, we investigate another com-
mon attack called Pruning (cf. Sect. III) similar to [47], [14],
[9], [52], [34], [31]. We again employ the two scenarios from

12

Fine-Tuning, as Pruning only the model parameters would
leave the key layers values untouched. The results are depicted
in Fig. 7. The blue line depicts the test set accuracy, while the
green line represents the training set accuracy. The red line
depicts the cosine similarity of the key. First, we prune all
model parameters including those of the key layers and second,
we only prune the values from the key layers. We used the
ResNet-18 [24] model which was trained on CIFAR-10 [29]
for ten epochs and progressively pruned the model parameters
and the key layers. We started with Pruning 5% of the lowest
values and increased the Pruning value by 5% until we reached
90%. As shown in Fig. 7a, in case all parameters are pruned,
for a key similarity of 0.85 (reached at a Pruning level of
65%) the accuracies are at 27.76% for the test set and 29.5%
for the train set. Similarly, as shown in Fig. 7b, in case only
the key parameters are pruned for a key similarity of 0.85
(also reached at a Pruning level of 65%) the accuracies are
at 31.73% for the train set and 32.57% for the test set. We
conclude, that in both scenarios the model performance is
correlated with the similarity of the key. Hence, the approach
is resilient against Pruning attacks, adhering to the Robustness
requirement from Sect. III.

Adaptive Adversary. An adaptive adversary could integrate
the protection layer’s parameters into the preceding FC layer
(see FCN model in Sect. D). This attack strategy was discussed
in Sect. V and illustrated in Fig. 4, where we determined
that the key could be extracted from the merged parameters
using the process outlined in Sect. B. A FCN model was
trained on the MNIST dataset [15]. Next, both Hadamard
Protection layers from the FCN model were multiplied into
the parameters of the preceding FC layers. Subsequently,
the model underwent Fine-Tuning on the test dataset using
the same learning rate used in the regular training phase.
Our evaluation results show that even after ten Fine-Tuning
iterations, the key’s values could be extracted from the model
parameters with a cosine similarity exceeding 0.99. Therefore,
we conclude that multiplying the Hadamard key values into
parameters of a FC layer is not an effective means of circum-
venting the protection mechanism. To ensure that unprotected
model do not yield high key similarity in case the previously
described extraction process is performed, we conducted a
second experiment regarding retrieval of the key from an
unprotected and trained model. Here, the cosine similarity
was very low at -0.13%, therefore, we consider the Reliability
requirement from Sect. III fulfilled.

To further assess the effectiveness of replacing protection
layers with FC layers, we conducted an additional experiment.
While replacing Permutation layers is ineffective, as ideally,
they would simply learn how to rearrange the output values
in a manner already accomplished by the Permutation layer,
replacing Hadamard protection layers with FC layers holds
limited promise. The idea was introduced in [11]. It is notewor-
thy that replacing each protection layer in the ResNet-18 [24]
model with a FC layer introduces a parameter overhead of 28
times, e.g., the amount of parameters is increased from 11M

0 10 20
Epochs

50

100

Ac
c

%

Fig. 8: Model test accuracy (green line) where key layers
were substituted with FC layers. The blue line depicts the
training accuracy, the Red/Yellow line indicates the baseline
performance from the protected model on the train/test set.

to 318M. The overhead renders the attack impractical in real-
world scenarios. Nevertheless, we pursued this experiment to
evaluate whether FC layers could effectively learn the scaling
introduced by Hadamard layers. This process entailed Fine-
Tuning a ResNet-18 [24] model on the test set using the
identical learning rate used in model training. As illustrated
in Fig. 8, the substitution of protection layers with FC layers
attains peak performance on the test set depicted by the green
line, surpassing the baseline test accuracy depicted in yellow.
However, the attack is unable to achieve performances close
to the baseline accuracy of 80.48% (depicted as the red line)
for the training set, represented by the blue line. Even after 25
epochs, the accuracies of the training set persist at low levels
of approximately 35%, corresponding to a decline of roughly
45%. This indicates that the model is over-fitting to the test
set. We conclude that replacing the protection layers with FC
layers is not a viable option to circumvent the protection.

E. DNNShield ’s Runtime

To measure the runtime overhead of DNNShield , we
trained three models for 10 epochs while averaging their
time per epoch. We first trained the CNN model on the
CIFAR-10 [29] dataset without protection layers. The mean
time (seconds) per epoch was 3.1384s with a variance of
0.031. The model protected using two Hadamard layers had a
mean time per epoch of 3.2745s with a variance of 0.019. The
model protected using two Permutation layers had a mean time
per epoch of 3.5352s with a variance of 0.052. These results
demonstrate that the overhead introduced by DNNShield is
minimal, e.g., less than 5% for the model protected using
Hadamard layers.

VII. DISCUSSION

The following section presents a discussion on the place-
ment, combination, and amount of protection layers. Addition-
ally, we will discuss the publication of the key.
Protection Layer Placement. The placement of protection
layers within a DNN can impact its robustness against ad-
versarial attacks. Placing them after activation functions can
make it more difficult for adversaries to merge them into
the preceding unprotected layer. This is because activation
functions introduce non-linearity, making it more challenging
to integrate them into protection layers.
Protection Layer Combination. The Hadamard and Permu-
tation layers (cf. Sect. IV-B) are two distinct instantiations
that offer unique advantages. The Hadamard layer introduces

13

a scaling pattern. The permutation layer, on the other hand,
changes the order of output values. Combining both types of
protection layers within a single DNN might further com-
plicate the task of removing the protection layers for an
adversary.
Protection Layer Amount. The number of protection layers
used in a DNN has a direct resilience impact. Adding more
protection layers can improve the robustness of the protection
methods and increase the confidence in the model identifier.
However, too many protection layers can lead to drawbacks,
such as longer runtime. Therefore, achieving the desired level
of robustness and identification confidence requires a balanced
number of protection layers.
Key Publication. To facilitate efficient ownership verification,
the model owner must establish that the key integrated into
the model was indeed chosen by them and not another party.
Therefore, the key or the hash of it should be publicly
disclosed prior to model training, such as on a platform that
assigns verifiable timestamps and links the key to the owner
of the model, e.g. a blockchain [18].

VIII. RELATED WORK

This section presents DNN IP protection works related to
DNNShield .
Watermarking. Watermarking (WM) (cf. Sect. II) is a re-
lated approach to IP protection for DNNs. White-box WM
schemes [47], [31], [43], [50], [51], [14], which directly
modify and analyze the model weights, are among the most
prevalent DNN WM techniques. These approaches typically
necessitate a secret key and a secret watermark that can be
extracted using this key. Consequently, the approaches can
only be employed once, as the secret key must be revealed for
ownership verification. Furthermore, watermark embedding is
primarily accomplished through the use of an additional loss
function, which increases training complexity. In contrast, our
approach does not rely on any secrets, enabling limitless
ownership verification. Additionally, the approach does not
significantly increase training overhead as it does not introduce
additional trainable parameters.
The second category, Black-box WM schemes [34], [2], [54],
[32], [21], [27], involve feeding specific input samples into
the model and analyzing their outputs. These inputs, function
as the secret keys and are kept confidential. As a result, often
the same limitations apply to these approaches. To incorporate
the watermark, the training data must be manipulated which
could degrade the models performance.
Fingerprinting. Fingerprinting (FP) extracts unique identifiers
from trained DNNs for ownership verification. The methods
can be categorized as parameter-based or input-based. Both
have similar limitations than WM schemes. Parameter-based
FP [14], [9] relies on a secret key, limiting its applicability.
In contrast, DNNShield does not rely on secrecy, enabling an
arbitrary number of verifications.
Input-based FP [53], [35], [6] utilizes distinct output patterns
generated by different DNNs for specific inputs to identify

a model. However, this approach requires generating care-
fully crafted inputs, which can be used for adaptive attacks
and, thus, need to be kept secret. Additionally, the identifier
is only extracted after model training, leaving intermediate
model states, known as checkpoints, susceptible to misuse
by adversaries. In contrast, DNNShield provides a static
identifier, unchanged during model training, addressing these
limitations. DeepJudge [10], a testing framework proposed
as alternative to traditional WM techniques, faces similar
limitations. It compares the behavioral similarities between
a trained DNN and a potentially infringing model based on
six metrics. These metrics are derived from selected inference
samples that capture the models’ characteristics. However,
the output for these specific samples could be manipulated
and, contrary to DNNShield , the method cannot safeguard
intermediate model states, leaving them susceptible to misuse.

Passporting. Fan et al. [20], [19] introduces passport lay-
ers as a DNN model protection mechanism. However, this
approach is limited to specific convolutional layer configu-
rations, namely pairs of convolutional layers followed by a
normalization layer. The normalization layers are modified to
form passport layers, functioning similar to our Hadamard
layers. These layers incorporate trainable parameters that are
optimized alongside the remaining model parameters and
constrained by an additional loss. Therefore, the training
complexity is increased and the application of the method
results in training overhead. Furthermore, it prevents the
protection of intermediate model checkpoints, as the pass-
port layer parameters change throughout training. In contrast,
DNNShield can be applied to both convolutional and Fully-
Connected layers, regardless of subsequent layers, without
introducing additional trainable parameters. Moreover, it safe-
guards intermediate checkpoints. Zhang et al. [56] introduce
a method that incorporates a secret passport layer during
training alongside the unprotected model. After releasing the
unprotected model, the secret passport layers can be employed
analogously to a secret key to verify ownership. This is
because the unmodified model, when equipped with the secret
passport layer, exhibits unique behavior. A similar approach is
also proposed as an alternative in DeepIPR [20]. In contrast,
our approach does not rely on any secret keys. Additionally,
Chen et al. [11] demonstrated that DeepIPR’s passport layers
are vulnerable to ambiguity attacks. These attacks attempt to
falsely claim ownership by replacing the passport’s trainable
parameters with different ones. A small portion (10%) of
training data is leveraged with additional fully connected
layers to identify alternative parameters. We have shown that
finding alternative keys that have significant dissimilarity is
infeasible for our approach. Furthermore, an adversary could
attempt to circumvent the protection mechanism by replacing
the protection layers with fully connected layers. However,
our experiments in Sect. VI-D have shown that this strategy
is ineffective against DNNShield and does not scale well in
terms of model size.

Hardware-based IP protection. Hardware-based IP protec-

14

tion methods can be broadly classified into two categories:
Hardware-Level IP protection [8] employs trusted execution
environments (TEEs) to ensure that only approved models
can be executed on specific hardware devices. A TEE acts
as a secure enclave within the hardware, safeguarding sensi-
tive information. Only models that match the secret model
identifier are granted access to the hardware. Additionally,
Hardware-Assisted IP protection [1] involves encrypting por-
tions of the model and executing them within a TEE. During
inference in the TEE a secret key is employed. In contrast,
DNNShield eliminates the need for dedicated hardware or
secret keys.

IX. CONCLUSION

Protecting the IP rights of DNN creators is a significant
challenge in the rapidly evolving field of ML. Current ap-
proaches modify the training dataset, rely on the secrecy of
an embedded key, introduce additional training parameters,
restrict themselves to specific layer types, or leave unfinished
model checkpoints unprotected. To address these limitations,
we introduce DNNShield, a novel protection method that in-
tegrates protection layers into the model’s architecture. These
layers allow for accurate identification of the model, enabling
ownership claims by the creator. Our approach includes two
instances of protection layers, both demonstrating high re-
silience against fine-tuning, pruning, and sophisticated adap-
tive adversarial attacks while incurring negligible performance
and runtime overhead. We extensively evaluated the approach
across three datasets and three model architectures, confirming
the efficacy of DNNShield in safeguarding DNNs.

15

REFERENCES

[1] C. Abhishek, M. Ankit, and S. Ankur, “Hardware-Assisted Intellectual
Property Protection of Deep Learning Models,” DAC, 2020.

[2] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning Your
Weakness into a Strength: Watermarking Deep Neural Networks by
Backdooring,” USENIX Security, 2018.

[3] E. Benevento, D. Aloini, and N. Squicciarini, “Towards a real-time
prediction of waiting times in emergency departments: A comparative
analysis of machine learning techniques,” IJF, 2023.

[4] Y. Bengio, P. Frasconi, and P. Simard, “The problem of learning long-
term dependencies in recurrent networks,” ICNN, 1993.

[5] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei, “Language Models are Few-Shot Learners,” NeurIPS, 2020.

[6] X. Cao, J. Jia, and N. Z. Gong, “IPGuard: Protecting Intellectual
Property of Deep Neural Networks via Fingerprinting the Classification
Boundary,” ASIACCS, 2021.

[7] C.-Y. Chang and S.-J. Su, “A neural-network-based robust watermarking
scheme,” SMC, 2005.

[8] H. Chen, C. Fu, B. D. Rouhani, J. Zhao, and F. Koushanfar, “DeepAttest:
An End-to-End Attestation Framework for Deep Neural Networks,”
ISCA, 2019.

[9] H. Chen, B. D. Rouhani, C. Fu, J. Zhao, and F. Koushanfar, “DeepMarks:
A Secure Fingerprinting Framework for Digital Rights Management of
Deep Learning Models,” ICMR, 2019.

[10] J. Chen, J. Wang, T. Peng, Y. Sun, P. Cheng, S. Ji, X. Ma, B. Li, and
D. Song, “Copy, Right? A Testing Framework for Copyright Protection
of Deep Learning Models,” IEEE SP, 2022.

[11] Y. Chen, J. Tian, X. Chen, and J. Zhou, “Effective Ambiguity Attack
Against Passport-based DNN Intellectual Property Protection Schemes
through Fully Connected Layer Substitution,” CVPR, 2023.

[12] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural Language Processing (almost) from Scratch,” JMLR,
2011.

[13] P. Contributors, “TORCH.MUL,” 2023,
https://pytorch.org/docs/stable/generated/torch.mul.html.

[14] B. Darvish Rouhani, H. Chen, and F. Koushanfar, “DeepSigns: An End-
to-End Watermarking Framework for Ownership Protection of Deep
Neural Networks,” ASPLOS, 2019.

[15] L. Deng, “The MNIST Database of Handwritten Digit Images for
Machine Learning Research,” IEEE Signal Processing Magazine, 2012.

[16] A. S. Dhanjal and W. Singh, “A comprehensive survey on automatic
speech recognition using neural networks,” Multimedia Tools and Ap-
plications, 2023.

[17] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale,” arXiv preprint
arXiv:2010.11929, 2021.

[18] G. Estevam, L. M. Palma, L. R. Silva, J. E. Martina, and M. Vigil,
“Accurate and decentralized timestamping using smart contracts on the
Ethereum blockchain,” Inf Process Manag., 2021.

[19] L. Fan, K. W. Ng, and C. S. Chan, “Rethinking Deep Neural Network
Ownership Verification: Embedding Passports to Defeat Ambiguity
Attacks,” NeurIPS, 2019.

[20] L. Fan, K. W. Ng, C. S. Chan, and Q. Yang, “DeepIPR: Deep Neural
Network Ownership Verification With Passports,” TPAMI, 2022.

[21] J. Guo and M. Potkonjak, “Watermarking Deep Neural Networks for
Embedded Systems,” ICCAD, 2018.

[22] D. Han, Z. Wang, W. Chen, K. Wang, R. Yu, S. Wang, H. Zhang,
Z. Wang, M. Jin, J. Yang, X. Shi, and X. Yin, “Anomaly Detection in the
Open World: Normality Shift Detection, Explanation, and Adaptation,”
NDSS, 2023.

[23] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both Weights and
Connections for Efficient Neural Networks,” NeurIPS, 2015.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” CVPR, 2016.

[25] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for MobileNetV3,”
ICCVW, 2019.

[26] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and ¡0.5MB model size,” arXiv preprint arXiv:1602.07360,
2016.

[27] H. Jia, C. A. Choquette-Choo, V. Chandrasekaran, and N. Papernot, “En-
tangled Watermarks as a Defense against Model Extraction,” USENIX
Security, 2021.

[28] T. Krauß and A. Dmitrienko, “MESAS: Poisoning Defense for Federated
Learning Resilient against Adaptive Attackers,” CCS, 2023.

[29] A. Krizhevsky, G. Hinton et al., “Learning Multiple Layers of Features
from Tiny Images,” Citeseer, 2009.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” NeurIPS, 2012.

[31] Y. Li, B. Tondi, and M. Barni, “Spread-Transform Dither Modulation
Watermarking of Deep Neural Network,” JISA, 2021.

[32] Z. Li, C. Hu, Y. Zhang, and S. Guo, “How to Prove Your Model Belongs
to You: A Blind-Watermark Based Framework to Protect Intellectual
Property of DNN,” ACSAC, 2019.

[33] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
M. Pietikäinen, “Deep Learning for Generic Object Detection: A Sur-
vey,” IJCV, 2020.

[34] E. L. Merrer, P. Pérez, and G. Trédan, “Adversarial Frontier Stitching
for Remote Neural Network Watermarking,” Neural Computing and
Applications, 2019.

[35] L. Nils, Z. Yuxuan, and K. Florian, “Deep Neural Network Fingerprint-
ing by Conferrable Adversarial Examples,” ICLR, 2021.

[36] NVIDIA, P. Vingelmann, and F. H. Fitzek, “Cuda, release: 10.2.89,”
2020. [Online]. Available: https://developer.nvidia.com/cuda-toolkit

[37] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “PyTorch: An
Imperative Style, High-Performance Deep Learning Library,” NeurIPS,
2019.

[38] P. Rieger, T. Krauß, M. Miettinen, A. Dmitrienko, and A.-R. Sadeghi,
“CrowdGuard: Federated Backdoor Detection in Federated Learning,”
arXiv preprint arXiv:2210.07714, 2023.

[39] S. Shan, W. Ding, E. Wenger, H. Zheng, and B. Y. Zhao, “Post-
Breach Recovery: Protection against White-Box Adversarial Examples
for Leaked DNN Models,” CCS, 2022.

[40] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition.” ICLR, 2015.

[41] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition,”
Neural Networks, 2012.

[42] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B.
Gotway, and J. Liang, “Convolutional Neural Networks for Medical
Image Analysis: Full Training or Fine Tuning?” IEEE TMI, 2016.

[43] E. Tartaglione, M. Grangetto, D. Cavagnino, and M. Botta, “Delving in
the loss landscape to embed robust watermarks into neural networks,”
ICPR, 2021.

[44] The Linux Foundation, “Pytorch,” 2022, https://pytorch.org.
[45] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The Com-

putational Limits of Deep Learning,” arXiv preprint arXiv:2007.05558,
2022.

[46] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,
A. Joulin, E. Grave, and G. Lample, “LLaMA: Open and Efficient
Foundation Language Models,” arXiv preprint arXiv:2302.13971, 2023.

[47] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Embedding Water-
marks into Deep Neural Networks,” ICMR, 2017.

[48] G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum
voor Wiskunde en Informatica Amsterdam, 1995.

[49] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention Is All You Need,” arXiv preprint
arXiv:1706.03762, 2023.

[50] J. Wang, H. Wu, X. Zhang, and Y. Yao, “Watermarking in Deep Neural
Networks via Error Back-propagation,” Electronic Imaging, 2020.

[51] T. Wang and F. Kerschbaum, “RIGA: Covert and Robust White-Box
Watermarking of Deep Neural Networks,” WWW, 2021.

[52] C. Xie, P. Yi, B. Zhang, and F. Zou, “DeepMark: Embedding Watermarks
into Deep Neural Network Using Pruning,” ICTAI, 2021.

[53] K. Yang, R. Wang, and L. Wang, “MetaFinger: Fingerprinting the Deep
Neural Networks with Meta-training,” IJCAI, 2022.

16

https://developer.nvidia.com/cuda-toolkit
https://pytorch.org

[54] J. Zhang, Z. Gu, J. Jang, H. Wu, M. P. Stoecklin, H. Huang, and
I. Molloy, “Protecting Intellectual Property of Deep Neural Networks
with Watermarking,” ASIACCS, 2018.

[55] J. Zhang, D. Chen, J. Liao, H. Fang, W. Zhang, W. Zhou, H. Cui, and
N. Yu, “Model Watermarking for Image Processing Networks,” AAAI,
2020.

[56] J. Zhang, D. Chen, J. Liao, W. Zhang, G. Hua, and N. Yu, “Passport-
aware Normalization for Deep Model Protection,” NeurIPS, 2020.

APPENDIX A
HADAMARD KEY MERGE INTO LINEAR LAYER

In case no activation function is utilized after calculation
of the linear layers output it is straightforwardly possible to
merge the key of the Hadamard layer into the weights of the
linear layer. Assume an input vector x, a linear layer with
weights w and bias b, followed by a Hadamard protection layer
with key k. The forward pass is computed as y = (x·wt+b)×k
which expands to (

∑
i xi,j · wi,j + bj)× kj , where i denotes

the i-th and j denotes the j-th column in the matrix. Now an
adversary can compute w′

i,j = wi,j × kj and b′j = bj × kj to
merge the key with the linear layer. The weights and biases
of the new linear layer are now specified by w′ and b′.

APPENDIX B
HADAMARD KEY EXTRACTION FROM MERGED LINEAR

LAYER

The key can be extracted from a merged linear layer by
calculating

w′
i,j

wi,j
= ki,j . For each key value multiple values

are obtained, therefore, an averaging mechanism is required to
obtain a single value. Also the key from the bias is extracted
by calculating

b′j
bj

= kj . To enhance the robustness and perform
aggregation, outliers of three times the standard deviation from
the mean are removed and then the mean of the remaining
values is computed. The key from the weights and bias are
equally weighted and averaged. Therefore, the resulting key
can be compared as described in Sect. IV.

APPENDIX C
HADAMARD KEY MERGE INTO CONVOLUTIONAL LAYER

Consider a convolutional layer with one filter with weights
f , a kernel size of 2 by 2 and for simplicity without bias, after
calculation of the convolution layer a Hadamard layer with key
k is applied. The forward pass calculates y = (x ∗ f), where
∗ denotes the cross-correlation operation and x is the input
vector as shown in Fig. 9. The value from the convolutions
output are calculated as x1 ∗f1+x2 ∗f2+x4 ∗f3+x5 ∗f4, the
second cell is calculated as x2 ∗f1+x3 ∗f2+x5 ∗f3+x6 ∗f4.
Now to merge the key layer into the first convolutional filters
weight one would need to calculate f ′

1 = f1 × k1 and f ′
1 =

f1 × k2. As k1 ̸= k2 it is not possible to merge the key layer
into the convolutional filters weights. This assumes that the
values of the keys are not equivalent, which is highly probable
given that the values are randomly generated.[

x1 x2 x3

x4 x5 x6

]
Fig. 9: Input Matrix x.

APPENDIX D
MODEL ARCHITECTURES

The approaches were assessed across different model ar-
chitectures, encompassing Fully Connected and Convolutional
models, alongside the widely used ResNet-18 [24] architec-
ture.

Fully Connected The Fully Connected Network (FCN) en-
compasses linear layers and the ReLu activation function as
shown in Table IV. The model can only be protected using
Hadamard protection layers.

Layer Input Width and Height Input Channels

Linear 1 32x32 3
Protection Layer 1 1 15
ReLu 1 15
Linear 2 1 15
Protection Layer 2 1 10
ReLu 1 10
Linear 3 1 10

TABLE IV: Architecture of the Fully Connected Network.
The dimensions are calculated based on usage with the
CIFAR-10 [29] dataset.

Convolutional The architecture of the convolutional model is
shown in Table V. The convolutional layers (Conv2d) have
kernel sizes of 5 by 5 and the maxpooling layers (MaxPool2d)
have kernels of size 2 by 2. In case the model is protected by
Permutation layers only the Protection Layer 1 and Protection
Layer 2 are utilized, as the Permutation layers can not be used
in conjunction with Linear layers.

Layer Input Width and Height Input Channels

Conv2d 32x32 3
Protection Layer 1 28x28 32
ReLu 28x28 32
MaxPool2d 28x28 32
Conv2d 14x14 32
Protection Layer 2 10x10 64
ReLu 10x10 64
MaxPool2d 10x10 64
Linear 5x5 64
Protection Layer 3 1 512
ReLu 1 512
Linear 1 512
Protection Layer 4 1 256
ReLu 1 256
Linear 1 256

TABLE V: Architecture of the Convolutional Neural Network
(CNN). The dimensions are calculated based on usage with
the CIFAR-10 [29] dataset.

ResNet-18 The architecture of the protected ResNet-18 [24]
model is shown in Table VI. The model consists of convo-
lutional layers (Conv2d), batch normalization layers (Batch-
Norm), and skip connections (SkipConnection) which add the
input of previous layers to following layers. We protect the
ResNet-18 [24] model with nine well-distributed Protection
layers as shown in Table VI. For Permutation Layer Protec-
tion only the first seven Protection Layers are used because
protection layers 8 and 9 consists of a single value per channel

17

which can not be permuted. The Hadamard protection layers’
key values represent 0.28% of the total parameters, while
the Permutation protection layers’ key values represent only
0.008% of the total parameters.

Layer Input Width and Height Input Channels

Conv2d 32x32 3
Protection Layer 1 16x16 64
BatchNorm 16x16 64
ReLu 16x16 64
MaxPool2d 16x16 64
Conv2d 8x8 64
Protection Layer 2 8x8 64
BatchNorm 8x8 64
ReLu 8x8 64
Conv2d 8x8 64
BatchNorm 8x8 64
ReLu 8x8 64
Conv2d 8x8 64
Protection Layer 3 8x8 64
BatchNorm 8x8 64
ReLu 8x8 64
Conv2d 8x8 64
BatchNorm 8x8 64
ReLu 8x8 64
Conv2d 8x8 64
Protection Layer 4 4x4 128
BatchNorm 4x4 128
ReLu 4x4 128
Conv2d 4x4 128
BatchNorm 4x4 128
SkipConnection 4x4 128
ReLu 4x4 128
Conv2d 4x4 128
Protection Layer 5 4x4 128
BatchNorm 4x4 128
ReLu 4x4 128
Conv2d 4x4 128
BatchNorm 4x4 128
ReLu 4x4 128
Conv2d 4x4 128
Protection Layer 6 2x2 128
BatchNorm 2x2 256
ReLu 2x2 256
Conv2d 2x2 256
BatchNorm 2x2 256
SkipConnection 2x2 256
ReLu 2x2 256
Conv2d 2x2 256
Protection Layer 7 2x2 256
BatchNorm 2x2 256
ReLu 2x2 256
Conv2d 2x2 256
BatchNorm 2x2 256
ReLu 2x2 256
Conv2d 2x2 256
Protection Layer 8 1x1 256
BatchNorm 1x1 512
ReLu 1x1 512
Conv2d 1x1 512
BatchNorm 1x1 512
SkipConnection 1x1 512
ReLu 1x1 512
Conv2d 1x1 512
Protection Layer 9 1x1 512
BatchNorm 1x1 512
ReLu 1x1 512
Conv2d 1x1 512
BatchNorm 1x1 512
ReLu 1x1 512
AdaptiveAvgPool2d 1x1 512
Linear 1 512

TABLE VI: Architecture of the ResNet-18 [24] model with
Protection layers after first Convolution. The dimensions are
calculated based on the CIFAR-10 [29] dataset.

APPENDIX E
ADDITIONAL FUNCTIONALITY EXPERIMENTS

To showcase the robustness of the protected ResNet-18 [24],
it was protected using Hadamard Protection layers and Permu-
tation Protection layers. The results are depicted in Fig. 10,
the first row shows the results for the model protected by
Hadamard layers, while the second row shows the results
for the model protected by Permutation layers. For each
model type three experiments identical to the ones described
in Sect. VI-A were conducted. The first evaluation (depicted in
the first column of Fig. 10) assigned randomly generated false

0

50

100

Ac
c

%

1

0

1

CO
S

(a) Random keys
Keys25

50

75

Ac
c

%

1

0

1

CO
S

(b) Random value
Keys0

50

Ac
c

%

1

0

1

CO
S

(c) Add noise

0

50

100

Ac
c

%

0.0

0.5

1.0

PA
C

(d) Random keys
Keys25

50

75

Ac
c

%

0.0

0.5

1.0

PA
C

(e) Random value
Keys0

50

Ac
c

%

0.0

0.5

1.0

PA
C

(f) Increment value

Fig. 10: ResNet-18 [24] robustness protected by
Hadamard/Permutation layers to key manipulation, e.g.
random key, replacing of key value, and, adding noise to key.
Red line depicts key similarity, Green and Blue depict train
and test accuracy.

0 20
Epochs

50

100

Ac
c

%
(a) ResNet-18 (CIFAR-10)

0 20
Epochs

80

100

Ac
c

%

(b) CNN (MNIST)

Fig. 11: The training set accuracy of three different models
at each training epoch are visualized. The blue line represents
the unprotected model, the red line the model protected using
Permutation Layers and the green line the model protected
using Hadamard layers.

keys to the protected models and measured the performance
and key similarity. The second experiment (second column
in Fig. 10) iteratively replaced from zero up to 100 values,
within the key, with random values. The third experiment
(depicted in the third column of Fig. 10 added noise to the key
or incremented the key by one for the model protected using
Permutation layers. All results indicate a strong robustness to
key manipulation attempts similar to the CNN model.

APPENDIX F
ADDITIONAL FIDELITY EXPERIMENTS

In the following we present additional fidelity experi-
ments for the ResNet-18 [24] and CNN model trained on
CIFAR-10 [29] and MNIST [15]. The results, visualized
in Fig. 11, depict the accuracies for the training set for the
unprotected model at each training epoch as the blue line, the
green line depict the model protected using Hadamard layers,
and the red line the model protected using Permutation layers.

18

	Introduction
	Background
	Data Representations
	Neural Network Layers
	Metrics
	DNN IP Protection Attacks

	Requirement Analysis
	DNNShield Design
	General Approach
	Protection Layer Instantiations
	Protection Layer Placement

	Security Analysis
	Evaluation
	DNNShield 's Functionality
	Fidelity and Efficiency
	Generalizability
	Robustness and Reliability
	DNNShield 's Runtime

	Discussion
	Related Work
	Conclusion
	References
	Appendix A: Hadamard Key Merge into Linear Layer
	Appendix B: Hadamard Key Extraction from Merged Linear Layer
	Appendix C: Hadamard Key Merge into Convolutional Layer
	Appendix D: Model Architectures
	Appendix E: Additional Functionality Experiments
	Appendix F: Additional Fidelity Experiments

