
ClearStamp: A Human-Visible and Robust Model-Ownership Proof based on
Transposed Model Training

Torsten Krauß
University of Würzburg

Jasper Stang
University of Würzburg

Alexandra Dmitrienko
University of Würzburg

Abstract
Due to costly efforts during data acquisition and model train-
ing, Deep Neural Networks (DNNs) belong to the intellectual
property of the model creator. Hence, unauthorized use, theft,
or modification may lead to legal repercussions. Existing
DNN watermarking methods for ownership proof are often
non-intuitive, embed human-invisible marks, require trust in
algorithmic assessment that lacks human-understandable at-
tributes, and rely on rigid thresholds, making it susceptible to
failure in cases of partial watermark erasure.

This paper introduces ClearStamp, the first DNN water-
marking method designed for intuitive human assessment.
ClearStamp embeds visible watermarks, enabling human
decision-making without rigid value thresholds while allow-
ing technology-assisted evaluations. ClearStamp defines a
transposed model architecture allowing to use of the model in
a backward fashion to interwove the watermark with the main
task within all model parameters. Compared to existing water-
marking methods, ClearStamp produces visual watermarks
that are easy for humans to understand without requiring com-
plex verification algorithms or strict thresholds. The water-
mark is embedded within all model parameters and entangled
with the main task, exhibiting superior robustness. It shows
an 8,544-bit watermark capacity comparable to the strongest
existing work. Crucially, ClearStamp’s effectiveness is model
and dataset-agnostic, and resilient against adversarial model
manipulations, as demonstrated in a comprehensive study
performed with four datasets and seven architectures.

1 Introduction

In the realm of rapidly advancing technologies, machine
learning stands out for many advantages, primarily revolving
around automation, informed decision-making, and insightful
recommendations drawn from historical data. This transfor-
mative technology finds extensive application in diverse real-
world scenarios, ranging from critical tasks such as medical
image classification [5] to facilitating processes like natural

language processing [12], and extends further into domains
like autonomous driving [7] and translation services [50]. At
its core, a machine learning system consists of a model, often
a Deep Neural Network (DNN), and data. Acquiring this data,
especially in large quantities necessary for robust machine
learning, can be both challenging and costly. Furthermore, the
data can be inherently sensitive, such as in the case of medical
images, warranting strict protection under the umbrella of
intellectual property (IP) rights belonging to its owner. Once
data becomes available, significant computational resources
are utilized for model training, which entails substantial effort
and, consequently, costs. The resulting model, infused with
knowledge distilled from underlying training algorithms and
exhaustive data, represents a culmination of innovation and
expertise in the field DNNs and embodies the IP of its creator.

However, in case a model is made available to the public
or sold to third parties, the matter of safeguarding IP rights
becomes a challenge. In the face of potential adversarial enti-
ties, these models are vulnerable to theft, unauthorized resale,
unwarranted modification, or illicit utilization. Such circum-
stances, recognized as copyright infringements, have the po-
tential to escalate into legal proceedings, underscoring the sig-
nificance of robust and comprehensive protective measures.

The state-of-the-art approach to safeguarding the IP of
trained models is model watermarking [3, 35]. Existing DNN
watermarking methods commonly require a key as input to
an algorithm for watermark extraction. This process gener-
ates an output that is subsequently verified against the se-
cret ground truth of the watermark. Watermarking methods
can be categorized based on two main properties: whether
they operate by accessing the model’s internals (white-box)
[15,15,34,54,57,61,63], such as the weights, or by analyzing
only prediction outputs (black-box) [1, 21, 28, 36, 40, 70, 71].
Moreover, a watermark is either 1-bit [28, 40, 54] or multi-
bit [1, 15, 15, 21, 28, 34, 36, 57, 61, 63, 70, 71]. A 1-bit water-
mark merely indicates the presence or absence of a watermark,
whereas a multi-bit watermark incorporates details like the
name of the copyright holder.
Problem Statement. However, the watermarking techniques



proposed so far can be considered non-intuitive, as they em-
bed human-invisible watermarks. Consequently, for water-
mark verification, the evaluator must place trust in the algo-
rithm, which typically extracts data from the DNN that lack
human-understandable attributes. This data is then distilled
into a single value, and then compared to a rigid threshold,
where values above it confirm watermark’s existence and val-
ues below it deem the watermark invalid. In cases of partial
watermark erasure algorithmic assessment might fall short,
while humans with a clear understanding of its prior presence
might be able to easily verify a copyright infringement. In
the context of an image, for instance, it is imaginable that a
watermark, depicted as a stamp, could be erased, for instance,
up to 70%; nevertheless, even with this level of reduction, it
may still remain conspicuously apparent that the watermark
was once embedded into the image.

This paper addresses these challenges and introduces
ClearStamp, the first multi-bit, white-box DNN watermark-
ing method that follows an intuitive approach. ClearStamp
embeds a visible watermark that can be assessed through hu-
man inspection, empowering humans to make decisions based
on common sense and reasoning while retaining the option
for technology-assisted evaluations. In addition, the method
is generic and can be applied to various datasets and model
architectures, and is robust against a wide range of watermark
erasure techniques, including manipulation attempts by adap-
tive attackers who know the details of the protection method
and even of underlying keys.
Contributions. This paper makes the following contributions:

• We propose ClearStamp, the first DNN watermarking
mechanism that yields human-visible and understand-
able outputs, bypassing the need for rigid value thresh-
olds and enabling more coherent and defensible juris-
diction, especially in cases where portions of the water-
mark remain obviously discernible. As a consequence,
ClearStamp provides more security for the model cre-
ators’ intellectual property.

• We have pioneered the utilization of transposed model
training inspired by deconvolutions [18,20,26,48,67,69]
as a novel approach for integrating a visible and human-
comprehensible watermark into a DNN. In this method,
we define a transposed model architecture specifically
tailored to the existing model’s structure, which shares
weights with the original model. This enables model
training in a reverse fashion, focusing on embedding the
watermark, while the effects on conventional forward
training for the model’s primary task are negligible.

• We entangle the watermark and the main task within
all model layers to create a robust watermark that can
withstand adversarial model manipulations, such as fine-
tuning on third-party datasets, pruning of model pa-
rameters, or adaptive adversaries attempting to remove

or overwrite the watermark. Inspired by Siamese Net-
works [30], we achieve this by sharing weights between
the model’s primary task and the watermark and by en-
forcing that the watermark does not cause abnormal
model parameters. Any malicious modification neces-
sitates sacrifices in the model’s main task performance,
rendering the model less useful.

• We conduct a systematic large-scale study to analyze
factors influencing ClearStamp, demonstrating its inde-
pendence from application-specific factors by leverag-
ing different datasets (MNIST [16], CIFAR-10 [32], GT-
SRB [51], and CIFAR-100 [32]) and model architec-
tures (CNNs, ResNet-18, ResNet-34 [25], ViT [17], and
VGG11 [46]) during evaluation. Additionally, we test the
watermark’s robustness under various fine-tuning and
pruning scenarios and showcase a substantial watermark
capacity of 8,544 bits that can be embedded with a low
error rate of 4.45%, which is comparable to the strongest
existing work in terms of capacity with 8,400 bits [34].

In summary, this work introduces a highly intuitive and
easy-to-understand white-box multi-bit DNN watermarking
method, offering a robust defense against various attack sce-
narios. The embedded watermark is human-understandable,
addressing the limitations of existing solutions, which of-
ten lack intuitive design and human-friendliness in the final
decision-making process, a task that can be seamlessly under-
taken by a human evaluator when employing ClearStamp.

2 Background

Watermarking Watermarking [14, 19, 24, 29, 39, 43, 59] is
a technique to embed a digital mark or identifier into digital
media, e.g., images or audio, without significantly altering
the content’s appearance or functionality, with the purpose
of embedding a discernible sign of ownership, authenticity,
or other relevant information. Those signs can then be used
for various scenarios, e.g., copyright protection, authenticity
verification, ownership attribution, digital rights management,
tamper detection, or metadata embedding. Watermarks come
in various forms, with visible and concealed watermarks be-
ing notable categories. 1-bit watermarks make explicit own-
ership claims through their mere presence, while multi-bit
watermarks convey additional information. The choice of wa-
termarking method depends on the specific use case and the
desired level of security. Extracting the watermark, which is
a secret value, relies on knowing the extraction method and
is often accompanied by a specific secret key.

In DNNs the watermark is embedded typically within the
model’s parameters [3, 35]. This can transpire either directly,
necessitating white-box access to the parameters for extrac-
tion and verification, or indirectly through a learning process
that configures the parameters to produce outputs containing
the watermark when subjected to specific inputs. In such a



case, black-box access is necessary for watermark verifica-
tion. Both methods are achieved by introducing an additional
regularization term to the loss function during model training.
This regularization term orchestrates parameter adjustments
in alignment with the intended watermarking objectives.

For watermark extraction and verification, the DNN and the
watermark’s secret key are fed into an extraction algorithm
which yields some data. Those data are then verified against
the watermarks ground truth secret by an algorithm that relies
on a rigid threshold.

Transposed Model Functionality The transposed functional-
ity of a machine-learning model is the reverse of the original
model’s task. We leverage the concept of transposed models
to embed a watermark into the model. For instance, consider
a model that classifies image inputs into a feature vector indi-
cating detected objects within the image. The transposed func-
tionality would involve inputting such a feature vector into the
model to generate an image that embodies the characteristics
encoded within that feature vector. This concept extends to
the more granular level of model layers, where transposed
layers reverse the functionality of their corresponding original
layers. A transposed model consists of multiple transposed
layers in the reverse order of the original model’s architec-
ture. Below, we discuss common model layers and existing
or straightforward methods for transposing their functionality.
However, certain layers may not be capable of precisely re-
covering the original input, especially when input data have
undergone compression, resulting in information loss.

Linear Layer. A linear layer performs a calculation such as
y = x ·wT + b, where w and b denote weights and bias ma-
trices, and x and y represent input and output, respectively.
Here, T denotes the transposed operation such that the matrix
is flipped over its diagonal, e.g., Ai j becomes A ji. Linear lay-
ers can be accurately reversed by computing x = (y−b) ·w,
effectively retrieving the original input from the output.

Batch Normalization. Batch normalization layers [27] are
used to keep the data flowing through a model in a spe-
cific range. Such layers perform a computation akin to
y = x−E(x)√

Var(x)+ε
· γ+β, where E(x) and Var(x) are the feature-

wise mean and variance of the input data, ε is a small constant,
and γ and β are learnable parameters. As mean and variance
are dependent on x, the operation cannot be reversed straight-
forwardly when only provided with y. To address this, one
can set default values for E(x) = 0 and Var(x) = 1, resulting
in x = (y−β)·

√
1+ε

γ
, which provides a good approximation.

Pooling Layer. Pooling layers [68] reduce the dimensionality
of data by selecting representative values among multiple
data points based on specific rules, such as computing the
average or selecting the maximum value. As this process
fundamentally involves downsampling, the transposed func-
tionality is centered around upsampling. Consequently, the
exact transposition of such downsampling computations can

only be approximated, as new data points must be inferred.
One common approach to upsample data is through interpola-
tion, with several interpolation methods available, such as the
nearest-neighbor algorithm [44] or the bilinear algorithm [45].

Convolutional Layer. A convolution [33] transforms the input
to extract relevant features. This transformation applies a filter
or kernel to the input to produce output data points. Multiple
input data points are convolved with the filter to generate a
single output data point. Hence, similar to downsampling, the
computation cannot be exactly reversed. However, a method
proposed in [69] offers a reasonably effective approximation1.
Dropout Layer. Dropout layers [49] are designed to distribute
knowledge across various parameters. They implement a reg-
ularization technique that simulates training numerous neural
networks with varied architectures concurrently. During train-
ing, random layer outputs are ignored, altering the layer’s
appearance and connectivity. Each training update reflects a
distinct "view" of the layer. They exert influence during train-
ing, have no learnable parameters, and remain inconsequential
during inference. Therefore, dropout layers are utilized iden-
tically to the forward pass during transposed training.
Activation Functions. Activation functions, e.g., ReLU [2],
introduce non-linearity in a model and play a significant role
in the model’s ability to generalize learned knowledge. Some
activation functions introduce lossiness, like ReLU, which
maps all negative input values to zero while the positive input
values remain the same. Naturally, such operations are irre-
versible, and thus, activation functions can not be transposed.
Transformer Blocks. Transformer models, like Vision Tran-
former [17], deviate from convolution-based models and are
constructed by so-called transformer blocks, which consist
of an encoder and an attention module, both featuring lin-
ear layers, dropout layers, and activation functions. Vision
Transformer divides the image into patches and embeddings
are generated for each patch. The transposed functionality of
these linear layers, dropout layers and activation functions
was already elaborated in the previous paragraphs, indicating
that transposing a Vision Transformer is straightforward.

In summary, the transposition of model functionalities can be
applied to a variety of common machine learning architec-
tures. While some layers allow for a straightforward reversal,
others necessitate approximation methods due to inherent
complexities and information loss.

Image Similarity Human discernment of whether two images
share identical content is typically straightforward. Never-
theless, conventional machine-based methods for quantifying
errors, such as the computation of Mean Squared Error (MSE)
across all pixels in an image, can yield substantial error val-
ues, particularly when the images possess matching structural
elements but differ in aspects like color. Human visual percep-
tion excels at extracting structural information from images,

1The method of [69] is also used in PyTorch as transposed convolution
modules and can be seen as the gradient of the respective convolution.



and in this context, Wang et al. [64] introduced the Structural
Similarity Index (SSIM). Within this paper, we employ SSIM
as part of a loss function to embed a watermark into a DNN,
as well as for post-extraction verification of the watermark’s
presence and integrity. The SSIM has a value range of [−1,1],
where 1 indicates perfect similarity, 0 indicates no similarity,
and -1 indicates perfect anti-correlation.

SSIM addresses the limitations of other metrics by provid-
ing a quantifiable measure of image dissimilarity considering
luminance, contrast, and structure, aligning more closely with
human perception. As exemplified in Tab. 1, MSE calculations
often highlight substantial disparities from the original im-
age, whereas SSIM reliably identifies high levels of structural
similarity of the content. As visualized in the fifth column of
Tab. 1, even SSIM values of, e.g., 0.18, are sufficient, such
that a human can claim similarity between two images.

3 Problem Setting

Considered Scenario. We consider a classical watermarking
scenario: The model owner trains a Deep Neural Network
(DNN) by utilizing a proprietary dataset and costly resources
making it critical to protect the resulting model, which is the
intellectual property of the owner. Thereby, a maximally ef-
fective watermark should be embedded that allows ownership
claim. The produced model is then legally or illegally dis-
tributed, e.g., sold or stolen, and placed into production. If the
owner suspects a copyright infringement of their model, an in-
spection of the suspected model can be conducted. Precisely,
it should be possible to extract and verify the watermark, even
if benign or adversarial modifications have been performed on
the copy of the original model. In the following, we first define
the objectives (Sect. 3.1) and the threat model (Sect. 3.2).

3.1 Watermark Objectives

Inspired by related works [6, 9, 10, 15, 21, 36, 65, 66], we de-
fine several objectives, that should be fulfilled by an effective
watermark: 1) Understandability: The evaluation of the wa-
termark should be easily possible by human inspection. We
add this objective to the commonly used ones, as the final
decision in common DNN watermarking methods typically
relies on a rigid threshold that may not detect leftovers after
watermark erasure attempts, but those could be obvious to
detect for human observers. Such situations occur for example
for partly erased watermarks, that are interpreted as removed
by a machine but are still recognizable by human inspection.
We visualize a respective toy example in App. 7.1. Further,
decisions that can be made by humans are more intuitive and
easily comprehensible than empirically determined thresh-
olds. 2) Fidelity: Watermark embedding should preserve the
model performance on the primary task. 3) Reliability: It
must be reliably possible to extract the watermark from previ-

Image

SSIM 1 -1 0 -0.02 0.18 0.75
MSE 0 64,322 31,642 32,856 19,764 5,909

Table 1: A reference image (first column) compared to images
(first to sixth column) regarding SSIM and MSE values.

ously watermarked models2. 4) Robustness: The embedded
watermark must withstand model modifications, which we
describe in Sect. 3.2. 5) Integrity: The watermark method
should uniquely identify the watermark’s secret value respec-
tive to the watermark’s key and should not extract a valid
watermark from unwatermarked models. 6) Capacity: The
amount of information embedded into the watermark should
be maximized to strengthen ownership claims. 7) Efficiency:
Embedding the watermark should introduce negligible com-
putational overhead. 8) Security: The watermark should not
introduce obvious footprints allowing for easy detection and
removal. 9) Generalizability: The approach should be inde-
pendent of the dataset or model architecture.

3.2 Threat Model
Our threat model specifies DNN model modification scenarios
the attacker can undertake with the goal of removing the
watermark from the trained and watermarked model.
Fine-Tuning. In fine-tuning [47, 53], the adversary continues
training with a dataset akin to the original training dataset in
the hope of removing watermarks that are added on top of the
main task. Here we assume, that the adversary is aware of the
training procedure including hyperparameters, and hence can
adopt the settings for model modifications. Specifically, the
learning rate is either kept at parity with the original training
or, alternatively, can be decreased from the original value. In
most benign fine-tuning scenarios, such a reduction of the
learning rate is a typical approach to preserve the already
trained meaningful features and only provoke small changes
caused by the new dataset. Alternatively, the adversary can
fine-tune the model on a different dataset, which may necessi-
tate the substitution of the last model layer with an untrained
counterpart due to a different number of label classes.
Pruning. Pruning [23] is normally used to reduce the DNN
size to facilitate deployment in smaller setups like embed-
ded devices. As the adversary can arbitrarily modify model
weights, parameters can be pruned in the hope of removing
the watermark while keeping a reasonable main task perfor-
mance. This entails the elimination of a specific proportion of
parameters, called pruning level, characterized by the lowest
absolute values within the model, as those parameters are
deemed to have the most marginal influence on the model’s

2Note that watermarks from models that have been significantly manipu-
lated to the extent that the original main task is severely compromised do not
require detection, as the model no longer retains the creator’s IP rights.



overall performance. Such pruning methods can be combined
with fine-tuning, which is called fine-pruning [37, 56].

Adaptive Adversary. An informed adversary, possessing
knowledge of the watermarking methodology, may attempt
to manipulate the existing watermark [29, 57] leveraging the
same embedding technique. Thereby, the adversary can in-
vent a new watermark that can either contain meaningful or
random data and embed the watermark in the hope of remov-
ing or replacing the original one. Removing the watermark
would prevent ownership claims by the model creator. A re-
placement would transfer the possibility of claiming model
ownership to the adversary. Usually, the watermark is kept
secret and the adversary is not aware of the watermark’s data.

4 Approach

In this section, we present our general concept in Sect. 4.1,
followed by details about the generation of transposed models
in Sect. 4.2, the composition of the watermark in Sect. 4.3,
and details on the training procedure in Sect. 4.4.

4.1 Overview

We propose ClearStamp, a white-box and multi-bit DNN wa-
termarking method, that embeds a watermark secret matching
to a specific watermark key within the complete set of model
parameters. The watermark key has the form of a regular out-
put vector of the DNN and the watermark secret is represented
by an input-like sample of the DNN, that can contain arbitrary
information, e.g., random text superimposed on an image,
without necessitating visual or context-wise similarity to ac-
tual dataset samples. After legal or illegal model distribution
of the trained and watermarked model, ClearStamp’s verifica-
tion process can use the key to extract the embedded secret
from the DNN and, thus, claim ownership and potentially
copyright infringement. Below, we describe ClearStamp’s
principle and outline the successive steps of ClearStamp dur-
ing the model life-cycle.

Principle of ClearStamp. In the process of embedding a
watermark into the model, ClearStamp employs transposed
model training, as visualized in Fig. 1. Therefore, we construct
a transposed model architecture that is constructed using the
method presented in Sect. 4.2 and establish weight sharing
(similar to Siamese Networks [30]) between the standard
model and transposed model by assigning the parameters of
each layer to the respective transposed layer. Consequently,
these shared weights can be subject to regular training for the
main task via conventional (forward) training with respect
to the forward loss, e.g., cross-entropy, as illustrated in the
upper portion of Fig. 1. Simultaneously, we perform the trans-
posed training with the predefined watermark key and secret
visualized as key and lock in Fig. 1, representing the training
data. The key, a prediction-like vector, is fed into the trans-

Shared Weights

Forward 
Loss

A B
C D

Transposed 
Loss

Normal NN

Transposed NN

Predictions

Labels

Samples

Forward Training →

 Transposed Training

0.15 0.13 0.55 … 0.0. 0.120.15 0.13 0.55 … 0.0. 0.120.15 0.13 0.55 … 0.0. 0.12-0.65 0.13 8.55 … -1.52 5.86

0.15 0.13 0.55 … 0.0. 0.120.15 0.13 0.55 … 0.0. 0.120.15 0.13 0.55 … 0.0. 0.120 0 1 … 0 0

4.25 -3.58 10.0 … 7.21 -9.89
A B
C D

Figure 1: Visualization of main task forward training and
watermark (key & lock) embedding in transposed training.

posed model, generating an output akin to the input data of
the regular DNN, e.g., an image, as visualized in the lower
part of Fig. 1. During transposed training, the shared model
weights are optimized with respect to a transposed loss, that is
calculated by comparing the output of the transposed model
with the watermark’s secret. By applying both, forward and
backward training, ClearStamp can entangle the main task
and the watermark within all model layers of the DNN.

ClearStamp Life Cycle. During a model’s life-cycle,
ClearStamp follows the four steps visualized in Fig. 2. The
untrained model is initialized with random parameters, that
neither performs well on the main task for forward model in-
ference nor on the watermark for transposed inference. 1) In
the watermark hardening phase, we initialize the parameters
of the model by transposed training on the watermark until a
self-defined sufficient enough watermark quality is reached,
which essentially means, that the model is overfitted on the
watermark3. Thereby, the watermark builds the basis for the
main task in the consecutive forward training within the model
parameters. 2) During the constraint training phase, normal
forward model training is equipped such that the already em-
bedded watermark from step 1 persists. Thereby, we alternate
between optimizing the two tasks, which is described in detail
in Sect. 4.4. The training can mainly focus on optimizing the
main task, as the effect of the watermark task during optimiza-
tion is minimal, due to the foregone watermark hardening
step. The parameters are prepared during step 1 such that
the watermarking task yields a negligible loss compared to
the main task and essentially functions as a constraint during
normal model training. 3) After model distribution, the model
is manipulated by a third party, e.g., fine-tuned4. As long as
the main task performance is preserved, the watermark should
remain embedded. 4) Finally, a transposed inference on the

3We suggest an SSIM value above 0.95 as watermark quality threshold,
as such values can be achieved fast in transposed-only training since the
watermark consists of a limited small amount of key-value pairs. In our
experiments, we combine this threshold with a maximum of 10,000 epochs.

4Step 3 can differ depending on the scenario/attack. We describe various
scenarios in Sect. 3.2 and provide evaluations in Sect. 5.2 and Sect. 5.4.



Legal / Illegal Model Distribution

Constraint
Training

2

Watermark
Testing

4

3rd Party

Manipulation
3

Watermark
Hardening

1

0.15 0.55 … 0.120.15 0.55 … 0.121.15 8.55 … 3.12

0.15 0.55 … 0.120.15 0.55 … 0.121.15 8.55 … 3.12

A B
C D

A B
C D

Main
Task

Water
mark

Copyright Infringement?

Figure 2: Overview of ClearStamp’s life cycle steps.

watermark key is conducted to extract the watermark data,
which is verified against the ground truth watermark secret
by human-only inspection or machines. Since the main task
relies on the fortified parameters established in step 1, creat-
ing an inherent interconnection between the tasks, substantial
modifications made to the watermark in step 3 directly influ-
ence the main task. This direct impact enhances the overall
robustness of the watermark.

To enable ClearStamp, we must define several components:
First, in Sect. 4.2, we define rules for the creation of a trans-
posed model from a given model architecture. Second, we
specify how the key and the secret of the watermark are com-
posed in Sect. 4.3. Third, in Sect. 4.4, we determine how to
train while maintaining the watermark.

4.2 Transposed Model Generation
To ensure fulfillment of the generalizability requirement from
Sect. 3.1, we establish guidelines for the generation of trans-
posed models. Thereby, we define how model layers and
connections are translated to the transposed version5. Linear
layers and batch normalization layers [27] are straightforward
mathematical operations and easy to transpose, as discussed
in Sect. 2. For pooling layers [68], we leverage interpolation
based on the nearest-neighbor algorithm [44]. Convolutional
layers [33] are transposed with deconvolutions6 as in [69].
Dropout layers [49] and activation functions, e.g., ReLU [2],
are used likewise to their untransposed functionality.

Skip Connections. Skip connections fork the data processing

5Please note that the transposed model can be generated solely from the
weights of the original model and does not require any additional parameters.

6We adapt the settings, e.g., kernel size and stride, from the convolution
with potential adjustments to padding to ensure the output of the deconvolu-
tion matches the original input.

within the model architecture and merge the data from both
branches at a later stage, alleviating the vanishing gradient
problem and improving the accuracy of DNNs. Skip con-
nections effectively perform an operation akin to a+b = c
during the merging process within the forward path. Hence,
they are difficult or impossible to reverse as only the output
c is provided during transposed training, rendering a and b
indistinct. To transpose the skip connection, we freeze one
part of the connection, such as b, during transposed training.
Thus, by the inverse of the mathematical operation between a
and b the skip connection can be transposed utilizing c and the
frozen b. This effectively adds b to the watermark’s key. To
get a reasonable estimation of a realistic value for b, we start
training an unwatermarked model for a few initial epochs.

Additional Dropout Layers. To ensure the robustness re-
quirement from Sect. 3.1, ClearStamp strives for a robust en-
tanglement between the watermark and the main task. There-
fore, the watermark needs to be embedded within all model
layers during the watermark hardening step. To facilitate
the entanglement between the watermark and the main task,
spreading the watermark across multiple parameters must
be enforced. Such a behavior can be achieved within model
architectures by utilizing dropout layers [49]. For model ar-
chitectures that lack inherent dropout layers, we artificially
add such layers into the transposed architecture. Specifically,
dropout layers are incorporated after each convolutional and
linear layer, with the exception of the final layer responsible
for producing the ultimate output of the transposed model.
The dropout rate is an insensitive parameter, that must be set
to some reasonable value, which can be quickly identified by
analyzing the first few update steps during watermark harden-
ing. Higher dropout rates extend the duration of the hardening
process but do not compromise ClearStamp’s functionality.

4.3 Watermark Composition
Watermark Key. The key’s structure must align with the
dimensions of a regular output vector of the (forward) model.
Generally, there are no constraints on the values within this
vector, allowing for arbitrary and extreme values, that are usu-
ally not encountered in forward prediction vectors. However,
we need to enforce an overlap of the model’s forward output
value range and the watermark key’s value range. Otherwise,
e.g., if the key only consists of positive values, the model will
most likely group the outputs of the main tasks to different
value ranges, e.g., negative values. Such a separation prevents
tight entanglement of the two tasks and encourages the model
to handle the tasks in a multi-task instead of a constraint-task
manner. As a result of separated value ranges, the watermark
can be removed from the model with minimal effects on the
main task, contrary to scenarios where the value ranges over-
lap. To address this, we generate random key vectors with
values between a predefined range from -10 to 10, as visu-
alized in Fig. 1, given that most random initialized models



predominantly generate values around zero.

Watermark Secret. The watermark’s secret, adaptable to reg-
ular input sample dimensions like images, can be 1-bit using
a random image or multi-bit with additional content like text.
Similar to the watermark key values, the values of the water-
mark secret should fall within the range of typical input data.
This ensures an intertwined relationship between the water-
mark and the main task parameters, ultimately enhancing the
robustness of the watermark. When employing a loss function
solely based on structural similarity between images, there
might be challenges in producing outputs within the desired
range. To address output range challenges, we employ a dual-
loss strategy in transposed training. SSIM ensures structural
similarity with the watermark secret, while MSE maintains
exact secret values in the output.

Multi-Key. Employing not just one, but multiple unique key-
secret pairs within a single watermark significantly increases
the capacity of the multi-bit watermark addressing the ca-
pacity requirement from Sect. 3.1. This approach allows for
the embedding of a greater volume of information. Further-
more, it enhances the robustness of the watermark as multiple
keys influence a larger portion of the model’s parameters,
complicating erasure attempts by third parties. These distinct
key-secret pairs are inputted into the transposed model as a
unified batch. This method compels the model to grasp the
underlying structure of the secrets and integrate the water-
mark throughout all layers. Additionally, this approach offers
the advantage of preventing the parameters in the transposed
model from memorizing specific key-secret pairs. Instead,
the model generalizes the functionality underlying the sam-
ples, reinforcing learned capabilities across various layers.
To optimize this approach, it is advisable to ensure that the
different key-secret pairs share a consistent structure, such as
all containing textual information within images. This unifor-
mity enhances the model’s ability to learn and embed diverse
information effectively.

4.4 Constraint Training

Watermarking the model in the proposed way (cf. Fig. 1) es-
sentially corresponds to simultaneously learning two separate
tasks within one model, resulting in a multi-objective opti-
mization problem consisting of the model’s general function-
ality as task one and the watermark in the transposed model as
the second task. After overfitting the transposed model to the
watermark in the watermark hardening phase (step 1 of Fig. 2),
the watermarking task can be considered as a constraint to the
main task in step 2 in Fig. 2. This entails, that we optimize
the main task while keeping the watermark functionality. To
execute this optimization, we leverage sequential optimiza-
tion, essentially alternating between optimizing the model
parameters for the main task and the watermark. Alternatives
to this optimization approach are discussed in App. 7.4.

5 Evaluation

Hardware & Experimental Setup. Experiments are imple-
mented in PyTorch, a prominent Python-based machine learn-
ing library [55], on a server featuring an AMD EPYC 7413 24-
Core Processor (64-bit) with 96 processing units and 128GB
main memory. An NVIDIA A16 GPU with 4 virtual GPUs
(each 16GB GDDR6 memory), is used via CUDA [42].

Datasets & Model Architectures. We use common datasets
mainly focusing on image classification with MNIST [16],
CIFAR-10 [32], GTSRB [51], and CIFAR-100 [32] trained on
models of different types and sizes, namely CNNs (with and
without batch normalization), ResNet-18, ResNet-34 [25],
ViT [17], and VGG11 [46].7

Default Scenario. Throughout our experiments, we systemat-
ically vary model architecture, dataset, and hyperparameters
to illustrate the versatility of our approach. Unless otherwise
specified, our default scenario uses MNIST [16] trained on a
CNN consisting of two convolution layers both followed by a
ReLU and a 2D max pooling layer and followed by three fully
connected layers of decreasing output sizes (512, 256, 10).
For training purposes, we employ separate Adam optimizers
with a learning rate of 0.0001, both for the primary task and
transposed training. We trained the model for five epochs.

5.1 General Functionality

Watermark Definition. A watermark for ClearStamp con-
sists of one or multiple watermark keys and secrets, which
are kept confidential. In our experiments, the keys are vectors
consisting of ten randomly chosen values between -10 and
108. The chosen secrets are images containing four letters like
“ABCD”, as visualized in Fig. 3a and App. Fig. 11a.

Baseline - No Watermark. First, we trained a model without
a watermark, which serves as a baseline for model perfor-
mance. As can be seen in (1) in Tab. 2, we reached a model
accuracy of 89.88%. When trying to extract a watermark be-
fore and after training, we get images as in Fig. 3b and Fig. 3c,
respectively. The images clearly show no relation or similarity
to Fig. 3a, indicating the absence of the watermark essentially
fulfilling the integrity requirement from Sect. 3.1. Addition-
ally, the two pictures yield an SSIM of 0.00 and -0.06 when
being compared to Fig. 3a, confirming that watermarked and
unwatermarked models are clearly distinguishable. However,
human perception instead of a low SSIM should be the main
criterion for the decision, as even for small SSIMs close to
zero human observers can still recognize similarities between
images (cf. Tab. 1 in Sect. 2).

Watermark Hardening. Next, in step 1 of ClearStamp

7We use PyTorch model instances for predefined model architectures.
8The precise random key vector for the experiments with one key is

provided in App. 7.3. There, we also provide experiments with key ranges -5
to 5 and -50 to 50 to show that the range is an insensitive parameter.



Table 2: In these experiments MNIST [16] was trained on a CNN with a learning rate of 0.001 for five epochs.

Number
of keys

Untrained Watermark Training
Extracted

Watermark
Figure

Watermark
Considered

Valid

4 epochs fine-tuning with
Model Hardening 1/10 of training learning rate

Accuracy SSIM Steps Accuracy SSIM Constraint Accuracy SSIM Accuracy SSIM

(1) - 10.22% 0.00 - - - x 89.88% -0.06 Fig. 3c x - -
(2) 1 10.22% 0.00 7,000 8.57% 0.95 - - - Fig. 3d ✓ - -
(3) 1 10.22% 0.00 7,000 8.57% 0.95 ✓ 88.37% 0.95 Fig. 3e ✓ 92.73% 0.95
(4) 10 10.22% 0.00 10,000 8.92% 0.93 ✓ 87.69% 0.91 Fig. 3f ✓ 89.73% 0.93
(5) 11 10.22% 0.00 10,000 8.88% 0.92 ✓ 89.10% 0.91 Fig. 3g ✓ 89.86% 0.93

(a) (b) (c) (d) (e) (f) (g)

Figure 3: Visualization of (a) the watermark secret and (b-g)
extracted watermarks for the experiments listed in Tab. 2.

(cf. Fig. 2) we perform transposed training as described in
Sect. 4.1 to embedded a watermark consisting of one key-
secret pair into an untrained model. As transposed loss, we
combine SSIM and MSE between the transposed model out-
put and the watermarks ground truth secret. We name each
adjustment of the transposed model parameters by the opti-
mizer as a hardening step. As presented in (2) in Tab. 2 we
reached an SSIM of 0.95 after 7,000 hardening steps. The
resulting image after watermark extraction depicted in Fig. 3d
clearly shows the content of the ground truth secret Fig. 3a
and an existing watermark can be attested. As expected, the
accuracy on the main task remained naïve with 10.22% and
8.57% accuracy before and after training, respectively.
Constraint Training. In ClearStamp’s second step, we train
the model’s main task while keeping the watermark embed-
ded as described in Sect. 4.4. As reported in (3) in Tab. 2, the
watermark remains embedded, while the main task accuracy
of 88.37% is achieved, fulfilling the reliability requirement
from Sect. 3.1. Hence, we observe a negligible accuracy drop
compared to the unwatermarked model ((2) in Tab. 2) satisfy-
ing the fidelity requirement from Sect. 3.1. To emphasize this
important fact, we visualize the main task loss for unwater-
marked and watermarked training in App. Fig. 13c showing
minimal differences. These results could be reproduced inde-
pendently of the optimizer used for the different tasks, which
we elaborate on in App. 7.3.
Multi-Key. Next, we investigate multiple watermark key-
secret pairs, as explained in Sect. 4.3. We employed ten and
eleven keys to show the independence from the number of
classes in the dataset, ten for MNIST [16].9 The secrets are dis-
tinct four-character images10, as visualized in App. Fig. 11a.
The results for ten and eleven keys are shown in (4) and (5)
in Tab. 2, respectively, and show that ClearStamp embeds the

9We provide results for another experiment leveraging 20 keys in App. 7.3,
which yields similar results as for eleven keys.

10During visualizations, we stick to the first image containing “ABCD”.

watermark successfully. Thus, we can increase the watermark
capacity without a significant negative impact on the water-
mark’s or the model’s performance11. Notably, we stopped
hardening after 10,000 hardening steps but it would be possi-
ble to continue training until a 0.99 SSIM is reached12. While
it is possible to increase the number of keys and thus the ca-
pacity, which we discuss in Sect. 5.5, we proceed with eleven
keys to showcase the functionality of ClearStamp. To show
the independence from the concrete secret images, we con-
ducted the same experiments with other images, visualized in
App. Fig. 12a and App. Fig. 12b, yielding similar results.

5.2 Model Manipulations
Next, we evaluate illegal and legal third-party model manipu-
lations, that are applied in step 3 of Fig. 2.
Fine-Tuning. To evaluate ClearStamp’s robustness against
fine-tuning, as described in Sect. 3.2, we continued training on
the MNIST train set after executing our default scenario for
another two epochs (half of the original five epochs rounded
down) with the same learning rate, as well as with 1/10 of the
original learning rate (similar to [1,9,34,40,57,65]). After fine-
tuning for two epochs, we continued for another two epochs
with identical settings to showcase ClearStamp’s behavior
under excessive fine-tuning conditions. To evaluate the water-
mark robustness against unseen data, we executed the same
fine-tuning process but employed the MNIST [16] test set. As
Tab. 3 shows, ClearStamp shows strong robustness against
fine-tuning as the watermark remained embedded yielding
high SSIM values and clear images (Fig. 4a to Fig. 4c)13.
Later, in Sect. 5.3, we also evaluate cross-dataset fine-tuning.
In scenario (2) in Tab. 3 we can observe a slight increase in
SSIM after 4 epochs compared to 2 epochs, which is counter-
intuitive. We believe that caused by the overlapping value
ranges of our watermark and the entanglement of parameters,
weight changes for the forward path can have small positive
effects on the watermark’s similarity score.

11We observe a slight increase in main-task accuracy for (5) in Tab. 2,
indicating, that the watermarking is tightly enmeshed with the main task and
serves as regularization in this experiment. However, the general observation
is a minimal drop in accuracy due to watermark embedding.

12We report the mean SSIM values for multiple keys. If not specifically
mentioned, the means do not contain extreme outliers.

13The accuracies show, that fine-tuning with 1/10 of the original learning
rate is a better setting if an adversary wants to increase the model accuracy
on a third-party dataset.



Table 3: Fine-tuning experiments for a CNN trained using
MNIST [16] test set with a learning rate of 0.001 for five
epochs with eleven watermark keys.

Fine-Tuning
Scenario

2 Epochs 4 Epochs Wateermark
ACC SSIM ACC SSIM Figure Valid

(1) 88.64% 0.90 87.42% 0.88 Fig. 4a ✓
(2) 88.56% 0.92 89.86% 0.93 Fig. 4b ✓
(3) 96.31% 0.92 97.02% 0.92 Fig. 4c ✓

(1) Same as training learning rate (0.001) & same data
(2) 1/10 of training learning rate (0.0001) & same data
(2) 1/10 of training learning rate (0.0001) & unseen data

(a) (b) (c) (d) (e) (f) (g)

Figure 4: Visualization of extracted watermarks for the fine-
tuning experiments listed in Tab. 3 in (a-c). Figures (d-f)
visualize pruning with 60%, 80%, and 90% respectively, while
(g) shows fine-pruning with 40%.

Pruning. Besides fine-tuning, we investigate model pruning
(cf. Sect. 3.2) similar to [9, 15, 34, 40, 57, 65]. As depicted in
Fig. 5, the watermarking withstands pruning and is coupled
to the main task accuracy, as for low pruning levels, which
maintain the accuracy, the SSIM remains high. For exam-
ple, for 60% pruning with an accuracy drop from 89.1% to
78.56%, the SSIM is still 0.69, yielding Fig. 4d. Even for 80%
pruning, which already suffers in accuracy with 50.1% we
obtain an SSIM of 0.47 resulting in Fig. 4e, which is still suf-
ficient for a human observer to identify the watermark when
being aware of the ground truth secret Fig. 3a. Starting from
90% pruning (cf. Fig. 4f), the watermark cannot be clearly
identified, but the model already decreased to 26.76% accu-
racy essentially being useless. Fig. 4g shows the result with
an SSIM of 0.62 and an accuracy of 89.79% after two fine-
tuning epochs followed by pruning with 40%, typically called
fine-pruning [28, 56]. As the images prior to 90% pruning in
Fig. 4f are clearly distinguishable from Fig. 3c while Fig. 4f
suffers low accuracy, we can conclude that ClearStamp is ro-
bust against model pruning essentially addressing the security
requirement from Sect. 3.1.

5.3 Generalizability
Below, we explore different scenarios showing that
ClearStamp can fulfill the generalizability requirement from
Sect. 3.1. Essentially we demonstrate the independence from
datasets and model architectures. During these experiments,
we use fine-tuning with 1/10 of the original learning rate as the
default model modification approach.
Dataset. First, we changed the dataset to CIFAR-10 [32],
essentially changing the input layer to match the three color
channels of the CIFAR-10 input samples. Then, we conducted

Figure 5: Model accuracy on the main task and correspond-
ing watermark SSIM for different pruning levels between 0
(unpruned) and 90%.

the same experiment for GTSRB [51], which has 43 label
classes. The results reported in (1) and (2) in Tab. 4 show,
that the watermark was successfully embedded and survived
fine-tuning yielding Fig. 6a and Fig. 6b. As the images clearly
show the expected letters, we observe the dataset indepen-
dence of ClearStamp.

Small Model Architectures. Next, to show that ClearStamp
is also applicable to very simple model architectures, we
trained MNIST [16] on a CNN with only three fully connected
layers each of size 1024 and report the result in (3) in Tab. 4.
Further, to show ClearStamp’s independence of added batch
normalization layers when embedding the watermark, we
enhanced our default setting by adding such a layer after each
convolutional layer and report the results in (4) in Tab. 4.
The extracted images Fig. 6c and Fig. 6d, as well as the high
SSIM values above 0.85 after raining and fine-tuning reported
in Tab. 4 confirm ClearStamp’s good performance for small
models. However, even if the images yield clear watermark
evidence, the presence of batch normalization layers seems to
diminish the robustness of the watermark resulting in a lower
SSIM of 0.85 after fine-tuning. This effect might be caused
by the circumstance, that for batch normalization layers, the
mean and variance of the input data are unknown during
transposed training and fixated to E(x) = 0 and Var(x) = 1,
essentially causing information loss.

Medium-Size Model Architectures. To address bigger
model architectures, we evaluate CIFAR-10 [32] and GT-
SRB [51] on a ResNet-18 [25] model trained for ten epochs14,
whereas both datasets yielded similar results reported in (5)
and (6) in Tab. 4. As retractable in Fig. 6e and Fig. 6f, the
watermark is still clearly visible after ten epochs.

Further, we evaluate CIFAR-10 [32] on ResNet-34 [25]
and use the same setup as in the ResNet-18 experiment. The
results in (7) in Tab. 4 yield a bigger drop in SSIM to 0.55 after
fine-tuning, probably introduced by the size of the model and
the amount of transposed convolution layers, which introduce
uncertainty due to their upsampling nature. Nevertheless, the
resulting image Fig. 6g leaves no doubt that the watermark is
still strongly embedded.

Inspired by [1, 57], we also evaluate cross-model fine-
tuning scenarios. We used our medium-size model setups and

14As ResNet-18 [25] contains skip connections, we first trained for three
epochs, to get valid values for skip connections fixating (cf. Sect. 4.2).



Table 4: Experiments showing the independence of ClearStamp from datasets and model architectures. Tests were conducted
with eleven watermark keys and fine-tuning was performed for the same number of epochs as training epochs.

Untrained Watermark Constraint Fine-Tuning with Extracted
Watermark

Figure

Watermark
Considered

Valid
Model Hardening Training 1/10 of training learning rate (LR)

Accuracy SSIM Steps Accuracy SSIM Accuracy SSIM Accuracy SSIM

(1) 10.01% 0.00 10,000 10.07% 0.92 44.16% 0.93 45.87% 0.93 Fig. 6a ✓
(2) 1.45% 0.00 10,000 0.71% 0.92 38.96% 0.91 42.70% 0.93 Fig. 6b ✓
(3) 10.59% 0.00 200 10.63% 0.99 85.27% 0.99 87.86% 0.96 Fig. 6c ✓
(4) 14.38% 0.00 1,000 2.81% 0.99 93.47% 0.99 94.19% 0.85 Fig. 6d ✓
(5) 5.74% 0.00 4,000 10.00% 0.96 62.87% 0.96 68.74% 0.91 Fig. 6e ✓
(6) 1.57% 0.00 4,000 0.47% 0.96 72.51% 0.96 81.03% 0.93 Fig. 6f ✓
(7) 5.74% 0.00 4,000 10.00% 0.96 62.87% 0.96 68.74% 0.55 Fig. 6g ✓
(8) 0.64% 0.00 4,000 1.06% 0.96 28.36% 0.97 64.88% 0.51 Fig. 6h ✓
(9) 1.00% 0.00 1,000 0.91% 0.99 47.27% 0.98 50.86% 0.79 Fig. 6i ✓
(10) 12.02% 0.00 1,000 11.04% 0.98 55.56% 0.97 57.90% 0.60 Fig. 6j ✓
(1) Default scenario & CIFAR-10 [32]dataset (2) Default scenario & GTSRB [51]dataset
(3) Default scenario & CNN with only FC layers, LR 0.0001, 3 epochs (4) Default scenario & CNN with batch normalization layers
(5) CIFAR-10 [32] on ResNet-18 [25], LR 0.001, 10 epochs (6) GTSRB [51] on ResNet-18 [25], LR 0.001, ten epochs
(7) CIFAR-10 [32] on ResNet-34 [25], LR 0.001, 10 epochs (8) CIFAR-100 [32] on ResNet-18 [25], fine-tune on CIFAR-10 [32], LR 0.001, 10 epochs
(9) CIFAR-100 [32] on VGG11 [46], LR 0.001, 200 epochs (10) CIFAR-100 [32] on ViT [17], LR 0.001, 5 fine-tuning epochs

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6: Visualization of extracted watermarks for the exper-
iments listed in Tab. 4.

trained CIFAR-100 [32] on ResNet-18 [25] but fine-tuned
the model on CIFAR-10 [32], which necessitates changing
the last layer due to ten instead of 100 output classes. As the
watermark is embedded based on CIFAR-100, the last layer
needs to be replaced with the original layer during watermark
extraction, thus rendering this layer as part of the key. We
report positive results with 0.51 SSIM in (8) in Tab. 4. The
watermark extraction yielded Fig. 6h, which clearly contains
the watermark. We also conducted an experiment where we
added the watermarked last layer to an unwatermarked model,
resulting in an SSIM of 0.06 and watermark images that do
not yield any perceptible content. These experiments com-
bined demonstrate that the watermark is embedded within all
network parameters and not only resides within the last layer,
contributing to the robustness requirement from Sect. 3.1.

Large Model Architectures. To address even larger model
architectures, we trained CIFAR-100 [32] on VGG11 [46] for
200 epochs and 100 epochs of fine-tuning. As the results in
(9) in Tab. 4 show, ClearStamp could successfully embed a
robust watermark even in a large model architecture.

To evaluate ClearStamp on transformer blocks, we trained
CIFAR-10 [32] on a Vision Transformer [17]. The extracted
watermark after fine-tuning is visualized in Fig. 6j. It has a
colorful background, but the watermark text is clearly visible,
indicating that ClearStamp can also handle such architectures.

Summarized, we showed, that ClearStamp is independent of

the model architecture and, combined with the dataset inde-
pendence, applicable in arbitrary application scenarios.

5.4 Adaptive Adversary
Watermark Erasure. An adversary with knowledge of
ClearStamp’s functionality could try to erase an embedded
watermark as defined in Sect. 3.2. Thereby, a random wa-
termark key in the predefined value range could be used in
combination with a secret image consisting of random noise.
An even stronger adversary with the knowledge of embed-
ded watermark keys (which exceeds usual assumptions as in
Sect. 3.2 could also use such an image. As both scenarios
yield the same effects, we depict the results for a stronger
adversary (using an already embedded watermark key) in the
main body of the paper and append the random key experi-
ment results in App. 7.3.

We use the same mechanism as in step 1 in Fig. 2 to embed
the adversarial key-secret pair, with the intention of erasing
the existing secret for the respective watermark key and po-
tentially for other existing keys that are part of the watermark.
Our experiment revealed, that the erasure of the watermark
involves a significant loss in main task accuracy as both tasks
are entangled within the model parameters by design. During
watermark erasure attempts, the adversary sacrifices usually
more than 10% accuracy in our setup compared to the initial
89.10%, whereas some other existing works consider 3.5%
accuracy drop as acceptable in related works [40]. In Fig. 7,
we show seven out of eleven watermark images15 after five,
seven, and eleven adversarial hardening steps with respective
remaining accuracy values of 82.89%, 78.60%, and 74.30%.
Even the third row with an accuracy drop of 14.8% shows
clear evidence, as one should keep in mind, that an unwater-
marked model yields an image similar to Fig. 3c. In the first
and second rows of Fig. 7, the watermark existence can still
be attested by a human observer even though the SSIMs are

15We show only seven images due to space limitations in the paper.



Figure 7: Extracted watermark images after five, seven, and
eleven adversarial hardening steps during watermark removal.
The corresponding main task accuracies to the lines are
82.89%, 78.60%, and 74.30% originating from 89.10% with
SSIMs of 0.13, 0.11, and 0.01.

Figure 8: Watermarks after watermark overwriting with
eleven keys. The lines correspond to the first four hardening
steps with accuracy drops from 89.10% to 83.89%, 70.38%,
56.39%, and 46.52%, and SSIMs of 0.52, 0.17, 0.05, 0.01.

low with 0.13, 0.11, and 0.01. This shows that the definition
of rigid thresholds is challenging as in the case of SSIMs
such low values could also stem from content-wise unrelated
images. Therefore, a threshold needs to be set higher to avoid
false positives. Hence, ClearStamp improves the decision-
making in such situations, essentially increasing the security
for the model owner while fulfilling the understandability re-
quirement from Sect. 3.1. We got similar results when using
a completely black image as a key and when using an image
that an unwatermarked model yields for the adversarial key
after a transposed inference, which is reported in App. 7.3.

Further, we can report, that we observed the same effect
when increasing the number of keys embedded by the ad-
versary from one to eleven. We experimented with eleven
already embedded or eleven random keys combined with se-
cret images containing random noise, only black pixels, and
yielded images from an unwatermarked model like Fig. 3c.16

For example, for the latter, we measured accuracy drops from
89.10% to 83.89%, 70.38%, 56.39%, and 46.52% after one

16Due to space limitations in the paper we only report one scenario, as all
scenarios yield similar results.

Figure 9: An adversarial watermark secret (first image) and
extracted watermarks after six (line one) and seven (line two)
hardening steps corresponding to 79.25% and 78.25% remain-
ing main task accuracy originating from 89.10% and SSIMs
of 0.24 and 0.23.

to four hardening steps resulting in the four lines of Fig. 8,
where the watermark is still completely identifiable in the
second line, and partially even in the third line. To achieve a
removal degree as showcased in the fourth line, the adversary
would need to sacrifice 42.58% in main task accuracy.

To validate that our findings are not intrinsic to our specific
application scenario, we also conducted the experiment for
CIFAR-10 [32] trained on ResNet-18 [25] yielding similar
results that we report in App. 7.3.

Watermark Overwriting. Besides removing the watermark,
an adversary could also try to overwrite the watermark with
a second watermark. When embedding one new watermark
image, in our case an airplane icon as visible in the first image
in the first line of Fig. 9 with a random key, the adversary pro-
voked an accuracy drop from 89.10% to 79.25% and 78.25%
after six and seven hardening steps. While evidence for the
original watermark is still visible after six steps, it starts to be
vague after seven steps, as can be seen in the first and second
lines in Fig. 9, respectively.

Summarized, we can conclude, that ClearStamp is ro-
bust against adaptive adversaries with the knowledge of
ClearStamp’s functionality, that try to remove or overwrite
the watermark or embed an additional watermark, even if the
adversary is equipped with knowledge about the keys. If the
adversary erases the watermark, he sacrifices a minimum of
10% of accuracy, whereas usually around 3.5% accuracy drop
is considered as acceptable [40].

5.5 Capacity

To evaluate the capacity and generalizability to arbitrary wa-
termark locks, we generated random bit strings and converted
them into images using dot code [58]. The image is initially
divided into square patches that correspond to the number of
bits in the string. Based on the bit value, the patch is colored
black for zero or white for one. An example of this is shown
in App. Fig. 11b. Multiple watermarks were injected into
the model, with the same capacity and randomly generated
keys. Likewise, the extracted watermark was again divided
into patches to extract the bit sequence. Values less than 0.53



in each channel were set to 0, while others were set to 1. To
determine the bit of the patch, black and white pixels were
counted and the majority was used as a decoding result. To
evaluate the outcome, the Binary Error Rate (BER) was uti-
lized, which is the number of incorrect bits divided by the
total number of bits. We first generated images with 36-bit ca-
pacity and injected those into the CNN model. The evaluation
has shown that the BER is consistently low at roughly 3.43%
and 2.96% after fine-tuning. For larger bit lengths of 100 bits
per image we injected the MiT license text 17 (8,544 bits) into
a ResNet-18 [25] model. We compared the results for applied
(7,4) Hamming code [22] error correction (14,952 bits) and
without. ClearStamp achieves average BERs after training of
as little as approximately 5.92% and 3.62% with and with-
out error correction, respectively. After fine-tuning the BER
increased to 6.46% without error correction and 4.45% with
error correction. ClearStamp is capable of injecting large pay-
loads such as licenses or images and, as the limit of keys is
not yet exhausted, even larger files could be injected.

5.6 Runtime
Regarding ClearStamp’s runtime, we measured the individual
steps, namely hardening, constraint training, and watermark
testing for our default scenario with eleven random keys.18

We report averages over ten experimental runs. Hardening
with 10,000 steps took 53.48 seconds and is a one-time effort.
The evaluation only takes 0.02 seconds. The training time
increased from 67.62 to 94.39 seconds for the five epochs, in-
troducing a one-time overhead of 39.58%, which is expected,
as an additional loss needs to be computed and a second op-
timization step is executed during training. Therefore, we
consider the efficiency requirement from Sect. 3.1 as fulfilled.
Summarized, we can show that ClearStamp is a robust water-
marking mechanism that withstands adversarial watermark-
removing attempts and barely influences the DNN’s main
task performance while providing high watermark robustness.
Most importantly, no non-intuitive algorithm based on a riding
threshold needs to be applied to evaluate the watermark.

6 Related Work

Our approach, ClearStamp, stands out as the pioneer in the
field of model watermarking by incorporating transposed
model training, making it unique and unparalleled in com-
parison to existing methodologies. This novel technique sets
it apart from related research, rendering direct comparisons
challenging. The distinctive advantage of our method lies in
its departure from conventional approaches that rely on fixed
thresholds for decision-making during watermark verification.

17MiT License available at https://opensource.org/license/mit/.
18For estimating the skip connections, we trained an unwatermarked model

for a few initial epochs (three in this case). This is a one-time effort, that is
only necessary for models with skip connections in the model architecture.

Instead, ClearStamp produces a discernible image with in-
terpretable content. This output can be easily scrutinized by
human evaluators, enabling intuitive decision-making when
compared to the authentic ground truth image.

In the following sections, we present an overview of con-
temporary techniques in model watermarking and fingerprint-
ing. Despite employing diverse methods, these existing ap-
proaches share common objectives with ours. Typically, wa-
termarking methods seek to embed a distinctive signature
into the model, ensuring its uniqueness to the model owner.
On the other hand, fingerprinting methods are geared toward
copyright protection, embedding a unique signature into the
model that is specific to the authorized user. Additionally, we
overview the related works that, while not strictly falling un-
der watermarking or fingerprinting categories share relevance
due to their underlying methodologies or the goals they aim
to accomplish.

Watermarking. Uchida et al. [57] proposed a white-box,
multi-bit watermarking approach, which embeds the water-
mark into weights of convolutional layers by introducing an
additional loss term, referred to as parameter regularization.
However, the method relies on a rigid threshold for watermark
verification and is not robust against watermark overwriting
attacks. ST-DM et al. [34] improves this approach in such
scenarios by using modulation techniques. The capacity of
the watermark was thereby shown for up to 8,400 bits but
naturally is limited by the model architecture.

Frontier Stitching [40] is a 1-bit, black-box methodol-
ogy rooted in adversarial examples. This technique modifies
the decision boundaries between classes for specific input
samples positioned at the interface of two classes, serving
as essential keys. However, identifying such samples is con-
tingent upon the specific application context and proves to
be a challenging task, making this approach less universally
applicable and user-friendly. For verification, a hard threshold
of prediction matches is used.

Adi et al. [1] propose a multi-bit, black-box method, which
embeds backdoors into the DNN that serve as a water-
mark. Within the paper, eight backdoors acting as water-
marks were implanted, whereas randomly generated input
samples were used to produce specific output classes. Simi-
larly, Zhang et al. [70] and Zhang et al. [71] follow the same
approach varying the backdoor types, whereas Li et al. [36]
produces an imperceptible backdoor trigger with a second
generative model. A method that also leverages backdoor-like
behavior is Guo et al. [21], where a black-box watermarking
technique is proposed specially crafted for embedded devices.
The method trains the DNN to behave significantly differently
on a portion of training samples, that are modified using a
specific perturbation. Naturally, these approaches embed ad-
ditional behavior besides the model’s main task, providing
the potential for side effects during normal inference. Further,
the decision-making relies on a threshold for the number of
occurred backdoor-based mispredictions. Contrary to these

https://opensource.org/license/mit/


works, WILD [38] removes backdoor-based watermarks.
Tartaglione et al. [54] propose a white-box, 1-bit water-

mark that fixates model parameters as watermarks and applies
a modified loss function for increased robustness. As the ap-
proach fixates parameters, the watermark capacity is limited
by the number of parameters in the model and hence depends
on the model architecture.

DeepJudge [10] is a testing framework that can be used
for copyright protection as a non-invasive alternative to wa-
termarking techniques. The method compares how similar a
DNN and a second suspected DNN under test behave based
on six metrics and hard thresholds. The metrics are derived
via inference of carefully chosen samples that are able to
characterize the models.

Wang et al. [61] presents a white-box approach for incor-
porating a multi-bit watermark into weights by leveraging a
second secret independent model for watermark embedding
and verification. Similarly, RIGA [63] is an algorithm that
embeds a multi-bit, white-box watermark using adversarial
training with two additional models. Thereby, the first model
is responsible for embedding the watermark, while the sec-
ond enhances the stealthiness. However, the verification of
both approaches is based on the black-box functionality of
additional models. Hence, the decision-making is not com-
prehensible, as the model’s functionality does not follow an
understandable algorithmic pattern, but delivers outputs utiliz-
ing optimized parameters tuned with regard to training data.

EWE [28] is a method based on a special loss function,
which enforces the entanglement of the watermark and the
main task (similar to ClearStamp), such that removing the
watermark negatively affects the main task. However, the
watermark is embedded in the forward path, thus leaving the
possibility of unexpected side-effects during inference.

DeepSigns [15] proposes a white-box, multi-bit approach
that embeds a watermark within the probability density func-
tion of activations in multiple DNN layers by fine-tuning the
model parameters. When verifying the watermark, an algo-
rithm uses the extracted activations to compute the watermark
which is then evaluated against the ground truth utilizing bit er-
ror rate combined with a rigid threshold. Further, a black-box
approach is suggested, that verifies model ownership by a hard
threshold applied to the number of matches when comparing
the prediction outputs of specific secret input-prediction pairs.

Fingerprinting. A consecutive work to DeepSigns [15] lever-
aging the same principle and inheriting the same shortcom-
ings is DeepMarks [9], but embeds information in the model
weights instead of the activations and is designed as a fin-
gerprinting approach. Based on this fingerprinting technique,
DeepAttest [8] offers hardware-level IP protection and us-
age control for DNNs. With the help of a Trusted Execution
Environment, the fingerprint is validated to ensure that only
validated DNNs are allowed to run on specific devices, a
method that is also leveraged in DeepMark [65].

IPGuard [6] searches for adversarial examples that are close

to the decision boundary of a DNN, leveraging that a model
is characterized by its decision boundary. The method does
not tamper with the training process at all, but can run af-
ter training even on legacy models and, hence, does not af-
fect the model performance at all. However, humans who do
not understand the decision boundaries of DNNs might have
problems understanding the approach. Further, the ownership
verification is based on a hard threshold, which is difficult
to determine. The decision boundary is also leveraged by
MetaFinger [66], a black-box fingerprinting method that iden-
tifies samples by meta-training that are close to the decision
boundary, which can later be used to identify a specific model.

Orthogonal Works. Further, there are some works, that are
close but also orthogonal to ClearStamp. TamperNN [41] is a
method designed to recognize if a model was tampered, e.g.,
fine-tuned, by analyzing inputs, that tend to change the predic-
tion class easily. Chen et al. [11] suggest a method to infer the
origin of a student model in the domain of transfer learning by
embedding a fingerprint in the teacher model that is passed on
to the derived student model. Venugopal et al. [60] propose a
method to watermark the model output instead of the model
itself by selecting a specific result out of the selection of pos-
sible results in a machine translation task. DAWN [52] is a
technique used to prevent model extraction attacks by chang-
ing the prediction on the model inference API for a small set
of samples to embed a watermark into models trained on these
predictions. BOP [13] modifies the Adam optimizer to prevent
so-called heavily spiked weights during watermark embed-
ding and, hence, increase covertness while simultaneously
increasing the robustness. Wang et al. [62] demonstrated that
statistical analysis of model weights can detect a watermark.
Once identified, the watermark can be overwritten using the
original embedding technique, effectively removing it.

Deconvolutions [20,69] are the inspiration and basis for our
work and are used to approximately reverse convolutional op-
erations that are often leveraged in machine learning. Such de-
convolutions are used in scenarios that require up-sampling of
feature maps, such as generative models [18,67] and encoder-
decoder architectures [26, 48], which generate images from
an embedding. However, the deconvolutions mostly possess
their own trainable weights independent of the convolutions.
Weight sharing is used in Siamese Networks [30], which pro-
vides the motivation to share the weights between convolu-
tions and deconvolutions and, thus, for transposed training.

7 Conclusion

Machine learning models can be considered as the model
creator’s intellectual property that needs to be protected from
unauthorized use. DNN watermarking techniques offer a solu-
tion to this problem by embedding a secret watermark into the
model parameters. Obviously, these watermarks must be ro-
bust against erasure attempts, while simultaneously a minimal



effect on the model’s main task is expected.
Existing watermarking approaches rely on rigid thresholds

in the final decision-making process after the watermarking
data is extracted from the model during watermark verifica-
tion. Thereby, such a threshold can fail to detect remaining
fractions of embedded watermarks that were attacked with
an erasure attempt, even if a human observer would clearly
identify the remaining watermark.

To address this problem we proposed ClearStamp, the first
human-understandable and intuitive DNN watermarking ap-
proach that allows human decision-making directly on the
extracted watermark data without relying on a threshold. We
show that ClearStamp’s effect on the model’s performance is
negligible and that ClearStamp is independent from specific
application scenarios. Further, ClearStamp withstands adver-
sarial model manipulations and offers a capacity of 8,544 bits
with a low error rate of 4.45%.

Acknowledgments

This research has been funded by the Federal Ministry of Edu-
cation and Research of Germany (BMBF) within the program
„Digital. Sicher. Souverän.“ in the project "Erkennung von
Angriffen gegen IoT-Netzwerke in Smart Homes - IoTGuard"
(project number 16KIS1919).

References

[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny
Pinkas, and Joseph Keshet. Turning Your Weakness
into a Strength: Watermarking Deep Neural Networks
by Backdooring. USENIX Security, 2018.

[2] Abien Fred Agarap. Deep Learning using Rectified
Linear Units (ReLU). arXiv preprint arXiv:1803.08375,
2018.

[3] Franziska Boenisch. A Systematic Review on Model
Watermarking for Neural Networks. Frontiers in Big
Data, 2021.

[4] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato,
Jonathan Eckstein, et al. Distributed Optimization
and Statistical Learning via the Alternating Direction
Method of Multipliers. Foundations and Trends® in
Machine learning, 2011.

[5] Lei Cai, Jingyang Gao, and Di Zhao. A review of the
application of deep learning in medical image classifica-
tion and segmentation. Annals of translational medicine,
2020.

[6] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. IP-
Guard: Protecting Intellectual Property of Deep Neural
Networks via Fingerprinting the Classification Bound-
ary. ASIACCS, 2021.

[7] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong
Xiao. DeepDriving: Learning Affordance for Direct
Perception in Autonomous Driving. ICCV, 2015.

[8] Huili Chen, Cheng Fu, Bita Darvish Rouhani, Jishen
Zhao, and Farinaz Koushanfar. DeepAttest: An End-to-
End Attestation Framework for Deep Neural Networks.
ISCA, 2019.

[9] Huili Chen, Bita Darvish Rouhani, Cheng Fu, Jishen
Zhao, and Farinaz Koushanfar. DeepMarks: A Secure
Fingerprinting Framework for Digital Rights Manage-
ment of Deep Learning Models. ICMR, 2019.

[10] Jialuo Chen, Jingyi Wang, Tinglan Peng, Youcheng Sun,
Peng Cheng, Shouling Ji, Xingjun Ma, Bo Li, and Dawn
Song. Copy, Right? A Testing Framework for Copyright
Protection of Deep Learning Models. IEEE S&P, 2022.

[11] Yufei Chen, Chao Shen, Cong Wang, and Yang Zhang.
Teacher Model Fingerprinting Attacks Against Transfer
Learning. USENIX Security, 2022.

[12] Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural
language processing (almost) from scratch. JMLR, 2011.

[13] Betty Cortiñas-Lorenzo and Fernando Pérez-González.
Adam and the Ants: On the Influence of the Optimiza-
tion Algorithm on the Detectability of DNN Watermarks.
Entropy, 2020.

[14] Ingemar J Cox, Joe Kilian, F Thomson Leighton, and
Talal Shamoon. Secure Spread Spectrum Watermarking
for Multimedia. IEEE TIP, 1997.

[15] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushan-
far. DeepSigns: An End-to-End Watermarking Frame-
work for Ownership Protection of Deep Neural Net-
works. ASPLOS, 2019.

[16] Li Deng. The MNIST Database of Handwritten Digit
Images for Machine Learning Research. IEEE Signal
Processing Magazine, 2012.

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An Image is Worth 16x16 Words:
Transformers for Image Recognition. arXiv preprint
arXiv:2010.11929, 2021.

[18] Alexey Dosovitskiy, Jost Tobias Springenberg, Maxim
Tatarchenko, and Thomas Brox. Learning to Generate
Chairs, Tables and Cars with Convolutional Networks.
IEEE TPAMI, 2017.



[19] Borko Furht and Darko Kirovski. Multimedia Security
Handbook. CRC press, 2004.

[20] Hongyang Gao, Hao Yuan, Zhengyang Wang, and Shui-
wang Ji. Pixel Transposed Convolutional Networks.
IEEE TPAMI, 2020.

[21] Jia Guo and Miodrag Potkonjak. Watermarking Deep
Neural Networks for Embedded Systems. ICCAD, 2018.

[22] R. W. Hamming. Error detecting and error correcting
codes. The Bell System Technical Journal, 1950.

[23] Song Han, Jeff Pool, John Tran, and William Dally.
Learning both Weights and Connections for Efficient
Neural Networks. NeurIPS, 2015.

[24] Frank Hartung and Martin Kutter. Multimedia Water-
marking Techniques. Proceedings of the IEEE, 1999.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition.
CVPR, 2016.

[26] Dongseok Im, Donghyeon Han, Sungpill Choi,
Sanghoon Kang, and Hoi-Jun Yoo. DT-CNN: Dilated
and Transposed Convolution Neural Network Accel-
erator for Real-time Image Segmentation on Mobile
Device. ISCAS, 2019.

[27] Sergey Ioffe and Christian Szegedy. Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift. ICML, 2015.

[28] Hengrui Jia, Christopher A. Choquette-Choo, Varun
Chandrasekaran, and Nicolas Papernot. Entangled
Watermarks as a Defense against Model Extraction.
USENIX Security, 2021.

[29] Stefan Katzenbeisser and Fabien Petitcolas. Information
Hiding. Artech house, 2016.

[30] Gregory Koch, Richard Zemel, and Ruslan Salakhut-
dinov. Siamese Neural Networks for One-shot Image
Recognition. In ICML, 2015.

[31] Torsten Krauß, Jan König, Alexandra Dmitrienko, and
Christian Kanzow. Automatic Adversarial Adaption
for Stealthy Poisoning Attacks in Federated Learning.
NDSS, 2024.

[32] Alex Krizhevsky, Geoffrey Hinton, et al. Learning Mul-
tiple Layers of Features from Tiny Images. Citeseer,
2009.

[33] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 1998.

[34] Yue Li, Benedetta Tondi, and Mauro Barni. Spread-
Transform Dither Modulation Watermarking of Deep
Neural Network. JISA, 2021.

[35] Yue Li, Hongxia Wang, and Mauro Barni. A survey of
Deep Neural Network watermarking techniques. Neuro-
computing, 2021.

[36] Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing
Guo. How to Prove Your Model Belongs to You: A
Blind-Watermark Based Framework to Protect Intellec-
tual Property of DNN. ACSAC, 2019.

[37] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.
Fine-Pruning: Defending Against Backdooring Attacks
on Deep Neural Networks. RAID, 2018.

[38] Xuankai Liu, Fengting Li, Bihan Wen, and Qi Li. Re-
moving Backdoor-Based Watermarks in Neural Net-
works with Limited Data. ICPR, 2021.

[39] Chun-Shien Lu. Multimedia Security: Steganography
and Digital Watermarking Techniques for Protection of
Intellectual Property. Igi Global, 2004.

[40] Erwan Le Merrer, Patrick Pérez, and Gilles Trédan. Ad-
versarial frontier stitching for remote neural network
watermarking. Neural Computing and Applications,
2019.

[41] Erwan Le Merrer and Gilles Tredan. TamperNN: Ef-
ficient Tampering Detection of Deployed Neural Nets.
ISSRE, 2019.

[42] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek.
Cuda, release: 10.2.89, 2020.

[43] Gang Qu and Miodrag Potkonjak. Intellectual Prop-
erty Protection in VLSI Designs: Theory and Practice.
Springer Science & Business Media, 2007.

[44] Olivier Rukundo and Hanqiang Cao. Nearest Neighbor
Value Interpolation. IJACSA, 2012.

[45] Olivier Rukundo and Bodhaswar T Maharaj. Optimiza-
tion of Image Interpolation based on Nearest Neighbour
Algorithm. VISAPP, 2014.

[46] Karen Simonyan and Andrew Zisserman. Very Deep
Convolutional Networks for Large-Scale Image Recog-
nition. ICLR, 2015.

[47] Karen Simonyan and Andrew Zisserman. Very Deep
Convolutional Networks for Large-Scale Image Recog-
nition. ICLR, 2015.

[48] Indah Agustien Siradjuddin, Wrida Adi Wardana, and
Mochammad Kautsar Sophan. Feature Extraction using
Self-Supervised Convolutional Autoencoder for Content
based Image Retrieval. ICICoS, 2019.



[49] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 2014.

[50] Felix Stahlberg. Neural machine translation: A review
and survey. Journal of Artificial Intelligence Research,
2020.

[51] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man
vs. computer: Benchmarking machine learning algo-
rithms for traffic sign recognition. Neural Networks,
2012.

[52] Sebastian Szyller, Buse Gul Atli, Samuel Marchal, and
N. Asokan. DAWN: Dynamic Adversarial Watermark-
ing of Neural Networks. MM, 2021.

[53] Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu,
R Todd Hurst, Christopher B Kendall, Michael B Got-
way, and Jianming Liang. Convolutional Neural Net-
works for Medical Image Analysis: Full Training or Fine
Tuning? IEEE TMI, 2016.

[54] Enzo Tartaglione, Marco Grangetto, Davide Cavagnino,
and Marco Botta. Delving in the loss landscape to
embed robust watermarks into neural networks. ICPR,
2021.

[55] The Linux Foundation. Pytorch, 2022. https://
pytorch.org.

[56] Frederick Tung, Srikanth Muralidharan, and Greg Mori.
Fine-Pruning: Joint Fine-Tuning and Compression of
a Convolutional Network with Bayesian Optimization.
arXiv preprint arXiv:1707.09102, 2017.

[57] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and
Shin’ichi Satoh. Embedding Watermarks into Deep
Neural Networks. ICMR, 2017.

[58] W. van Gils. Two-dimensional dot codes for product
identification. IEEE Transactions on Information The-
ory, 1987.

[59] Ron G Van Schyndel, Andrew Z Tirkel, and Charles F
Osborne. A Digital Watermark. IEEE ICIP, 1994.

[60] Ashish Venugopal, Jakob Uszkoreit, David Talbot,
Franz J. Och, and Juri Ganitkevitch. Watermarking the
Outputs of Structured Prediction with an Application in
Statistical Machine Translation. EMNLP, 2011.

[61] Jiangfeng Wang, Hanzhou Wu, Xinpeng Zhang, and
Yuwei Yao. Watermarking in Deep Neural Networks
via Error Back-propagation. Electronic Imaging, 2020.

[62] Tianhao Wang and Florian Kerschbaum. Attacks on
Digital Watermarks for Deep Neural Networks. ICASSP,
2019.

[63] Tianhao Wang and Florian Kerschbaum. RIGA: Covert
and Robust White-Box Watermarking of Deep Neural
Networks. WWW, 2021.

[64] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simon-
celli. Image quality assessment: from error visibility to
structural similarity. IEEE TIP, 2004.

[65] Chenqi Xie, Ping Yi, Baowen Zhang, and Futai Zou.
DeepMark: Embedding Watermarks into Deep Neural
Network Using Pruning. ICTAI, 2021.

[66] Kang Yang, Run Wang, and Lina Wang. MetaFinger:
Fingerprinting the Deep Neural Networks with Meta-
training. IJCAI, 2022.

[67] Yang Yang, Ke Mu, and Robert H. Deng. Lightweight
Privacy-Preserving GAN Framework for Model Train-
ing and Image Synthesis. IEEE TIFS, 2022.

[68] Afia Zafar, Muhammad Aamir, Nazri Mohd Nawi, Ali
Arshad, Saman Riaz, Abdulrahman Alruban, Ashit Ku-
mar Dutta, and Sultan Almotairi. A comparison of pool-
ing methods for convolutional neural networks. Applied
Sciences, 2022.

[69] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor,
and Rob Fergus. Deconvolutional networks. CVPR,
2010.

[70] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu,
Marc Ph. Stoecklin, Heqing Huang, and Ian Molloy. Pro-
tecting Intellectual Property of Deep Neural Networks
with Watermarking. ASIACCS, 2018.

[71] Jie Zhang, Dongdong Chen, Jing Liao, Han Fang, Weim-
ing Zhang, Wenbo Zhou, Hao Cui, and Nenghai Yu.
Model Watermarking for Image Processing Networks.
AAAI, 2020.

Appendix

7.1 Additional Visualizations
Partly Removed Watermarks. To understand the necessity
of the understandability property proposed in Sect. 3.1, a
partly removed watermark is a concrete example. An adver-
sary could remove most of a watermark, e.g., 70%, which
would result in a negative watermark verification conducted
by a machine. However, the rest of the watermark could po-
tentially be recognizable, if the watermark is visible to human
inspection. An example of two partly erased watermarks is
depicted in Fig. 10b. The watermark is the ”ABCD” text in

https://pytorch.org
https://pytorch.org


(a)

A B 
C D

A B 
C D

A B 
C D

(b)

Figure 10: Visualization of (a) the default eleven watermark
secrets and (b) partly erased watermarks. The first image
contains the unaltered ”ABCD” watermark.

(a) (b)

Figure 11: (a) Visualization of the default eleven watermark
secrets. (b) The dot code capacity of the image is 36 bits.
The black border lines on the right and bottom are due to the
dimensions not being divisible by 6 without remains.

the lower right corner of the first image. The second and the
third image are two versions of partly removed watermarks,
which still yield enough information to a human, but might
not be recognized by a machine.

7.2 Additional Experimental Details

Random Key Vectors. The key vectors are randomly chosen
between -10 and 10. It is not imperative, that -10 and 10
need to be part of the vector. The key vector from the single
watermark experiments reported within this paper consists
of the following values: -0.0748, 5.3644, -8.2304, -7.3593,
-3.8515, 2.6815, -0.1981, 7.9288, -0.8874, 2.6461.
Watermark Secrets. During the evaluation, we use eleven dis-
tinct secrets. The secrets are images with black text on a white
background (cf. Fig. 11a). Further, we experimented with dif-
ferent watermark images, which yielded the same experimen-
tal outcomes. Thereby, we used only one letter on each image
(cf. Fig. 12a) as well as the icons of the ten CIFAR-10 [32]
label classes and added an extra icon (cf. Fig. 12b).
Fidelity. To show ClearStamp’s fidelity we provide a plot of
the main task loss during training of an unwatermarked and a
watermarked model yielding minimal differences in Fig. 13c.
Capacity. We showcase one of the capacity images
(cf. Sect. 5.5) which are embedded into a model in Fig. 11b.

(a) (b)

Figure 12: Visualization of two versions of eleven watermark
secrets (images) used as an alternative to the default images.

0 10000 20000
Update Steps

1

2

Lo
ss

Adam
SGD

(a)

1 2 3 4 5
Epoch

0.5

1.0

1.5

Lo
ss

Adam
SGD

(b)

1 2 3 4 5
Epoch

0.2

0.4

0.6

0.8

Lo
ss

Unwatermarked
Watermarked

(c)

Figure 13: (a) SSIM loss applied in transposed training and
(b) main task loss during watermark maintaining training. (c)
Main task loss during training.

(a) (b) (c)

Figure 14: Visualization of the watermark for different key
ranges (a) -5 to 5 (b) -10 to 10, and (c) -50 to 50.

7.3 Additional Experiments

Different Optimizer. To show ClearStamp’s optimizer inde-
pendence, we experimented using SGD with a learning rate of
0.01. We terminated the watermark hardening after 20,000 up-
date steps at an SSIM of 0.89 SSIM. We achieved a main-task
accuracy of 83.22% after training while the SSIM remained
high at 0.83. This result (cf. Fig. 13) shows, that ClearStamp
functions for different optimizers with Adam outperforming
SGD in both main-task and watermark embedding.

Different Key Range. In Fig. 14, we provide the results for
eleven embedded keys with different key ranges. Thereby, we
follow the same experimental setup as in the multi-key para-
graph of Sect. 5.1. Especially, we use -5 to 5, -10 to 10, and
-50 to 50 as key ranges, where -10 to 10 is already reported
in Sect. 5.1. The watermark images in Fig. 14 visualize the
watermark after fine-tuning, and yield results that look similar.
The experiments yield comparable SSIMs of 0.9272, 0.9305,
and 0.9249. Hence, we can claim, that the range parameter is
an insensitive value and can be fixed at -10 to 10.

Multi-Keys with 20 Keys. To ensure independence from the
number of keys, we expand the experiments to 20 simultane-
ously embedded keys. The results show that the quality of
the watermark does not decrease yielding images similar to
Fig. 3g with SSIM. Hence, we can claim, that the performance
does not decrease significantly when utilizing more keys.

Adaptive Adversary. An adversary could try to erase an
embedded watermark. Thereby, an existing and embedded
key could be used in combination with the image that an
unwatermarked model yields for that key for a transposed
inference. We got similar results when using a completely
black image. Then, an adversary adapts ClearStamp’s training
procedure and tries to erase the watermark. However, the
entangled parameters force the adversary to sacrifice main
task accuracy. After removing the watermark completely, the



(a) (b)

Figure 15: Adaptive attack with (a) existing / (b) random key.

adversary sacrificed approximately 10% accuracy in our setup
compared to the original 89.10%. In Fig. 15a, we show seven
out of eleven watermark images after three to six adversarial
update steps with respective remaining accuracy values of
85.96%, 83.07%, 79.67%, and 76.32% (SSIMs of 0.16, 0.08,
0.04, and 0.02). For the first two lines, the watermark can
be identified. In the third row, the it can be assumed, but
it is already hard to discern, while in the fourth line, it is
mostly removed. Thereby, one should keep in mind, that an
unwatermarked model yields an image similar to Fig. 3c.

When using a random key and an inferred image from
an unwatermarked model as a lock, we get similar results.
Within the first four update steps, the main task accuracy
is reduced from 89.10% to 88.61%, 85.31%, 81.00%, and
74.81% (SSIMs of 0.60, 0.26, 0.11, and 0.04), essentially
sacrificing more than 10%. The watermarks can be seen in
the four rows of Fig. 15b, showing that the watermark is still
clearly visible in the third row. Even in row four, one can see
them slightly. The results for a random key combined with a
black image or a random image show the same effect.

To validate the independence from our application scenario,
we experimented with an already embedded watermark key
and an inferred image from an unwatermarked model similar
to Fig. 3c for CIFAR-10 [32] trained on ResNet-18 [25]. We
could observe the same effect of steadily decreasing main task
accuracy with increasing watermark erasure. We report the
watermarks after eleven and 22 hardening steps with accuracy
drops of 10.12% and 18.62% (SSIMs of 0.38 and 0.24) in
Fig. 16, showing that the watermark is still partially embedded
while sacrificing lots of main task accuracy.

7.4 Further Considerations
Ownership Claim Automation Ideally, a human evaluator
should determine the ownership claim and the presence of
a watermark by comparing it to the ground truth. However,
in situations where a large volume of images needs valida-
tion, automation becomes essential. One potential automated
approach involves employing similarity metrics to assess
whether a watermark matches the ground truth watermark.
However, relying solely on the SSIM metric may not be opti-
mal. The evaluation demonstrates that the watermark remains
visually detectable even at low SSIM values.

A more effective method could involve automating the

Figure 16: Watermarks after an erasure attack on
ResNet-18 [25] trained on CIFAR-10 [32].

decision-making process through machine learning (ML).
This could be achieved by training an ML model to serve
as a feature extractor, responsible for generating embeddings
from both the watermark image and the ground truth water-
mark. By comparing these embeddings using a decision layer
within the network, the system can make a final determination
about the presence of a copyright infringement. This auto-
mated approach could ensure accurate and efficient validation,
especially when dealing with a large number of images.
Other Constraint Optimization Methods As an alternative
to the sequential optimization (cf. Sect. 4.4), one could use
a weighted sum method, which adds up the two losses while
assigning corresponding weights, essentially introducing an
additional hyperparameter. Usually, such weights indicate the
task importance. However, this method necessitates extensive
hyperparameter tuning if the loss values are at different scales.
The loss values then need to be weighted such that both loss
terms receive equal importance, since otherwise the smaller
one is deemed already sufficiently optimized.

Constraint optimization methods, e.g., Augmented La-
grangian optimization [31] or the Alternating Direction
Method of Multipliers [4] are highly effective in enforcing
hard constraints. However, it is important to note that our
approach, ClearStamp, does not impose strict thresholds for
valid SSIM values. Introducing these methods would neces-
sitate adding thresholds and hyperparameters to ClearStamp,
which would then need optimization. It’s worth emphasizing
that a rigid SSIM threshold isn’t essential in our context; we
aim for high SSIM values around 0.9, but the similarity be-
tween an extracted watermark and the secret can already be
claimed for very low SSIMs. Implementing such constraint
optimization methods would shift the focus toward optimiz-
ing the watermarking task to meet the defined threshold. This
could potentially detract attention from the primary task and
lead to suboptimal performance in both tasks. Moreover, after
the constraint is met, there’s a risk of diminishing the im-
portance of the watermarking task, potentially hindering the
achievement of superior quality.

However, in real-world applications where a hard threshold
is desired, we suggest considering [31], as it is a method
capable of reliably enforcing inequality constraints.


	Introduction
	Background
	Problem Setting
	Watermark Objectives
	Threat Model

	Approach
	Overview
	Transposed Model Generation
	Watermark Composition
	Constraint Training

	Evaluation
	General Functionality
	Model Manipulations
	Generalizability
	Adaptive Adversary
	Capacity
	Runtime

	Related Work
	Conclusion
	Additional Visualizations
	Additional Experimental Details
	Additional Experiments
	Further Considerations


