
CrowdShare: Secure Mobile Resource Sharing

N. Asokan1, Alexandra Dmitrienko2, Marcin Nagy5, Elena Reshetova4,
Ahmad-Reza Sadeghi2,3, Thomas Schneider3, and Stanislaus Stelle3

1 University of Helsinki, Finland
asokan@acm.org

2 Fraunhofer-Institut SIT Darmstadt, Germany
{alexandra.dmitrienko,ahmad-reza.sadeghi}@sit.fraunhofer.de

3 Technische Universität Darmstadt, Germany
{thomas.schneider,stanislaus.stelle}@cased.de

4 Intel Open Labs, Finland
elena.reshetova@gmail.com
5 Aalto University, Finland
marcin.nagy@gmail.com

Abstract. Mobile smart devices and services have become an integral
part of our daily life. In this context there are many compelling scenarios
for mobile device users to share resources. A popular example is tether-
ing. However, sharing resources also raises privacy and security issues.

In this paper, we present CrowdShare, a complete framework and
its (Android) implementation for secure and private resource sharing
among nearby devices. CrowdShare provides pseudonymity for users, ac-
countability of resource usage, and the possibility of specifying access
control in terms of social network relationships. Further, CrowdShare pre-
serves secure connectivity between nearby devices even in the absence of
the mobile infrastructure. We have implemented CrowdShare on Android
devices and report good performance results.

1 Introduction

The popularity of inexpensive communication services like Skype, Gtalk, and
WhatsApp is increasing rapidly. They allow people to communicate with almost
the same ease as with phone calls and Short Message Service (SMS) messages,
but at a significantly lower cost to the users. However, the pre-requisite to all
such services is Internet access, which can be quite difficult to obtain in certain
situations. First, Internet access can be expensive while traveling abroad. As a
result, tethering, the process of sharing Internet connectivity from one device
by turning it into a wireless access point that other devices can connect to, has
gained popularity. Some devices provide tethering as part of their base function-
ality, while other third party applications like JoikuSpot [9] and OpenGarden [1]
can enable tethering. Second, in some situations Internet connectivity may be
impossible like in the aftermath of a disaster or while visiting rural areas with
little network coverage or when organizing demonstrations against totalitarian
regimes. In such situations, ad-hoc mesh networks among mobile devices can

M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 432–440, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



CrowdShare: Secure Mobile Resource Sharing 433

provide similar communication or data exchange services. For example, the Ser-
val [2] project aims to preserve connectivity between mobile devices by providing
MeshSMS and Call services even in the absence of the mobile support infras-
tructure; Nokia Instant Community [11] allows mobile devices to form an ad-hoc
network to exchange messages or share content.

Naturally any such service that allows the resources of some users (providers)
to be used by other users (consumers) has to identify potential security and
privacy threats and provide solutions to address them. In particular, providers
need to have convenient means to specify suitable access control. Access con-
trol may be specified in terms of membership in a service (as is done by the
community-based WiFi sharing service Fon). Another natural basis to specify
access control is to share internet connectivity to “friends of friends”, e.g., for
visitors of an organization or guests at a party. Consumers need some level of
privacy which has to be balanced against the providers’ need for accountability
so that providers would have evidence of resource usage by consumers.

Our Goal and Contribution. In this paper we present CrowdShare: a service
design and its (Android) implementation that allows users to share connectivity.
CrowdShare distinguishes itself from other tethering and mesh networking ap-
plications through incorporating a security architecture with privacy-preserving
access control based on social relationships, pseudonymity for users, and ac-
countability of usage. Although CrowdShare focuses on connectivity sharing,
the architecture is generic and can be applied to resource sharing in general.

In summary our contribution is design and integrated implementation of a
complete generic framework for secure resource sharing among nearby devices by
incorporating a security architecture into existing technologies for mesh
networking, tethering, and social network interfaces.

2 System Model and Requirement Analysis

System Model. The system model of the CrowdShare system is depicted in
Fig. 1. It consists of a trusted CrowdShare server S, a social network server N,
and a set of users U . S admits the users to join the CrowdShare service, while N
provides information about friend relationships among users. Each user Ui ∈ U
possesses a mobile platform which runs the CrowdShare application and enables
communication of different users via the mesh network. A user Ui can play
one of the following roles: (i) resource provider P, (ii) resource consumer C,
or (iii) forwarding node F. P has access to (a set of) resources R and shares
access to them with other users (e.g., Internet bandwidth, media files, or location
information). P can restrict the access to his resources either to any Ui, or to a
subset of users F ⊂ U , who are in a social relation with P in the social network
(e.g., friends or friends of friends). C does not have direct access to R or R might
be available but expensive, hence it consumes resources provided by P via the
mesh network. Forwarding nodes F forward messages in the mesh network such
that P and C can be connected over multiple hops.



434 N. Asokan et al.

��������

��������	

�������	


���	
��
�� ��������

��������	

�������	


���������������	���

����
�����	����������������������	
����	�

������� �������

������� �������

�������

Fig. 1. CrowdShare system model

Threat Model and Security Requirements. CrowdShare and its infrastruc-
ture could be subject to several attacks. Our threat model does not cover any
attacks against the operating system of the mobile device or any outside com-
ponent, e.g., a remote server. Instead we concentrate on the attacks that users
perform against the service itself. We focus on protecting against semi-honest
adversaries that modify the CrowdShare service in order to learn sensitive infor-
mation or get unauthorized access to services. We identify the following threats
for CrowdSharewhich motivate the need for the respective security requirements.

1. Man-in-the-middle Attacks ⇒ Channel Protection. Devices in the
ad-hoc mesh network should not be able to act as man-in-the middle that
eavesdrops on or modifies messages that are routed through them. This
motivates channel protection.

2. Framing Attacks ⇒ Accountability. C could use P’s resources for illegal
purposes. For instance, in the case of Internet sharing C could download a
pirated song, leading the copyright owner of the song to accuse P of unautho-
rized use. In case of such violations, P needs the ability to give evidence that
the resource was requested by a particular C. This motivates accountability.

3. User Identification ⇒ Pseudonymity. It should not be possible for a
user to learn personally identifiable information such as the phone number
or the email address of another user. This motivates pseudonymity.

4. Unauthorized Usage ⇒ Access Control. C should not be able to use
P’s resources without its consent. This motivates access control, i.e., P can
attach a policy to the shared resource that needs to be fulfilled by C.

3 CrowdShare Protocols and Services

3.1 CrowdShare Protocols

Registration. The purpose of registration is to figure out a real user identity
and to issue pseudonymous certificates which will be used by the CrowdShare

community members for subsequent communication.



CrowdShare: Secure Mobile Resource Sharing 435

User U Server S

N ′ ?
= N

Store CertU , TU

Store CertU , SKU

σ ← Sign(SKS ;PKU , IDU )

TU

N (sent over SMS)

N ′, PKU

CertU

N ∈R {0, 1}µ

Establish a secure connection using CertS

CertS

(SKU , PKU ) ← GenKey()

Mobile Platform (Provider P or Consumer C)

Trigger registration

SKS

CertU = (PKU , IDU , σ)

Fig. 2. Registration protocol

The registration protocol is depicted in Fig. 2. Fist, the user U ∈ U establishes
a secure channel to the server S using the certificate CertS of S that is provided
together with the CrowdShare application. Next, U sends the user’s phone num-
ber TU to S, who generates a one time password (OTP) N and sends it over the
short message service (SMS) back to U. In turn, U generates an asymmetric key
pair (SKU ,PKU ), and sends PKU to S together with N ′ = N . Next, S verifies if
the received N ’ matches N sent over SMS, generates a user certificate CertU for
this user, stores CertU together with TU and returns CertU to U. The received
CertU is stored together with SKU for future use.

The user’s identity is verified, because S has the assurance that the submitted
phone number belongs to the user, as he was able to receive the OTP N . S keeps
the mapping between certificates and phone numbers secret and reveals it only
to authorized entities, e.g., in case of a subpoena.

Provider Discovery. The goal of the provider discovery protocol is to discover
a resource provider P which can share its resources with resource consumer C.
The corresponding protocol is shown in Fig. 3. It is initiated when the resource
request cannot be served locally (e.g., the request of the web-browser for the
network connectivity cannot be served due to unavailable network connection).

First, C ∈ U connects to a potential resource provider P ∈ U (using mesh
networking services) and establishes a secure (i.e., authentic and confidential)
channel to it based on CertC and CertP (i.e., certificates obtained during regis-
tration). Next, C sends the resource request over the established channel along
with the description of the resource R. If R is available, P responds with policy
which specifies conditions for resource sharing. Particularly, policy may allow
resource sharing with friends (or friends of friends) only, or require execution
of the accountability protocol in order to protect P from framing attacks. If
required by policy, P and C additionally use Friend-of-Friend Finder service
(cf. §3.2) to identify friend relationships and execute the accountability protocol.
If all conditions are met, P is added to a set of suitable provider candidates P .

The protocol repeats n times to populate P with n candidates, where n is
a configurable system parameter. The best candidate P∗ ∈ P is selected for



436 N. Asokan et al.

Resource Cosumer C Resource Provider Candidate P

SKC , CertC SKP , CertP

Establish a secure channel based on CertC , CertP

ResReq(R)

ResResponse(policy)
Check if R available

Execute Friends of Friends Finder protocol

Execute Accountability protocol

Fig. 3. Provider discovery protocol

resource sharing, while others are kept as back-ups. The availability of every
P ∈ P is monitored through listening to heart beat messages transmitted on a
regular base. If any of them disappear, a new round of the provider discovery
protocol is triggered to find a new candidate.

Accountability. Accountability is achieved by having C sign a resource quota
request RQR that contains PKC , the type of the resource R, and the resource
leasing time τ . The resulting signature σRQR is sent to P∗, verified, and stored
as an evidence.

Data Channel. A data channel is used for the delivery of the resource R from
P∗ to C. To provide confidentiality and authenticity to the data channel, we use
standard techniques for setting up virtual private network (VPN) connections.
Depending on the type of the shared resource, the VPN connection is either
between C and P∗ or S (e.g., between C and S for Internet connectivity sharing).

3.2 Friends-of-Friends Finder (FoF Finder) Service

The following server-aided approach allows to determine if two users P and C,
are mutual friends or friends of friends in an existing social network.

During registration, each user authorizes S to access his friend list from the
social network server N and to map the social network identifiers of the user’s
friends (and friends of friends) to their CrowdSharemembership certificates. This
mapping is sent to the registering device. During provider discovery, P checks if
the certificate of C belongs to one of his friends or friends of friends by comparing
the certificate identifier of C with identifiers in the friends database.

The server-aided solution requires each user to learn about entities in his social
graph at hop lengths > 1, e.g., the number of friends of friends he has or their
certificates which serve as pseudonyms. Depending on how users have set the
visibility of their friend relations in the social network, this may be information
that was otherwise not available to users.



CrowdShare: Secure Mobile Resource Sharing 437

As an alternative, we also allow P and C to determine common friends by run-
ning a private set intersection (PSI) protocol directly between them. The input
to PSI is a set of “capabilities” that serve as proof of the friend relationship in
the social network. We use a social network application as a generic secret distri-
bution channel to exchange capabilities among friends. Due to space limitations
we do not describe this approach in detail. The interested reader is referred to
our technical report [4].

4 Security Considerations

In the following we provide an informal security analysis that demonstrates that
the security requirements of §2 are fulfilled.

Channel Protection. For channel protection, all protocols are executed over
a secure (i.e., confidential and mutually authenticated) channel. Particularly,
the registration protocol runs over a channel where the server S is authenticated
based on the server certificate CertS , while the user is authenticated by verifying
user’s phone number. The provider discovery and accountability protocols run
over the secure channel established based on mutually exchanged certificates
between P and C. The resource delivery is protected by a data channel established
between C and P or C and S. The former is used in use cases which are not
sensitive to eavesdropping by P, e.g., in case of file sharing (a file originating
from P is already known to P). The latter is applied in case if P is a subject for
confidentiality requirement, e.g., when sharing Internet connectivity (to ensure
P cannot eavesdrop or manipulate traffic downloaded by C).

Pseudonymity. Pseudonymity is fulfilled by deploying pseudonymous user cer-
tificates which do not include any user specific information. The only entity which
can map certificates to user identities is the server S, which is trusted to keep
this information confidential.

Accountability. Accountability is satisfied by deploying an accountability
service which protects P from framing attacks. The signed resource quota re-
quest submitted during the accountability protocol can be used by P as evi-
dence toward possible misuse by C. Further, the signature can be mapped to
a user identity with the help of the server S, which keeps the mapping be-
tween pseudonymous user certificates and user phone numbers. Hence, the real
user identity can be traced back in case of illegal usage (e.g., accessing illegal
content).

Access Control. We use two access control mechanisms: (i) membership-based
access control which allows users to deny non-members access to resources of
members, and (ii) social-relationship-based access control which allows users to
grant access to friends or friends of friends.



438 N. Asokan et al.

5 Implementation

In this section we describe the implementation of the trusted server S and the
mobile device which integrates functionality of the resource consumer C, resource
provider P, and a relay device F in one.

Server. The server S provides the following main functionalities: (i) registra-
tion of new CrowdShare community members and (ii) a database that includes
persistent information from other services (e.g., mapping from user identities to
certificates). The functionality of S is implemented in Java 1.5 and stores objects
in MySQL using the Hibernate framework. The implementation has 5 188 lines
of Java code (LoC).

Mobile Platform. Our implementation targets Android-based devices. We
used Google’s Nexus One and the HTC Desire smartphones with Cyanogenmod
7.0 images for our development. The code is written in Java (for the API level
10) and makes use of a Bouncy Castle crypto library v. 147 (written in Java).
For the implementation of cryptographic primitives, we used RSA 1024 and
AES 128. We used standard SSL for the establishment of the secure channel
used in provider discovery and OpenVPN (from the Cyanogenmod image) for
the protection of the data channel. Our Android app has a modular design.
Particularly, MeshNetwork is implemented as a separate component with well-
defined interfaces which can be replaced when necessary or re-used in other
applications. The overall implementation excluding the MeshNetwork component
has 9 441 LoC.

We adapted the implementation of the Serval open source project [6] for
the instantiation of the MeshNetwork component. Serval allows mobile devices
to establish mesh networking on top of ad-hoc WiFi connections. It integrates
BATMAN [10], a proactive distance vector routing protocol for wireless mesh
networks. Further, it supports voice calls and text messages between mesh modes
(hence, this functionality is also inherited by our implementation), but it does
not provide Internet connectivity sharing and does not address possible security
threats, which are our main focus.

Generally, stock Android devices cannot be configured to operate in WiFi
ad-hoc mode without root access. Root access is required for loading a WiFi
driver, configuring it to operate in ad-hoc mode and for configuring IP settings.
However, root access is not required for the usage of our FoF Finder service.
To support this claim, we implemented a simple (one-hop) tethering app which
uses FoF Finder service for access control. The app uses Bluetooth to run FoF

Finder protocols and WiFi for tethering and does not require root privileges.

6 Performance Evaluation

For our performance tests we used a HTC Desire device as a resource provider P
and Nexus One devices for the resource consumer C and the relaying node F.



CrowdShare: Secure Mobile Resource Sharing 439

Multihop Re-transmissions. Fig. 4 illustrates the performance with and
without multihop re-transmissions. To perform this test, we sent a ping packet
to a remote server (www.google.de) and estimated the delay of the received re-
sponse. The test was done for the direct Internet connection (i.e., no mesh re-
transmissions are required), as well as for 1 hop and 2 hop indirect connections1.
We sent 200 ping packets for each case. The delay increases with rising hop counts
in the multi hop connection, which is reasonable, as each additional hop imposes
additional packet delay due to re-transmissions. Further, the context switch be-
tween 3G and WiFi transmissions also adds overhead. The several peaks for the
2 hop tethering are imposed by packet loss and subsequent re-transmissions re-
quired to perform packet delivery successfully. To summarize, a hop count of 2
introduces a little delay in the range of milliseconds, which is acceptable.

Fig. 4. Performance with and without multihop re-transmissions

7 Related work

VENETA [3] is a mobile social networking platform that, among other features,
allows decentralized SMS-messaging via Bluetooth (up to 3 hops) and privacy-
preserving matching of common entries in the users’ address books using private
set intersection. The combination of privacy-preserving profile matching and es-
tablishment of a secure channel was considered recently in [13]. Their solution
allows a user to establish a shared key with another user only if their profiles
match in a pre-determined set of attributes. Privacy-preserving discovery of com-
mon social contacts was considered in [5], where friends issue mutual certificates
for their friendship relation. Our setting is different to all these works as we want
to perform access control based on relationships in an existing social network.

1 Our tests were limited by the number of available devices.



440 N. Asokan et al.

A number of projects developed ad hoc communication and resource sharing
on top of mesh networks like Serval [6] and OpenGarden [1]. SCAMPI [12] pro-
vides generic discovery and a routing framework for opportunistic networks for
developing versatile applications and services on top of it. Ad hoc communica-
tion has also found use cases in extreme situations where normal infrastructures
are inaccessible, e.g., mines [7] and disaster-recovery scenarios [8]. In addition,
we focus on privacy and security.

Acknowledgements. This work was supported in part by the German Federal
Ministry of Education and Research (BMBF) within EC SPRIDE, and by the
Hessian LOEWE excellence initiative within CASED.

References

[1] OpenGarden project, http://opengarden.com/ourstory.php
[2] Serval - comunicate anywhere, anytime, http://www.servalproject.org/ (vis-

ited July 26, 2012)
[3] von Arb, M., et al.: VENETA: Serverless friend-of-friend detection in mobile social

networking. In: WiMob, pp. 184–189. IEEE (2008)
[4] Asokan, N., Dmitrienko, A., Nagy, M., Reshetova, E., Sadeghi, A.-R., Schneider,

T., Stelle, S.: Crowdshare: Secure mobile resource sharing. Technical Report
TUD-CS-2013-0084, TU Darmstadt (April 2013),
http://www.trust.informatik.tu-darmstadt.de/publications/

publication-details/?no cache=1&tx bibtex pi1

[5] De Cristofaro, E., Manulis, M., Poettering, B.: Private discovery of common social
contacts. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 147–
165. Springer, Heidelberg (2011)

[6] Gardner-Stephen, P.: The serval project: Practical wireless ad-hoc mobile telecom-
munications (2011)

[7] Ginzboorg, P., et al.: DTN communication in a mine. In: ExtremeCom (2010)
[8] Hossmann, T., et al.: Twitter in disaster mode: Security architecture. In:

CoNEXT. ACM (2011)
[9] JoikuSpot (2007), http://joikusoft.com/

[10] Neumann, A., et al.: B.A.T.M.A.N.: Better approach to mobile ad-hoc networking.
IEFT Draft (2008)

[11] Nokia. Nokia Instant Community. Article in Nokia Conversations Blog (May
2010),
http://conversations.nokia.com/2010/05/25/nokia-instant-

community-gets-you-social/

[12] Pitkänen, M., et al.: SCAMPI: Service platform for social aware mobile and per-
vasive computing. Computer Communication Review 42(4) (2012)

[13] Zhang, L., et al.: Message in a sealed bottle: Privacy preserving friending in social
networks. CoRR, abs/1207.7199 (2012)

http://opengarden.com/ourstory.php
http://www.servalproject.org/
http://www.trust.informatik.tu-darmstadt.de/publications/publication-details/?no_cache=1&tx_bibtex_pi1
http://www.trust.informatik.tu-darmstadt.de/publications/publication-details/?no_cache=1&tx_bibtex_pi1
http://joikusoft.com/
http://conversations.nokia.com/2010/05/25/nokia-instant-community-gets-you-social/
http://conversations.nokia.com/2010/05/25/nokia-instant-community-gets-you-social/

	CrowdShare: Secure Mobile Resource Sharing
	1 Introduction
	2 System Model and Requirement Analysis
	3 CrowdShare Protocols and Services
	3.1 CrowdShare Protocols

	4 Security Considerations
	5 Implementation
	6 Performance Evaluation
	7 Related work
	References




