
Just-In-Time Code Reuse:
On the Effectiveness of Fine-Grained Address Space Layout Randomization

Kevin Z. Snow, Fabian Monrose

Department of Computer Science
University of North Carolina at Chapel Hill, USA

Email: {kzsnow,fabian}@cs.unc.edu

Lucas Davi, Alexandra Dmitrienko,
Christopher Liebchen, Ahmad-Reza Sadeghi

CASED/Technische Universität Darmstadt, Germany
Email: {lucas.davi,alexandra.dmitrienko,

christopher.liebchen,ahmad.sadeghi}@trust.cased.de

Abstract—Fine-grained address space layout randomization
(ASLR) has recently been proposed as a method of efficiently
mitigating runtime attacks. In this paper, we introduce the
design and implementation of a framework based on a novel
attack strategy, dubbed just-in-time code reuse, that undermines
the benefits of fine-grained ASLR. Specifically, we derail the
assumptions embodied in fine-grained ASLR by exploiting the
ability to repeatedly abuse a memory disclosure to map an
application’s memory layout on-the-fly, dynamically discover
API functions and gadgets, and JIT-compile a target program
using those gadgets—all within a script environment at the
time an exploit is launched. We demonstrate the power of
our framework by using it in conjunction with a real-world
exploit against Internet Explorer, and also provide extensive
evaluations that demonstrate the practicality of just-in-time
code reuse attacks. Our findings suggest that fine-grained
ASLR may not be as promising as first thought.

I. INTRODUCTION

Plus ça change, plus c’est la même chose

— Jean-Baptiste Alphonse Karr (1808-1890).

Today’s security landscape paints a disturbing scene.

Underground economies that seem to thrive on an unlimited

supply of compromised end-user systems (e.g., for monetary

gains from a myriad of illicit activities) are as vibrant as ever

before. Perhaps more worrying is the trend towards targeting

specific entities (e.g., Fortune 500 companies) with valuable

intellectual property and trade secrets that are then sold to

competitors. Many of these targets are compromised via so-

called runtime attacks that exploit vulnerabilities in popular

applications (e.g., browsers or document readers).

Despite differences in the style and implementation of

these exploits, they all share a common goal: the ability

to redirect program logic within the vulnerable application.

Sadly, the history of security vulnerabilities enabling these

exploits now stretches well into a third decade, and still

poses a significant threat to modern systems [59]. Indeed,

although numerous defenses have been implemented to limit

the scope of these attacks, such as Address Space Lay-

out Randomization (ASLR) and Data Execution Prevention

(DEP), the cat and mouse games plays on.

In the early days of exploitation, the lack of proper

bounds checking was misused to overwrite information on

the stack (e.g., a function’s return address) and redirect the

logical flow of a vulnerable application to arbitrary code

(coined shellcode), an attack strategy which became known

as smashing the stack [3]. To mitigate stack smashing, a

so-called canary (i.e., a random value) was introduced on

the stack preceding the return value, and compilers added

a verification routine to function epilogues that terminates

programs when the canary is modified [16]. As was to be

expected, attackers quickly adapted their exploits by over-

writing alternative control-flow constructs, such as structured

exception handlers (SEH) [36].

In response, a no-execute (NX) bit was introduced into

the x86 architecture’s paging scheme that allows any page

of memory to be marked as non-executable. DEP leverages

the NX bit to mark the stack and heap as non-executable

and terminates a running application if control flow is

redirected to injected code. Not wanting to be outdone,

attackers then added code reuse attacks to their playbook.

This new strategy utilizes code already present in memory,

instead of relying on code injection. The canonical example

is return-to-libc [41, 54], in which attacks re-direct

execution to existing shared-library functions. More recently,

this concept was extended by Shacham [52] to chain together

short instruction sequences ending with a ret instruction

(called gadgets) to implement arbitrary program logic. This

approach was dubbed return-oriented programming. To date,

return-oriented programming has been applied to a broad

range of architectures (including Intel x86 [52], SPARC [10],

Atmel AVR [20], ARM [25, 31], and PowerPC [35]).

This early form of code reuse, however, relies on gadgets

being located at known addresses in memory. Thus, address-

space layout randomization [19], which randomizes the

location of both data and code regions, offered a plausi-

ble defensive strategy against these attacks. Code region

layout randomization hinders code reuse in exploits; data

randomization impedes the redirection of control-flow by

making it difficult to guess the location of injected code.

Not to be outdone, attackers soon reconciled with an oft

neglected class of vulnerabilities: the memory disclosure.

Indeed, disclosing a single address violates fundamental

assumptions in ASLR and effectively reveals the location of

2013 IEEE Symposium on Security and Privacy

1081-6011/13 $26.00 © 2013 IEEE

DOI 10.1109/SP.2013.45

574

every piece of code within a single library, thus re-enabling

the code reuse attack strategy.

In light of this new code reuse paradigm (whether return-

oriented, jump-oriented [9], or some other form of “bor-

rowed code” [32]), skilled adversaries have been actively

searching for ever more ingenious ways to leverage memory

disclosures (e.g., [33, 51, 56, 60]) as part of their arsenal.

At the same time, defenders have been busily working to

fortify perimeters by designing “enhanced” randomization

strategies [7, 22, 23, 29, 45, 62] for repelling the next gen-

eration of wily hackers. In this paper, we question whether

this particular line of thinking (regarding fine-grained code

randomization) offers a viable alternative in the long run. In

particular, we examine the folly of recent exploit mitigation

techniques, and show that memory disclosures are far more

damaging than previously believed. Just as the introduction

of SEH overwrites shattered the illusion of protection pro-

vided by stack canaries, code reuse undermines DEP, and

memory disclosures defied the basic premise of ASLR, we

assail the assumptions embodied by fine-grained ASLR.

Our primary contribution is in showing that fine-grained

ASLR for exploit mitigation, even considering an ideal im-

plementation, may not be any more effective than traditional

ASLR implementations that are already being bypassed —

in short, the more things change, the more they stay the
same1. We provide strong evidence for this by implementing

a framework wherein we automatically adapt an arbitrary

memory disclosure to one that can be used multiple times

to reliably map a vulnerable application’s memory layout,

then just-in-time compile the attacker’s program, re-using

(finely randomized) code. The workflow of our framework

takes place entirely within a single script (e.g., as used

by browsers) for remote exploits confronting application-

level randomization, or a single binary for local privilege

escalation exploits battling kernel-level randomization.

In light of these findings, we argue that the trend toward

fine-grained ASLR strategies may be short-sighted. It is our

hope that, moving forward, our work spurs discussion and

inspires others to explore more comprehensive defensive

strategies than what exists today.

II. BACKGROUND

We first review the basics of important concepts (namely,

the code reuse attack strategy and fine-grained memory

and code randomization) that are vital to understanding the

remainder of this paper.

Code Reuse Attacks: The general principle of any code

reuse attack is to redirect the logical program flow to instruc-

tions already present in memory, then use those instructions

to provide alternative program logic. There exist countless

methods of orchestrating such an attack, the simplest of

1Translation of the original quote, “Plus ça change, plus c’est la même
chose,” by French novelist Jean-Baptiste Alphonse Karr.

which involves an adversary redirecting the program exe-

cution to an existing library function [41, 54]. More gener-

ally, Shacham [52] introduced return-oriented programming

(ROP) showing that attacks may combine short instruction

sequences from within functions, called gadgets, allowing an

adversary to induce arbitrary program behavior. Recently,

this concept was generalized by removing the reliance on

actual return instructions [12]. However, for simplicity, we

highlight the basic idea of code reuse using ROP in Figure 1.

Program Memory

Adversary
Stack

Heap

Code (Executable)

Libraries
ADD Gadget ret

LOAD Gadget ret

STORE Gadget ret

Return Address 3
Return Address 2
Return Address 1

Stack Pivot ret

Heap Vulnerability

SP

SP

1

2

3

4

5

6

7

Figure 1. Basic principle of code reuse attacks. For simplicity, we highlight
a ROP attack on the heap using a sequence of single-instruction gadgets.

First, the adversary writes a so-called ROP payload into

the application’s memory space, where the payload mainly

consists of a number of pointers (the return addresses) and

any other data that is needed for running the attack (Step �).

In particular, the payload is placed into a memory area that

can be controlled by the adversary, i.e., the area is writable

and the adversary knows its start address. The next step

is to exploit a vulnerability of the target program to hijack

the intended execution-flow (Step �). In the example shown

in Figure 1, the adversary exploits a heap vulnerability by

overwriting the address of a function pointer with an address

that points to a so-called stack pivot sequence [65]. Once the

overwritten function pointer is used by the application, the

execution flow is redirected (Step �).

Loosely speaking, stack pivot sequences change the value

of the stack pointer (%esp) to a value stored in another

575

register. Hence, by controlling that register2, the attacker can

arbitrarily change the stack pointer. Typically, the stack pivot

directs the stack pointer to the beginning of the payload

(Step �). A concrete example of a stack pivot sequence

is the x86 assembler code sequence mov %esp,%eax;
ret. The sequence changes the value of the stack pointer

to the value stored in register %eax and afterwards invokes

a return (ret) instruction. The x86 ret instruction simply

loads the address pointed to by %esp into the instruction

pointer and increments %esp by one word. Hence, the

execution continues at the first gadget (STORE) pointed to

by Return Address 1 (Step �). In addition, the stack pointer

is increased and now points to Return Address 2.

A gadget represents an atomic operation such as LOAD,

ADD, or STORE, followed by a ret instruction. It is exactly

the terminating ret instruction that enables the chained

execution of gadgets by loading the address the stack pointer

points to (Return Address 2) in the instruction pointer and

updating the stack pointer so that it points to the next

address in the payload (Return Address 3). Steps � to � are

repeated until the adversary reaches her goal. To summarize,

the combination of different gadgets allows an adversary to

induce arbitrary program behavior.

Randomization for Exploit Mitigation: A well-accepted

countermeasure against code reuse attacks is the randomiza-

tion of the application’s memory layout. The basic idea of

address space layout randomization (ASLR) dates back to

Forrest et al. [19], wherein a new stack memory allocator

was introduced that adds a random pad for stack objects

larger than 16 bytes. Today, ASLR is enabled on nearly

all modern operating systems such as Windows, Linux,

iOS, or Android. For the most part, current ASLR schemes

randomize the base (start) address of segments such as the

stack, heap, libraries, and the executable itself. This basic

approach is depicted in Figure 2, where the start address

of an executable is relocated between consecutive runs of

the application. As a result, an adversary must guess the

location of the functions and instruction sequences needed

for successful deployment of her code reuse attack.

Unfortunately, today’s ASLR realizations suffer from two

main problems: first, the entropy on 32-bit systems is too

low, and thus ASLR can be bypassed by means of brute-

force attacks [37, 53]. Second, all ASLR solutions are

vulnerable to memory disclosure attacks [51, 56] where

the adversary gains knowledge of a single runtime address

and uses that information to re-enable code reuse in her

playbook once again. Many of today’s most sophisticated

exploits use JavaScript or ActionScript (hereafter referred to

as a script) and a memory-disclosure vulnerability to reveal

the location of a single code module (e.g., a dynamically-

2To control the register, the adversary can either use a buffer overflow
exploit that overwrites memory areas that are used to load the target register,
or invoke a sequence that initializes the target register and then directly calls
the stack pivot.

Program Memory

Executable

ADD Gadget ret

LOAD Gadget ret

STORE Gadget ret

Stack Pivot ret

Program Memory

Executable
 Stack Pivot ret

STORE Gadget ret

LOAD Gadget ret

ADD Gadget ret

Execution i Execution i + 1

0x08000000:

0x07000000:

Figure 2. Fine-Grained Memory and Code Randomization

loaded library) loaded in memory. Since current ASLR

implementations only randomize on a per-module level,

disclosing a single address within a module effectively

reveals the location of every piece of code within that

module. Therefore, any gadgets from a disclosed module

may be determined manually by the attacker offline prior

to deploying the exploit. Once the prerequisite information

has been gathered, the exploit script simply builds a payload

from a pre-determined template by adjusting offsets based

on the module’s disclosed location at runtime.

To confound these attacks, a number of fine-grained

ASLR and code randomization schemes have recently ap-

peared in the academic literature [7, 23, 29, 45, 62]. We

elaborate on these techniques later (in §VI), but for now

it is sufficient to note that the underlying idea in these

works is to randomize the data and code structure, for

instance, by shuffling functions or basic blocks (ideally

for each program run [62]). As shown in Figure 2, the

result of this approach is that the location of all gadgets

is randomized. The assumption underlying all these works

is that the disclosure of a single address no longer allows

an adversary to deploy a code reuse attack.

III. ASSUMPTIONS AND ADVERSARIAL MODEL

We now turn to our assumptions and adversarial model. In

general, an adversary’s actions may be enumerated in two

stages: (1) exercise a vulnerable entry point, and (2) exe-

cute arbitrary malicious computations. Similar to previous

work on runtime attacks (e.g., the original paper on return-

oriented programming [52]), our assumptions cover defense

mechanisms for the second stage of runtime attacks, i.e., the

execution of malicious computations. Modern stack and heap

mitigations (such as heap allocation order randomization)

do eliminate categories of attack supporting stage one, but

these mitigations are not comprehensive (i.e., exploitable

vulnerabilities still exist). Thus, we assume the adversary

is able to exercise one of these pre-existing vulnerable

entry points. Hence, a full discussion of the first stage of

attack is out of scope for this paper. We refer the interested

576

reader to [26] for an in-depth discussion on stack and heap

vulnerability mitigations.

In what follows, we assume that the target platform uses

the following mechanisms (see §II) to mitigate the execution

of malicious computations:

• Non-Executable Memory: We assume that the security

model of non-executable memory (also called NX or

DEP) is applied to the stack and the heap. Hence, the

adversary is not able to inject code into the program’s

data area. Further, we assume that the same mechanism

is applied to all executables and native system libraries,

thereby preventing one from overwriting existing code.

• JIT Mitigations: We assume a full-suite of JIT-

spraying mitigations, such as randomized JIT pages,

constant variable modifications, and random NOP in-

sertion. As our approach is unrelated to JIT-spraying

attacks, these mitigations provide no additional protec-

tion against our code reuse attack.

• Export Address Table Access Filtering: We assume

code outside of a module’s code segment cannot access

a shared library’s export table (i.e. as commonly used

by shellcode to lookup API function addresses). As

our approach applies code-reuse from existing modules

for 100% of malicious computations, this mitigation

provides no additional protection.

• Base Address Randomization: We assume that the

target platform deploys base address randomization

by means of ASLR and that all useful, predictable,

mappings have been eliminated.

• Fine-Grained ASLR: We assume that the target plat-

form enforces fine-grained memory and code random-

ization on executables and libraries. In particular, we

assume a strong fine-grained randomization scheme,

which (i) permutes the order of functions [7, 29] and

basic blocks [62], (ii) swaps registers and replaces

instructions [45], (iii) randomizes the location of each

instruction [23], and (iv) performs randomization upon

each run of an application [62].

Notice that our assumptions on deployed protection mech-

anisms go beyond what current platforms typically provide.

For instance, ASLR is not usually applied to every exe-

cutable or library, thereby allowing an adversary to leverage

the non-randomized code parts for a conventional code reuse

attack. Further, current systems do not enforce fine-grained

randomization. That said, there is a visible trend toward

enabling ASLR for all applications, even for the operating

system kernel (as recently deployed in Windows 8). Fur-

thermore, current thinking is that fine-grained randomization

has been argued to be efficient enough to be considered as

a mechanism by which operating system vendors can tackle

the deficiencies of base address randomization.

Nevertheless, even given all these fortified defenses, we

show that our framework for code reuse attacks can readily

undermine the security provided by these techniques. In fact,

an adversary utilizing our framework—whether bypassing

ASLR or fine-grained mitigations—will enjoy a simpler and

more streamlined exploit development process than ever

before. As will become apparent in the next section, our

framework frees the adversary from the burden of manually

piecing together complicated code reuse payloads and, be-

cause we build the entire payload on-the-fly, it can be made

compatible with all OS revisions. We only assume that the

adversary can (1) conform a memory disclosure vulnerability

to our interface that reveals values at an absolute address,

and (2) discover a single code pointer, e.g., as typically found

via function pointers described by a heap or stack-allocated

object. We find these assumptions to be quite practical, as

existing exploits that bypass standard ASLR have nearly

identical requirements (see e.g., [50]).

IV. OVERVIEW OF JUST-IN-TIME CODE REUSE

Unfortunately, nearly all fine-grained exploit mitigations

to-date fail to precisely define an adversarial model or are

based on a model that fails to consider multiple memory-

disclosures. This is problematic for a number of reasons,

the least of which is that discrediting multiple memory

disclosures is impractical. Our key observation is that by

exploiting a memory disclosure multiple times we violate

implicit assumptions of the fine-grained exploit mitigation

model and enable the adversary to iterate over mapped mem-

ory to search for all necessary gadgets on-the-fly, regardless

of the granularity of code and memory randomization. It is

our conjecture that if fine-grained exploit mitigations became

common-place, then attackers would simply modularize,

automate, and incorporate a similar approach into existing

exploitation toolkits (e.g., metasploit [39]).

To evaluate the hypothesis that multiple memory dis-

closures are an effective means to bypass fine-grained ex-

ploit mitigation techniques, we have designed and built a

prototype exploit framework that aptly demonstrates one

instantiation (called JIT-ROP) of our idea. The overall

workflow of an exploit using our framework is given in

Figure 3. An adversary constructing a new exploit need

only conform their memory disclosure to our interface and

provide an initial code pointer in Step �, then let our

framework take over in Steps 	 to
 to automatically

(and at exploit runtime) harvest additional code pages, find

API functions and gadgets, and just-in-time compile the

attacker’s program to a serialized payload useable by the

exploit script in Step �.

The implementation was highly involved, and successful

completion overcame several challenges. With that in mind,

we also remind the reader that the current implementation of

our framework represents but one instantiation of a variety

of advanced techniques that could be applied at each step,

e.g., one could add support for jump-oriented program-

ming [9], use more advanced register allocation schemes

577

Vulnerable Application
(w/ fine-grained randomization)

Find Gadgets

Initialize Memory
Disclosure

DiscloseByte()
Interface

Map Memory

Initial Code
Pointer

Code Pages

Gadget Set

MoveRegG

Find API
Function Ptrs

LoadLibraryW(L'kernel32');
GetProcAddress(@, 'WinExec');
@('calc', 1);
LoadLibraryW(L'kernel32');
GetProcAddress(@, 'ExitProcess');
@(1);

Define Target Program

Exploit-Specific

Runtime Framework

JIT Compile

API Functions

LoadLibraryA
GetProcAddress

...
LoadLibraryW

Parse

Build
Abstract

Syntax Tree

Assign
- Select Instr's
- Schedule
- Alloc Regs

Exploit-Specific

Runtime Framework

Build Exploit
Buffer

Redirect
Instruction Ptr.

�

�

�

�

�

�

Exploit Writer
(Adversary)

Scripting Facility

Figure 3. Overall workflow of a code injection attack utilizing just-in-time
code reuse against a script-enabled application protected by fine-grained
memory (or code) randomization.

from compiler theory, etc. Nevertheless, we show in §V that

our implementation of JIT-ROP is more than sufficient

for real-world deployment, both in terms of stability and

performance. In the remainder of this section, we elaborate

on the necessary components of our system, and conclude

with a concrete example of an exploit using our framework.

A. Mapping Code Page Memory

Prior to even considering a code reuse attack, the adver-

sary must be made aware of the code already present in

memory. The first challenge lies in developing a reliable

method for automatically searching through memory for

code without causing a crash (e.g., as a result of reading an

unmapped memory address). On 32-bit Microsoft Windows,

applications may typically address up to 3 GB, while on

64-bit Microsoft Windows this can be several terabytes.

Applications, however, typically use less than a few hun-

dred megabytes of that total space. Thus, simply guessing

addresses to disclose is likely to crash the vulnerable appli-

cation. Furthermore, our assumptions in §III forbid us from

relying on any prior knowledge of module load addresses,

which would be unreliable to obtain in face of fine-grained

ASLR and non-continuous memory regions.

To overcome this hurdle, we note that knowledge of

a single valid code pointer (e.g., gleaned from the heap

or stack) reveals that an entire 4 kilobyte-aligned page

of memory is guaranteed to be mapped. In Step �, we

require the exploit writer to conform the single memory

disclosure to an interface named DiscloseByte that,

given an absolute virtual address, disclosures one byte of

data at that address (see §IV-E). One approach, therefore,

is to use the DiscloseByte method to implement a

DisclosePage method that, given an address, discloses

an entire page of memory data. The challenge then is to

enumerate any information found in this initial page of code

that reliably identifies additional pages of code.

One reliable source of information on additional code

pages is contained within the control-flow instructions of

the application itself. Since code typically spans thousands

of pages, there must be control-flow links between them.

In Step 	, we apply static code analysis techniques (in

our case, at runtime) to identify both direct and indirect

call and jmp control-flow instructions within the initial

code page. We gather new code pages from instructions

disassembled in the initial code page. Direct control-flow

instructions yield an immediate hint at another code location,

sometimes in another page of memory. Indirect control-flow

instructions, on the other hand, often point to other modules

(e.g., as in a call to another DLL function), and so we can

process these by disclosing the address value in the Import

Address Table (IAT) pointed to by the indirect instruction

(i.e., we implement a DisclosePointer method on top

of DiscloseByte). In practice, we may be able to derive

additional code pointers from other entries found around the

address disclosed in the IAT, or read past page boundaries

if code regions are contiguous. However, we choose not to

use this information as our assumptions on the application

of ideal fine-grained randomization forbid us from doing so.

By applying this discovery technique iteratively on each

code page found, we can map a significant portion of the

code layout of the application instance’s virtual address

space. Algorithm 1 is a recursive search over discovered

code pages that results in the set of unique code page virtual

addresses along with associated data. The Disassemble
routine performs a simple linear sweep disassembly over

the entirety of the code page data. As compilers sometimes

embed data (e.g. a jump table) and padding (e.g. between

functions) within code, disassembly errors may arise. More

deliberate binary obfuscations may also be used by a vul-

nerable program to make this step more difficult, although

obfuscations of this magnitude are not typically applied

by reputable software vendors. To minimize these errors,

however, we filter out both invalid (or privileged) instruc-

tions and valid instructions in the immediate vicinity of

578

Algorithm 1 HarvestCodePages: given an initial code

page, recursively disassemble pages and discover direct and

indirect pointers to other mapped code pages.

Input: P {initial code page pointer}, C {visited set}
Output: C {set of valid code pages}
if ∃(P ∈ C) {already visited} then

return
end if
C(P)← true {Mark page as visited}
�P = DisclosePage(P) {Uses DiscloseByte() internally to fetch
page data}
for all ins ∈ Disassemble(�P) do

if isDirectControlFlow(ins) then
{e.g. JMP +0xBEEF}
ptr ← ins.offset + ins.effective address
HarvestCodePages(ptr)

end if
if isIndirectControlFlow(ins) then
{e.g. CALL [-0xFEED]}
iat ptr ← ins.offset + ins.effective address
ptr ← DisclosePointer(iat ptr) {Internally uses
DiscloseByte() to fetch pointer data}
HarvestCodePages(ptr)

end if
end for

any invalid instruction. While more advanced static analysis

could certainly be employed (e.g. recursive descent), our

approach has proven effective in all our tests.

In short, as new code pages are discovered, static code

analysis can be applied to process and store additional

unique pages. Iteration continues only until all the requisite

information to build a payload has been acquired. That said,

automatically building a practical payload requires that we

obtain some additional information, which we elaborate on

in the next sections.

B. API Function Discovery

The second challenge lies in the fact that an exploit will

inevitably need to interact with operating system APIs to

enact any significant effect. The importance of this should

not be understated: while Turing-complete execution is not

needed for a practical payload that reuses code, specialized

OS interoperability is required. One method of achieving

this is through direct interaction with the kernel via interrupt

(int 0x80) or fast (syscall) system call instruction

gadgets. Payloads using hardcoded system calls, however,

have been historically avoided because of frequent changes

between even minor revisions of an OS. The favored method

of interacting with the OS is through API calls (e.g., as in

kernel32.dll), the same way benign programs interact,

because of the relative stability across OS revisions.

Thus, in Step �, we must discover the virtual addresses

of API functions used in the attacker-supplied program.

Past exploits have managed this by parsing the Process

Environment Block (PEB), as in traditional shellcode, or by

manually harvesting an application-specific function pointer

from the heap, stack, or IAT in ROP-based exploits. While

one may consider emulating the traditional PEB parsing

strategy using gadgets (rather than shellcode), this approach

is problematic because gadgets reading the PEB are rare,

and thus cannot be reliably applied to code reuse attacks.

Moreover, requisite function pointers typically used in ROP-

style exploits may not be present on the stack or heap,

and the IAT may be randomized by fine-grained exploit

mitigations.

Our code page harvesting in Step 	 gives us unfettered

access to a large amount of application code, which presents

a unique opportunity for automatically discovering a diverse

set of API function pointers. Luckily, API functions desir-

able in exploit payloads are frequently used in application

code and libraries. On Windows, for example, applications

and libraries that re-use code from shared libraries usually

obtain pointers to the desired library functions through the

combination of LoadLibrary (to get the library base ad-

dress) and GetProcAddress (to get the function address)

functions. In this way, a running process is able to easily

obtain the runtime address of any API function. By finding

these API functions, we would only need to accurately

initialize the arguments (i.e., the strings of the desired library

and function) to LoadLibrary and GetProcAddress
to retrieve the address of any other API function.

Our approach to find these API functions is to create

signatures based on opcode sequences for call sites of the

API functions, then match those signatures to call sites in the

pages we traverse at run-time. Our prototype implementation

uses static signatures, which we generate a-priori, then match

at runtime during code page traversal. This implementation

would fail to work if individual instruction transformations

were applied to each call site. However, just as antivirus

products use fuzzy or semantic signatures, we too may utilize

such a technique if code has been metamorphosed in this

way by fine-grained exploit mitigations. Once a call site has

been identified, we use DisclosePointer to reveal the

API function pointer in the IAT and maintain the unique set

of functions identified.

C. Gadget Discovery

Thus far we have automatically mapped a significant por-

tion of the vulnerable application’s code layout and collected

API function pointers required by the exploit writer’s des-

ignated program. The next challenge lies in accumulating a

set of concrete gadgets to use as building blocks for the just-

in-time code reuse payload. Since fine-grained exploit mit-

igations may metamorphose instructions on each execution,

we do not have the luxury of searching for gadgets offline

and hardcoding the requisite set of gadgets for our payload.

Hence, in contrast to previous works on offline gadget

compilers [24, 48], we must perform the gadget discovery at

the same time the exploit runs. Moreover, we must do this as

efficiently as possible in practice because Steps � through

� must all run in real-time on the victim’s machine. As time-

579

Algorithm 2 VerifyGadget: Automatically match a se-

quence of instructions to a gadget’s semantic definition.

Input: S {sequence of consecutive instructions}, D {gadget semantic
definitions}
Output: G {gadget type, or null}
head← S(0) {first instruction in sequence}
if G← LookupSemantics(head) /∈ D {implemented as a single table-
lookup} then

return null
end if
for i ∈ 1...|S| {ensure semantics are not violated by subsequent
instructions} do

ins← S(i)
if HasSideEffects(ins) ‖ RegsKilled(ins) ∈ RegsOut(head)
then

return null
end if

end for
return G {valid, useful gadget}

of-exploit increases, so does the possibility of the victim (or

built-in application watchdog) terminating the application

prior to exploit completion.

Unfettered access to a large number of the code pages

enables us to search for gadgets not unlike an offline

approach would3, albeit with computational performance as

a primary concern. Thus, in Step
 we efficiently collect se-

quences of instructions by adapting the Galileo algorithm

proposed by Shacham [52] to iterate over the harvested code

pages from Step 	 and populate an instruction prefix tree

structure. As instruction sequences are added to the prefix

tree, they are tested to indicate whether they represent a

useful gadget. Our criteria for useful gadgets is similar to

Schwartz et al. [48], wherein we bin gadgets into types with

a unique semantic definition. Table I provides a listing of the

gadget types we use, along with their semantic definitions.

Higher-order computations are constructed from a composite

of these gadget type primitives during compilation. For

example, calling a Windows API function using position-

independent code-reuse may involve a MovRegG to get the

value of the stack pointer, an ArithmeticG to compute

the offset to a pointer parameter’s data, a StoreMemG or

ArithmeticStoreG to place the parameter in the correct

position on the stack, and a JumpG to invoke the API call.

Unlike semantic verification used in prior work, we avoid

complex program verification techniques like weakest pre-

condition, wherein a theorem prover is invoked to verify

an instruction sequence’s post-condition meets the given

semantic definition [48]. We also discard the idea of so-

called concrete execution, wherein rather than proving a

post-condition is met, the instructions in the sequence are

emulated and the simulated result is compared with the

semantic definition. These methods are simply too heavy-

weight to be considered in a runtime framework like ours

3See offline gadget tools such as mona (http://redmine.corelan.be/
projects/mona) or ropc (http://github.com/pakt/ropc).

Gadget Type Name Semantic Definition Example
MovRegG OutReg ← InReg mov edi,eax
LoadRegG OutReg ← const pop ebx

ArithmeticG OutReg ← InReg1 � InReg2 add ecx,ebx
LoadMemG OutReg ←M [InReg] mov eax,[edx+0xf]

ArithmeticLoadG OutReg �←M [InReg] add esi,[ebp+0x1]
StoreMemG M [InReg1]← InReg2 mov [edi],eax

ArithmeticStoreG M [InReg1] �←InReg2 sub [ebx],esi
StackPivotG ESP ← InReg xchg eax,esp

JumpG EIP ← InReg jmp edi
NoOpG NoEffect (ret)

Table I
SEMANTIC DEFINITIONS FOR GADGET TYPES USED IN OUR

FRAMEWORK. THE � SYMBOL DENOTES ANY ARITHMETIC OPERATION.

that is interpreted in a script-based environment.

Instead, we opt for a heuristic (Algorithm 2) based on

the observation that a single instruction type (or sub-type)

fulfills a gadget’s semantic definitions. For example, any

instruction of the form mov r32, [r32+offset] meets

the semantic definition of a LoadMemG gadget. Thus, for

any instruction sequence we perform a single table lookup

to check if the first instruction type in the sequence meets

one of the gadget semantic definitions. If it does, we add

the gadget to our unique set only if the initial instruction’s

OutReg is not nullified by subsequent instructions, and

those instructions do not have adverse side-effects such as

accessing memory from an undefined register or modifying

the stack pointer. In practice, we found that this heuristic

finds mostly the same gadget instruction sequences as the

program verification approach.4

D. Just-In-Time Compilation

The final challenge lies in using the dynamically discov-

ered API function pointers and collection of concrete gadgets

to satisfy the exploit writer’s target program (Step � of

Figure 3), then generate a payload to execute (Step �). Since

each instantiation of a vulnerable application may yield

a completely different set of concrete gadgets when fine-

grained exploit mitigations are used, a dynamic compilation

is required to ensure we can use a plethora of gadget types

to build the final payload. Fundamentally, our just-in-time

gadget compiler is like a traditional compiler, except that

compilation is embedded directly within an exploit script,

and we only have a subset of concrete instructions (and

register combinations) available for code generation. We

use syntax directed parsing to process the exploit writer’s

program, which is written to conform to a simple custom

grammar (see Step � for example).

Our grammar supports arbitrary sequences of API func-

tion calls with an arbitrary number of parameters that may be

static, dynamic, or pointers to data embedded in the payload.

Pointers to data (such as ‘kernel32’) are implemented with

position independent gadgets. Using these primitives we are

4Based on sample gadget output provided by Schwartz et al. [48] and
available at http://plaid.cylab.cmu.edu:8080/∼ed/gadgets/

580

able to support a variety of payload types, including equiva-

lents to Metasploit’s code injection-style execute, download

and execute, and message box payloads. An abstract syntax

tree (AST) is extended for each program statement, wherein

each node corresponds to a set of gadget types (each with

their own child edges), any of which can implement the

current grammar rule in terms of a tree of gadget types

represented by AST nodes. Therefore, each node is actually

a set of AST subtrees, any of which performs the same

operation, but with different gadgets. We use this structure

to efficiently perform a lazy search over all possible gadget

combinations that implement a program statement, as well

as a search over all schedules and register combinations. To

do so, we adapted the algorithms from Schwartz et al. [48]

to suit our AST data structure.5

Lastly, the final payload is serialized to a structure ac-

cessible from the script, and control is returned to the

exploit writer’s code (Step �). As some individual gadgets

that are not part of the final payload are likely required

to build the exploit buffer (e.g., StackPivotG, NoOpG),

our framework also makes those available to the exploit

writer from the gadget collection. Next, we describe how

we architected the overall implementation, which turned out

to be a significant engineering challenge of its own.

E. Implementation

By now, the astute reader must have surely realized that

accomplishing this feat requires a non-trivial architectural

design, whereby we disassemble code, recursively traverse

code pages, match API function signatures, build an instruc-

tion prefix tree and semantically verify gadgets, and just-in-

time compile gadgets to a serialized payload useable by the

exploit—all performed at runtime in a script environment.

While true, we can use modern compiler infrastructures to

help with most of the heavy lifting. Figure 4 depicts the

overall architecture of our implementation of JIT-ROP. The

framework is ∼ 3000 lines of new C++ code, and addition-

ally uses the libdasm library as a 3rd-party disassembler.

C/C++
Framework Lib Clang C/C++

Frontend

LLVM
Optimizer

X86 Code
GeneratorActionScript

GeneratorJavaScript
Generator

Interface

Memory
Harvesting

Gadget Finding

JIT-Compiler

API Function
Finding

3rd-Party
Disassembler

Platform-specific
Bootstrap

Glue

framework.{js, swf, exe, pdf, doc, etc.}

Figure 4. Overall architecture. Since we have no platform-specific
dependencies, we can support multiple platforms.

5While Schwartz et al. [48] released source code, the ML language it is
written in is incompatible with our framework and AST data structure. For
our purposes, we reimplemented the approach suggested in their paper.

We use the Clang front-end to parse our code, and then

process it with the LLVM compiler infrastructure to generate

library code in a variety of supported output formats. Obvi-

ously, we can generate an x86 (or ARM) version, as well as

ActionScript and JavaScript. These scripting languages cover

support for the vast majority of today’s exploits, but we

could easily generate the framework library for any output

format supported by LLVM. The native binary versions could

also be used to locally bypass kernel-level fine-grained

exploit mitigations. Each outputted format needs a small

amount of bootstrap code. For example, x86 code needs an

executable to use the framework, and our JavaScript output

required a small amount of interfacing code (∼ 230 lines).

For the purposes of our evaluation in the next section, the

end result of our compilation process is a single JavaScript

file that could be included in any HTML or document-format

supporting JavaScript, such as Adobe’s PDF Reader.

Proof of Concept Exploit: To demonstrate the power

of the framework, we used it to exploit Internet Explorer

(IE) 8 running on Windows 7 using CVE-2012-1876. The

vulnerability is used to automatically load the Windows

calc application upon browsing a HTML page. We choose

this vulnerability because a technical analysis [60] provides

details on construction of an exploit that bypasses ASLR.

Since our framework has similar requirements (albeit with

more serious implications), construction is straight-forward.

Nevertheless, as we describe in §VII, there are a number

of other IE vulnerabilities that we could have exploited to

develop a proof of concept exploit. The various steps in

Figure 3 were accomplished as follows.

First, we setup the memory disclosure interface and reveal

an initial code pointer (Step �). To do so, we apply heap

Feng Shui [55] to arrange objects on the heap in the

following order: (1) buffer to overflow, (2) string object,

(3) a button object (specifically, CButtonLayout). Next,

we perform an overflow to write a value of 232 into the

string object’s length. This allows us to read bytes at any

relative memory address (e.g., using the charCodeAt()
function). We use the relative read to harvest a self-reference

from the button object, and implement a DiscloseByte
interface that translates a relative address to an absolute

address. The JavaScript code sample in Figure 5 begins with

the implementation of DiscloseByte on line 6.

Following that, we define our target program (which

launches calc with 100% code reuse) in a simple high-

level language on lines 15-21. Note that ‘@’ is a shorthand

for ‘the last value returned’ in our JIT-ROP language,

which may be referenced as a variable or called as a

function. Next, the first function pointer harvested from the

button object is given to HarvestCodePages (line 24),

which automatically maps code pages (Step), finds the

LoadLibrary and GetProcAddress functions (Step

�), and discovers gadgets (Step
).

581

Exploit Code Sample
// ... snip ... 1

// The string object is overwritten, and initial code 2

// pointer harvested prior to this snippet of code 3

4

// Step 1, implement DiscloseByte interface 5

framework.prototype.DiscloseByte = function(address) { 6

var value = this.string_.charCodeAt(7

(address - this.absoluteAddress_ - 8)/2); 8

if (address & 1) return value >> 8; // get upper 9

return value & 0xFF; // value is 2 bytes, get lower 10

}; 11

12

// Define target program (’@’ is shorthand 13

// for ’last value returned’) 14

var program = 15

”LoadLibraryW(L’kernel32’);” + 16

”GetProcAddress(@, ’WinExec’);” + 17

”@(’calc’, 1);” + 18

”LoadLibraryW(L’kernel32’);” + 19

”GetProcAddress(@, ’ExitProcess’);” + 20

”@(1);”; 21

22

// Steps 2-4, harvest pages, gadgets, functions 23

framework.HarvestCodePages(this.initialCodePtr_); 24

25

// Step 5, 6 - jit-compile and build exploit buffer 26

var exploitBuffer = 27

repeat(0x3E, unescape("%u9191%u9191")) + // Id 28

repeat(0x19, framework.NoOpG()) + // Sled 29

unescape(framework.Compile(program)) + // Payload 30

repeat(0x12, unescape("%u4545%u4545")) + // Pad 31

repeat(0x32, framework.StackPivotG()); // Redirect 32

33

// overwrite with the exploit buffer 34

// ... snip ... 35
End Code

Figure 5. A JavaScript code sample from our proof of concept exploit
illustrating each of the steps from our workflow.

Finally, we JIT-compile the target program (Step
, line

30) inline with exploit buffer construction. We redirect

program flow (Step �) using the same heap layout as in

Step �. As a result, one of button object’s function pointers

is overwritten with the stack pivot constructed in line 32 of

the exploit buffer. The StackPivotG switches the stack

to begin execution of the NoOpG gadget sled, which in turn

begins execution of our program (lines 15-21) that was JIT-

compiled to a series of gadgets in line 30.

V. EVALUATION

We now evaluate the practicality of our framework by

using it in conjunction with our real-world exploit against

Internet Explorer (described in §IV) in Windows 7 and a

number of other applications. We also provide empirical

evaluations of components 	 through � in our just-in-time

code reuse framework.

A. On Code Page Harvesting

The success of our code reuse framework hinges on the

ability to dynamically harvest memory pages consisting of

executable code, thereby rendering fine-grained randomiza-

tion ineffective. As alluded to earlier, the adversary provides

a starting point for the code page harvesting algorithm

by supplying an initial pointer. In the proof of concept,

we accomplished this via the CButtonLayout object’s

function pointers on the heap. Starting from this initial page,

we harvested 301 code pages from the Internet Explorer

process (including those pages harvested from library mod-

ules). However, since the final set of harvested pages differ

based on the initial page, we opted for an offline empirical

evaluation to more thoroughly analyze our performance.

The offline evaluation allows us to test initial code pages

that would not normally be found by our proof of concept,

since other exploits may indeed begin harvesting with those

pages. To perform the evaluation, we use memory snapshots
created using a custom library. Our library enables us to

attach to an application process and store memory contents

using the functionality provided by the Windows debug

library (DbgHelp). The snapshots contain all process mem-

ory, metadata indicating if a page is marked as executable

code, and auxiliary information on which pages belong to

the application or a shared library. The native x86 version of

the framework (see §IV-E) is used to load the snapshots and

test the effectiveness of HarvestCodePages (Algorithm

1) by independently initializing it from each individual code

page within the snapshot. Since using snapshots gives us the

ability to evaluate applications without requiring an exploit-

in-hand to setup a memory disclosure, we are able to analyze

the framework’s performance from many angles.

msword msppt msexcel msie8 chrome23 ff16 acro_x

Application Evaluated

0

100

200

300

400

500

600

700

800

N
o
.
o
f
P
a
g
e
s
H
a
rv
e
s
te
d

Figure 6. Box and Whisker plot showing the number of unique code pages
harvested from different initial pages.

The boxplot in Figure 6 depicts our results on different

popular applications. Each box represents thousands of runs

of HarvestCodePage, where each run uses a different

initial code page for harvesting. The results for Internet Ex-

plorer (msie8), for example, indicate that for over half of the

initial starting points we harvest over 300 pages (i.e., nearly

2MB of code). The top 25th percentile for FireFox (ff16) and

Adobe Acrobat Pro X (acro x) harvest over 1000 pages. The

logical explanation for this variability is two-fold. First, code

that is well connected (i.e., uses many API calls) naturally

allows us to achieve better coverage. Second, compilers

sometimes insert data and padding into code segments (e.g.,

582

specialized arrays for compiler optimizations). Therefore, if

pages containing such data are used as initialization points,

the final set of pages will be lower since there would likely

be fewer calls that index into the IAT in those regions.

Module No. Pages (% of library) No. Gadgets
gdi32.dll 36 (50%) 31
imm32.dll 16 (69%) 22
kernel32.dll 52 (26%) 61
kernelbase.dll 12 (17%) 22
lpk.dll 5 (83%) 0
mlang.dll 5 (16%) 8
msvcrt.dll 5 (3%) 6
ntdll.dll 109 (50%) 205
user32.dll 47 (45%) 57
uxtheme.dll 20 (35%) 23

Table II
LOCATION OF CODE PAGES HARVESTED IN A SINGLE-RUN OF

HarvestCodePages ON INTERNET EXPLORER.

To gain additional insight on exactly what libraries the

harvested code pages were from, we used the auxiliary

information in our memory snapshot to map the coverage

of a single average-case run (307 pages harvested total) of

HarvestCodePages on Internet Explorer. Table II enu-

merates results of the analysis. These results vary depending

on the initial code pointer used, but this single instance

serves to highlight the point that we harvest pages from a

variety of well-connected libraries.

B. On Gadget Coverage

Obviously, the number of recovered code pages is only

meaningful if the pages contain usable gadgets. To evaluate

how well our gadget discovery process works, we examine

the number of gadgets of each type found in a particular set

of harvested code pages. While we are able to find all the

gadgets (spanning 5 to 6 gadget types) required in our proof

of concept exploit, we also demonstrate that regardless of the

initial code page used by a particular exploit, we still find

enough gadgets to build a payload. In fact, we found that we

could generate a payload from 78% of the initial code pages,

and 67% of the initial starting points additionally yielded a

StackPivotG, which is required for many exploits.

Figure 7 depicts the number of each type of gadget

discovered across multiple runs in an offline evaluation. For

brevity, we only show the results from Internet Explorer.

Each of these runs is initialized with one of the 7,398

different code pages in the snapshot. Gadgets were only

considered that (1) had at most 5 instructions in the sequence

(excluding RET), and (2) pop at most 40 bytes off the stack.

The pop-limit is a matter of practicality—for each additional

byte popped, the final payload needs an equivalent amount

of padding that increases payload size. We argue that 40

bytes (or 10 gadget slots) is a reasonable threshold, but this

value can be adjusted to accommodate other exploits.

Figure 7. The number of gadgets (of each type) discovered in an Internet
Explorer 8 process as we explore from 7,398 distinct starting pages. NoOpG
and LoadRegG gadget types are not displayed due to their abundance.

To reinforce the point that gadget discovery is not hin-

dered by fine-grained mitigation techniques, we conducted

an experiment using the in-place binary code randomizer

(called ORP [45])6. ORP was designed as a practical (i.e.,
it does not require access to source code or debug sym-

bols) defense against code reuse attacks. ORP randomizes

instructions within a basic block by reordering or replacing

instructions with various narrow-scope code transformations.

Thus, a gadget set created using the adversary’s instance of

an application will be different than the victim’s instance—

thereby thwarting traditional code reuse attacks. Pappas et al.

[45] show they effectively eliminate about 10%, and proba-

bilistically break about 80%, of useful instruction sequences

via their code transformation technique.

We attempted to use ORP to randomize a number of

applications, but unfortunately were unable to run those ap-

plications afterwards due to runtime exceptions7. However,

we were nevertheless able to use our memory snapshotting

facility to instrument a test. To do so, we created a test

program that simply loads any given set of libraries (via

LoadLibrary). We used a subset of DLLs commonly

loaded by Internet Explorer that ORP was able to success-

fully randomize. There were 52 such DLLs in total. One

snapshot was taken on a run loading randomized DLLs,

while the other used the original unmodified DLLs. We then

ran our offline evaluation on both scenarios (omitting any

unrandomized system DLLs). Ironically, our framework dis-

covers slightly more gadgets in the randomized libraries than

the original unmodified DLLs, as code that ORP adjusts may

inadvertently add new gadgets as old gadgets are eliminated.

Our success did not come as a surprise since we discover

6We used ORP v0.2 at http://nsl.cs.columbia.edu/projects/orp/orp-0.2.zip.
7While the authors of ORP are aware of the issues we encountered, and

are working with us on a solution, they were unfortunately unable to resolve
the problem before the camera ready version.

583

gadgets on-the-fly and can therefore find even transformed

or newly introduced gadgets — unlike the offline gadget

discovery tools against which ORP was originally evaluated.

C. On API Function Discovery

Without API calls to interact with the OS, a JIT-ROP
payload would be nothing more than a toy example. Today, it

is commonly assumed that the most direct way to undermine

non-executable memory is by calling VirtualProtect
in a ROP exploit, then transferring control to a second-stage

payload composed of traditional shellcode. However, to our

surprise, we found that within the Internet Explorer 8 process

memory (including all libraries), there were only 15 distinct

call sites to VirtualProtect. Therefore, searching for

a call-site of this function in face of fine-grained ASLR is

likely to be unreliable in most scenarios.

On the other hand, we found that call sites for

LoadLibrary and GetProcAddress functions were

readily available within the Internet Explorer memory–

391 instances of GetProcAddress and 340 instances of

LoadLibrary. During code page harvesting, we com-

monly find 10 or more instances of each function when

starting from any initial address, and often find both within

100 pages. Note that the code page traversal strategy may be

tuned (e.g., depth vs. breadth-first ordering, direct vs. indi-

rect disclosure ordering, etc.) to possibly find API references

in fewer code pages on a per-exploit basis.

D. On Runtime Performance

Recall that every step of our framework occurs on-

demand, at the time of exploitation. While we have demon-

strated that we obtain enough code pages and gadgets under

most circumstances, we have yet to discuss how long it takes

before a payload may be successfully constructed.

To assess our runtime performance, we performed five

end-to-end tests of the framework. The first scenario uses

the proof of concept exploit against Internet Explorer 8 to

launch an arbitrary sequence of commands on the victim’s

machine; similar to most existing proof of concept exploits,

we chose to open the Windows calculator program. The

second and third scenarios exploit a custom Internet Explorer

10 plugin on Windows 8. As no IE proof of concept exploits

(stage one) have been publicly disclosed on this platform at

the time of this writing, we embed both a straightforward

ReadByte function into our plugin to disclose a byte

of memory, as well as a buggy DebugLog function that

contains a format string vulnerability. The code causing this

vulnerability uses the secure family of printf functions8,

produces no compiler warnings in Visual Studio 2012, and is

used by JIT-ROP to both read arbitrary memory via the %s
modifier (see [49, Section 3.3.2]) and obtain the initial code

pointer by reading up the stack to obtain the return address.

8For an overview of secure printf functions, see http://msdn.microsoft.
com/en-US/library/ce3zzk1k(v=vs.80).aspx

Note that current prevention mechanisms implemented in

Windows only protect against (uncontrolled) memory writes
through a format string attack. The fourth scenario uses a

rudimentary document reader program, called doxreader,

that we created to support testing during development of our

framework. The doxreader program contains embedded

JavaScript support provided by Chrome’s V8 engine. We

also embedded a memory disclosure vulnerability within

doxreader that we exploit to trigger code page harvesting.

The fifth scenario demonstrates the native performance of

JIT-ROP, which is run as a Linux executable (as described

in §V-A).

��

��

���

���

���

���

��	
���
�
������	
���

����
���	�
�������������

����������
��	�!"#��$���

����
���	�
�����%&����

��'���
��	��*��+���

��
$*

��
��,

+�
'�

��
��

�#
��

-./��*�#�����

$�&*����#��$�*���

$�������+���

Figure 8. Overall runtime performance for end-to-end tests.

In our tests, the input to both IE and doxreader is a

single JavaScript file that contains the entire framework and

exploit-specific bootstrap to setup the memory disclosures.

As in our offline tests, the input to the native executable is a

memory snapshot of IE. For each end-to-end experiment we

use JIT-ROP to produce a payload that launches the Win-

dows calculator program, then exits the exploited process

via the ExitProcess API call. The payloads generated

are 100% ROP gadgets (i.e., no injected code or secondary

shellcode payloads) based on the memory content at time of

exploit. Figure 8 depicts the results.
In our first scenario with Internet Explorer 8, code page

harvesting was not very expeditious, averaging only 3.3
pages/second. Regardless, JIT-ROP was able to locate a

pivot within 10 pages, all required APIs in 19 pages, and

the requisite gadgets for a payload within 50 pages—a

total running time of 22.5 seconds. In our second sce-

nario (ie10/win8 (fmt string)), exercising a format

string vulnerability to disclose memory (e.g., swprintf_s
is invoked for every two bytes disclosed) is a costly opera-

tion. In addition to requiring many more computations per

byte disclosed, non-printable byte values cannot be disclosed

at all, resulting in more pages being traversed because of

584

missed gadgets and API call sites. Regardless, we still see an

increase in performance over the IE8 scenario with an overall

runtime of 15.4 seconds and memory traversal averaging

22.4 pages/second, primarily because the JavaScript engine

of IE10 uses JIT and typed arrays9. In comparison, when

using the ReadByte disclosure in place of the format

string vulnerability, we observe that the vast majority of

overhead is caused by the type of memory disclosure itself.

Under the ie10/win8 (readbyte) case, the exploit

completes in only 2.3 seconds while traversing memory at

an average of 84 pages/second. The doxreader exploit,

using the V8 engine without typed arrays, completes in

just under 10 seconds. Finally, notice that our framework

runs incredibly fast when natively compiled—code pages

are traversed, gadgets are collected, APIs are resolved, and

a payload is compiled in a fraction of a second. While the

exact performance of JIT-ROP varies significantly between

JavaScript engine and exploit details, we believe the overall

efficiency of our approach demonstrates the realism of the

threat posed by our Just-in-Time code reuse framework.

VI. RELATED WORK

As discussed earlier, exploit mitigation has a long and sto-

ried history (see [59] for an in-depth analysis). For brevity,

we highlight the work most germane to the discussion at

hand; specifically, we first review the fine-grained memory

and code transformation techniques that have been proposed

to date. In general, these techniques can be categorized into

binary instrumentation-based or compiler-based approaches.

As the name suggests, binary instrumentation-based ap-

proaches operate directly on an application binary. In par-

ticular, Kil et al. [29] introduced an approach called address

space layout permutation (ASLP), that performs function

permutation without requiring access to source code. Their

approach statically rewrites ELF executables to permute all

functions and data objects of an application. Kil et al. [29]

show how the Linux kernel can be instrumented to increase

the entropy in the base address randomization of shared li-

braries, and discuss how re-randomization can be performed

on each run of an application. However, a drawback of

ASLP is that it requires relocation information, which is not

available for all libraries. To address this limitation, several

proposals have emerged [23, 45, 62]. Pappas et al. [45],

for example, present an in-place binary code randomizer

(ORP) that diversifies instructions within a basic block by

reordering or replacing instructions and swapping registers.

In contrast, instruction location randomization (ILR) [23]

randomizes the location of each instruction in the virtual

address space, and the execution is guided by a so-called

fall-through map. However, to realize this support, each

application must be analyzed and re-assembled during a

9For more information on typed arrays, see http://msdn.microsoft.com/
en-us/library/ie/br212485(v=vs.94).aspx

static analysis phase wherein the application is loaded in

a virtual machine-like environment at runtime—resulting in

high performance penalties that render the scheme imprac-

tical. Additionally, neither ORP nor ILR can randomize an

application each time it runs. That limitation, however, is

addressed by Wartell et al. [62], wherein a binary rewriting

tool (called STIR) is used to perform permutation of basic

blocks of a binary at runtime.

Recently, Giuffrida et al. [22] presented a fine-grained

memory randomization scheme that is specifically tailored

to randomize operating system kernels. The presented

solution operates on the LLVM intermediate representa-

tion, and applies a number of randomization techniques.

The authors present an ASLR solution that performs live

re-randomization allowing a program module to be re-

randomized after a specified time period. Unfortunately, re-

randomization induces significant runtime overhead, e.g.,
nearly 50% overhead when applied every second, and over

10% when applied every 5 seconds. A bigger issue, however,

is that the approach of Giuffrida et al. [22] is best suited to

microkernels, while most modern operating systems (Win-

dows, Linux, Mac OSX) still follow a monolithic design.

With regard to compiler-based approaches, several re-

searchers have extended the idea of software diversity

first put forth by Cohen [15]. More recently, Franz [21]

explored the feasibility of a compiler-based approach for

large-scale software diversity in the mobile market. An

obvious downside of these approaches is that compiler-based

solutions typically require access to source code—which is

rarely available in practice. Further, the majority of existing

solutions randomize the code of an application only once,

i.e., once the application is installed it remains unchanged.

Finally, Bhatkar et al. [7] present a randomization solution

that operates on the source code, i.e., they augment a

program to re-randomize itself for each program run.

More distantly related is the concept of JIT-spraying

[8, 47] which forces a JIT-compiler to allocate new exe-

cutable memory pages with embedded code; a process which

is easily detected by techniques such as JITDefender [14].

We also note that because scripting languages do not permit

an adversary to directly program x86 shellcode, the attacker

must carefully construct a script so that it contains useful

ROP gadgets in the form of so-called unintended instruction

sequences (e.g., by using XOR operations [8]). In contrast,

our technique does not suffer from such constraints, as we

do not require the injection of our own ROP gadgets.

VII. POTENTIAL MITIGATIONS

A knee-jerk reaction to mitigate the threat outlined in this

paper is to simply re-randomize code pages at a high rate;

doing so would render our attack ineffective as the disclosed

pages might be re-randomized before the just-in-time pay-

load executes. While this may indeed be one way forward,

we expect that the re-randomization costs [62] would make

585

such a solution impractical. In fact, re-randomization is yet

to be shown as an effective mechanism for user applications.

Another JIT-ROP mitigation strategy could be to fortify

defenses that hinder the first stage (i.e., the entry point) of

a runtime attack. For instance, the plethora of works that

improve heap layouts (e.g., by separating heap metadata

from an application’s heap data) [2, 5, 28], use sparse page

layouts [38, 40] and heap padding [6], use advanced memory

management techniques (e.g., randomized [58] and type-safe

memory re-cycling [2, 18]), heap canaries [46, 64], or a

combination of these countermeasures in a single solution,

which is exactly the approach taken by DieHard [5] and

DieHarder [43]. Our proof of concept exploit (see §IV-E), for

example, would be prevented by randomizing heap alloca-

tion order in such a way that heap Feng Shui is not possible.

On the other hand, there are a number of other heap and

information leakage vulnerabilities10 that can be exploited

to instantiate JIT-ROP and execute arbitrary malicious

computations. Moreover, format string vulnerabilities, as

demonstrated in §V-D, are a prominent class of attack that

bypass these stage one defenses. A more in-depth overview

of modern exploits that enable memory disclosures (in face

of many of these defenses) is provided by Serna [51]. While

stage one defenses certainly reduce the exposure of the

initial vulnerable entry point, the functionality provided by

JIT-ROP is orthogonal in that we bypass defenses against

the execution of malicious computations (stage two).

Another potential mitigation technique is instruction set

randomization (ISR) (e.g., [4, 27]), which mitigates code

injection attacks by encrypting the binary’s code pages with

a random key and decrypting them on-the-fly. Although ISR

is a defense against code injection, it complicates code reuse

attacks when it is combined with fine-grained ASLR. In

particular, it can complicate the gadget discovery process

(see §IV-C), because the entire memory content is encrypted.

On the other hand, ISR has been shown to be vulnerable to

key guessing attacks [57, 63]—that become more powerful

in the face of memory disclosure attacks like ours,—suffers

from high performance penalties [4], or requires hardware

assistance that is not yet present in commodity systems [27].

Besides randomization-based solutions, a number of tech-

niques have been proposed to mitigate the second stage of

a runtime attack, namely the execution of malicious compu-

tations. However, most of these solutions have deficiencies

which impede them from being deployed in practice. For

instance, dynamic binary instrumentation-based tools used

for taint analysis [42] or for the sake of preventing code

reuse attacks [13, 17, 30] can impose slow downs of more

than 2x. On the other hand, compiler-based approaches

against return-oriented programming such as G-Free [44] or

return-less kernels [34] induce low performance overhead,

10For instance, CVE-2012-2418, CVE-2012-1876, CVE-2010-1117,
CVE-2009-2501, CVE-2008-1442 to name a few.

but require access to source code and a re-compilation phase.

A more promising approach to prevent control-flow at-

tacks is the enforcement of control-flow integrity (CFI) [1].

CFI mitigates runtime attacks regardless of whether the

program suffers from vulnerabilities. To do so, CFI generates

the control-flow graph of an application and extends all in-

direct branch instructions with a control-flow check without

requiring the application’s source code. However, CFI still

has practical constraints that must be addressed before it

can gain widespread adoption. For instance, the original

CFI proposal required debug symbols (which are not always

available), and was based on an instrumentation frame-

work (“Vulcan”) that is not publicly available. Moreover,

compiler-based follow-up works such as HyperSafe [61] or

BGI [11] require a recompilation phase and the source code.

But most importantly, prior work on CFI does not protect

applications that deploy just-in-time code generation, which

is the standard case for all modern browsers. Nevertheless,

we hope our work encourages others to explore new ways

to provide practical control and data-flow integrity.

VIII. CONCLUSION

Fine-grained randomization ([7, 23, 29, 45, 62]) has been

recently introduced as a method of tackling the deficiencies

of ASLR (e.g., low entropy and susceptibility to information

leakage attacks). In particular, today’s fine-grained random-

ization defenses claim to efficiently mitigate code reuse

attacks; a strategy used in nearly every modern exploit.

In this paper, we introduce a novel framework that un-

dermines fine-grained randomization techniques by using

a just-in-time code reuse strategy. Specifically, we exploit

the ability to repeatedly abuse a memory disclosure to

map an application’s memory layout on-the-fly, dynamically

discover API functions and gadgets, and JIT-compile a

target program using those gadgets—all within a script

environment at the time an exploit is launched.

In closing, one might question whether it is prudent to

release details of a framework like ours given its ability

to bypass both contemporary and next-generation defenses

in a reliable manner. After much deliberation among the

authors about ethical responsibilities, in the end, we believe

that shedding light on fundamental weaknesses in current

ways of thinking about exploit mitigation outweighs the

potential downside of helping the next generation of hackers.

If history serves any lesson it is that attackers will adapt and

so must we in order to stay one step ahead. It is our hope

that this work will inspire those more clever than ourselves

to design more comprehensive defenses.

IX. ACKNOWLEDGMENTS

The authors would like to thank Stefan Nürnberger, Teryl

Taylor and Andrew White for fruitful discussions about this

work. We also thank the anonymous reviewers for their

586

insightful comments. This work is funded in part by the

National Science Foundation under award number 1127361.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Lig-

atti. Control-flow integrity: Principles, implementa-

tions, and applications. ACM Transactions on Infor-
mation and Systems Security, 13(1), Oct. 2009.

[2] P. Akritidis. Cling: A memory allocator to mitigate

dangling pointers. In USENIX Security Symposium,

2010.

[3] Aleph One. Smashing the stack for fun and profit.

Phrack Magazine, 49(14), 1996.

[4] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Ste-

fanovic, and D. D. Zovi. Randomized instruction set

emulation to disrupt binary code injection attacks. In

ACM Conf. on Computer and Communications Secu-
rity, 2003.

[5] E. D. Berger and B. G. Zorn. DieHard: probabilistic

memory safety for unsafe languages. In ACM Confer-
ence on Prog. Lang. Design and Impl., 2006.

[6] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address

obfuscation: an efficient approach to combat a board

range of memory error exploits. In USENIX Security
Symposium, 2003.

[7] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient

techniques for comprehensive protection from memory

error exploits. In USENIX Security Symposium, 2005.

[8] D. Blazakis. Interpreter exploitation: Pointer inference

and jit spraying. In Black Hat DC, 2010.

[9] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang.

Jump-oriented programming: a new class of code-

reuse attack. In ACM Symp. on Info., Computer and
Communications Security, 2011.

[10] E. Buchanan, R. Roemer, H. Shacham, and S. Savage.

When good instructions go bad: Generalizing return-

oriented programming to RISC. In ACM Conf. on
Computer and Communications Security, 2008.

[11] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akri-

tidis, A. Donnelly, P. Barham, and R. Black. Fast

byte-granularity software fault isolation. In ACM
Symposium on Operating Systems Principles, 2009.

[12] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,

H. Shacham, and M. Winandy. Return-oriented pro-

gramming without returns. In ACM Conf. on Computer
and Communications Security, 2010.

[13] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie.

DROP: Detecting return-oriented programming mali-

cious code. In International Conference on Information
Systems Security, 2009.

[14] P. Chen, Y. Fang, B. Mao, and L. Xie. JITDefender:

A defense against jit spraying attacks. In IFIP Inter-
national Information Security Conference, 2011.

[15] F. B. Cohen. Operating system protection through

program evolution. Computer & Security, 12(6), 1993.

[16] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole,

P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang.

StackGuard: Automatic adaptive detection and preven-

tion of buffer-overflow attacks. In USENIX Security
Symposium, 1998.

[17] L. Davi, A.-R. Sadeghi, and M. Winandy. ROPde-

fender: A detection tool to defend against return-

oriented programming attacks. In ACM Symp. on Info.,
Computer and Communications Security, 2011.

[18] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner.

Memory safety without runtime checks or garbage col-

lection. In ACM SIGPLAN Conference on Language,
Compiler, and Tool for Embedded Systems, 2003.

[19] S. Forrest, A. Somayaji, and D. Ackley. Building

diverse computer systems. In Hot Topics in Operating
Systems, 1997.

[20] A. Francillon and C. Castelluccia. Code injection

attacks on harvard-architecture devices. In ACM Conf.
on Computer and Communications Security, 2008.

[21] M. Franz. E unibus pluram: massive-scale software

diversity as a defense mechanism. In New Security
Paradigms Workshop, 2010.

[22] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. En-

hanced operating system security through efficient and

fine-grained address space randomization. In USENIX
Security Symposium, 2012.

[23] J. D. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and

J. W. Davidson. ILR: Where’d my gadgets go? In

IEEE Symposium on Security and Privacy, 2012.

[24] R. Hund, T. Holz, and F. C. Freiling. Return-oriented

rootkits: bypassing kernel code integrity protection

mechanisms. In USENIX Security Symposium, 2009.

[25] V. Iozzo and C. Miller. Fun and games with Mac OS

X and iPhone payloads. In Black Hat Europe, 2009.

[26] K. Johnson and M. Miller. Exploit mitigation improve-

ments in Windows 8. In Black Hat USA, 2012.

[27] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Coun-

tering code-injection attacks with instruction-set ran-

domization. In ACM Conf. on Computer and Commu-
nications Security, 2003.

[28] M. Kharbutli, X. Jiang, Y. Solihin, G. Venkataramani,

and M. Prvulovic. Comprehensively and efficiently

protecting the heap. In ACM Conf. on Arch. Support
for Prog. Languages and OSes, 2006.

[29] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning.

Address space layout permutation (ASLP): Towards

fine-grained randomization of commodity software. In

Annual Computer Security Applications Conference,

2006.

[30] V. Kiriansky, D. Bruening, and S. P. Amarasinghe.

Secure execution via program shepherding. In USENIX
Security Symposium, 2002.

587

[31] T. Kornau. Return oriented programming for the ARM

architecture. Master’s thesis, Ruhr-University, 2009.

[32] S. Krahmer. x86-64 buffer overflow exploits and the

borrowed code chunks exploitation technique. http://

users.suse.com/∼krahmer/no-nx.pdf, 2005.

[33] H. Larry and F. Bastian. Andriod exploitation primers:

lifting the veil on mobile offensive security (vol.1).

Subreption LLC, Research and Development, 2012.

[34] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram.

Defeating return-oriented rootkits with return-less ker-

nels. In European Conf. on Computer systems, 2010.

[35] F. Lindner. Cisco IOS router exploitation. In Black
Hat USA, 2009.

[36] D. Litchfield. Defeating the stack based buffer over-

flow exploitation prevention mechanism of microsoft

windows 2003 server. In Black Hat Asia, 2003.

[37] L. Liu, J. Han, D. Gao, J. Jing, and D. Zha. Launching

return-oriented programming attacks against random-

ized relocatable executables. In IEEE International
Conference on Trust, Security and Privacy in Com-
puting and Communications, 2011.

[38] V. B. Lvin, G. Novark, E. D. Berger, and B. G. Zorn.

Archipelago: trading address space for reliability and

security. In ACM Conf. on Arch. Support for Prog.
Languages and OSes, 2008.

[39] D. Maynor. Metasploit Toolkit for Penetration Test-
ing, Exploit Development, and Vulnerability Research.

Syngress, 2007.

[40] O. Moerbeek. A new malloc(3) for openbsd. In

EuroBSDCon, 2009.

[41] Nergal. The advanced return-into-lib(c) exploits: PaX

case study. Phrack Magazine, 58(4), 2001.

[42] J. Newsome and D. Song. Dynamic taint analysis for

automatic detection, analysis, and signature generation

of exploits on commodity software. In Symposium on
Network and Distributed System Security, 2005.

[43] G. Novark and E. D. Berger. DieHarder: securing the

heap. In ACM Conf. on Computer and Communications
Security, 2010.

[44] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and

E. Kirda. G-Free: defeating return-oriented program-

ming through gadget-less binaries. In Annual Computer
Security Applications Conference, Dec. 2010.

[45] V. Pappas, M. Polychronakis, and A. D. Keromytis.

Smashing the gadgets: Hindering return-oriented pro-

gramming using in-place code randomization. In IEEE
Symposium on Security and Privacy, 2012.

[46] W. Robertson, C. Kruegel, D. Mutz, and F. Valeur.

Run-time detection of heap-based overflows. In

USENIX Conference on System Administration, 2003.

[47] C. Rohlf and Y. Ivnitskiy. Attacking clientside JIT

compilers. In Black Hat USA, 2011.

[48] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q:

exploit hardening made easy. In USENIX Security
Symposium, 2011.

[49] Scut/team teso. Exploiting format string vulnerability.

http://crypto.stanford.edu/cs155old/cs155-spring08/

papers/formatstring-1.2.pdf, 2001.

[50] F. Serna. CVE-2012-0769, the case of the perfect info

leak, 2012.

[51] F. J. Serna. The info leak era on software exploitation.

In Black Hat USA, 2012.

[52] H. Shacham. The geometry of innocent flesh on the

bone: Return-into-libc without function calls (on the

x86). In ACM Conf. on Computer and Communications
Security, 2007.

[53] H. Shacham, E. jin Goh, N. Modadugu, B. Pfaff,

and D. Boneh. On the effectiveness of address-

space randomization. In ACM Conf. on Computer and
Communications Security, 2004.

[54] Solar Designer. Return-to-libc attack. Bugtraq, 1997.

[55] A. Sotirov. Heap Feng Shui in JavaScript. In Black
Hat Europe, 2007.

[56] A. Sotirov and M. Dowd. Bypassing browser memory

protections in Windows Vista, 2008.

[57] A. N. Sovarel, D. Evans, and N. Paul. Where’s the

FEEB? the effectiveness of instruction set randomiza-

tion. In USENIX Security Symposium, 2005.

[58] C. Valasek. Windows 8 heap internals. In Black Hat
USA, 2012.

[59] V. van der Veen, N. dutt Sharma, L. Cavallaro, and

H. Bos. Memory errors: The past, the present, and the

future. In Symposium on Recent Advances in Attacks
and Defenses, 2012.

[60] VUPEN Security. Advanced exploitation of internet

explorer heap overflow (pwn2own 2012 exploit), 2012.

[61] Z. Wang and X. Jiang. Hypersafe: A lightweight

approach to provide lifetime hypervisor control-flow

integrity. In IEEE Symposium on Security and Privacy,

2010.

[62] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin.

Binary stirring: Self-randomizing instruction addresses

of legacy x86 binary code. In ACM Conf. on Computer
and Communications Security, 2012.

[63] Y. Weiss and E. G. Barrantes. Known/chosen key

attacks against software instruction set randomization.

In Annual Computer Security Applications Conference,

2006.

[64] Q. Zeng, D. Wu, and P. Liu. Cruiser: concurrent heap

buffer overflow monitoring using lock-free data struc-

tures. In ACM Conference on Programming language
design and implementation, 2011.

[65] D. D. Zovi. Practical return-oriented programming.

Invited Talk, RSA Conference, 2010.

588

