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ABSTRACT
In this paper, we present a new access control system for
free-floating car sharing, which achieves a number of appeal-
ing features not available in the state-of-the-art solutions.
First of all, it does not require online connection for cars,
and, therefore, allows car sharing providers to expand their
services to areas without reliable network coverage (e.g., with
blind spots). Second, the solution is compatible to RFID
cards – the most commonly deployed authentication tokens
in car sharing, and can be deployed on standard mobile
platforms with various hardware features. Third, it is fully
compatible with off-the-shelf cars and does not require any
intrusive modifications to car’s internals.

These new properties can be achieved due to a novel system
design which deploys two-factor authentication and combines
an RFID card (the real one or emulated in software) with a
”soft” authentication token stored on a mobile platform. Such
a combination increases security of the solution, preserves
backward compatibility to RFID technology and enables
great flexibility in protection of authentication secrets on
the mobile platform. To demonstrate such a flexibility, we
present a platform security concept which can be instantiated
in various deployment options and provides the means to
achieve best possible security given available hardware.

We implemented our solution on Android and instantiated
the platform security concept in three different deployment
options. We evaluate security of our solution and report
performance measurements.
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1. INTRODUCTION
Within the last decade, the worldwide market for car shar-

ing has grown exponentially [1, 2] and the rapid development
of car sharing solutions is drastically changing the trans-
portation landscape, especially in metropolitan areas [3].
Car sharing membership has grown from 2012 to 2014 by

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY’17, March 22 - 24, 2017, Scottsdale, AZ, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4523-1/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3029806.3029807

170% to 4.8 million, with an increasing tendency for 2016 [4].
Car sharing solutions are well accepted by customers due
to their inherent benefits: They offer users anytime access
to a pool of vehicles for short-term use and enable mobility
without the costs of a private car. Although the concept
of individual ownership of vehicles is not going to vanish
completely, it is increasingly replaced by the car sharing’s
on-demand mobility approach [5].

In general, car sharing is utilized with either a station-
based or a free-floating business concept. While the more
traditional station-based car sharing relies on fixed stations
where a car needs to be returned after the booking period
to the same parking lot where it was taken from, the more
flexible and faster growing free-floating model [6] allows the
user to pick up and leave cars anywhere in a vendor-defined
area. On the downside, however, the free-floating model
requires online connection for cars and is limited to locations
with reliable network coverage.

With the by now omnipresent smartphones that come with
an already built-in variety of communication interfaces like
NFC, Bluetooth, GSM and GPS, car sharing solutions be-
came even more convenient for the end user. By utilizing
mobile services, users can conveniently search their surround-
ings for bookable cars and even use their smartphone app
as a car key to open booked cars (e.g., Car2Go car sharing
solution [7]).

However, current car sharing systems suffer from various
shortcomings. In particular, the more convenient free-floating
car sharing requires online communication with cars during
the car opening process. On the other hand, network coverage
and quality of data services significantly vary in different
locations, and even fully covered urban areas are known
to have blind spots with poor signal reception [8]. Hence,
for the sake of interoperability and reliability car sharing
providers often opt for station-based usage model which is less
attractive to end users. Furthermore, car sharing solutions
utilizing smartphone apps to download and store electronic
car keys impose additional security risks to their customers:
Attackers may try to intercept electronic car keys on transit,
while they are transferred from the car sharing provider to
the users, or when they are stored on users’ smartphones.
Attackers may also attempt to hijack user accounts to be
able to book cars on behalf of legitimate users. Security
incidents of that kind already affected Uber [9], a car ride
sharing service with more than 8 million of users around the
world, – many users reported they were charged for rides
they have never taken [10, 11]. Further, compromised Uber
accounts were proposed for sale on dark web markets [12] for
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as little as $1, which indicates that the attack is rolled out
on a large scale. Similar attacks are very likely to affect car
sharing services, as long as service providers do not address
new security threats.

The state-of-the-art approach to harden mobile platform
security is to leverage isolated (secure) environments, where
apps can execute security sensitive operations (e.g., encryp-
tion, signing, etc.) in sub-routines referred to as trusted
applications, applets or trustlets. Such environments can
be established on top of mobile secure hardware, such as
processor-based security extensions [13, 14] (also referred
as Trusted Execution Environments, TEEs) and dedicated
secure co-processors [15] (also known as Secure Elements,
SEs). However, despite the fact that mobile secure hardware
is widely deployed today [16], their secure environments are
controlled by various stakeholders and normally cannot be
used by third party apps. While generally paid access to
secure hardware is possible, the process to obtain it is cum-
bersome [17]. Hence, one has to consider scalable approaches
to platform security which can utilize such secure hardware
if accessible, while being able to provide secure alternatives
otherwise.

In this paper, we aim to tackle shortcomings of state-of-
the-art car sharing solutions and propose a new car sharing
system which provides a unique combination of properties.
It (i) supports for offline cars and, hence, can be used in
locations with less reliable network connection and even
without it (e.g., in underground garages). Furthermore, it
(ii) accurately addresses new security threats and, at the
same time, (iii) it can be used with various off-the-shelf
mobile platforms with no extra requirements to hardware and
installed software. Additionally, (iv) our solution provides
interoperability to standards commonly used in car sharing
solutions today, and can even be used with off-the-shelf cars
without any intrusive modifications. In particular, we make
the following contributions:

• We analyze functional and security requirements for
offline car sharing systems (Section 2) and design the
first smartphone-based car sharing solution for offline
cars (Section 3). Our solution leverages two-factor
authentication of users and separate delivery of both
authenticators to clients and their isolated handling on
client platforms in order to harden security against new
attack vectors. It provides great flexibility in integra-
tion with mobile platforms and backward compatibility
to RFID cards – the most commonly deployed authen-
tication tokens in car sharing. Furthermore, it enables
range of alternatives for protection of user authentica-
tors on client side, which allows a car sharing provider
to select the best option depending on capabilities of
user’s hardware and achieve the best security possible
per user. We provide security analysis of our solution
(Section 4).

• We implemented a proof-of-concept prototype for An-
droid smartphones and demonstrated its flexibility by
showing several alternatives for protection of user au-
thenticators ranging from the Secure Element (SE)
provider hosted on a Mifare DesFire EV1 contactless
card to Mifare DesFire EV1 card emulated on top of
mobile secure hardware or entirely in software when
hosted by user’s (trusted) smartwatch (Section 5). For
system evaluation we augmented private cars with the

prototyped car lock using a car key proxy approach
which does not require any intrusive modifications to
cars. Our evaluation includes performance measure-
ments of user authentication for various instantiations
of SE provider.

To summarize, our solution is the first to provide such a set
of properties which improves state of the art for free floating
car sharing systems with respect to security and supported
functionality.

2. SYSTEM MODEL AND REQUIREMENTS
In this section we provide a high-level overview of our

solution, define our system model and adversarial capabilities
and analyze security and functional requirements.

2.1 High-level Overview
The core design feature of our solution is a two-factor

authentication in order to get access to the cars where the au-
thentication factors are downloaded and handled separately.
In a nutshell, the user needs to present two authenticators
to the car lock in order to successfully pass authentication.
The first authentication factor is created during the user
registration process, while the second one is downloaded
during car booking. Since both authenticators are obtained
in separate sessions, it is more challenging for the adversary
to compromise both of them. Further, our solution also
handles both authenticators on client side in isolation from
each other, which even further increases the burden for the
attacker, and, at the same time, enables flexibility for the
defender in arranging their protection.

While two-factor authentication is widely used today, e.g.,
in online banking and for login verification by Internet ser-
vice providers, to the best of our knowledge it is not used
in car sharing applications. Moreover, our scheme is distin-
guishable from other two-factor authentication schemes, as it
combines contactless Radio-frequency Identification (RFID)
cards, which are a de-facto standard for access control and
widely used in car sharing applications, with ”soft” cryp-
tographic tokens – the approach which enables a flexible
integration with mobile platforms. Moreover, our solution
extends the state-of-the-art in the field of access control solu-
tions for car sharing systems by providing appealing features
which are not available in alternative solutions, such as off-
line user authentication, compatibility with legacy cars and
various deployment options.

2.2 System Model
Our system model is depicted in Figure 1 and involves the

following entities: the Car Sharing Provider (CSP) C , a car
to be shared equipped with the Lock L, and a User U. For
simplicity reasons and without loss of generality, we consider
a single user and a single car in our system model, which
can be easily scaled to a pool of cars and many users.

Each U possesses a client platform consisting of two execu-
tion environments, the mobile host H and a Secure Element
Provider (SEP) S , which are isolated from each other. Typi-
cally a SEP cannot communicate with other entities directly,
but such a communication is mediated by the host H which
is used as a proxy. However, depending on the deployment
option, SEP may or may not have a dedicated user interface.

C is a car sharing provider which defines access rules to
cars, i.e., specifies which U is allowed to access which L.
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Figure 1 – System Model

L is either a regular car key lock interfaced with car in-
ternals or instantiated using a car key proxy approach as
we describe in details in Section 5.1. L requires access to
location and timing information, which is provided either by
car’s GPS sensor and timer in former case or is available on
the car lock itself when latter approach is used.

Authentication factors. The two authentication factors
are the user specific key K U created during user registration
and the car access token T U which is downloaded during the
car booking process. On the client side the token T U resides
within the host environment H , while the user-specific key
K U is hosted by S .

2.3 Adversary Model and Assumptions
We define three distinct adversary classes which will be

used in Section 4 to elucidate the security of our solution in
various deployment options.

Class 1 Adversary. Our first class adversary has full
control over the communication between the H , C , S and
L. This means that it can eavesdrop, modify, insert, delete,
relay and re-route the protocol messages. However, it cannot
compromise the communication channel between U and H ,
H and S , and any of the communication end-points.

Class 2 Adversary. Our second class adversary has all
the possibilities of the first class adversary and, addition-
ally, it can compromise user’s host H and gain access to all
information stored on it, e.g., credentials, at any time but
during user registration process. Further, the communication
channel between H and S can also be compromised.

Class 3 Adversary. Our third class adversary is similar
to the second class, with the only difference that it can
compromise H at any time including user registration.

We exclude relay attacks [18] on the communication be-
tween a mobile device of the user and the car lock which are
not specific to our car sharing system, but due to the local
communication interfaces we rely upon (Near Field Commu-
nication (NFC) and Bluetooth Low Energy (BLE)). These
attacks can be mitigated by distance bounding techniques [19,
20], which can be easily incorporated into our scheme once
they are available on off-the-shelf mobile platforms. More-
over, contactless RFID cards, the most commonly deployed
authentication tokens in car sharing, are also susceptible to
such relay attacks [21]. We also do not consider denial of
service (DoS) attacks, which prevent users from accessing the
service. An attacker with full control over communication
channels can always disrupt communication and prevent to-
ken download, while compromised host can always prevent a
car sharing app from launching or delete stored information

including downloaded tokens. These attacks are not specific
to our car sharing system, as they can be launched against
any mobile application. Furthermore they do not provide
any monetary benefits to adversaries and, hence, unlikely to
be applied.

2.4 Security Requirements
Our main security objective is to prevent unauthorized

access of users to the car sharing service. In particular, only a
user U which possesses both a user key K U and the car access
token T U should be granted access to the respective lock L.
To achieve this objective, a number of security requirements
should be fulfilled which we detail in the following.

SR1: Well-established Crypto. Our first security
requirement is to rely on open and well-established crypto
primitives and algorithms for user authentication, since closed
and proprietary systems that are not available for evaluation
to a broad security community are more likely to suffer from
vulnerabilities. For instance, the common practice to use
proprietary protocols in immobilizer systems has lead to
their successful exploitations [22, 23, 24, 25], which strongly
speaks against the “security by obscurity” approach.

SR2: Confidential Credentials. Our second security
requirement is to ensure the confidentiality of authentication
credentials (such as cryptographic keys and passwords), and
even from users themselves. Otherwise the adversary can
use phishing attacks to trick users to reveal their passwords,
and later on use them for impersonation. Attacks of that
kind are accountable for large scale hijacking and abuse of
user accounts of the car ride sharing service Uber [10, 11].

SR3: Isolation. Third, we require isolation between
trusted and untrusted components on the mobile platform
and that only trusted components can access credentials in
clear text. Otherwise, an attacker may deploy mobile mal-
ware which can infiltrate credentials from the mobile platform.
For instance, mobile banking Trojans like ZeuS/ZitMo [26]
use this approach to intercept verification codes sent by banks
to the users’ mobile phones.

SR4: Strong Credentials. Fourth, we require au-
thentication credentials to be randomly chosen, uniformly
distributed and have sufficient length. If not fulfilled, the
attacker may have significant chances to succeed in dictio-
nary attacks against user passwords and/or even brute-force
cryptographic keys. For instance, in 1998 a 321-bit RSA key
used by debit/credit cards of the French bank was factored
by an individual [27].

SR5: SEP invocation authorization. Fifth, we re-
quire user authorization for every invocation of code executed
within SEP S . If security sensitive code executed within SEP
is not authorized by the user, it could be triggered by mal-
ware rather than by the legitimate car sharing app which
can then trigger user authentication on behalf of the user
and succeed in user impersonation without actually learning
authentication credentials. Such attacks were shown in the
past [28] on payment applications such as Google Wallet.

2.5 Functional Requirements
Apart from the security requirements discussed above, we

define the following functional requirements.
FR1: Offline Authentication. State-of-the-art car

sharing solutions rely on connected cars, which limits their
operational area to locations with reliable network connection.
To overcome this limitation, we require an offline authen-



tication of users during car (un)locking which enables car
sharing services to expand to areas with less reliable or even
without any network connection.

FR2: Compatibility. Compatibility significantly in-
creases chances for a successful deployment, as it enables re-
cycling of existing hardware, infrastructure and technologies
and, hence, results in reduced time and costs of development
and deployment. Our compatibility requirements include:
(i) interoperability with contactless RFID cards – the most
common authentication token in car sharing solutions, and
(ii) the ability to utilize various off-the-shelf mobile platforms
with no extra requirements to hardware or system software.

FR3: Flexible Deployment. Our last functional re-
quirement concerns various deployment options, which should
achieve the best possible level of security for available user’s
hardware and preferable usability properties. When available,
the car sharing provider may provide different deployment
options to different customers, depending on the underlying
hardware of their mobile platforms.

Overall, to the best of our knowledge, no other car sharing
solution can fulfill similar requirements.

3. SYSTEM DESIGN
In this section we elaborate on system design by providing

protocol specification and describing our design choices and
deployment alternatives for the platform security concept.

3.1 Protocol Specification
The parties which we specified in our system model (cf. Sec-

tion 2.2) interact in the following use cases (cf. Figure 1):
(i) system initialization, (ii) user registration, (iii) car book-
ing, (iv) user authentication, and (v) user checkout. Below
we provide protocol specifications for each use case.

3.1.1 System Initialization
During initialization the car sharing provider initializes the

car locks with cryptographic material and registers all the
cars in its database. In particular, C initializes each car lock
L with a unique car identifier IDL and two cryptographic keys
K L

Auth and K L
Enc over a confidential and authenticated out-

of-band channel. For instance, this step can be performed by
programming the car lock via local programming interfaces
before the lock is installed into the car. The triple {IDL ,
K L

Auth ,K L
Enc} is also stored by C in its local database.

Furthermore, C initializes each S by creating a smartcard
application AID with two empty data files FIDU and FIDL,
which will be later on used to store the user’s identifier and
car’s location, respectively. Access to the application is pro-
tected by an application master key KM while administrative
access to the smartcard which protects against unauthorized
operations, e.g., formatting the card and creating/deleting
applications, is protected by a smartcard master key. The
smartcard master key is kept secret by C and never shared
with third parties.

3.1.2 Registration
Before using the car sharing service, U needs to create a

user account and associate it with his or her client platform.
This is done during user registration which is intended to
establish the user-specific key K U shared between C and S
on the client side.

The user registration procedure consists of two phases.
In the first phase, out-of-band communication is used to

exchange data between U and C . In particular, U submits
his or her personal data (such as user name, e-mail ad-
dress, post address, etc.), identifies payment method and
submits the scanned copy of the driving license to the car
sharing provider. In return, he or she receives either the
pre-programmed smartcard initialized with the user-specific
key K U , or one time password OTPU which will be later on
used to provision K U into SEP remotely. We do not specify
any particular way to establish such an out-of-band channel
since similar registration procedures are commonly utilized
by mobile applications and well-established techniques exist.
For instance, user-specific information can be submitted from
U’s PC to C over a web form, a pre-initialized smartcard can
be picked up in the office of a car sharing provider or sent
per post1, while the one-time password can be delivered via
one time accessible link sent by email.

The second phase of registration (cf. Figure 2) is only nec-
essary if the customer has received the one time password
OTPU in the first phase. It is initiated by U who sends his
credentials creds consisting of the user name IDU and OTPU ,
to the mobile host H (step 1), which, in turn, stores IDU for
future use and forwards creds over the established Transport
Layer Security (TLS) channel to the car sharing provider
C (steps 2-3). Upon receive, C verifies creds and, if correct,
it generates the user-specific key K U and reconfigures U’s
SEP to use K U as an application master key for the AID ap-
plication. In particular, C first sends a select_app(AID)
command (step 4) and then authenticates with the applica-
tion master key KM (step 5). Afterwards, it selects the file
with FIDU (step 6) and writes the identifier IDU into it (step
7). Finally, it sends a command to change the application
master key to K U (step 8).

Note that the communication between C and S is always
mediated by H , which is omitted in Figure 2 and in other
protocol figures for brevity. Further, depending on the de-
ployment options which we discuss in Section 3.2, steps 1-3
of the protocol may involve SEP S instead the host H 2.
Moreover, a successful authentication of an entity to SEP
implies that all the subsequent communication is protected
with a freshly generated session key, which is not explicitly
shown to simplify protocol figures. For instance, in Figure 2
steps 6-8 are performed in a channel secured by the session
key derived from the authentication in step 5. Finally, all
communication between H and C is performed via the TLS
channel established at the beginning of the protocol run.

3.1.3 Car Booking
After registration users are allowed to book cars for a

self-defined period of time. Booking is done by using the
car booking protocol depicted in Figure 3, within which U
retrieves the car access token T U and stores it on H .

The protocol is initiated by U, who indicates to H that he
or she would like to perform car booking (step 1). In turn, H
establishes a TLS session to C and sends user identifier IDU

(steps 2-3) to C . Next, C authenticates the client by ensuring
his or her SEP S has the knowledge of K U : First, it selects
the car sharing application AID (step 4), then authenticates
with the key K U (step 5), then selects the file FIDU (step 6)
and makes sure it can read the user identifier ID ′

U from it

1This is a state-of-the art approach to deliver access cards
used in car sharing today
2In particular, in a deployment option where SEP S features
its own user interface
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(step 7). After a successful validation that the received IDU

from step 3 and the obtained ID ′
U from step 7 are equal, U is

notified of the successful user authentication (step 8-9). Once
authenticated, U can book the car as follows: He selects the
car with the identifier IDL in the mobile app and specifies the
desired access policy PU

3, which are then forwarded by H to
C (steps 10-11). After C has verified that the desired access
policy can be fulfilled for the respective car, it generates a
message m which includes the user identifier IDU , the user-
specific key K U , the car identifier IDL , and the access policy
PU . The message m is then encrypted with the encryption

3Typically access policy includes validity period of booking,
but generally may include more sophisticated statements,
e.g., maximum distance, location area, etc.

key K L
Enc and its signature σm is calculated using the key

K L
Auth and Message Authentication Code (MAC) algorithm.

The resulting access token T U consisting of the cipher cm
and the signature σm is sent to H (step 12), which stores it
along with the car identifier IDL and the policy PU .

3.1.4 User Authentication
User authentication is required in order to unlock the car

and lock it again after usage. With the user authentication
protocol U can proof to L that he or she is in the possession
of both authenticators, T U and K U . Furthermore, L writes
the car’s location on U’s SEP S and the timestamp so that
they can be reported to C later on.

The protocol for user authentication is depicted in Figure 4.



User U SEP S Host H Lock L

2. TU = (cm, σm)

ID ′
L

?
= IDL

K L
Auth ,K

L
Enc , IDL

4. Authentication using KU

6. ID ′
U ← read file()

AID , FIDU , KU

9. user auth successful

(IDL ,PU ,TU)

Abort if above checks fail

10. OK

m = (IDU ,KU , ID
′
L ,PU)

1b. IDL1a. Select car with identifier IDL

Select TU for IDL

σm
?
= MAC(K L

Auth , cm)

m← Dec(K L
Enc , cm)

Abort if above check fails

3. select app(AID)

5. select file(FIDU)
Abort if authenticaiton fails

ID ′
U

?
= IDU

Abort if above check fails

Open/close car

Check if PU is fulfilled

7. select file(FIDL)

8. write file(ldU , IDL , t)

Retrieve location data ldU

User authentication

Retrieve current time t

Figure 4 – User Authentication Protocol

Depending on the underlying communication technology used
for the communication between L and H , it may have an
active or a passive character. In particular, if BLE is used,
the protocol is initiated by U who presses the respective
button in the application, while the host infers identifier IDL

of the car to be booked based on U’s input (step 1a). In case
of NFC, however, the authentication is initiated by L which
sends its identifier IDL to the host as soon as the user taps
car’s NFC reader with the smartphone (step 1b).

Starting from step 2, protocols for NFC and BLE versions
are identical: H fetches the corresponding access token T U =
(cm, σm) from its memory and sends it to L (step 2). Upon
receive, the token is verified by L as follows: First, a MAC
is calculated over cm using the key K L

Auth and the result is
compared with σm from the token. If verification succeeds,
the cipher cm is decrypted using K L

Enc key. Furthermore, the
lock checks if its identifier IDL matches with the identifier
ID ′

L contained within the token and if the policy conditions
PU are satisfied. If all the checks pass, the lock initiates
authentication with U’s SEP S to ensure the possession of
K U . In particular, L sends select_app request to S in
order to select the car sharing application AID (step 3),
then runs authentication protocol with the key K U (step 4),
selects file FIDU and reads user identifier ID ′

U from it (steps
5-6). ID ′

U read from the file is then compared with IDU from
the token, and if identical, the authentication is successful.
Thereby L retrieves location information ldL from L’s GPS
and writes it along with IDL and the current time t into
the file FIDL of S (steps 7-8). Finally, the car opens (resp.
closes) and the authentication status is sent to H (step 9)
and a feedback is provided to U (step 10).

3.1.5 Checkout
With the checkout protocol depicted in Figure 5 U finalizes

sharing the car. Thereby, C retrieves the last location of the
car from the user’s platform, then updates the car list with
the new location information and makes the respective car
available again to other customers.

U initiates the checkout procedure by triggering H to send
the user identifier IDU and car identifier IDL to C over the
established TLS session (steps 1-3). In turn, C authenticates
the user (step 4) by executing steps similar to steps 3-6 of the
user authentication protocol. If successful, C selects the file
FIDL on SEP (step 5) and retrieves location data ldL of the
car, its identifier ID ′

L and the timestamp t via read_file
operation (step 6). After ensuring that the car identifier
retrieved from the file matches the one received from H at
step 3, C stores location ldL and time t for the respective
car and deletes the token T U . H is then notified about the
successful checkout (step 7), deletes also T U and provides
feedback to U (step 8).

Note that if the user has no online connection at the
moment he stopped using the service, he can lock the car
in offline mode by executing user authentiation protocol
and run the checkout protocol later on whenever the online
connection becomes available.

3.2 Design Choices and Deployment Options
Our platform security concept relies on two isolated envi-

ronments on the client side, host H and SEP S , which handle
two authentication factors of the user in separation.

Design Choices To achieve greater interoperability across
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various mobile platforms, we opted to instantiate SEP S us-
ing the Java card environment, which is a well-standardized
execution environment and therefore is widely supported on
mobile platforms. This choice enables various deployment
options ranging from embedded and removable secure ele-
ments (such as UICC-based and ASSD cards [15, 29]) to Java
cards emulated in software. Furthermore, software-emulated
Java cards can be deployed either on a mobile platform or
even provided by external parties, e.g., by user-controlled
wearable devices or cloud-based SE providers [30]. Moreover,
Java cards can emulate cryptographic RFID cards (such as
Mifare and Legic cards) by executing corresponding applets,
which allows us to achieve compatibility to contactless RFID
cards – the most commonly used authentication token in car
sharing solutions, and to enable an additional deployment
option based on a contactless smartcard.

Deployment Options Taken into account our security and
functional requirements (cf. Section 2), we opt for the follow-
ing three deployment options: (i) based on a Secure Element,
(ii) a contactless smartcard, and (iii) emulated on user’s
smartwatch. All these options provide strong isolation be-
tween SEP S and host H and do not require online connection
for their communication (and, hence, can achieve offline user
authentication). These options can be supported by the car
sharing provider simultaneously and be selected on per-user
basis depending on capabilities of customer’s hardware.

4. SECURITY ANALYSIS
In this section we provide informal security analysis of our

solution by showing how the security requirements specified
in Section 2.4 are fulfilled. The summary of our analysis
is provided in Table 1 which indicates tolerance of various
deployment options (cf. Section 3.2) to different adversary
classes (cf. Section 2.3).

Well-established crypto. Our protocols rely only on well-
established crypto primitives and algorithms. In particular,
we use TLS in order to authenticate C to H and to protect
their subsequent communication. TLS is widely used to
secure client-server applications in the web and its security
properties are widely studied and well understood. Further,
communication with SEP S relies on standards ISO/IEC

Table 1 – Summary of the Security Analysis

Adversary Classes Class 1 Class 2 Class 3

Secure Element + - -

Contactless SmartCard + + -

Smartwatch + + +

7816-4/7816-8 developed for contactless identification cards.
Moreover, software tokens generated by C are encrypted using
Advanced Encryption Standard (AES), and authenticated
using SHA-256 algorithm (cf. Section 5.2). These algorithms
and standards represent the state of the art, and even if
recognized as vulnerable in the future, they can easily be
replaced with more secure versions.

Confidential credentials. Our system relies on the fol-
lowing credentials : (i) master key KM and (ii) one-time
password (OTP) used during user registration, (iii) user key
K U utilized to authenticate the user to CSP C during car
booking, and to SEP S during checkout and authentication
protocols4, (iv) credentials K L

Enc and K L
Auth leveraged to en-

crypt and authenticate the token T U during car booking and
to decrypt and verify it during user authentication protocol.

Confidentiality of the master key KM is ensured by keeping
it secret from untrusted parties – it is only available to the
SEP S and CSP C . Similarly, confidentiality of keys K L

Enc and
K L

Auth are ensured by making them available only to C and
L, which are trusted. The user key K U is available to CSP C
and to SEP S on client side – the end points which cannot be
compromised in any of the adversary models. Further, K U is
always protected on transit, i.e., when transferred from C to
SEP S during user registration, it is protected by the session
key established after successful authentication of C with the
master key KM . Further, it is delivered from C to L in
the encrypted and authenticated token. Whenever used for
user authentication (in booking, checkout and authentication

4While our adversary model assumes that the car lock is
trusted, one could consider approach to increase resilience to
car lock compromise by using two distinct keys, e.g., K 1

U and
K 2

U , for authentication to CSP C and SEP S , respectively.



protocols), it is utilized in a challenge-response manner and,
unlike passwords, never leaves the platform.

The way to ensure confidentiality of OTPU differs in differ-
ent deployment options. For the deployment options 1 and 2,
where SEP S is hosted either by the secure element or by the
external contactless smartcard, the OTPU is given to the host
via the user interface (UI) provided by the operating system.
Hence, this approach is secure against adversaries of classes 1
and 2, where the adversary is not allowed to compromise the
host during user registration. For the third deployment op-
tion, where SEP SE is instantiated using user’s smartwatch,
OTPU is provided to the (trusted) SEP S directly through
the user interface available on the smartwatch instead of
giving it to the host H , which makes this deployment option
secure against adversaries of classes 1-3.

To resist password-related attacks, such as social engineer-
ing and phishing, our solution relies on authentication keys
unknown to users, with the only exception of OTP which is
used during registration process. To protect the OTP from
uncareful users, we represent it in the form of the QR-code
so that it is never shown to users in clear text.

Isolation. The approach to establish isolation between
SEP S and the host H varies depending on the deployment
approach. Specifically, our deployment option 1 (based on
the secure element) provides hardware-based isolation, while
deployment options 2 and 3 (a smart card and a smartwatch)
provide isolation via physical separation. All these options
are secure against attacks of all adversary classes.

Strong credentials. Our solution relies on strong crypto-
graphic secrets which are randomly chosen, uniformly dis-
tributed and have sufficient length. In particular, we use
AES-128 for symmetric and RSA-2048 for asymmetric oper-
ations (cf. Section 5 for more details). For OTP used in the
user registration, we use a randomly generated 128 bit string.
The string is encoded in a QR code which is to be scanned
with the smartphone’s (smartwatch’s) camera during user
registration.

Authorized SEP invocation. Generally, SEP invocation
authorization requires secure user interface (UI) to indicate
user’s intention to invoke protected credentials. Because
secure elements do not feature their own UI, in our first
deployment option (using secure element) SEP invocation is
authorized using UI provided by the operating system. Hence,
this deployment option can only tolerate class 1 adversary,
which assumes that the attacker cannot compromise the
mobile host H at any time. In the second deployment option
using a contactless card, the user needs to put a smartcard
in proximity to the smartphone’s NFC reader in order to
enable communication between the host H and the SEP
S . Hence, we use physical proximity of the card to the
reader as indication that invocation is user-authorized. This
approach is secure against adversary classes 1-3, as none of
the adversaries can enforce proximity of the card to the NFC
reader on behalf of the user.

In the third deployment option using a smartwatch, SEP
invocation is confirmed using its own UI. Because such an
authorization is provided directly to SEP, it is protected
against adversaries of all classes.

To summarize, the first deployment option using secure
element is secure against class 1 adversary, the second one
based on contactless smartcard can tolerate 2nd adversarial

class, while the third one utilizing a smartwatch can resist
all three adversary classes.

5. PROTOTYPING AND EVALUATION
In this section, we briefly describe our car sharing proto-

type including hardware and software components and report
performance evaluation results.

5.1 Prototype Hardware
For prototyping the mobile host we used Android smart-

phones Samsung S4 (GT-I9505) and Google Nexus 5 (LG
D821) running Android 5.0 and 5.1 (Lollipop), respectively.
For the first SE provider deployment option we equipped
the S4 with an Giesecke & Devrient Mobile Security Card
(MSC) [31] which acts as Secure Element and runs a DESFire
applet. For the second deployment option using a contactless
smartcard we utilized a Mifare DESFire EV1 smartcard. The
third deployment alternative was instantiated using a Sam-
sung Galaxy Gear SM-V700 smartwatch running Android
4.2 as an external SE provider.

The CSP C was hosted by a 64 bit Ubuntu Trusty Tahr
(14.04.3 LTS) server running on a quadcore processor (Intel
Xeon @ 3.5 GHz) with 16 GB of RAM.

To build a car lock prototype, we opted for a car key proxy
approach which enabled compatibility with off-the-shelf cars.
In particular, our car lock L is realized as telematics box
with the car key fob inside5, which offers a communication
interface with the host H . L is locked inside the car and
communicates wirelessly with the smartphone. Once the
authentication is successful, L activates the servo motor to
push the buttons on the key fob, which results in car opening.

We built the telematics box using Lego Midstorms NXT
2.0, which holds inside the following hardware components:
(i) an Arduino Mega Board [33] with either an BLE or NFC
shield [34, 35] attached, (ii) a TowerPro MG995 servo [36],
(iii) power supply in form of a 9-volt battery for the board
and a 6 V-battery (4 AA batteries) for the servo and (iv) the
respective car’s key. We made the corresponding wiring dia-
gram, step-by-step building instructions for the Lego frame
and the photo of the resulting prototype available in [37].

We used two private cars, BMW 118i and BMW X4
xDrive30d, to perform evaluation of our prototype. Both
cars feature Go button which can be used to start ignition
without using the actual key. This feature requires the car
key fob to be inside the vehicle – the requirement which
is fulfilled in our case, as the car key is locked inside the
telematics box placed inside the car.

5.2 Prototype Software
As summarized in Table 2, our prototype software consists

of four modules and includes 21296 LOC in total excluding
comments, blank lines and code from the external libraries.

Primitives and Parameter Sizes. The MAC scheme (for
token authentication) is implemented based on SHA-256
with a digest size of 256 bits. For the symmetric encryption
scheme AES in Cipher Block Chaining (CBC) mode with
random padding is used with a key length of 128 Bit. Also the
one-time password used in the user registration is a 128 bit

5Note that many deployed car sharing solutions already lock
car keys inside the vehicle (typically in a safe [32] which can
be unlocked with the smartcard). All the associated risks
are covered by insurances.



Table 2 – Software Modules.

Module Language Dependencies LOC

App Android JCAndroid [38],
GMaps [39], ZXing [40]

5966

CSP Java,
PHP,
CSS

BCC API [41], MySQL
Connector [42], ZXing [40],
MyEdit [43], JSCal [44]

7501

Lock C/C++ AVR Crypto Lib [45],
Servo Lib [46], NFC
Lib [47], BLE Lib [48]

4212

DESFire
Applet

Java DESFire Applet Base [49] 3617

Total LOC 21296

BCC: Bouncy Castle Crypto, GMaps: Google Maps

string. To realize communication with the SEP we followed
DesFire EV1 standard [50] using AES encryption and CMAC
for message authentication.

Host H . Depending on the deployment of SEP, the smart-
phone should run at least Android 4.3 (alias Jelly Bean)
with API level 18 to support the BLE service [51] for the
”external emulation” deployment option or at least Android
4.4 (alias KitKat) with API level 19 to support the Host
APDU Service [52] necessary for the ”contactless smartcard”
deployment variant.

The car sharing app is implemented as an Android applica-
tionwhereas the core functionality that drives the respective
protocols is implemented as a Software Development Kit
(SDK). For the car search we used the Google Maps API [39]
as an external map provider to display both the user’s and
respective cars’ positions on a map screen.

Furthermore, to decode the OTP from the QR code during
user registration we used the third party library ZXing [40].

Secure Element Provider S . In order to achieve a general
compatibility with the commonly deployed DESFire EV1
standard throughout our deployment options, we enhanced
a third party implementation of DESFire applet [49] to
support crypto primitives like AES and CMAC. The DESFire
EV1 applet is then either hosted by the G&D MSC which
is inserted into the smartphone for the first deployment
option or hosted by the Android-based Java card emulator
JCAndroid [38] running on the smartwatch for the third
deployment option. Communication with the MSC is done
via SEEK for Android’s MSC SmartcardService [53] which
includes an MSC interface to access the G&D card over
special reads and writes to the file system – the approach
which requires neither root privileges nor changes to system
software.

Since communication with S is compliant with the DESFire
EV1 standard, we could easily adapt our system to support
the second deployment option which uses a real DESFire
EV1 card as SE provider.

In all deployment approaches we wrapped DESFire’s na-
tive commands [50] in ISO/IEC 7816 Application Protocol
Data Unit (APDU) commands and transmitted them to the
DESFire application where they are then further processed.

Car Sharing Provider C . The CSP server is implemented
in Java and uses the Bouncy Castle Crypto API (v1.46) [41]
for cryptographic operations, e.g., encryption, decryption

or signing, as well as to establish the TLS communication
with H . Moreover, we used a Java-based MySQL Connector
(v5.1.18) [42] to connect to the MySQL database (v5.5.46)
running on the same platform and again the ZXing [40] library
to encode the OTP to a QR code during user registration.

C further provides an administrative interface for the car
sharing provider for displaying and managing the pool of
cars and their status which uses the MyEdit [43] and JS-
Cal [44] libraries to conveniently edit MySQL tables and
utilize calender functionality.

Lock L. Car lock software is implemented as an Arduino
C/C++ application which depends on the AVR Crypto Li-
brary [45] and the libraries [47, 48] for NFC and BLE shield,
respectively. Additionally, the servo shield library [46] is used
to control the servo. For the local communication between
the car lock and client’s host both, BLE and NFC are sup-
ported. While BLE is more convenient for the user since he
or she can open the car over a distance, NFC is provided for
backwards compatibility to solely smartcard-based systems.

5.3 Performance Evaluation
We measured the time required to complete user authen-

tication towards the car in each deployment variant. Mea-
surements were taken 100 times and average values as well
as standard deviation are reported.

The overall measurement path is divided into five intervals,
where (i) Host2SE interval covers communication between
the car sharing app running on the Host H and the SEP S ,
(ii) Host2Lock interval corresponds to the communication
between H and the Lock L, and (iii) Lock2Car interval
includes the time needed by the servo motor to press the
respective key button on the car key fob and, additionally the
actual wireless communication between car key and respective
car. We depict these intervals in Figure 6.

There are two more intervals which are omitted in the figure
for brevity: (iv) the accumulated time of computations taken
on each platform and (v) the accumulated discovery time
necessary to establish a (BLE or NFC) connection between H
and L, and H and S , respectively. Thereby, computations are
already included into measurements (i) (resp. (ii)) and thus
are not additionally added up into the overall authentication
time. The results are summarized in Table 3.

Intervals (iii) and (v) unfortunately cannot be influenced
by our implementation. While (v) is induced by BLE/NFC
discovery performed during connection establishment be-
tween smartphone and Lock L, (iii) results from the Lock2Car
communication, which is due to our key proxy approach and
includes the whole time of the key-to-car authentication. In
total, intervals (iii) and (v) sum up into a fixed time ranging
from 1.01 to 1.57 s, depending on the deployment option.

The time intervals which can be influenced by our im-
plementation are (i), (ii) and (iv), which contribute 1.87

Applet

Java Card 
Emulator

Applet
Host2SE Host2Lock Lock2Car

 Host H  Lock L CarSEP SS H L

(i) (ii) (iii)

Figure 6 – Measurement Intervals.



to 3.82 s into a measurement path. This time can be im-
proved through further optimizations and by other factors,
e.g., through using newer hardware which could improve
computation time.

To summarize, the overall authentication time ranges from
2.88 over 4.22 to 5.39 s depending on the deployment op-
tion.The longer intervals introduced by the ASSD and Smart-
watch deployment option are induced almost entirely by the
Host2SE communication and are caused by the limited capa-
bilities of the respective hardware the SE is hosted on and/or
the overhead introduced by the SEEK service. Besides hard-
and software optimizations, the time required for user au-
thentication can be further improved through integration of
the car lock into the car and thus removing the interval (iii)
from the measurement path.

Table 3 – User Authentication Performance
Values are given in seconds and show both average as well as standard
deviation. Fixed time cannot be influenced by our implementation,
while improvable time can be further optimized.

ASSD Card Smartcard Smartwatch

(i) Host2SE 2,15 (±0,10) 0,13 (±0,01) 1,51 (±1,55)
(ii) Host2Lock 1,67 (±0,24) 1,74 (±0,08) 1,69 (±0,37)
(iii)Lock2Car 1,00 1,00 1,00
(iv) Computations 0,26 (±0,23) 0,13 (±0,04) 0,19 (±0,35)
(v) Discovery 0,57 (±0,01) 0,01 (±0,01) 0,02 (±0,02)

Fixed 1,57 1,01 1,02
Improvable 3,82 1,87 3,20
Total 5,39 2,88 4,22

6. RELATED WORK
The main body of the related work in the domain of car

sharing is concentrated on such topics as process optimiza-
tion, car relocation strategies and innovative competitive
solutions, but typically does not cover security aspects of
car sharing access control systems. For instance, Zhu et al.
[54] propose a novel optimization approach to determine the
depot location in station-based car sharing systems. Further-
more, in the context of the free-floating model, Formentin et
al. [55] address the problem of future bookings by predicting
the distance of the nearest available vehicle at a given future
instant. Moreover, relocation strategies and algorithms in
the free-floating business model are addressed in [56] and [57]
that try to distribute cars in the business area according
of the predicted booking demand. Finally, Shao et al. [58]
present a dynamic car sharing system, that solves traffic
congestion by reducing empty seats traveling. Thereby, the
participants’ smartphones continuously share driver’s trav-
eling information with a central server that analyzes and
dynamically matches users with similar traveling needs.

The closest to our work is a car sharing solution [59] where
the vehicle is equipped with an telematics box that is wired
to the car’s network and communicates on the one hand
with the smartphone via short range wireless communication
interfaces (NFC, Bluetooth) and on the other hand with
a backend system via the Internet connection which opens
the car. However, this solution is different from ours in
that it requires Internet connection for cars and needs car
modifications in order to attach the telematics box to the
car’s network.

In the industry sector, NFC-based immobilizer systems
supporting car sharing were proposed independently by the
automotive component suppliers Valeo [60] and Continen-

tal [61]. They rely on UICC-based SEs of local network
operators for the protection of electronic car keys. In con-
trast, we aimed to avoid stakeholder-owned solutions, as
those can only be used by customers of respective network
operators. Furthermore, there are no details available in
public domain on design and provided features, hence it
is not possible to directly compare them with our solution
regarding functionality and security. A virtual key service
based on the Keyzee App [62] is powered by a Joint Venture
of D’Ieteren and Continental, and is already in use by a
car-sharing fleet in Monaco [63]. Similar to our telematics
box, the Keyzee app works with an in the car integrated BLE
box that connects with the smartphone in order to open or
close the car [62]. However, in contrast to our solution this
box intrusively interferes with the car’s bus system [64] and
thus invalidates the manufacturer’s guarantees.

Related to our work are also smartphone-based access
control solutions which were not initially developed for car
sharing, but might be adapted to the new use case. With
this respect, Arnosti et al. [65] introduced an access con-
trol solution which utilizes a microSD-based SE to store
security-sensitive information on an NFC-enabled smart-
phone. However, it relies on an online connection to a central
server and is only applicable to smartphones that have the
corresponding hardware features (microSD slot). Further,
Dmitrienko et al. [66] presented a generic access control sys-
tem that enables the secure storage of access credentials for
different resources on a smartphone. The system’s generic
approach makes it both applicable for digital and physical
resources, like electronic resources or doors. If applied in
a car sharing scenario, this solution would provide offline
authentication, similar to ours. However, the solution re-
lies on proprietary protocols which are not compatible to
smartcards and does not provide various deployment options.
Moreover, Abu-Saymeh et al. [67] proposed a framework that
quantifies security of the mobile device based on user activi-
ties and behavior to secure NFC transactions. According to
the identified security level, different authentication methods
can be enforced by the system. In their work, authors took
significantly different approach to address threats specific
to mobile platforms and opted to detect suspicious activity
rather than deploy a security architecture for protection of
authentication secrets.

7. CONCLUSION
In this work, we propose a car sharing system for free-

floating cars that overcomes shortcomings of current state-of-
the-art solutions. It supports such new features as (i) offline
authentication of users, (ii) compatibility to RFID cards –
the commonly used authentication tokens in car sharing, and
(iii) compatibility with legacy cars. Moreover, we present
(iv) a mobile platform security concept for protection of
electronic car keys on user’s platforms which provides a
flexibility to leverage various types of underlying hardware
on client platforms and achieve best possible security given
available hardware.

To summarize, our solution combines modern technologies
in an intelligent way and, as a result, achieves new attrac-
tive features not available in state-of-the-art solutions which
increase flexibility and security while preserving backward
compatibility.
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