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Abstract. Credential platforms implemented on top of Trusted Execu-
tion Environments3 (TrEEs) allow users to store and use their creden-
tials, e.g., cryptographic keys or user passwords, securely. One important
requirement for a TrEE-based credential platform is the ability to attest
that a credential has been created and is kept within the TrEE. Cre-
dential properties, such as usage permissions, should be also attested.
Existing attestation mechanisms are limited to attesting which applica-
tions outside the TrEE are authorized to use the credential. In this paper
we describe a novel key attestation mechanism that allows attestation
of both TrEE internal and external key usage permissions. We have im-
plemented this attestation mechanism for mobile phones with M-Shield
TrEE.

1 Introduction

Cryptographic protocols use credentials to authenticate users to various security
sensitive services, including on-line banking and corporate network access. Tra-
ditional credential solutions fall short. Software credentials, such as passwords,
are vulnerable to on-line fraud [4] and software attacks [12]. Dedicated hardware
tokens, such as SIM-cards used for authentication in cellular networks, provide
higher level of security, but are expensive to manufacture and deploy, and a sep-
arated hardware token is typically needed for each service, which forces users to
have multiple tokens.

Recently, hardware-based commodity general-purpose Trusted Execution En-
vironments (TrEEs), such as Trusted Platform Module (TPM) [17], JavaCard [6],
M-Shield [14] and ARM TrustZone [1], have started to become widely deployed.
TPMs are already available on many high-end personal computers while sev-
eral mobile phone models are based on TrEEs like M-Shield and TrustZone.
Credential platforms implemented on top of these TrEEs, including On-Board
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Credentials [7] and Trusted Execution Module [3], provide higher level of secu-
rity compared to software credentials, and easier deployment and better usability
compared to dedicated hardware tokens.

Credential platforms [7,3] allow third-parties to implement their own “cre-
dential programs” that are executed within the TrEE in a controlled manner.
These credential programs may generate new asymmetric keys within the TrEE.
One important requirement for a credential platform is the ability to attest that
a key has been created and is kept within the TrEE. Additionally, the attesta-
tion should prove key properties, such as usage permissions. A straightforward
approach would be to limit the usage permissions of such keys only to the cre-
dential program that generated the key. However, in some cases the developer
of the credential program should be able to authorize other credential programs
to use the key. Then the credential platform should be able to enforce specified
by the developer key usage permissions and to provide an attestation of these
permissions to an external verifier.

The following use case provides an example: IT department of a company
creates a credential program that generates an asymmetric key within the TrEE
and performs (possibly proprietary) corporate network authentication opera-
tion. The employees of the company may use this credential program to create
themselves a corporate network authentication credential and enroll it to the
authentication system of the company. Later, the same IT department wants to
issue another credential program to their employees; this time for email signing.
The email signing credential program should be allowed to operate on the same,
already enrolled key, to save the employees from enrolling multiple keys (typ-
ically each enrollment operation requires some user interaction). At the same
time credential programs developed by other companies should not be able to
use this key. The credential platform should provide an attestation of these key
properties to the enrollment server of the company, so that only compliant keys
are enrolled to the authentication system of the company.

Contribution. In this paper we describe an extension to On-board Creden-
tials platform [7] that enables credential program developers and applications to
define which other entities both within the TrEE and externally are authorized
to use the asymmetric keys they generate and for which operations these keys
may be used. We also describe a key attestation mechanism that provides evi-
dence on internal and external key usage permissions to a verifier. To the best of
our knowledge, no other credential platform provides similar functionality. We
have implemented the key attestation mechanism and matching key property
enforcements for Symbian mobile phones with M-Shield TrEE.

2 Requirements and Assumptions

Requirements. The main objective is to design a framework for a credential
platform that allows credential programs, written by third-parties, to generate
new asymmetric keys within the TrEE and to prove certain properties of these



keys to any (correct) verifying entity. More concretely, the credential platform
should support the following features:

R1: Key usage and usage permission definition. The key creator,
i.e., the entity who generates a new key, should be able to define (i) key usage, i.e.,
allowed key operations (e.g., signing, decryption) and (ii) key usage permissions
by defining entities, both internal and external to TrEE, which are authorized to
use the key. In particular, the key creator should be able to authorize key usage
for an entity whose exact identity is not known at the time of key generation (e.g.,
other credential programs written by the same credential developer in future).

R2: Key usage permissions update. The key creator should be able to
update key usage permissions after the key has been generated. Such a possibility
should be optional and be allowed or restricted at the time of key generation.

R3: Key usage enforcement. The credential platform should enforce key
usage and key usage permissions defined by the key creator.

R4: Attestation coverage. The credential platform should provide an
(externally) verifiable evidence/proof that the subject key was created and is
accessible only within the TrEE. Additionally, the attestation should provide
evidence on the following subject key properties: (i) key creator, (ii) key usage
(signing, decryption), (iii) key usage permissions (entities which are authorized
to use the key), and (iv) indication whether the key creator is allowed to update
key usage permissions.

R5: Attestation unforgeability. The credential platform should only
attest credentials it has generated itself and which are under its control. In
other words, an attacker should not be able to fool the credential platform to
attest keys generated by the attacker.

R6: Attestation freshness. In case the creator of the key is allowed to
update key usage permissions (R2), an external verifier should not trust previous
(old) attestations (the key creator might have changed key usage permissions
after the old attestation was created). Thus, the key attestation mechanism
should provide freshness guarantee.

Assumptions. We make some assumptions regarding underlying hardware and
operating system level security:

A1: Trusted execution environment. We assume availability of a hardware-
based TrEE that provides: (i) isolated code execution (by means of separation
of processing and memory), (ii) secure storage (by ensuring integrity and confi-
dentiality of persistent data), (iii) integrity protection of secure execution envi-
ronment for credential programs.

A2: OS security. We assume existence of operating system level plat-
form security framework with the following features: (i) availability of the secure
storage for OS level applications/processes, (ii) access control on inter-process
communication, (iii) integrity protection of security critical components, (iv) iso-
lation of application/process execution, and (v) access control model that allows
only trusted (e.g. signed) OS-level components to communicate with TrEE.

Note that these assumptions are reasonable in the context of our primary
implementation platform: We utilize M-Shield [14] security hardware and Sym-



bian [10] operating system. M-Shield provides all required features for TrEE.
First, it supports secure boot4 which ensures integrity of TrEE. Second, M-
Shield supports secure code execution in hardware by means of separation of
processing and memory. Third, it provides the secure storage by means of sealing
all data with a device-specific symmetric key which is protected by the TrEE.
The Symbian OS provides the application-specific secure storage and process
execution isolation, and enforces control on inter-process communication via ca-
pability mechanism5. Moreover, the integrity of security critical OS components
is ensured with secure boot that utilizes M-Shield hardware.

Adversary Model. We assume the following adversary capabilities:
AC1: Communication channel attacks. The adversary has access to

communication channel between the attesting device and the external verifier
and is able to eavesdrop, reply, relay or alert any network traffic.

AC2: End-point software attacks. The adversary can launch software
attacks targeting the ObC platform. The execution of the OS-level components
cannot be affected and OS-level secure storage cannot be accessed if the ad-
versary is not able to compromise OS platform security at runtime. Assuming
inability to compromise OS security framework may not be realistic due to the
large size of modern operating systems and in Section 6 we discuss the implica-
tions of OS security compromise to our proposal.

AC3: End-point hardware attacks. The adversary can launch limited
subset of hardware attacks on a circuit board level. We assume that the adver-
sary is not able to tamper with chips and launch side-channel attacks, but can
eavesdrop on the conductor wires connecting components or try to modify data
or program code stored on the device (e.g., via programming interface).

3 On-board Credentials Platform

In this section we give a brief overview of the On-board Credentials (ObC)
platform. Figure 1 describes the parts of the ObC platform architecture that are
relevant to key usage control and attestation. For more detailed description of
the ObC platform see [7].

Interpreter. The core of the ObC platform is a trusted Interpreter that can
be executed within the TrEE. The trust on the Interpreter can be based on code
signing, i.e., only authorized code is allowed to be executed within the TrEE.
Interpreter provides a virtualized environment where “credential programs”, i.e.,
scripts developed by untrusted third-parties, can be executed. When a credential
program is executed, the Interpreter isolates it from secrets that are stored within
the TrEE and from the execution of other credential programs.

4 Secure boot means a system terminates the boot process in case the integrity check
of a component to be loaded fails [5]

5 A capability is an access token that corresponds to access permissions [10]
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Fig. 1. On-board Credential architecture

The Interpreter provides a sealing6/unsealing function for ObC programs,
which can be used to protect secret data stored persistently outside the TrEE.
Additionally, the Interpreter provides common cryptographic primitives, such
as encryption, decryption and hash functions, for credential program develop-
ers. The credential programs are written using (a subset of) Lua scripting lan-
guage [8] or in assembler.

The ObC platform supports three types of credentials: (1) credential pro-
grams that operate on symmetric secrets provisioned by an external provisioner,
(2) credentials programs that locally generate and operate on asymmetric keys,
and (3) asymmetric keys locally generated by applications without involvement
of credential programs. In this paper we focus on two latter credential types.

The ObC platform supports a concept of “credential families”. A family is
defined by a credential provisioner (full description of credential provisioning
and families can be found in [7]). Credential programs belonging to the same
family may share sealed and persistently stored data.

Credential Manager. The ObC platform includes a trusted operating sys-
tem level component called Credentials Manager CM . The trust in CM can
be provided, e.g., based on secure boot. CM provides an API for third-party
developed applications. Using the API the applications can execute credential
programs, and create and use new asymmetric keys. CM maintains a database,
in which credentials and key properties are stored. CM also enforces that only
authorized applications are allowed to use credentials.

Device keys. The ObC platform uses three device specific keys (which are
only accessible within the TrEE) for key generation and attestation:

6 Protecting an object so that only a certain set of OS-level or TrEE-level entities can
access or use it



– ObC platform key (OPK ) is a symmetric device key. The Interpreter uses
OPK for sealing/unsealing function.

– Internal device key (PKI , SKI) is an asymmetric device key. The public
part of this key is certified as an “internal device key” by the device manu-
facturer. The Interpreter uses this key only to sign data that originates from
within the TrEE, or data whose semantics or structure it can verify.

– External device key (PKE , SKE) is an asymmetric device key. The public
part of this key is certified as an “external device key” by the device man-
ufacturer. The Interpreter uses this key to sign data that originates from
outside the TrEE. Using secure boot and OS-level security framework, we
limit the use of the external device key to CM only.

4 Key Attestation Design

Key attestation protocols involve the following entities: (i) attestor A, i.e., ObC
platform which attests to properties of the locally generated subject key, (ii)
the platform manufacturer M which certifies device specific keys of A, (iii) a
server S which aims to get assurance regarding subject key properties, and (iv)
certification authority CA which may issue subject key certificate.

We utilize the following notations: A signature scheme consists of algorithms
(GenKey(),Sign(),Verify()). Here (SK ,PK ) ← GenKey() is the key generation
algorithm that outputs signing key (private key) SK , and the corresponding
verification key (public key) PK . σ ← Sign(SK ,m) is the signature algorithm
on message m which outputs a signature σ, and ind ← Verify(PK , σ,m) is the
signature verification algorithm with ind ∈ {0, 1}.

An authenticated encryption7 scheme consist of algorithms (Enc(),Dec()).
Here c← Enc(K,m) is the encryption algorithm on a message m using K as the
symmetric key which outputs an encrypted message c, and (ind ,m)← Dec(K, c)
is the decryption algorithm on c using K as the symmetric key with ind ∈ {0, 1}
indicating integrity of c.

A hash algorithm is denoted by H().

4.1 Key Generation by Credential Programs

Key generation by a credential program is illustrated in Figure 2. We describe
the main steps in the following:

Step 1: A credential program requests the Interpreter to generate the subject
key. It may authorize other credential programs to use this key in two ways:
(i) Credential program identifiers are used to define zero or more identifiers
of credential programs that are authorized to use the generated key. In ObC
platform, credential programs are identified by the hash of the program code;
(ii) Family identifiers are used to define zero or more identifiers of credential

7 We use authenticated encryption AES-EAX for various needs including seal-
ing/unsealing operations to keep code and memory footprint minimal
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Fig. 2. Key generation by a credential program

families that are authorized to use the generated key. Credential families are
identified by the hash of family key8. The credential program also defines key
usage and whether key usage permissions are allowed to be updated.

Step 2: The Interpreter generates a new subject key (SKS , PKS ) and cre-
ates a structure called internal validation block (IVB). IVB contains (i) the
identifier CreatorId of the credential program that created the key, (ii) a list of
credential program identifiers CredIds; (iii) a list of family identifiers FamIds,
(iv) an indication whether credential program identifiers and family identifiers
may be updated by the key creator Update and (v) the allowed key operations
Usage. The Interpreter seals the private part of the subject key SKS and IVB
using platform key OPK . Then it derives the key identifier KeyId by hashing
the public key PKS . The resulting sealed key SSKS and KeyId are stored on the
operating system side by CM .

Step 3: The key identifier KeyId is returned to the credential program that
may, e.g., export it to the application that triggered the credential program
execution, so that the same key can be used later (from the same or another
credential program).

Steps 4-6: The next time the key is used, the Interpreter requests, and ob-
tains the sealed key from CM on operating system side based on KeyId , and
unseals it using OPK . The Interpreter unseals SSKS and verifies IVB compo-
nents and performs the requested key operation only if the key usage is allowed,
and the calling credential program is either the creator of the key or its identifier,
or family is listed as authorized to use the key.

8 Family key is used in credential provisioning



Key generation from an application
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4.2 Key Generation by Applications

The Credentials Manager CM provides an API for creating and using asym-
metric keys directly from applications. Figure 3 illustrates key generation by an
application.

Step 1: An application calls the key creation function over the API provided
by CM . The application may authorize other applications to use the generated
key in two ways: (i) to define zero or more application identifiers. The listed
applications are permitted to use the key. This method requires that the un-
derlying OS can provide reliable information about the identity of the calling
application to CM 9; (ii) to define that an authorization token called application
authentication key (AAK ) is required to use the key. In such a case the gen-
erated key may be only used if the correct AAK is provided by the application
to CM . AAK may be shared among several applications.

When an application creates a new key, CM constructs IVB . Application
identifiers AppIds are not included in IVB , since those cannot be reliably verified
within the TrEE. If AAK is used, it is included in IVB together with the key
usage Usage, the identity of the application that generated the key CreatorId
and a flag Update that defines whether key usage permissions can be updated.

Step 2: CM loads IVB to the TrEE, in which the Interpreter generates the
subject key (SKS , PKS ), and seals the private part together with IVB to SSKS .

Steps 3-4: PKS and SSKS are returned to CM . CM stores them together
with hash of AAK , the list of application identifiers AppIds, the key creator
CreatorId , and the key usage Usage. A key identifier KeyId is returned to the
application.
9 For example, in Symbian OS each process has a unique identifier which can be

verified for each inter-process function call
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Steps 5-6: When the same or another application requests to use the subject
key, CM verifies the identifier of the calling application with respect to locally
stored CreatorId and AppIds. CM also checks key usage Usage and hash of
AAK if needed. If these checks pass, CM loads the sealed private key SSKS

and possible AAK to the TrEE in which the Interpreter unseals the key and
checks that AAK matches the one defined in IVB (if used), and that key usage
is allowed before performing the private key operation.

4.3 Interactive Key Attestation

The attestation process must be interactive in case the key creator is authorized
to update key usage permissions during key life time (as required by the objective
(R2)). In interactive scenario, the attestation evidence must be verified by the
server S. Figure 4 illustrates this attestation protocol.

Steps 1-2: S picks a random nonce called external attestation challenge
(EAC) and sends it to an application on the target device. The application
identifies the subject key to attest (typically based on information originating
from S) and triggers the attestation. CM retrieves the sealed subject key SSKS

from local storage.



Steps 3-4: CM loads SSKS and EAC to TrEE. Inside the TrEE the Inter-
preter first unseals SSKS , derives PKS from SKS

10 and then creates an internal
attestation evidence (IAE ). IAE is a concatenation of IVB , hash H (PKS ) of
a subject public key and EAC. Then IAE is signed using the internal device
key SKI . The Interpreter returns IAE and signature SigIAE to CM .

Steps 5-6: CM constructs an external validation block EVB . EVB is a
concatenation of IAE , SigIAE , KeyId (hash of public subject key H (PKS )), and
a list of application identifiers AppIds. CM loads EVB to TrEE in which the
Interpreter signs it using the external device key SKE . The resulting attestation
evidence AE is sent back to CM .

Steps 7-8: CM returns AE together with the subject public key PKS and
certificates of both internal and external device keys (CertI , CertE ) to the ap-
plication. The application forwards this data to the server S which verifies the
following: (i) AE has been signed with a key that has been certified as an ex-
ternal device key by a trusted authority, and (ii) the public key hash in EVB
matches the received subject public key PKS . If these two conditions hold, S
can parse the external key usage permissions and based on that determine which
OS level key usage permissions are enforced by CM .

To verify the internal attestation, S checks that (i) IAE contains signature
made with a key that has been certified as internal device key, (ii) the public
key hash inside IAE matches the received subject public key, and (iii) EAC
inside IAE matches the one picked by S earlier. If these three conditions hold, S
can determine from IVB the key usage permissions enforced by the Interpreter
within the TrEE.

4.4 Non-interactive Key Attestation

Non-interactive key attestation can be used when key usage permissions are not
allowed to be updated and freshness guarantee is not needed. Figure 5 depicts
non-interactive attestation. In this scenario a certification authority CA validates
the attestation evidence and issues a subject key certificate that other servers
can verify. The main steps of the protocol are described below:

Steps 1-2: The credential platform triggers attestation with fixed challenge
(e.g., EAC = 0). CM and Interpreter create the attestation evidence as in
interactive key attestation. CM generates also a certificate request containing
the public part of subject public key, subject identity and proof-of-possession
of the subject key11. The certificate request, attestation evidence and internal
and external device key certificates are submitted to CA. CA validates AE using
the fixed challenge (verification is performed in the same way as in interactive
scenario described in Section 4.3). Additionally, CA verifies that the key usage
permissions are not allowed to be updated, i.e., the field Update in IVB structure
is set to false. Finally, CA issues a subject certificate CertS and returns it to the
ObC platform.

10 PKS can be derived from SKS efficiently in our implementation
11 E.g., a signature created using the subject key within the TrEE
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Fig. 5. Non-interactive key attestation

Step 3: The ObC platform submits the key enrollment request to S. The re-
quest includes PKS and CertS . S validates CertS , and if it is correct, enrolls the
subject key. In this scenario, S relies on CA to verify the attestation evidence.
However, since X.509 certificates do not have standard place to indicate if the
attestation evidence has been validated by CA, S must have out of band knowl-
edge that the particular CA always validates the attestation evidence before the
public key certificate is issued.

Another approach for non-interactive attestation assumes that CA issues
public key certificate omitting attestation evidence validation, then attestation
evidence is incorporated into subject key certificate. The TCG SKAE [16] defines
a X.509 certificate extension for this purpose. In this approach verification of the
attestation evidence is left for the server.

Note, that in both scenarios communication between ObC platform and CA
must be secured so that CA can associate the submitted public key with the
correct authorizations allowed for the submitter.

5 Implementation

We have implemented the described attestation mechanism for Nokia N96 mo-
bile phone with M-Shield TrEE. In M-Shield architecture trusted (signed) code
can be executed within the TrEE isolated from the rest of the system. The
trusted code is implemented as so called “protected applications” (PAs) in C.
The maximum size of each PA is very limited (in terms of both implementation
footprint and runtime memory) and for this reason we had to implement the
Interpreter, key generation and attestation functionality as three separate PAs:
(i) Interpreter PA, (ii) RSA PA and (iii) Attestation PA. Because in M-Shield



architecture the communication between different PA invocations must be me-
diated by an operating system level component (CM in our architecture), the
data that is transfered from one PA to another one must be protected.

Interpreter PA is the component that handles credential program execution.
When Interpreter PA encounters key creation macro it constructs IVB , creates
a fresh session key and seals IVB and the current state of the program execution
using the session key. The Interpreter PA saves the session key to volatile secure
memory inside the TrEE and returns IVB and program state in sealed format.

CM on the OS side saves sealed program execution state temporarily and
loads RSA PA to the TrEE together with the sealed IVB . RSA PA unseals IVB ,
generates a new RSA key and seals IVB and private part of the generated key
using OPK for future use. RSA PA calculates key identifier (hash of public key)
and returns this sealed with the session key. CM loads Interpreter PA to TrEE
together with the sealed key identifier and sealed program execution state. The
Interpreter PA can unseal the state and the key identifier using the session key
and continue credential program execution.

Asymmetric key operations are handled in similar fashion. When Interpreter
PA encounters key operation in credential program execution it seals key oper-
ation parameters and current state with the session key. CM triggers RSA PA
which unseals parameters, performs the operation and seals the results for Inter-
preter PA. Key attestation and application triggered key operations are handled
by Attestation PA which requires no communication with other PAs.

The operating system side CM component is implemented as a Symbian OS
server in C++. Using Symbian OS platform security framework CM can check
unique identifier of calling application for each function call. CM maintains a
database in its private directory which is not accessible by other applications
(except few trusted system components).

In our implementation, the device keys (internal and external) are generated
when the credential platform is first taken into use. The keys are created within
the TrEE and sealed using OPK for storage in CM database. When the device
keys are created, a key type tag is included to the seal. With the tag, the key
type can be determined when the key is later unsealed inside the TrEE.

In our implementation, the internal validation block (IVB) is a binary struc-
ture with fixed format, to keep the TrEE side implementation minimal. IVB can
contain up to five identifiers which are used to define credential programs, fami-
lies and AAK . A bitfield in the header defines the types of these identifiers. IVB
header also defines the key creator, usage and whether usage permission can be
updated. We have implemented the external validation block using ASN.1 for-
matting (similar to TCG SKAE [16]) to make external attestation flexible and
easy to implement. For non-interactive attestation our CM implementation can
generate standard X.509 certificate requests into which the attestation evidence
is included as an extension.

We have not yet implemented a mechanism to update key usage permissions.
Currently, key usage permissions are always defined as unchangeable at the time
of key generation.



6 Security Analysis

Based on the assumptions on the underlying hardware platform (A1) and on
the OS security framework (A2) (see Section 2), in the following we will give an
informal security analysis of our proposal.

Our design and implementation provide key usage definition (R1) for keys
generated both from within or outside the TrEE. The internal key usage per-
missions are defined in terms of credential program and family identifiers. The
external key usage permissions are defined in terms of application identifiers
and by means of applying the application authentication tokens. Allowed key
operations are defined in Usage.

Key usage enforcement (R3) is provided in the following way: the allowed
key operations Usage and internal usage permissions are enforced by the trusted
Interpreter. Note that the Interpreter resides within TrEE. Moreover, the under-
lying hardware provides secure execution. Hence, the integrity of the Intepreter
is ensured both statically and in run-time.

In case of external usage permissions, rules defined through application iden-
tifiers are enforced by CM . Note that CM is a trusted OS-level component, and
hence its integrity is provided based on the assumptions regarding OS security
framework, so that CM can enforce the usage permission rules specified for each
credential., e.g., in EVB.

Key usage permissions update (R2) can be supported, because the key creator
can be always identified via key creator identity CreatorId included into IVB .
Also, the attestation evidence creation is not bound to time of the key generation,
thus it can reflect changes made during key life time. Possible solutions for the
key usage permissions update mechanism are discussed in Appendix B.

Attestation coverage (R4) is simply realized by including all required state-
ments into the attestation evidence. Attestation unforgeability (R5) is ensured
through the use of the device keys for attestation those are protected by the
TrEE and their genuineness is certified by the trusted device manufacturer. At-
testation freshness (R6) is guaranteed with inclusion of the challenge in the
internal attestation evidence.

Discussion on run-time compromise. As mentioned in Section 2, we
cannot generally assume that the adversary cannot compromise OS-level security
framework. In this section we discuss implications of OS compromise to our
solution.

First, we consider credential program generated keys. As shown in Figure 2,
OS-level components including CM do not have access to the key properties
in unsealed form during key generation process. A compromised CM is able to
forge an external attestation for credential program generated key with false
application level usage permissions, but it does not allow CM to use the key
since the Interpreter inside the TrEE will deny the key operation invoked by the
CM for a key generated by a credential program. Internal attestation can be
trusted, since it is performed internally by Interpreter within the TrEE. Also,
a malicious CM is not able to invoke SKI usage to sign forged IVB since the
Interpreter will not use this key to sign data that originates outside the TrEE.



The external attestation evidence cannot impersonate the internal attestation
evidence since they are signed with different keys, SKE and SKI respectively.

Next, we consider application created keys. Again, a compromised CM is
able to forge external attestation evidence and specify usage permissions for
false OS-level applications. If the key usage permissions are defined in terms of
application identifiers, a compromised CM can allow key usage for unauthorized
applications. If the key usage permissions are defined in terms of AAK a com-
promised CM cannot use the key without knowledge of valid AAK . However,
one should note that if the adversary is able to compromise CM he most likely
can read AAK from the storage of the authorized application as well, and thus
use the key. Internal attestation can be trusted for application generated keys,
only if CM has been compromised after the key was generated. If CM was com-
promised before key generation, even internal attestation cannot be trusted for
application generated keys.

As a conclusion, our design and implementation can only partly address the
problem of runtime compromise of OS-level security framework12. Thus in real
life scenarios the verifier should take into account the discussed arguments and
define the trust to the attestation created by the ObC platform according to its
security policy.

7 Related Work

Trusted Computing Group (TCG) [15] has specified a mechanism called Subject
Key Attestation Evidence (SKAE) [16] for attesting TPM generated asymmetric
keys. In short, a SKAE attestation contains the public part of the attested
subject key and the platform configuration (in terms of platform configuration
register values) under which the subject key can be used, signed with a certified
and device-specific attestation identity key. A typical use of SKAE is to include
it as an extension to a certificate request; the SKAE extension proves to the
certificate authority that the subject key was created and is kept within a TPM
and specifies the application(s) that can use the key by defining the platform
configuration.

The TCG SKAE is limited to attesting which applications outside the TrEE
are allowed to use the attested subject key whereas our attestation mechanism
provides evidence on TrEE-internal key usage permissions as well. Moreover, the
TCG SKAE is a non-interactive mechanism, and thus not applicable to attesting
keys which usage setting may be updated (R2).

The work closest to ours is “outbound authentication” (OA) architecture [13]
for IBM 4758 programmable secure coprocessors. IBM 4758 is TrEE with layered
security architecture: layers 0-2 boot up the coprocessor and run an operating
12 It should be noted that handling runtime compromise is still an open research prob-

lem and the existing solutions such as Runtime Integrity Monitors either require
extra hardware support (e.g., [9]) or utilize virtualization technology to run the sys-
tem under inspection within a virtual machine (e.g., [2]) which is hard affordable for
mobile devices due to the corresponding overhead



system. Applications originating from different (possibly mutually distrusting)
sources can be loaded to the coprocessor and executed on layer 3. External
parties should be able to verify which of the applications within the coprocessor
performed certain operation. The OA architecture uses certificate chaining to
achieve this. Layer 0 has a root key (certified by a trusted authority) which is used
to certify higher layers. When an application is executed, the operating system
layer creates a key for the application and certifies this key. The application may
authenticate itself to an external verifier using its key.

Our attestation mechanism and OA architecture address essentially the same
problem — providing evidence on which entity within a TrEE is allowed to access
a certain key. However, our attestation mechanism supports certain features that
fall outside the scope of OA. First, the ObC architecture supports sharing of
keys between entities within the TrEE and our attestation mechanism provides
evidence on this in terms of credential programs and family identifiers. Second,
our attestation mechanism provides also evidence on TrEE external access.

KeyGen2 [11] is a proposal for provisioning of asymmetric keys to devices,
such as mobile phones. In KeyGen2 asymmetric keys are created inside the TrEE
of the client device. To enroll a key to a server, the client creates an attestation of
the key by signing it with a device key. To distinguish this attestation signature
from other signatures made with the same device key, special padding (reserved
for this use only) is applied.

The key attestation in KeyGen2 does not include information about software
that is authorized to use the key neither in terms of platform configuration (as it
is done in the TCG SKAE), nor in form of TrEE internal key usage permissions
(as in our proposal). The attestation only proves that the to-be-enrolled key was
created and is kept within the TrEE.

8 Conclusion

In this paper we have described a key attestation mechanism that allows a plat-
form to attest to a verifier key usage permissions and properties of both (internal)
programs residing in a Trusted Execution Environment (TrEE) as well as OS-side
applications outside the TrEE. We have implemented this key attestation mech-
anism and matching local enforcements as an extension to the existing on-board
Credentials platforms for mobile phones based on M-Shield secure hardware. To
the best of our knowledge, this is the first credential platform that efficiently
provides such an enhanced attestation functionality.
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Appendix A Device Key Alternatives

The key attestation mechanism described in the paper requires two device keys:
Internal device key is used to sign internal attestation and external device key
is used to sign external attestation. Both of them must be certified by a trusted
authority, such as the device manufacturer. The device keys can be created either
during device manufacturing or when the credential platform is first taken into
use. In the latter case, the device key certification is an on-line protocol between
the TrEE and the device manufacturer – we assume that the device manufacturer
may authenticate its own TrEEs in reliable fashion.

Creating asymmetric keys is a time consuming process on TrEEs with lim-
ited resources. Thus, the need to have two certified device keys increases the
device manufacturing time and cost, or alternatively decreases credential plat-
form installation user experience. In this appendix we discuss two alternative
approaches to device key creation and certification to address this problem.

Single device key. Instead of creating two separate device keys, a single
device key could be used for signing both internal and external attestations. In
such a case, signatures made over IVB and EVB should be distinguishable from
each other to prevent EVB to be interpreted as IVB by the verifier. To distin-
guish different type of signatures made with the same key, one of the following
two techniques could be applied.

First, the Interpreter could apply distinguishable formatting to IVB and
EVB before signing them. The Interpreter could, e.g., concatenate a tag to these
elements before signing. If such an approach were used, the device key should
never sign anything else except an attestation evidence, otherwise the specific
formatting can be forged. Thus, such a solution does not scale well since may
require new device keys for other operations.

Second, the signatures can be made distinguishable by applying different
padding schemes or hashing algorithm as proposed in [11]. For example a unique
padding could be used for internal attestation signatures, another unique padding
for external attestation signatures, and standard padding could be used for nor-
mal signatures. The disadvantage of this approach is that the external verifier
is required to understand these non-standard padding schemes which can be an
obstacle for wide scale deployment.

Device key chaining. Another alternative would be to use certificate chain-
ing. In this approach two separate device keys would be used for signing the
attestations, but the device manufacturer would have to certify only one de-
vice key which in turn could certify the second needed device key locally on
the platform. The benefit of such an approach is that only one device key has
to be created when the device is manufactured or when the credential platform
is taken into use. The second device key can be generated and certified later,
e.g., when the device is in idle state, but before the device is used for attestation.
This approach would also scale better, if more than two device keys are needed.



Appendix B Key Usage Permissions Update

The task of updating key usage permissions can be seen as consisting of two
subtasks: (i) to grant usage rights to new credential programs and applications;
(ii) to revoke usage rights granted before.

One alternative would be to provide the key creator the possibility to do
both, to grant and to revoke key usage permissions. In this way, lists of credential
programs and applications authorized to use the key may be freely modified by
the key creator.

Another alternative would be to provide the key creator the only possibility
to revoke key usage permissions. In this way, identities of credential programs
and applications may be excluded from the lists defined before, but new identi-
ties may not be added. In this situation, key usage permissions can be granted
via utilization of already available mechanisms: Family paradigm can be used to
grant usage permissions to additional credential programs, and application au-
thentication token can be used to grant usage permissions to new applications.

The former design solution provides better flexibility, since family identifiers
and application tokens can be added and updated by the key creator. The lat-
ter design solution is less flexible, but it does not require to ensure attestation
freshness. Indeed, if the old attestation is satisfactory for the verifier, the new
one would be also for sure accepted because it has reduced list of authorized en-
tities compare to the old version. When freshness is not required, the attestation
could be always performed in non-interactive manner, that is an advantage of
this scheme.
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