
Security of NVMe Offloaded Data in Large-Scale
Machine Learning

Torsten Krauß1[], Raphael Götz1[], and Alexandra Dmitrienko1[]

University of Würzburg, Sanderring 2, 97070 Würzburg, Germany
{torsten.krauss,raphael.goetz,alexandra.dmitrienko}@uni-wuerzburg.de

Abstract. Large-scale machine learning (LSML) models, such as the
GPT-3.5 that powers the well-known ChatGPT chatbot, have revolu-
tionized our perception of AI by enabling more natural, context-aware,
and interactive experiences. Yet, training such large models nowadays re-
quires multiple months of computation on expensive hardware, including
GPUs, orchestrated by specialized software, so-called LSML frameworks.
Due to the model size, neither the on-device memory of GPUs nor the
RAM is capable of holding all parameters simultaneously during train-
ing. Therefore, LSML frameworks dynamically offload data to NVMe
storage and reload the information just in time.
In this paper, we investigate the security of NVMe offloaded data in
LSML against poisoning attacks and present NVMevade, the first un-
targeted poisoning attack on NVMe offloads. NVMevade allows the at-
tacker to reduce the model performance, as well as slow down or even
stall the training process. For instance, we demonstrate that an attacker
can achieve a stealthy increase of 182% in training time, thus, inflat-
ing costs for model training. To address this vulnerability, we develop
NVMensure, the first defense that guarantees the integrity and freshness
of NVMe offloaded data in LSML. By conducting a large-scale study,
we demonstrate the robustness of NVMensure against poisoning attacks
and explore runtime efficiency and security trade-offs it can provide. We
tested 22 different NVMensure configurations and report an overhead be-
tween 9.8% and 64.2%, depending on the selected security level. We also
note that NVMensure is going to be effective against targeted poisoning
attacks which do not exist yet but might be developed in the future.

Keywords: Large-Scale Machine Learning · NVMe Offload · Poisoning
Attacks.

1 Introduction

Machine Learning (ML) enables the extraction of knowledge from datasets,
which can then be utilized for prediction or classification tasks on unseen data.
Usually, increased model sizes and larger datasets result in a greater amount of
encapsulated knowledge in the ML model.

https://orcid.org/0000-0003-0810-6646
https://orcid.org/0009-0002-7208-738X
https://orcid.org/0000-0001-5637-7016

2 T. Krauß et al.

ML involving large Deep Neural Networks (DNNs), commonly known as Deep
Learning (DL), produces models with multiple layers and numerous model pa-
rameters. With its capability to extract and encapsulate extensive knowledge,
DL surpasses alternative methods across diverse domains, including image classi-
fication [22], speech recognition [15], text generation [5], language processing [9],
as well as fraud and malware detection [17,11]. Scenarios, where the model and
dataset exceed easily manageable sizes are referred to as large-scale machine
learning (LSML).

Currently, there is a noticeable arms race focused on the size and capacity of
large-scale machine learning (LSML) models. This trend can be observed from
the development of models such as GPT [40] with 110 million parameters trained
in 2018, followed by GPT-2 [41] (1.5 billion, 2019), Megatron-LM [53] (8.3 bil-
lion, 2019), Turing-NLG [25] (17.2 billion, 2020), and GPT-3 [5] (175 billion,
2020), which is currently utilized in the free version of ChatGPT [30]. However,
the progression continues, with models like Megatron-Turing [54] (530 billion,
2022) and GPT-4 [31,6] (around 1 trillion, 2023) surpassing their predecessors
and setting the trend for even larger models. Training such models is not feasi-
ble in standard ML environments like PyTorch [34]. Instead, specialized LSML
frameworks like DeepSpeed [48] are employed. Additionally, optimized hardware
such as NVIDIA DGX clusters [29] is necessary to provide the required compu-
tational power. Given the size of the models and the volume of data involved in
training, LSML frameworks incorporate parallelism strategies to distribute the
training process across multiple hardware instances and accelerators. This par-
allelism is crucial even in high-performance hardware setups. While performance
is prioritized, the security aspects are neglected, which, as we show in this paper,
leads to vulnerabilities to poisoning attacks [55].

Poisoning attacks come in two flavors: 1) untargeted attacks [19,62,61] strive
to negatively impact the prediction performance of the model, while 2) tar-
geted attacks [2,8,51] aim to embed trojan behavior into the model. Both attack
versions can have visible effects on the final model or remain stealthy. As the
size of models increases, it becomes easier to introduce stealthy poisonings since
the inner workings of the model are often opaque. However, for those training
LSML models, the trained models are valuable intellectual property, and the
quality and security of the model predictions are of utmost importance. Im-
proved performance translates to a competitive advantage, while reliable and
secure predictions are vital for establishing trust in the technology’s future use.
Therefore, preventing or at least recognizing poisoning attacks is a necessary
and critical step in LSML training, as such attacks can significantly impact both
business value and end-user security. Ideally, countermeasures should focus on
attack prevention rather than detection since eliminating poisonings may require
costly model re-training on extensive hardware infrastructure [43].

Challenges and State-of-the-Art Solutions. The manipulation of the LSML
training process by adversarial actors presents a significant challenge, leading to
undesired model behavior and financial losses. These attacks encompass various
vectors, including poisoned datasets, malicious code changes, and adversarial

Security of NVMe Offloaded Data in Large-Scale ML 3

perturbations on communication channels. Efforts have been made to secure a
significant portion of DNN training through technical measures. To ensure be-
nign datasets, human experts or automatic filtering mechanisms [35,14,36] can
eliminate potentially malicious data from the training set. Recent research, such
as Slalom [57], Graviton [59], HETEE [64], and HIX [20], has proposed protec-
tion strategies for secure computation on GPUs and trustworthy code execution
on CPUs [39,23]. These advancements help ensure that ML training, fueled by
benign data, produces benign models. However, to generate models of maximal
size, state-of-the-art LSML frameworks like DeepSpeed [48] employ techniques
where idle portions of training data are temporarily offloaded to Nonvolatile
Memory Express (NVMe) storage and reloaded onto the CPU or GPU for further
training in a just-in-time manner [44,45,49]. While the offloaded data presents
an attractive target for attacks on the training process, no previous work has
explored the feasibility of such attacks or proposed defenses so far.
Contributions. To emphasize and address the aforementioned issue, this paper
provides the following contributions:

– Attack on NVMe Offloads: We develop NVMevade, the first untargeted
poisoning attack on NVMe offloaded data, highlighting the vulnerability of
NVMe offload in LSML frameworks to such attacks. We present compelling
evidence that our attack can effectively achieve the following outcomes, re-
gardless of the structure of the offloaded data: i) Completely disrupt the
training process, necessitating retraining. ii) Reduce prediction performance,
resulting in a competitive disadvantage. iii) Slow down the training process
without impacting prediction performance, leading to increased computa-
tional costs. We successfully implement NVMevade for the DeepSpeed frame-
work, showcasing its ability to quickly terminate the training process, dis-
creetly degrade model performance, and significantly prolong training time
by 182%. These outcomes would inevitably lead to considerable financial
losses within LSML setups.

– Security for NVMe Offloads: We present NVMensure, our defense mech-
anism designed to detect and mitigate poisoning attempts on NVMe of-
floaded data during training. This method exhibits resilience not only against
untargeted poisoning attacks such as NVMevade but also against potential
targeted attacks that may emerge in the future. NVMensure ensures the in-
tegrity and freshness of the data, providing protection against attacks such as
NVMevade. Importantly, it allows the model creator to adjust the trade-off
between security and training speed according to their specific requirements.

– Large-Scale Study: We have implemented NVMensure for the DeepSpeed
framework and conducted a comprehensive evaluation of its runtime and
storage efficiency. This involved assessing 22 different versions of the defense,
allowing us to identify critical bottlenecks and propose enhancements. To
mitigate runtime and memory overhead, we have leveraged space-efficient
data structures and employed integrity mechanisms that provide various
levels of collision resistance. By combining these methods with multi-core
execution to utilize idle CPU resources, we have achieved an acceptable

4 T. Krauß et al.

overhead ranging from 9.8% to 64.2%, depending on the desired security
level. Our optimizations effectively reduce the computational impact and
storage requirements, while ensuring the defense remains highly effective.

NVMensure is orthogonal to previous works on securing CPU-based [39,23] and
GPU-based ML workloads [57,59,64,20], and can be combined with them. Hence,
NVMensure is a crucial component for enhancing the overall security of LSML.

2 Background

Below, we introduce the reader to DeepSpeed [48], the de facto framework for
large-scale distributed ML training [24] before providing background information
about poisoning attacks in ML.
Large-Scale Machine Learning with DeepSpeed. LSML models such as
Megatron-Turing [54] would require more than ten terabytes of memory, sur-
passing the capacity of current GPUs.1 Thus, LSML frameworks incorporate
various forms of parallelism that enable the partitioning of data and compu-
tations across multiple hardware devices and accelerators. Thereby, data [44],
pipeline [27], and model [53] parallelism strategies facilitate efficient computa-
tion during training by leveraging powerful hardware setups like NVIDIA DGX
clusters [29]. However, with increasing model size, the limiting factor of training
environments is not the computational power, but the GPU memory.

Addressing this problem, DeepSpeed [48], an open-source LSML framework
developed by Microsoft in 2020, has become the industry standard for large-scale
distributed ML [24]. DeepSpeed’s pioneering NVMe offload capability has been
key in achieving this milestone, enabling the training of large-scale models.
Other frameworks focusing on one specific strategy, like model parallelism in
Megatron-LM [53], lack the ability to train independently at such a scale. Hence,
the project creators collaborated and integrated multiple methods, including
Megatron-LM, into DeepSpeed. Offering ZeRO-Infinity [45], DeepSpeed resolves
memory issues by offloading idle training data (model parameters, optimizer
states, and gradients) from GPU and CPU to cost-efficient NVMe storage2.
On-demand, the DeepNVMe [45] library prefetches and broadcasts the offloads
to CPUs and GPUs as needed. In this paper, we propose NVMevade, an attack
on NVMe offloads, and introduce NVMensure as a defense.
Poisoning attacks in Machine Learning. Poisoning attacks on ML mod-
els [56,60] can be classified into two categories based on the adversary’s objec-
tives: Untargeted attacks and targeted (or backdoor) attacks. Untargeted attacks
aim to hinder the convergence of the global model. As an example, an untargeted
attack can assign false labels to samples in the training dataset. Alternatively,
the adversary can also manipulate the code running the training process itself,
e.g., by manipulating model parameters or intermediate values like gradients.

1 A NVIDIA A100 GPU [28] provides 80 GB of on-device memory.
2 NVMe is an interface specification for PCIe attached Flash and SSD storage devices.

Security of NVMe Offloaded Data in Large-Scale ML 5

The attacker can choose to completely destroy the model or employ a stealthy
approach that reduces the model’s accuracy or slows down the training process,
thereby increasing computational effort. On the other hand, targeted or back-
door attacks aim to introduce a backdoor trap into the model. These attacks
typically consist of a trigger in the input data and a target prediction chosen by
the adversary. The goal is to maintain the model’s benign prediction performance
while embedding the hidden malicious behavior.

Backdoor attacks often pose a higher risk since the resulting model sur-
prisingly misbehaves, but in LSML high performance is a crucial competitive
advantage making untargeted attacks also very attractive for adversaries. Both
attacks can be cured by retraining or fine-tuning, but in LSML this involves high
costs, making untargeted attacks a substantial danger. This paper conducts un-
targeted attacks in LSML by manipulating NVMe offloaded model parameters
or intermediate values and proposes NVMensure as a defense method against
both untargeted and targeted poisoning attacks.

3 NVMevade - Untargeted Poisoning Attack on NVMe

In this section, we introduce NVMevade, the first untargeted poisoning attack
that manipulates NVMe offloaded data exposing vulnerabilities of current LSML
frameworks. NVMevade offers three distinct operation modes that allow for the
complete cessation of the training process or the discreet degradation of model
performance and training efficiency through techniques such as bit-flips or replay
attacks on NVMe-offloaded data.

3.1 System Model

Fig. 1 provides a visualization of an LSML setup, illustrating the four general
steps of an LSML training process. It also demonstrates the scope of NVMevade
(and NVMensure), as well as their integration with related works, offering com-
prehensive end-to-end security for LSML training.
Considered System. We consider a general LSML training process as depicted
in Fig. 1 and consisting of four steps: 1) The training data is supplied to the
computation device, typically a server equipped with CPUs and RAM. 2) During
training, certain computations are subsequently offloaded to GPUs for acceler-
ated processing. This involves copying model parameters to the GPUs’ on-device
memory. 3) When the GPU memory is fully utilized, causing it to become the
system bottleneck, the LSML framework addresses this issue by offloading idle
portions of the model parameters and training-internal intermediate values to
separate files in NVMe storage so that upcoming computations can be conducted
on the GPUs. 4) When needed for ongoing model training, the framework loads
offloaded data back onto the GPU.
Attackers Goals and Capabilities. The attacker targets model creators that
possess enough data to train a LSML model. Thereby, he strives to negatively
impact the training process by manipulating the data offloaded to the NVMe.

6 T. Krauß et al.

Dataset Cleaning Methods

GPU

Training
Dataset

CPU & RAM

1 Feeding data

2 Accelerate computation

3 Offload
TEEs GPU-TEEs

NVMevade NVMensure Peripherical devices

NVMe

Secured by related works

4 Onload

Fig. 1. LSML system overview depicting NVMevade’s and NVMensure’s scope. Parts
of the system can be secured by related works (cf. Sect. 5).

Specifically, depending on the concrete goal, one of the following three effects
should be triggered by conducting perturbations on the offloaded data: (i) de-
struction of the model performance or termination of the training process, (ii)
stealthy model performance reduction, or (iii) stealthy slowdown of the training
speed. These objectives should be accomplished solely through user-level ac-
cess3 to the NVMe offloaded data, without requiring access to the CPU, RAM,
or other peripheral devices involved in the training process, such as GPUs. The
attack needs to be conducted in the timing window between offload and onload
of the respective data.

3.2 Design of NVMevade

In Fig. 2, we illustrate the design of NVMevade, which comprises four steps:
1) The attacker conducts a thorough scan of the NVMe storage to identify new
offloads. Thereby, LSML frameworks store different parameters in separate files.
2) The adversary loads the newly offloaded data from the NVMe to his own
RAM, then 3) poisons the data by using one of the three possible strategies,
which we will describe below as poisoning modes. 4) Finally, the original data
on the NVMe are replaced with the poisoned version.
Poisoning Modes. Depending on the effect that the attacker wants to trigger,
NVMevade offers three modes, as can be retraced in Fig. 2:

– Mode 1: Model Destruction. This mode applies multiple random bit-flips
to the NVMe offloaded data, aiming to transform the model into a naïve
classifier or halt the learning process altogether. In mode 1, where all bytes
are aggressively poisoned, NVMevade is agnostic to the particular LSML
framework implementation and does not consider any knowledge of data
types or formats.

3 We posit that the attacker has effectively circumvented OS access controls, thus
obtaining necessary user-level permissions to access and manipulate NVMe files.

Security of NVMe Offloaded Data in Large-Scale ML 7

onload

offload

data

NVMe
NVMevade

Offloaded
data files

1Scan

Load

Poison

Replace

2

3

4

Mode 1

Mode 2

Mode 3

Model Destruction by large
number of random changes

Accuracy Reduction by few
carefully chosen changes

Training Speed Slowdown by
replaying old files

Fig. 2. Overview of NVMevade.

– Mode 2: Accuracy Reduction. To reduce the prediction performance without
interrupting the training process or producing any noticeable traces for the
model creator, mode 2 applies a reduced (in comparison to mode 1) number
of bit-flips at the byte level. To achieve a trade-off between reduction per-
formance and stealthiness, the attacker parameterizes the attack by defining
parameters (cf. App. Tab. 6) that specify the level of poisoning. Thereby,
the type of offloaded parameters is considered, making it the only part of
the paper which is not agnostic to DeepSpeed.

– Mode 3: Training Speed Slowdown. Conducting a replay attack allows an
attacker to slow down the training process while remaining stealthy to the
model creator. By capturing offloaded data and replaying them later on, more
realistic poisoned data are loaded from the NVMe, exerting a negligible effect
on the model performance.4 The data is replaced at the granularity of files
and without consideration of exact file contents, thus remaining agnostic to
the implementation of any particular LSML framework.

Among the three modes, mode 1 is very effective but can be detected by monitor-
ing. Further, countermeasures like backups can minimize negative effects. While
mode 1 already highlights the vulnerability of NVMe offloads, modes 2 and 3
pose a higher risk in real-world scenarios, due to their stealthiness.
Parameter Configurations. To poison the offloads in mode 1 and 2, we apply
bit-flips using a random mask and XOR operation. Six parameters listed in App.
Tab. 6 control the extent of poisoning. Namely, for each file, we traverse all
bytes considering only a portion of those bytes with respect to P1. Then, since
DeepSpeed is configured with float16 parameters, we check if the actual byte
is the upper or lower half of the parameter. For each of the bytes (upper or
lower), we decide on the amount of poisoning based on the probability in P2

and P3 and start by poisoning the least significant bits (LSBs) of the byte to
reduce the influence in the final parameter. For example, in the case of 25% for
P3, the two LSBs of the upper byte are combined with a random mask. When
poisoning a byte, we increase a respective counter for upper or lower bytes and
stop poisoning upper or lower bytes if a respective threshold (P4 and P5) is
surpassed. Finally, P6 limits the time window of poisoning data at a stretch.

4 The replay attack naturally also affects the model performance, but the effect was
very marginal and not recognizable in our experiments.

8 T. Krauß et al.

These parameters enable precise configuration of the poisoning level at the lowest
granularity, effectively controlling the intensity and stealthiness of the attack.
Instantiation of NVMevade for DeepSpeed. We implemented NVMevade
for DeepSpeed [48], the de facto LSML framework. We present our observations
and challenges in detail in App. A.1. Here, we want to highlight, that the timing
window between offload and onload of data, ranging from 0.33 to 0.95 seconds
(average of 0.37 seconds) in our experiments, was sufficient to conduct the attacks
and hence did not pose a technical obstacle.

3.3 Evaluation

To efficiently test our approaches, we simulate the NVMe offload of LSML train-
ing in a small-scale setup. Specifically, we used a server with 32GB RAM run-
ning Ubuntu 20.04 equipped with a single Nvidia Quadro P2200 GPU with
5GB GPU memory and a Western Digital 256 GB NVMe. As LSML framework,
DeepSpeed [48] is leveraged to train a T5-small [42] model on translation tasks
using the wmt16 (ro-en) dataset [4]. The AdamW optimizer and DeepSpeed’s
WarmupLR learning rate scheduler were used together with float16 mixed pre-
cision training and ZeRO-Infinity [45], which enables the NVMe offload.
Metrics. LSML models are predominantly language models in present times.
To evaluate the performance of these models, we assess their prediction accuracy
on a test set, indicated by the loss (e.g., cross-entropy) computed through the
forward path on the test data. A lower loss value signifies better model perfor-
mance and quality. The sacreBLEU score [38] is a computationally efficient and
highly comparable version of BLEU, widely used for automatic machine trans-
lation evaluation. It demonstrates a strong correlation with human evaluations,
where a score of 100 represents a perfect prediction and a score of 0 indicates
a complete mismatch. Regarding the training speed, one can analyze the train-
ing samples per second (SPS), that are processed by the ML system. Further,
the seconds per epoch (SPE) indicates the duration for one iteration over the
training dataset.
Mode 1: Model Destruction. To conduct mode 1 attacks, we set all param-
eters to a maximum as listed in App. Tab. 6, resulting in the highest level of
poisoning, meaning that all offloaded bytes were randomly changed. Once the
attack started, DeepSpeed was faced with overflows resulting in skipping of the
optimizer step and a complete stop within a few skips, in our case 15. Therefore,
all previously unsaved training steps are lost. If we switch off DeepSpeed’s inter-
nal overflow skipping procedure, the model becomes naïve within a few optimizer
steps. Hence, depending on the internals of the LSML framework, NVMevade’s
mode 1 destroys the model or, in the case of DeepSpeed, stops the entire training
procedure, showing the vulnerability of NVMe offloaded data.
Mode 2: Accuracy Reduction. To achieve a stealthy model performance re-
duction, extensive fine-tuning of the parameters is required, which we list in App.
Tab. 6. The parameters allow only minimal poisoning since even a small number
of bit flips can cause massive damage to a model [63]. By executing the attack,

Security of NVMe Offloaded Data in Large-Scale ML 9

we achieved a substantial increase in loss on the test set from 3.3 to 6.8615 and
a drastic reduction in the sacreBLEU score [38] from 23.9 to 0.0199, indicating a
near-complete mismatch in all predictions. However, by modifying random seed
of our test setup, which impacts the ML process and NVMevade, we observed
a reduced influence of the attack. This resulted in a loss of 3.9932 and a sacre-
BLEU score of 5.8927 and shows, that the manual fine-tuning of the parameters
is very sensitive as no continuous schema could be identified so far. Simulta-
neously to the attack, no recognizable warning being a sign for an attack was
produced by DeepSpeed5, thus increasing the stealthiness compared to mode 1,
where DeepSpeed stopped the training process. However, since the model perfor-
mance is reduced, loss and accuracy values calculated during training would be
conspicuous. Our findings illustrate the potential to degrade model performance
during training without interrupting the process. However, selecting suitable
parameters is nontrivial. It necessitated 35 fine-tuning steps to identify optimal
parameters for a successful stealthy attack. Merely reducing noise in mode 1
proved insufficient and resulted either in model destruction or had no impact
making a more complex strategy necessary. While future research might propose
advanced poisoning strategies to prevent expensive parameter fine-tuning, our
defense, NVMensure, guards against all such variations. Consequently, further
exploration in this area is not pursued.

Mode 3: Training Speed Slowdown. To conduct this attack, NVMevade
caches offloaded files and as soon as the scanning procedure of NVMevade reports
a subsequent NVMe offload with the same file name, the data are replaced
with the historical file, thus resulting in a replay attack. Thereby, we could
reduce the samples per second (SPS) from 11.802 to 8.910, leading to a total
training time for one epoch being 03:44 minutes instead of 02:49. As visualized in
Tab. 1, the training efficiency was reduced by 24.5% and the resources for training
are leveraged for 32.5% longer. We discovered that our attack faced challenges
with the timing constraint, specifically the time between offload and onload. In
certain cases, the replay attack was not executed quickly enough. Consequently,
we shifted our focus to model parameters based on the offloaded file name, as
intermediate training parameters with the same name were often not offloaded
twice, leaving no opportunity for a replay attack. Thus, we could worsen those
rates by only attacking model parameters to a 69.4% decrease in SPS and 182%
increased training time, which could lead to substantial financial losses for model
creators. Further, mode 3 addresses the downsides of mode 2, since neither loss
nor sacreBLEU score were affected significantly and no visible clues could be
detected in DeepSpeed’s console output making the attack completely stealthy.

In summary, NVMevade successfully poisons NVMe offloaded data, enabling
aggressive or stealthy attacks that reduce training time and model performance.
These outcomes lead to financial losses for the model creator, underscoring the
importance of prevention in real-world setups.
5 For stealthiness evaluation, we compared the execution log (console output) with

and without attack. We only found different timestamps and minimal loss value
changes, which is normal in different runs.

10 T. Krauß et al.

Table 1. Effectiveness of NVMevade’s mode 3.

SPS SPE (in minutes) Loss sacreBLEU
Without attack 11.802 02:49 3.3812 23.9366

NVMevade mode 3 8.910 03:44 3.3812 23.9366
(-24.5%) (+32.5%) (+/- 0%) (+/- 0%)

NVMevade mode 3 3.607 09:14 3.3812 23.9366
(only model parameters) (-69.4%) (+182%) (+/- 0%) (+/- 0%)

4 NVMensure - Preventing Poisoning Attacks on NVMe

In this section, we present NVMensure, a new defense mechanism designed to
counteract poisoning attacks (both targeted and untargeted) on NVMe offloads
in LSML. This defense adopts the same system model as described in Sect. 3.1.
NVMensure guarantees data integrity by performing checksum calculations dur-
ing offload and subsequent validation during onload. Additionally, NVMensure
ensures freshness by promptly invalidating checksums after validation. To ac-
commodate diverse requirements, NVMensure offers the flexibility to balance
security with storage and runtime efficiency. This is achieved through the im-
plementation of various integrity mechanisms for checksum calculation and the
utilization of space-efficient data structures.

4.1 Design of NVMensure

As depicted in Fig. 3, NVMensure is comprised of eight distinct steps, which
are divided between offload and onload: 1) When DeepSpeed initiates an of-
fload, NVMensure carries out a data integrity mechanism (DIM) to compute a
checksum (CS). 2) This checksum is then inserted into a data structure (DS)
residing in the RAM. 3) The regular offload to the NVMe continues thereafter.
4) Once DeepSpeed triggers an onload, a second checksum is created from the
data loaded from the NVMe. 5) The checksum associated with the respective
offload is retrieved from the data structure. 6) Both checksums are compared,

onload

offload

CPU

CS

NVMensure

CS

1 DIM

DS

2 insert

3 offload

4 DIM

5 load7delete

validate6
8 onload

NVMe

Alarm

Fig. 3. Overview of NVMensure. A data integrity mechanism (DIM) computes check-
sums (CSs) which are stored in a data structure (DS) on the RAM during offload and
validated during onload.

Security of NVMe Offloaded Data in Large-Scale ML 11

Table 2. NVMensure’s data structures.

Advantages Disadvantages
DS1: - No False Positives - Linear increase of size
List - Most secure - Potential bottleneck when scaling up
DS2: - Constant size - No element deletion
Bloom - Simple implementation resulting in a high

Filter [3] - Most size efficient false positive rate (FPR)
DS3: - Constant size - Less size efficient than DS2Counting - Allows deletion of elements
Bloom - Lower FPR than DS2 - Low FPRFilter [16] due to deletion of elements
DS4 - Constant size - Less size efficient than DS2Cuckoo - More size efficient than DS3

Filter - Allows deletion of elements - Low FPR[12] - Lower FPR than DS2 (deletion)

and if they differ, an alarm is raised.6 This ensures integrity, as only valid check-
sums are present within the data structure. 7) The checksum corresponding to
the offload is immediately removed from the data structure, ensuring freshness,
as the utilized checksum becomes invalid on removal. 8) The validated data is
utilized for training purposes.
Storage-Efficient Data Structures. In LSML setups, where multiple giga-
bytes of data are offloaded, the size of the data structure holding the checksums
can present challenges and become a bottleneck for the system. To mitigate this
issue and to optimize the memory usage of NVMensure, the defender has the
option to select from four different data structures, which are listed with ad-
vantages and disadvantages in Tab. 2. Our baseline, offering the highest level
of security, is a straightforward list (DS1). The remaining three alternatives
consist of space-efficient probabilistic data structures, which reduce the memory
requirements, but sacrifice some security since they introduce a false positive rate
(FPR) dependent on the number of elements they store. Thereby, the Cuckoo
Filter [12] (DS4) poses the fastest alternative with minimal security sacrifices.
Runtime-Efficient Integrity Mechanisms. Like any other security mecha-
nism, NVMensure introduces additional overhead. To balance runtime efficiency
and security, the defender is provided with a choice of five different integrity
mechanisms, each offering varying levels of collision resistance and computa-
tional complexity. All of these considered mechanisms require the attacker to
adapt their perturbations in a manner that results in a checksum collision with
the benign data, to execute a successful and covert attack. The feasibility of
achieving this task depends on the chosen mechanism and the time window the
offloads reside on the NVMe, typically spanning only a few seconds. Therefore,
to encompass the full spectrum of the trade-off, it is reasonable to also con-
sider algorithms that do not provide formal collision resistance. Such methods
can still effectively detect poisoning attacks like NVMensure and offer the po-
tential for significant performance advantages over more intricate approaches.
We present a comprehensive overview of integrity mechanisms, along with their

6 In our experiments the training then stopped. Certainly, real-world scenarios can
roll back to a certain checkpoint and continue training automatically.

12 T. Krauß et al.

Table 3. NVMensure’s data integrity mechanisms.

Advantages Disadvantages
DIM1 - SHA-3 security standard - New and unestablishedBLAKE2bp [1] - High-performance (multi-threaded)
DIM2 - Collision resistant hash function - Computationally complex

SHA-256 [13] - More established than DIM1 - Some vulnerabilities known
DIM3 - Simplicity & wide adaption - Less secure than DIM1 & DIM2

MD5 [50] - Runtime efficiency - Collision & preimage attacks
DIM4 - Simplicity & cross-domain adaption - Limited error detection

CRC-32 [37] - Faster than DIM1 - DIM3 - Not designed for intentional attacks
DIM5 - Most simple solution - Designed for consecutive errors

LRC [18] - Fastest solution - Lowest security level

0 200 400 600
Training time in seconds

0

50

100

CP
U

ut
iliz

at
io

n
in

 %

0 100 200 300 400 500
Training time in seconds

0

50

CP
U

ut
iliz

at
io

n
in

 %

Fig. 4. Comparison of the CPU utilization per core for BLAKE2bp. One color repre-
sents one CPU core. On the left, one BLAKE2bp instance runs on a single thread, on
the right eight instances are processed by eight threads. The multi-threaded version
improves resource utilization by leveraging idle CPU cores.

respective advantages and disadvantages, in Tab. 3. Among these mechanisms,
BLAKE2bp [1] (DIM1) stands out as the fastest collision-resistant option. On
the other hand, while the Longitudinal Redundancy Check [18] (LRC, DIM5)
is the overall fastest version, it sacrifices a significant degree of security.

4.2 Instantiation of NVMevade for DeepSpeed

We implemented NVMensure inside DeepSpeed’s DeepNVMe [45] library, uti-
lizing efficient algorithm implementations for optimal performance. We present
details in App. A.2. During our experiments, we found that the runtime is mainly
affected by single-core CPU utilization. To address this, we implemented LRC
as the fastest and BLAKE2bp as the most secure integrity mechanisms, leverag-
ing multiple CPU cores. By splitting the offloaded data into equal segments and
calculating checksums concurrently on different cores in different threads, we op-
timize the utilization of idle CPU resources and greatly enhance the performance
of these versions. This positive effect can be observed in Fig. 4.

4.3 Evaluation

To assess the effectiveness of our defense, we utilize the identical experimental
setup as in Sect. 3.3. To assess the performance of NVMensure, we conducted
extensive benchmarking on all 20 combinations of data structures and integrity

Security of NVMe Offloaded Data in Large-Scale ML 13

Table 4. Comparison of SPS and SPE to the baseline without defense, categorized
by data structures and integrity mechanism, including the BLAKE2bp and LRC
multi-core versions (M-C).

Data Structure Integrity Mechanism SPS SPE (in minutes) SPS decrease in %
Without NVMensure 11.802 02:49.45 0%

List

BLAKE2bp [1] 3.233 10:18.55 72.6%
SHA-256 [13] 2.457 13:22.58 79.1%

MD5 [50] 1.160 29:17.00 90.1%
CRC-32 [37] 3.826 08:42.67 67.5%

LRC [18] 6.134 05:26.05 48.0%
(M-C) BLAKE2bp [1] 4.224 07:53.50 64.2%

(M-C) LRC [18] 10.642 03:07.92 9.8%
BLAKE2bp [1] 3.128 10:30.88 73.4%

Bloom SHA-256 [13] 2.491 13:22.85 78.9%
Filter MD5 [50] 1.124 30:14.00 90.4%

[3] CRC-32 [37] 3.816 08:44.07 67.6%
LRC [18] 6.163 05:24.53 47.7%

BLAKE2bp [1] 3.257 10:05.78 72.4%
Counting SHA-256 [13] 2.461 13:21.20 79.1%

Bloom Filter MD5 [50] 1.136 30:14.00 90.3%
[16] CRC-32 [37] 3.817 08:44.02 67.6%

LRC [18] 6.175 05:23.90 47.6%
BLAKE2bp [1] 3.254 10:14.69 72.4%

Cuckoo SHA-256 [13] 2.460 13:21.72 79.1%
Filter MD5 [50] 1.115 30:42.00 90.5%
[12] CRC-32 [37] 3.806 08:45.42 67.7%

LRC [18] 6.153 05:25.04 47.8%

mechanisms. Additionally, we evaluated the two additional versions that leverage
multi-core execution. During evaluation, we measure the runtime efficiency by
analyzing the samples processed per second (SPS) and the duration of one epoch
(SPE). The results are presented in Tab. 4 and discussed below. Additionally,
we track the utilization statistics of the GPU, RAM, and CPU to identify any
bottlenecks and to illustrate the impact of NVMensure on the system.

Storage Efficiency. We did not observe significant differences in RAM utiliza-
tion, hence the choice of data structure should be based primarily on its security.
The reason for this is that in our small-scale setup, a relatively small amount of
files is created on the NVMe and reused for subsequent offloads of the same pa-
rameter. We, anticipate that the data structure choice will significantly impact
RAM memory usage when scaling up, potentially becoming a bottleneck.

Runtime Efficiency. Analyzing the measurements presented in Tab. 4, we
observe that the runtime impact of the data structure used is negligible. For
instance, the decrease in SPS for BLAKE2bp across different data structures is
consistently around 3.2, with values of 3.233, 3.128, 3.257, and 3.254 for DIM1,
DIM2, DIM3, and DIM4, respectively. This pattern is similarly observed for
all other integrity mechanisms. However, within each data structure, significant
efficiency differences can be observed among different integrity mechanisms. For
instance, in the case of the list data structure, LRC achieved a speed of 6.134
SPS, making it 5.28 times faster than MD5 with 1.160 SPS and 1.98 times
faster than BLAKE2bp with 3.233 SPS. LRC emerged as the fastest integrity
mechanism, while MD5 exhibited the slowest performance. Notably, MD5 was

14 T. Krauß et al.

even slower than SHA-256 due to our utilization of a kernel implementation
for SHA-256. These findings highlight that, depending on the desired balance
between security and runtime efficiency, BLAKE2bp is the most sensible choice
for prioritizing security, whereas LRC is preferable for maximizing performance.
Furthermore, by introducing a multi-core execution of the integrity mechanism,
we achieved significant runtime improvements for both algorithms. As a result,
we observed performance enhancements ranging from 9.8% to 64.2%, depending
on the desired level of security.

Security Considerations. To bypass NVMensure, an attacker must generate
a collision on the integrity mechanism by providing modified NVMe offloaded
data that produces the same checksum as the unmodified data. SHA-256 and
BLAKE2bp are both highly collision-resistant cryptographic hash functions, ren-
dering collisions infeasible, especially with regard to the tight time window. Our
experiments reveal that data is typically residing on the NVMe between 0.33
and 0.95 seconds (with an average of 0.37 seconds). Therefore, BLAKE2bp is
the optimal choice regarding security due to its exceptional collision resistance.
Concerning LRC and CRC-32, generating collisions is achievable within polyno-
mial time, which makes these integrity mechanisms only effective against unso-
phisticated attacks. Notably, within our experiments, the LRC version detected
all NVMevade attacks, demonstrating its efficacy against unadapted attacks.

Probabilistic data structures involve a trade-off between storage efficiency
and security, as indicated by the false positive rate (FPR). In our experiments,
with a total of 12,548 NVMe offloads in one epoch, the Counting Bloom and
Cuckoo Filters, capable of deleting outdated entries, stored up to 127 entries
concurrently, resulting in FPRs of 0.02% and 0.0002%, respectively. However,
the Bloom Filter lacks element deletion functionality and saved all 12,548 en-
tries simultaneously, leading to a high FPR of 99.7% despite its 19,172-bit ca-
pacity. These FPRs show that using probabilistic data structures in NVMensure
is acceptable, as long as they support element deletion, without significantly
compromising security.

The data’s freshness is guaranteed as each checksum remains valid only for
a single validation process and is promptly invalidated by removing it from the
data structure. Consequently, attempts to substitute new offloads with previ-
ously copied data are rendered ineffective, making replay attacks ineffective.

Scaling to Large-Scale Environments. Our experiments were conducted on
a small-scale setup, as described in Sect. 3.3, due to limited access to expensive
large-scale hardware. However, we anticipate that larger deployments will be
more beneficial for our defense, as its runtime overhead will be reduced in larger
systems. In large-scale setups, CPU power is typically not a limiting factor,
unlike in our small-scale setup. Consequently, idle CPU resources in larger setups
can be utilized to handle the additional computational effort required by our
defense. This expectation is supported by observations we made when comparing
DeepSpeed [48] with and without activated NVMe offload in our small-scale
setup. In large-scale setups, NVMe offload improves computational efficiency and
enables the use of larger model architectures. However, in our small-scale system,

Security of NVMe Offloaded Data in Large-Scale ML 15

Table 5. Small-scale setup comparison of DeepSpeed with and without offload.

SPS SPE (in minutes)
DeepSpeed without NVMe offload 71.239 00:28.07

DeepSpeed with NVMe offload 11.802 02:49.45
Impact -83.43% +5926%

the runtime efficiency of NVMe-enabled version is reduced by 83.43%, as shown
in Tab. 5, due to increased communication overhead and CPU load. Similarly,
our defense introduces additional CPU load, suggesting a similar positive effect
when scaling up. Regarding memory consumption, the choice of data structure
is not critical in small-scale systems. However, when scaling up, the number of
offloads and corresponding checksums within the data structure increases. This
can become a bottleneck if using a data structure that grows linearly with the
number of offloads, such as a list. Then, the Cuckoo Filter [12] is a suitable
alternative as it reduces the memory footprint depending on the configuration.
Generally, Cuckoo Filters aim to achieve false positive rates on the order of 1%
or less. Moreover, the computational complexity of a list is O(n) while that of a
Cuckoo Filter is O(1), demonstrating even better runtime efficiency.

5 Related Work

Below, we examine related works, including targeted poisoning attacks against as
well as LSML frameworks and existing security methods for various components
of an LSML system (cf. Fig. 1), outlining potential synergies with our research.
Targeted Poisoning attacks. NVMensure has been specifically designed to en-
sure robust security against all types of poisoning attacks, including sophisticated
targeted poisoning. Although no instances of such attacks on NVMe offloaded
data have been demonstrated thus far, the potential for their development in
future work exists. Techniques employed in cutting-edge methods like TBT [46],
ProFlip [7], and T-BFA [47], which utilize bit-flips via Rowhammer [26], may be
considered for adaptation. However, these white-box attacks require full model
access and intricate architectural understanding. They are also offline attacks,
which poison a DNN post-training by flipping key bits based on factors such as
the model’s loss. Adapting these methods for NVMe offloaded data is challenging
due to the tight timing constraint and limited model access.

In contrast, NVMevade offers three variations of untargeted poisoning attacks
during training, requiring control solely over offloaded model portions or train-
ing parameters, and demanding minimal ML expertise. Meanwhile, NVMensure
effectively detects any modifications made to the NVMe offloaded data, offering
protection against potential future targeted poisoning attacks that may emerge
Frameworks powering LSML. DeepSpeed [48] has emerged as the leading
LSML framework, thanks to its unique NVMe offload feature enabling train-
ing of giant models. Other existing projects and frameworks for LSML focus
on parallelism strategies to distribute data and computation across hardware

16 T. Krauß et al.

instances [24] but lack the NVMe offload feature. Many of these projects, such
as NVIDIA’s Megatron-LM [53] for model, PipeDream [27] for pipeline, and
ZeRO [44] for data parallelism, have been integrated into DeepSpeed.
Dataset Cleaning Methods. Benign models require poison-free datasets, lead-
ing to the use of filtering-based approaches for reactive defense against data poi-
soning attacks.7 Outlier detection in the input space [35] is one such method,
but also classification algorithms can be used to filter malicious samples [36]. For
additional information, we direct the reader to [14].
Security of CPU and RAM. Several frameworks [39,58,23,32] secure the
CPU-based training process by using a Trusted Execution Environment (TEE)
like Intel SGX [10]. Another proposed solution is Perun [33], which relies on
TMP [21] to attest the entire OS, ensuring trust also for accelerators. Albeit
those approaches introduce overhead, advancements in CPU power and TEE
memory capacity in next-generation hardware can address this bottleneck.
Secure execution on GPUs. Several works have addressed secure ML compu-
tation offloading to GPUs. Slalom [57], enables outsourcing of linear model layer
computation from a TEE to GPUs. Graviton [59], proposed for single-GPU se-
tups, extends TEE security guarantees to GPUs, although some technical effort
is needed to support multiple GPUs. HETEE [64] introduces a container running
on separate trusted hardware to control access to untrusted accelerators, while
HIX [20] modifies the GPU driver within a TEE to ensure trusted code usage.
Overall, the aforementioned methods are orthogonal to NVMensure and can
be combined to create a comprehensive security architecture that protects all
components of an LSML system. This technical effort exceeds the scope of this
work but is possible for real-world scenarios.

6 Conclusion

In this paper, we analyzed the security of large-scale machine learning (LSML)
and recent advancements in securing distributed ML training. While security
frameworks for CPU and GPU training exist, the NVMe offload mechanism
introduced in DeepSpeed, which enables efficient GPU memory utilization and
training of billion parameter models, lacked attention in terms of security.

In this work, we are the first to examine the security of NVMe offloads point-
ing out the vulnerable to untargeted poisoning attacks. To demonstrate this
weakness, we propose NVMevade, which uses three distinct methods to exploit
NVMe offloads and negatively affect model performance and training speed. To
close the vulnerability, we propose NVMensure, the first defense against poison-
ing attack, targeted or untargeted, on NVMe offloads in LSML. We implement
attack and defense for the DeepSpeed library, demonstrate the NVMensure’s
effectiveness, and explore security-performance trade-offs one can achieve when
opting for various integrity protection methods and data structures.
7 Since LSML models are normally trained on publicly available data that can be

scrutinized by experts, dataset privacy is not a concern.

Security of NVMe Offloaded Data in Large-Scale ML 17

Acknowledgment

We thank the Private AI Collaborate Research Institute which is co-sponsored
by Intel Labs(www.private-ai.org) for partially supporting this research.

References

1. Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: Simpler,
Smaller, Fast as MD5. ACNS (2013)

2. Bagdasaryan, E., Shmatikov, V.: Blind Backdoors in Deep Learning Models.
USENIX Security (2021)

3. Bloom, B.H.: Space/Time Trade-Offs in Hash Coding with Allowable Errors. Com-
mun. ACM (1970)

4. Bojar, et al.: Findings of the 2016 Conference on Machine Translation. Proceedings
of the First Conference on Machine Translation (2016)

5. Brown, et al.: Language Models are Few-Shot Learners. NeurIPS (2020)
6. Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E.,

Lee, P., Lee, Y.T., Li, Y., Lundberg, S., Nori, H., Palangi, H., Ribeiro, M.T., Zhang,
Y.: Sparks of Artificial General Intelligence: Early experiments with GPT-4. arXiv
preprint arXiv:2303.12712 (2023)

7. Chen, H., Fu, C., Zhao, J., Koushanfar, F.: ProFlip: Targeted Trojan Attack with
Progressive Bit Flips. IEEE/CVF ICCV (2021)

8. Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted Backdoor Attacks on Deep
Learning Systems Using Data Poisoning. arXiv preprint arXiv:1712.05526 (2017)

9. Collobert, R., Weston, J.: A Unified Architecture for Natural Language Processing:
Deep Neural Networks with Multitask Learning. ICML (2008)

10. Costan, V., Devadas, S.: Intel SGX explained. Cryptology ePrint Archive (2016)
11. El Merabet, H., Hajraoui, A.: A Survey of Malware Detection Techniques based

on Machine Learning. IJACSA (2019)
12. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo Filter: Prac-

tically Better Than Bloom. CoNEXT (2014)
13. Gallagher, P., Director, A.: Secure Hash Standard (shs). FIPS PUB (1995)
14. Goldblum, M., Tsipras, D., Xie, C., Chen, X., Schwarzschild, A., Song, D., Mądry,

A., Li, B., Goldstein, T.: Dataset Security for Machine Learning: Data Poisoning,
Backdoor Attacks, and Defenses. IEEE PAMI (2022)

15. Graves, A., Mohamed, A.r., Hinton, G.: Speech Recognition with Deep Recurrent
Neural Networks. ICASSP (2013)

16. Guo, D., Liu, Y., Li, X., Yang, P.: False Negative Problem of Counting Bloom
Filter. IEEE Transactions on Knowledge and Data Engineering (2010)

17. Hilal, W., Gadsden, S.A., Yawney, J.: Financial Fraud: A Review of Anomaly
Detection Techniques and Recent Advances. Expert Syst. Appl. (2022)

18. International Organization for Standardization: Information processing — Use of
longitudinal parity to detect errors in information messages. ISO Standard ISO
1155, ISO (2001)

19. Jagielski, M., Oprea, A., Biggio, B., Liu, C., Nita-Rotaru, C., Li, B.: Manipu-
lating Machine Learning: Poisoning Attacks and Countermeasures for Regression
Learning. IEEE S&P (2018)

20. Jang, I., Tang, A., Kim, T., Sethumadhavan, S., Huh, J.: Heterogeneous Isolated
Execution for Commodity GPUs. ASPLOS (2019)

www.private-ai.org

18 T. Krauß et al.

21. Kinney, S.L.: Trusted Platform Module Basics: Using TPM in Embedded Systems.
Elsevier (2006)

22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet Classification with Deep
Convolutional Neural Networks. NeurIPS (2017)

23. Le Quoc, D., Gregor, F., Singh, J., Fetzer, C.: SGX-PySpark: Secure Distributed
Data Analytics. WWW (2019)

24. Mechanics, M.: What runs ChatGPT? Inside Microsoft’s AI supercomputer | Fea-
turing Mark Russinovich. https://youtu.be/Rk3nTUfRZmo (2023)

25. Microsoft Research: Turing NLG: A 17 Billion Parameter Language
Model by Microsoft. https://www.microsoft.com/en-us/research/blog/
turing-nlg-a-17-billion-parameter-language-model-by-microsoft/ (2021)

26. Mutlu, O., Kim, J.S.: RowHammer: A Retrospective. IEEE TCAD (2020)
27. Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V., Devanur, N., Granger,

G., Gibbons, P., Zaharia, M.: PipeDream: Generalized Pipeline Parallelism for
DNN Training. ACM SOSP (2019)

28. Nvidia: A100 GPU. https://www.nvidia.com/en-us/data-center/a100/ (2023)
29. Nvidia: DGX Systems. https://www.nvidia.com/de-de/data-center/dgx-systems/

(2023)
30. OpenAI: Chatgpt. https://openai.com/research/chatgpt (2023)
31. OpenAI: GPT-4 Technical Report. arXiv preprint arXiv:2303.08774 (2023)
32. Orenbach, M., Lifshits, P., Minkin, M., Silberstein, M.: Eleos: ExitLess OS Services

for SGX Enclaves. EuroSys (2017)
33. Ozga, W., Quoc, D.L., Fetzer, C.: Perun: Secure Multi-Stakeholder Machine Learn-

ing Framework with GPU Support. arXiv preprint arXiv:2103.16898 (2021)
34. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,

Lin, Z., Gimelshein, N., Antiga, L., et al.: PyTorch: An Imperative Style, High-
Performance Deep Learning Library. NeurIPS (2019)

35. Paudice, A., Muñoz-González, L., Gyorgy, A., Lupu, E.C.: Detection of Adversar-
ial Training Examples in Poisoning Attacks through Anomaly Detection. arXiv
preprint arXiv:1802.03041 (2018)

36. Peri, N., Gupta, N., Huang, W.R., Fowl, L., Zhu, C., Feizi, S., Goldstein, T.,
Dickerson, J.P.: Deep k-NN Defense against Clean-label Data Poisoning Attacks.
ECCV (2020)

37. Peterson, W.W., Brown, D.T.: Cyclic Codes for Error Detection. Proceedings of
the IRE (1961)

38. Post, M.: A Call for Clarity in Reporting BLEU Scores. In: Proceedings of the
Third Conference on Machine Translation: Research Papers (2018)

39. Quoc, D.L., Gregor, F., Arnautov, S., Kunkel, R., Bhatotia, P., Fetzer, C.: Se-
cureTF: A Secure TensorFlow Framework. ACM/IFIP Middleware (2020)

40. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving Lan-
guage Understanding by Generative Pre-Training. OpenAI (2018)

41. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language
Models are Unsupervised Multitask Learners. OpenAI blog (2019)

42. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y.,
Li, W., Liu, P.J.: Exploring the Limits of Transfer Learning with a Unified Text-
to-Text Transformer. JMLR (2020)

43. Rajbhandari, S., Li, C., Yao, Z., Zhang, M., Aminabadi, R.Y., Awan, A.A., Rasley,
J., He, Y.: DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training
to Power Next-Generation AI Scale. arXiv preprint arXiv:2201.05596 (2022)

44. Rajbhandari, S., Rasley, J., Ruwase, O., He, Y.: ZeRO: Memory Optimizations
toward Training Trillion Parameter Models. SC20 (2020)

https://youtu.be/Rk3nTUfRZmo
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/de-de/data-center/dgx-systems/
https://openai.com/research/chatgpt

Security of NVMe Offloaded Data in Large-Scale ML 19

45. Rajbhandari, S., Ruwase, O., Rasley, J., Smith, S., He, Y.: ZeRO-Infinity: Break-
ing the GPU Memory Wall for Extreme Scale Deep Learning. arXiv preprint
arXiv:2104.07857 (2021)

46. Rakin, A.S., He, Z., Fan, D.: TBT: Targeted Neural Network Attack with Bit
Trojan. IEEE/CVF CVPR (2020)

47. Rakin, A.S., He, Z., Li, J., Yao, F., Chakrabarti, C., Fan, D.: T-BFA: Targeted
Bit-Flip Adversarial Weight Attack. IEEE PAMI (2022)

48. Rasley, J., Rajbhandari, S., Ruwase, O., He, Y.: DeepSpeed: System Optimiza-
tions Enable Training Deep Learning Models with Over 100 Billion Parameters.
SIGKDD (2020)

49. Ren, J., Rajbhandari, S., Aminabadi, R.Y., Ruwase, O., Yang, S., Zhang, M., Li,
D., He, Y.: ZeRO-Offload: Democratizing Billion-Scale Model Training. USENIX
ATC (2021)

50. Rivest, R.: The MD5 Message-Digest Algorithm. IETF (1992)
51. Saha, A., Subramanya, A., Pirsiavash, H.: Hidden Trigger Backdoor Attacks. AAAI

(2020)
52. Sarwate, D.V.: Computation of Cyclic Redundancy Checks via Table Look-Up.

Commun. ACM (1988)
53. Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., Catanzaro, B.:

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism. arXiv preprint arXiv:1909.08053 (2020)

54. Smith, S., Patwary, M., Norick, B., LeGresley, P., Rajbhandari, S., Casper, J., Liu,
Z., Prabhumoye, S., Zerveas, G., Korthikanti, V., Zhang, E., Child, R., Aminabadi,
R.Y., Bernauer, J., Song, X., Shoeybi, M., He, Y., Houston, M., Tiwary, S., Catan-
zaro, B.: Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B,
A Large-Scale Generative Language Model (2022)

55. Tian, Z., Cui, L., Liang, J., Yu, S.: A Comprehensive Survey on Poisoning Attacks
and Countermeasures in Machine Learning. ACM Comput. Surv. (2022)

56. Tian, Z., Cui, L., Liang, J., Yu, S.: A Comprehensive Survey on Poisoning Attacks
and Countermeasures in Machine Learning. ACM CSUR (2022)

57. Tramèr, F., Boneh, D.: Slalom: Fast, Verifiable and Private Execution of Neural
Networks in Trusted Hardware. ICLR (2018)

58. Tsai, C.C., Porter, D.E., Vij, M.: Graphene-SGX: A Practical Library OS for Un-
modified Applications on SGX. USENIX ATC (2017)

59. Volos, S., Vaswani, K., Bruno, R.: Graviton: Trusted Execution Environments on
GPUs. USENIX OSDI (2018)

60. Xia, G., Chen, J., Yu, C., Ma, J.: Poisoning Attacks in Federated Learning: A
Survey. IEEE Access (2023)

61. Xiao, H., Biggio, B., Brown, G., Fumera, G., Eckert, C., Roli, F.: Is Feature Selec-
tion Secure against Training Data Poisoning? PMLR (2015)

62. Yang, C., Wu, Q., Li, H., Chen, Y.: Generative Poisoning Attack Method Against
Neural Networks. arXiv preprint arXiv:1703.01340 (2017)

63. Yao, F., Rakin, A.S., Fan, D.: DeepHammer: Depleting the Intelligence of Deep
Neural Networks through Targeted Chain of Bit Flips. USENIX Security (2020)

64. Zhu, J., Hou, R., Wang, X., Wang, W., Cao, J., Zhao, B., Wang, Z., Zhang, Y.,
Ying, J., Zhang, L., et al.: Enabling Rack-scale Confidential Computing using
Heterogeneous Trusted Execution Environment. IEEE S&P (2020)

A Instantiation for DeepSpeed

Below, we provide implementation details of our approaches for DeepSpeed [48].

20 T. Krauß et al.

A.1 NVMevade

Tab. 6 depicts the parameters of NVMevade for attack modes 1 and 2. Fur-
ther, we want to report, that our scanning process confirmed that DeepSpeed
offloads three types of data: model parameters, optimizer states, and gradients.
Following, we provide additional information for the different attack modes.

Table 6. NVMevade’s parameters for bit-flips in attack mode 1 and 2.

NVMevade’s Parameters Mode 1 Mode 2
P1: Percent of poisoned bytes within each offloaded file 100% 0.0016%
P2: Percent of poisonings within lower bytes of float16 parameters 100% 100%
P3: Percent of poisonings within upper bytes of float16 parameters 100% 25%
P4: Threshold of poisonings for lower bytes in percentage of the file 100% 0.0002%
P5: Threshold of poisonings for upper bytes in percentage of the file 100% 0.0027%
P6: Continuous poisoning time window 100% 100%

Mode 1 and 2. During the poisoning process via bit-flips, we simultaneously
attacked all offloaded data. The most impactful perturbations were made in in-
termediate training parameters, namely gradients and optimizer states, leading
to immediate gradient overflows. In benign training, DeepSpeed scales gradients
using a scaling factor to address gradient underflows. However, in NVMevade’s
implanted overflow scenario, the current training step is skipped, the scaling
factor is halved, and the training is halted. When the scaling factor reaches a
configured minimum, the entire DeepSpeed process is interrupted with an ex-
ception, typically occurring within a few steps of malicious overflows. When
adjusting the parameters for mode 2, the objective is to minimize the occur-
rence of overflows while ensuring a significant level of detrimental modifications,
thereby preventing the training process from abruptly terminating.
Mode 3. Due to DeepSpeed’s implementation of a basic sanity check on file
sizes, adjusting file size might be necessary if a newly offloaded file with the
same name but different size appears during replay attacks. The adjustment can
be done via Python’s truncate function to reduce size or zero-padding to increase
it. Yet, our experiments didn’t encounter this scenario.

A.2 NVMensure

NVMensure is implemented in C++ within the DeepNVMe [45] library. The
runtime of integrity mechanisms varies depending on the implementation. MD5
and BLAKE2bp employ C++ reference implementations, while SHA-256 utilizes
a highly efficient kernel implementation accessed through the kernel’s crypto
API. We implemented CRC-32 [52] and LRC [18] by ourselves in C++.

	Security of NVMe Offloaded Data in Large-Scale Machine Learning

