
Ransomware Detection in Databases through
Dynamic Analysis of Query Sequences

Christoph Sendner, Lukas Iffländer, Sebastian Schindler, Michael Jobst,
Alexandra Dmitrienko, Samuel Kounev

University of Würzburg, Germany
firstname.lastname@uni-wuerzburg.de

Abstract—Ransomware is an emerging threat that imposed a
$ 5 billion loss in 2017, rose to $ 20 billion in 2021, and is
predicted to hit $ 256 billion in 2031. While initially targeting
PC (client) platforms, ransomware recently leaped over to server-
side databases—starting in January 2017 with the MongoDB
Apocalypse attack and continuing in 2020 with 85,000 MySQL
instances ransomed. Previous research developed countermeasures
against client-side ransomware. However, the problem of server-
side database ransomware has received little attention so far. In
our work, we aim to bridge this gap and present DIMAQS (Dy-
namic Identification of Malicious Query Sequences), a novel anti-
ransomware solution for databases. DIMAQS performs runtime
monitoring of incoming queries and pattern matching using two
classification approaches (Colored Petri Nets (CPNs) and Deep
Neural Networks (DNNs)) for attack detection. Our system design
exhibits several novel techniques like dynamic color generation to
efficiently detect malicious query sequences globally (i.e., without
limiting detection to distinct user connections). Our proof-of-
concept and ready-to-use implementation targets MySQL servers.
The evaluation shows high efficiency without false negatives for
both approaches and a false positive rate of nearly 0%. Both
classifiers show very moderate performance overheads below 6%.
We will publish our data sets and implementation, allowing the
community to reproduce our tests and results.

Index Terms—Database, Ransomware, Colored Petri Nets, Ma-
chine Learning, Attack Modeling, MySQL

I. INTRODUCTION

In today’s era of digital transformation, data has become
more critical than ever before. The amount of data we produce
daily is astonishing—every day, hundreds of millions of people
are taking photos, make videos, and exchange messages. Fur-
thermore, data is not only a valuable asset for users nowadays
but has also become wheels for the digital transformation
vehicle that requires a lot of data for AI-enabled services
and training machine learning models. Given such trends, the
importance of database security is hard to overestimate—the
rapid growth of the data volume stored in the databases in cloud
environments and enterprise data centers makes them attractive
attack targets.

Traditionally, attacks on data aim at undermining confiden-
tiality and authenticity. More recently, however, attacks against
the availability of data, services, and users became more com-
mon. Modern attackers deploy ransomware, malicious software
that claims to have encrypted all data—while in numerous
instances deleting the data—and requires the victim to pay
a ransom for the decryption key. The financial loss from
ransomware is significant—it reached 5 billion USD in 2017,

rose to 20 billion by 2021, and is predicted to hit 256 billion
by 2031 [27], [2].

While the first ransomware attacks targeted client platforms
(e.g., information stored in users’ files), such attacks also
leaped over to server-side databases. In January 2017, tens
of thousands of MongoDB servers suffered from an attack
called MongoDB Apocalypse [8], followed by a second attack
wave targeting MySQL servers [35]. A more recent large-scale
campaign hit 85,000 MySQL instances in 2020 [23].

One reason for the rise of the server-side ransomware is that
enterprises can afford to pay higher ransoms than private users.
As a comparison, the typical ransom amount for regular users
lies in the range of a few hundred dollars. At the same time,
businesses can pay more—for instance, Colonial Pipeline paid
4.4 million USD of ransom [1]. Second, recently, researchers
and antivirus companies focused on countermeasures against
client-side ransomware. However, to date, no solutions exist
against ransomware targeting database servers, thus making
databases easy attack targets.

Existing anti-ransomware solutions limit themselves to
client-side ransomware detection and follow two dominant
strategies: Signature-based detection of malicious binaries and
runtime monitoring and behavioral analysis for anomaly de-
tection. The first one builds upon the detection of malicious
binaries and is typically used by antivirus vendors. In contrast,
the second strategy originates from research papers [10], [9]
and relies on runtime monitoring of file accesses and the de-
tection of malicious activity based on heuristics. Unfortunately,
both strategies are not suitable for detection of server-side
ransomware attack scenarios, where attackers connect to the
database remotely and, hence, there is no local malicious binary
to detect. Furthermore, monitoring at the file system level for
abnormal activity is not appropriate either, due to a lack of
correlation between attacker activity and file access patterns.

Dealing with ransomware in databases faces the follow-
ing challenges. Foremost, one couldn’t straightforwardly ap-
ply existing Intrusion Detection Systems (IDS) such as [15],
[32], as they typically rely on detection of single malicious
queries, while here an attacker would typically use a sequence
of queries where each isolated query is seemingly benign
(e.g., listing available tables, or entering a data record with
instructions for ransom payments). Second, existing methods
for profiling using activities ([5], [33], [6]) won’t help either,
as an attacker can potentially use multiple accounts to insert

different queries of a malicious query sequence. Third, an
attacker could interleave malicious queries from the attack
sequence with benign queries, which stretches attack duration,
yet significantly complicates detection. Fourth, even though DB
admins generally backup data more often than regular users, the
updates in between backups remain vulnerable, and restoring
backups results in undesirable downtime. Finally, potentially
useful machine learning approaches require data for training.
However, there exist no data sets that include query sequences
of server-side ransomware.

Contributions. In this paper, we aim to improve security of
databases and tackle the above discussed challenges imposed by
server-side ransomware. In particular, we make the following
contributions:

• We design DIMAQS (Dynamic Identification of Malicious
Query Sequences), a novel intrusion detection framework
for databases that, in contrast to existing IDSes that
focus on detection of isolated malicious queries, can
detect malicious query sequences. In its heart, DIMAQS
has a classifier that analyzes arriving queries along with
preceding ones (within a pre-defined time window) and
classifies them as being malicious or benign. We instan-
tiated DIMAQS classifier using two methods: (i) Colored
Petri Nets (CPNs) and (ii) supervised Machine Learning
(ML). The CPN-based classifier models the series of
attack events as transitions in between the states of the
CPN and detects if any of the arriving queries tran-
sits the system into an attack state. Our CPN leverages
several novel techniques (dynamic color creation, token
merging, and token expiration) we introduced to reduce
system representation complexity and improve detection
efficiency. The second classifier relies on a Recurrent
Neural Network (RNN), the deep neural network-based
detection technique that does not require labor-intensive
engineering of features. To train our RNN, we collected
a first dataset of malicious query sequences, which is
available at https://github.com/sss-wue/DIMAQS.

• We implemented an end-to-end attack detection tool for
MySQL databases in a form of a MySQL plugin that
is easily installable on existing MySQL servers—thus
preserving compatibility with legacy software—while only
imposing a very moderate performance overhead of 6% for
the ML-based classifier and only 0.2% for the CPN-based
classifier. The tool can perform system-wide monitoring
and detect malicious sequences injected through several
user sessions and interleaved with benign queries, elimi-
nating the most obvious evasion strategies.

• We evaluated ability of DIMAQS to detect ransomware
attacks and compared effectiveness of both classifiers.
Our experiments show that both classifiers perform pretty
well: They can detect attacks with 100% success rate, and
CPN-based classifier has no false positives, while ML-
based has a very low rate of false positives of 0.003%.
On the other hand, CPN-based approach requires manual
effort of CPN engineering—the disadvantage which is

eliminated with the ML-based approach. To summarize,
CPN-based approach is more efficient and has superior
detection performance at the cost of additional manual
effort, while ML-based approach is more powerful when
it comes to adaptation to new attack scenarios.

We also note that, while the design of DIMAQS was
motivated by server-side ransomware attacks, its ability to
detect malicious query sequences is likely applicable to other
advanced attack scenarios that involve query sequences rather
than isolated malicious queries (e.g., an advanced SQL injection
aiming at remote code execution [12]). Adaptation of a CPN-
based classifier to new attack scenarios will require manual
effort of CPN engineering, while an ML-based approach has
the advantage of being easily adaptable without such a manual
effort by simply retraining the ML model on a new corpus of
attack data. We leave evaluation of applicability of DIMAQS
for detection of other attack scenarios for future work.

II. FRAMEWORK

We first introduce the attack scenario and the adversary
model guiding our design decisions. Next, we describe the
system architecture, its components and provide details of
implementation.

A. Attack Scenario

Our attack scenario is inspired by real-world attack cam-
paigns [35], [23]. The attack begins when an attacker connects
remotely to the database using a TCP connection and gains
root access (e.g., brute-forcing the ‘root’ password). Next,
they enumerate the database data by retrieving the list of the
databases present. Subsequently, the attacker creates a new table
with an arbitrary name (e.g., with the name ‘WARNING’),
either in a new database (e.g., named ‘PLEASE READ’) or
in an already existing database. This table includes a ransom
message containing a contact email address as well as payment
instructions to a bitcoin address. Finally, the attacker deletes the
databases on the server and disconnects.

While the scenario above describes attack steps recorded in
real-world attacks, we also accept permutations of attack steps.

B. Adversary Model

We make the following assumptions about the goal and
the capabilities of the attacker. The attacker’s goal is to de-
stroy the available data and claim a ransom. We assume the
remote attacker without physical access to the database. We
trust the software running on the server, i.e., the attacker has
no malicious software installed on the system. However, the
attacker has full access to the network and can communicate
with the Database Management Systems (DBMS) [5], [33],
[6] without any restrictions. Furthermore, we assume an at-
tacker with administrator-level privileges to the DBMS. This
assumption often proves true in practice since the problem
of weak or re-used passwords [18] is well known and has
not been satisfactorily solved for decades. While two-factor
authentication can resolve such issues, and most databases
implement it, widespread usage is still rare. Alternatively, an

https://github.com/sss-wue/DIMAQS

Server
Database

Monitoring

Controller Incident
Resolution

Query
Rewriter

NotifierClassifier

DIMAQS Plugin

(1)

(2)

(3) (4)

(5)
(6)

(7)
(8)

(9)

(10)

Fig. 1: System architecture of DIMAQS. Dark gray boxes are
components provided by the database, light gray boxes are
components that interface between DIMAQS and the database,
and white boxes belong to DIMAQS itself.

attacker might exploit a security vulnerability like [14] to gain
administrative privileges. Additionally, we assume an attacker
can leverage multiple user accounts to access the DBMS and,
thus, use several connections to evade detection.

We, however, do not assume administrator privileges of
the attacker to the operating system. Furthermore, we leave
DoS attacks out of our attacker model since an attacker with
administrator privileges to DBMS can always cause a denial
of service, e.g., through the creation of fake DBs or tables and
exhausting DB’s memory.

C. System Architecture

Figure 1 shows the DIMAQS system architecture.
DIMAQS comprises six components: (i) Monitoring,
(ii) Classifier, (iii) Incident Resolution,
(iv) Notifier, (v) Query Rewriter and
(vi) Controller. The Monitoring and Query
Rewriter components use the query parser embedded
in the database server. Hence, the figure shows them as
belonging to both the DIMAQS plugin and the database server.
In the following, we describe the role of every component in
more detail.
Monitoring The Monitoring component monitors all in-
coming queries for potentially malicious query sequences.
This module monitors all queries arriving through different
connections, not specific to user sessions (c.f., Section II-B).
Classifier The Classifier component decides whether DI-
MAQS deems a query sequence as malicious. Since we consider
query sequences, any viable type of Classifier keeps an
internal state updated after each query. Further, Classifier
have an inherent limit to the number of observable sequences—
otherwise, misclassification would rise. Thus, we define a
time window t, a system parameter of DIMAQS, in which
an attacker can be detected. We instantiate Classifier

using two methods—Colored Petry Nets (CPNs) and Machine
Learning (cf. Sections III and IV, respectively).
Incident Resolution When an event in the Classifier
component issues an action, it must be carried out by the
Incident Resolution module. Possible actions are “cre-
ate backup,” “rewriting” and “create notification.” Incident
Resolution performs the rewriting of malicious queries as
well as creates backups.

Create backup action. Whenever the system detects a po-
tential attack, the Incident Resolution component will
move the database or the table dropped by an attacker to a
safe place instead of deleting it. The backup copy is invisible
to users with and without admin rights (and, hence, from the
attacker) so that an attacker cannot drop it again or even identify
that such a backup exists. Incident Resolution uses a
“rewriting” action to hide backed-up tables and databases from
users. While performing such a move, Incident Reso-
lution renames the protected tables to avoid name collisions.

Rewriting Action. Rewriting actions rewrite queries to ex-
clude tables and databases created by DIMAQS. The Query
Rewriter component performs these actions.

Notification action. The Incident Resolution compo-
nent uses notification action to notify an administrator about
a detected attack. The Notifier component performs this
notification as described below.
Notifier The Notifier component informs about security
incidents by emailing the DIMAQS administrator. The gathered
information relevant to the incident is attached to the notifi-
cation so that the administrator can evaluate the incident and
respond accordingly (e.g., restore the deleted table).
Query Rewriter The Query Rewriter component rewrites
queries to exclude tables and databases created by DIMAQS
from query results. For a ‘rewriting’ action, the Query
Rewriter receives the name of the table and, if applicable,
the name of the database from the Incident Resolution
component. If the queries are nested, the Query Rewriter
extracts them into sub-queries, rewriting each sub-query sepa-
rately. For instance, a query dropping a table will be rewritten
to move the table to a safe storage space. This operation
happens without any indication to the attacker. Additionally,
some statements that list tables and databases will be rewritten
to exclude the hidden information from query results.
Controller The Controller component connects all other
DIMAQS components. It is the central element orchestrating
the incoming query processing by other components, e.g.,
through the invocation of the Classifier component for
state classification or the Incident Resolution compo-
nent to initiate incident resolution upon attack detection.

D. Component Interaction

Figure 1 depicts the interaction between the components dur-
ing query processing. DIMAQS classifies query sequences by
sequentially processing queries. The Classifier internally
tracks the DBMS state (i.e., the query sequences). The database
server first receives the query and then notifies Monitoring
(1). If Monitoring receives a potentially malicious query

type, the Controller is notified (2). The Controller
then forwards the relevant query to the Classifier (3) for
evaluation. The Classifier returns the classification result
to the Controller (4). There are two possible outcomes:
the query’s classification is either benign or part of a potential
attack. In the former case, the Controller returns, and
the server executes the query as-is (9). In the latter case,
the query is considered malicious, and the Controller
calls Incident Resolution (5), which in turn backs up
dropped tables and rewrites the malicious query using Query
Rewriter (6). It then invokes the Notifier to inform
the administrator (7). The Controller then receives the
rewritten “disarmed” query from Incident Resolution
(8). The database server then executes the query (9). The
Controller informs Monitoring when additional objects
need to be observed (10), e.g., when a query creates new tables.

E. Component Implementation

DIMAQS design is generic and can be applied to different
database technologies. For illustration, we have chosen to pro-
totype it for MySQL servers—our implementation is realized
as MySQL plugin compatible with MySQL server versions
5.7.x. To function, DIMAQS requires the mysqlservices library
provided by the MySQL server. We chose the C++11 language
for DIMAQS since it is the default language for MySQL
plugins. DIMAQS consists of 4908 lines of code (LoC). In the
following, we detail the implementation of DIMAQS modules.
MySQL Integration: The plugin is loaded during MySQL
server start-up and registers itself as an auditing plugin. Per
default, the MySQL server does not provide any event that
returns the atomic values of database elements affected by
INSERT, UPDATE, and DELETE queries. These queries are
typically used by attacks like mimicry, e.g., for the insertion of
ransom messages. To allow us to access the atomic values,
we generate “before INSERT/UPDATE” triggers for every
table. In these triggers, we execute a user-defined function,
forwarding the values affected by the queries to the controller
for evaluation. As detailed in the MySQL trigger syntax [11],
a trigger becomes associated with a table named tbl_name.
For other queries, the MySQL server plugin interface provides
multiple notifications [11].
Monitoring: Additional triggers are required to access in-
formation that is not transparent to the DIMAQS plugin
when using MySQL’s audit features. Trigger creation occurs
when loading the plugin, and existing triggers are recreated
after server start-up since the database structure might have
changed. Trigger creation within so-called “stored procedures”
or “stored functions,” the conventional concepts supported
by the MySQL server, is not possible. Due to this limi-
tation, the creation must be within the plugin code. The
function dimaqs_plugin_init() performs the creation
of the additional triggers and is called directly after initial-
ization of the server and before entering the listening state.
dimaqs_plugin_init() creates a trigger for every non-
virtual database. Virtual databases contain read-only views

Initial1

Initial2

Initial3

DBListed

TabListed

ColListed

TabCreated

ObjDel

MsgInserted

NotifyAdmin

ListDB

ListTab

ListCol

CreateTab

DelDB

DelTab

ModTab

InsertMsg

Always

States: Initialx: initial states; Listx: objects listed, TabCreated: table
created; ObjDel: object (database or table) deleted; MSGInserted:
ransom message inserted; NotifyAdmin: notification sent
Transitions: ListDB : list databases; ListTab: list tables; ListCol

list columns; CreateTable: create table; DropTable: drop table;
ModifyTable: modify table; InsertMsg: insert ransom message

Fig. 2: The CPN used to classify database transactions. All arcs
are weighted with a value of 1 token.

and have no database files associated with them. Hence, the
protection of virtual databases is not necessary.

The INSERT and UPDATE triggers call eval_value().
Several values are passed to that function, namely (1) schema
name, (2) table name, and (3) new column values. Using this
structure, we can identify inserted/updated values.

Classifier The Classifier implementation depends on the
used approach. We describe the implementations for a Petri-
Net-based classifier in Section III and a ML-based classifier in
Section IV-D.

Incident Resolution The Incident Resolution backs
up dropped databases and deleted values. The renaming of
databases is not trivial due to MySQL limitations. MySQL
added a command to carry out a database renaming called
’RENAME DATABASE <database_name>.’ However, this
command was only active through a few minor releases before
its discontinuation. The simplest way to rename a database is
to move its tables to another database and recreate the affected
triggers. The function renameTable() performs this renam-
ing. If a database drop occurs, renameDatabase() calls
the renameTable() for every table. For backup actions, a
’DROP DATABASE <db_name>’ does not require rewriting.
However, before executing, renameTable or renameDatabase
back up the database tables.

Notifier The Notifier messages the administrator with all
available information about the suspected attack. Administrator
credentials are configurable.

Query Rewriter The Query Rewriter rewrites a query by
adding a WHERE/AND condition to hide sensitive information
or rewrites it entirely, e.g., for backup operations.

Controller The Controller is implemented using the visitor
design pattern. This visitor extracts the nested statements from
inside to outside. It then forwards each extracted query to
Classifier.

III. PETRI NET CLASSIFIER

Petri Nets are a commonly used mathematical modeling
language for the description of distributed systems [28]. A
Petri Net is a directed bipartite graph, in which nodes represent
places and transitions, while edges, called arcs, connect either a
place to a transition or a transition to a place, but never connect
two places or two transitions directly. Transitions are events in
the system, and places are conditions that need to be satisfied
for the transition to fire.

Places may contain a discrete number of marks called
tokens. Transitions fire if they are enabled, which is achievable
by placing enough input tokens on the input places—i.e.,
places directly connected to the transition. Colored Petri Nets
(CPNs) [19] enable support for tokens of different types, also
known as token colors.

Extensions to CPNs. New for CPNs, we use token colors to
attach runtime information to the tokens, such as timestamps,
table names, and modified cell values. The token colors also
provide additional information in the case of an incident. Since
such token colors are dynamic and unbounded, conventional
CPNs would be unable to represent all the possible states.
Hence, we introduce extensions to CPNs to deal with dynamic
information.

In particular, we extend CPNs with three new features. The
first is the dynamic creation of colors for storing information
inside the tokens. The second is the ability to merge tokens
that are identical except for their timestamps. This extension
improves performance and does not impede classification accu-
racy. The third extension allows for token expiration. Since each
place in the CPN can have timeout information, this feature can
be used to limit the time window of analyzed query sequences.
The expiration timeout is a security parameter since, on the one
hand, reducing it can minimize false positives but increases the
chances of attacks that stretch over time to escape detection. On
the other hand, increasing this value can decrease this risk while
increasing the chance of false-positive detection. The observed
attacks usually transpired during a few seconds, making low
values an option for false-positive prone workloads.

The Security Policy component configures the CPN
classifier describing its places, place actions, transitions, tran-
sition actions, transition conditions, and arcs. We depict the
CPN constructed based on the observed attacks in Figure 2. All
places and transitions have names, and the arcs have a weight
of one token. Each place can trigger several place actions upon
CPN transitions to the corresponding place. Transitions allow
checking for the execution of a step in a malicious query
sequence. They become active when the source place contains
at least one token. Each transition triggers one transition action,
representing conditions for incoming queries. For instance, they
may specify the query type (e.g., query that lists tables) and
the actual content of the query. A transition may also have an
arbitrary number of transition conditions to evaluate the token
data from the source place against the query values. Our policy
includes only one transition condition to detect the insertion of a
suspicious message (here, containing a cryptocurrency address).

Transitions fire when an action occurs that is specified as
malicious by the Security Policy component. Note that
no single action alone is enough to transit the CPN to the
“attack detected” state. Typically, the sequence of actions is
required, and their execution requires a specific order (defined
by the CPN configuration) to reach the state that corresponds
to attack detection. The policy is easily adaptable to include
new attack signatures by modifying the Petri Net. While
reconfiguration is a manual process, it is not cumbersome and
can be accomplished in a reasonable amount of time.

Implementation We implemented the Classifier using our
Petri Net implementation library libPetri comprising 1008 LoC.
libPetri is a C++ library implementing the functionality of
colored Petri Nets. It includes dynamic coloring, token timeout,
and token merging features mentioned above. Since libPetri has
been developed explicitly for DIMAQS, it carries no additional
feature overhead.

libPetri keeps track of all active transitions. Since all our
arcs in Classifier are weighted with the value one, ac-
tive transitions have tokens on all input places. If the to-
be-classified query matches the action attributed to an active
transition, that transition fires. When transferring a token to a
place with an associated action, that action executes with the
corresponding parameters. Until completion of these actions,
the Classifier does not accept additional queries.

IV. MACHINE LEARNING CLASSIFIER

To instantiate ML-based Classifier, we formulate the
problem of ransomware detection as a binary classification
problem of textual data and use a supervised learning tech-
nique for detection of malicious query sequences. We chose
Deep Neural Nets (DNN) targeting text recognition as our
ML technique because query sequences are fundamentally text
sequences. In the following, we describe each of the steps in
more detail.

A. Data Augmentation and Labeling

Deep Learning techniques demand a substantial amount
of data for training. However, the challenge with the real-
world data is that most DBMSs contain sensitive data (e.g.,
credit card information and passwords) and are not openly
available. We employ a sliding window technique to extract
query sequences of variable length and random starting points
in query sequences to address this challenge. Since no malicious
data sets are readily available either, we record a limited amount
of malicous query sequences ourselves and then increase the
volume of data by changing the order of malicious queries in
sequences, by interleaving malicious queries in sequences with
various amounts of benign queries, and by altering ransom
payment instructions. The procedure of sliding window for
benign data and the alteration of malicious data is done on-
the-fly during training and evaluation. With that, we create
two streams of accordingly labeled benign and malicious query
sequences.

B. Data Pre-processing

The next step is to pre-process the sequences. A query of a
sequence can have very complex forms with arbitrary data. This
complexity is a problem for deep learning, as we usually map
each data point to a single number that can then be processed
for deep learning.

A common solution is to train a relation between data
input and a corresponding number. However, this allocates a
tremendous amount of memory capacity for text parts—like
table names or textual values of updates—which have no useful
information for our attack scenario.

As such, we opted to use one-hot encoding for our em-
bedding layer. Here, we extract features from the query and
encode them into a binary vector (i.e., feature vector). Focusing
on features—not useless text parts—benefits both detection
performance and resource impact.

In total, our feature vector has eleven features. Each feature
can either be available (one in the vector) or not (zero in the
vector). Ten features are related to a query type. Query types
can range from table creations to data insertions and deletions.
It is worth noting that the query types are mutually exclusive.
For example, a query to update data cannot also be a query
for data deletion. The important point is that we focus on the
type of query and not specific values specified in the query,
such as table names in the table deleting queries (in contrast
to the Petri Net Classifier). This generalization allows us
to detect generic attack patterns instead of focusing on specific
attack instantiations.

The eleventh feature concerns the ransom message. Here, we
use regular expressions to identify cryptocurrency addresses,
such as Ethereum, Bitcoin, and Monero addresses. Please note
that these regular expressions can easily be extended with new
cryptocurrencies without retraining the model.

C. Model Training and Parameter Tuning

Query sequences are sequential data streams and largely
depend on previous input (e.g., one can only alter a table that
exists). As such, RNNs seem to be well-suited for classifying
such data. Two classic types of RNNs are Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU), both re-
taining previous outputs for the subsequent calculations on a
new input.

Model training is an iterative process that includes definition
of the model architecture, model training and evaluation, and
tuning model parameters for the next iteration. Here, one
can alter the number and kind of layers that comprise the
model. Further, the training and evaluation duration depends
on the number of iterations (i.e., epochs). We can also alter
the optimizers (i.e., Adam), their learning rates, and dropout
factors of different layers.

The model is trained on pre-processed query sequences from
the data stream generated as elaborated in Section IV-B. Ratio
benign:malicious defines the ratio of benign and malicious
queries in a sequence. We tune the query sequence length for
training and evaluation separately. Thus, we explore the ratio of

Variable Setting

Layer Type Input, Embedding, LSTM, Output
#Hidden Units LSTM:8, Output:1
Optimizer Adam
Loss Function Mean Squared Error
Learning Rate 0.15
Dropout 0.00
Minimum Sequence Length 20
Training Sequence Length 50
Evaluation Sequence Length 6,000
Iterations 200,000
Ratio benign:malicious queries in se-
quence

7:4

TABLE I: Model Hyper-parameters

malicious sequences in training necessary for high effectiveness
on unseen data.

We repeated the hyper-parameter tuning process 232 times to
find configurations that yield good classification performance.
Our best performance model consists of four layers: (i) input
layer, (ii) embedding layer, (iii) LSTM layer, and (iv) output
layer.

The input layer defines an interface between the raw data
and an embedding layer. Here, the computer transforms the
multiple binary vectors of a sequence into an internal matrix
representation. The embedding layer transforms the binary
vector matrix from the input layer into higher dimensional
matrix representation—ready for the LSTM layer. The next
LSTM layer has 8 hidden units. We utilize the Adam optimizer
to update the internal weights of the RNN while aiming to
optimize Mean Squared Error based on the loss function. The
last output layer accumulates the outputs of the LSTM into
a single value. This value represents the probability whether
the query sequences within a specified Sequence Length are
malicious or not.

Table I summarizes all the hyper-parameters of our model.
We want to emphasize that while we train on a query sequence
length of only 50 queries, we still achieve excellent results in
the evaluation (cf. Section V-C) using a much longer sequence
length of 6,000.

We recall that it took 232 various hyper-parameter combina-
tions to find the optimal configuration for our model. The key
takeaways of our extensive tests are the following: 1) Training
on a smaller sequence length will increase the accuracy of the
model in evaluation with longer sequence lengths. 2) Stacking
multiple RNNs has only a marginal effect on detection perfor-
mance, but impacts inference runtime negatively. 3) We did not
see a performance improvement of GRUs compared to LSTMs.

D. Classifier Implementation

We implemented the ML-based Classifier using C++
to integrate with the other DIMAQS components. Further, we
utilize the C++ library Torch to build, train, and infer the model.
The entire implementation comprises 2,954 LoC.

We implement rotating models, since we defined a time
window t for attack detection in Section II. We chose the
sequence length as a time delimiter and hyper-parameter (i.e.,
number of queries, instead of time-frame) and reset the internal

state of our model after this pre-defined number of sequences
is processed.

To eliminate a potential attack vector, where an attacker
stretches their malicious sequence across the boundaries of
the time window, we rotate three instances of the model with
overlapping time windows. While one model instance classifies
the sequences, another model also receives the data and updates
its internal state, preparing a hand-off. The third instance is
reset in the background.

V. EVALUATION

In this section, we evaluate both classifier instantiations
of DIMAQS. First, we explain our data sets. Then, we ex-
plore the effectiveness of Petri Net Classifier and the
ML Classifier. Further, we compare the performance
impact of both classifiers with standard benchmarks for DBMS.
Last, we consider different security aspects of DIMAQS.
Testbed: We execute performance and security tests on a
Lenovo P50 workstation laptop featuring a four Core i7-
6700HQ CPU with 32 GB RAM and a 512 GB NVMe. For
the software, we chose Arch Linux running with kernel 5.11.13
and a MySQL server 5.7.22 via Docker version 20.10.5. All
benchmarks run directly on this hardware to eliminate possible
network bottlenecks.

A. Data Sets

We employ three data sets during our evaluation. These are
selected to test different aspects of DIMAQS. We will publish
the data sets along with the paper to allow third parties to
reproduce our tests and enable follow-up works to compare
our results.

The first set (malicious set) includes malicious query se-
quences, which we generated ourselves using information about
real-world attacks collected at [35], which contain real-world
attack query sequences. Our resulting query set contains query
sequence variations with an expected malicious classification,
as well as their possible permutations (since an attacker may
execute them in arbitrary order). The full test set contains
13,485 tests with 53,940 queries in total.

The second set (benign Bibspace set) is from the publication
management system Bibspace [30], which was gathered over
40 days and contains a total of 52,085 queries.

The third set (benign MediaWiki set) is from a locally run
MediaWiki [26] with the Semantic MediaWiki [31] plugin en-
abled, collected for 50 days and containing 2,514,764 queries.

B. Petri-Net Effectiveness Evaluation

In the following, we evaluate the precision of the Petri-
Net classifier module. Thus, we evaluate whether a wrongful
classification of benign queries as malicious (false positives) or
malicious query sequences as benign (false negatives) occurs.
Security Policy: The execution policy for the Classifier
is as described in Section II-C. Our policy is quite generic in
the sense that we do not look for specific table or database
names but instead detect the removal or renaming of any table

or database. However, we are looking for specific patterns of
cryptocurrency addresses.
False Negatives: We used the malicious set described in
Section V-A to test for false negatives. After processing all the
queries from the data set by our CPN, we achieved 100% attack
detection rate and received no false negative results. This result
confirms that our CPN correctly models each attack from our
malicious data set including different cryptocurrency addresses.
False Positives: To test for false positives, we utilize the
Bibspace set and the MediaWiki sets. They contain a total of
2,566,849 benign queries. The Classifier performs classi-
fication of every set. Afterward, the Classifier state shows
if DIMAQS wrongfully detected attacks and how many false
detections occurred. If tokens reach place N in Classifier,
the amount of tokens represents raised alerts. To put the system
to its limits, we disable the time window limit (i.e., token
timeout) to increase the potential for false positives. In other
words, we evaluate the entire sequence of queries in both
datasets. We detected no false positives.

C. ML Effectiveness Evaluation

In this section, we evaluate the effectiveness of ML-based
DIMAQS Classifier. Similarly to Section V-B, we evaluate
false positives, false negatives, and F1-score.
Classification performance: We evaluated our model against
our malicious set, Bibspace set, and MediaWiki set—
dynamically combined into the streams as explained in Sec-
tion IV-A. We use the F1-score as our performance metric. The
F1-score is the harmonic mean of recall (true positives divided
by all positives) and precision (true positives divided by all true
positives plus false negatives). Our model achieves an F1-score
of over 99.99%. We detected no false negatives of malicious
sequences and only 93 false positives out of 2,932,190 samples.
Thus, the model has a false negative rate of zero and a false
positive rate of 0.003%.
Time window t: We want to identify the query sequence
length threshold producing a low amount of false positives
while remaining large enough for attack detection. The larger
the sequence length, the higher the chance for false positives.
Moreover, the shorter the sequence length with higher false
positives is, the easier an attacker can avoid detection. For this
test, we do not rotate model instances and continuously issue
sequences until detecting a rise of false positives. For this test,
we use both benign data.

We observed a rise in false positives after 3,357,746 queries
in a single sequence. Processing 3,357,746 queries takes 8.82
minutes in our testbed. We see a time window of under eight
minutes to be sufficient to detect an attacker without the rise
of false positives. In DIMAQS we reset the classifying model
after 7.5 minutes with an overlap of 2.5 minutes to the fresh
model instance (see Section IV-D).

D. Performance Evaluation

In this section, we evaluate DIMAQS’s performance over-
head. We apply the model rotation in the performance eval-

Vanilla
MySQL

With Petri Net
Classifier

With ML
Classifier

1030

1040

1050

1060

R
un

tim
e

(s
)

Fig. 3: Box-plot for TPC-H Runtimes with and without the
Different Plugin Implementations

de
let

e
ins

er
t

po
int

se
lec

t re
ad

-

on
ly re

ad
-

write up
da

te

ind
ex

edup
da

te

oth
er write

-

on
ly

80

90

100

110

Tr
an

sa
ct

io
ns

pe
rS

ec
on

d
[%

]

Vanilla
Petri Net
ML

Fig. 4: Box-plot for Sysbench Throughput with and without the
Different Plugin Implementations

uation of the ML-based Classifier as described in Sec-
tion IV-D.
Workloads: In this evaluation, we use two synthetic benchmark
tools: Sysbench [21] 1.0.20 (different delete, insert, point
select, read-only, read-write, update and write only workloads)
and TPC-H [3] 2.18.0 rc2 (suite of business-oriented ad-hoc
queries and concurrent data modifications). We executed three
performance benchmarks: (1) without the plugin as a baseline
measure, (2) with the plugin enabled using the Petri Net
classifier, and (3) with the plugin enabled using the ML-based
classifier. We repeated every benchmark for over 50 iterations.
The results are presented in the default box-plot style, where the
box consists of the second and third quantile, and the whiskers
include the last value within 1.5 interquartile range (IQR).
Results: Figure 3 visualizes these runtimes for the TPC-H
benchmark (lower values are better). We see a slight increase
of around one percent when using the Petri Net classifier
compared to without the plugin. The ML classifier has no
noticeable impact. Overall, the impact of either implementation
is negligible, and operators with a TPC-H-like workload pattern
can expect to use any DIMAQS implementation without a
performance loss.

We present a more fine-grained per-workload view for the
Sysbench benchmark in Figure 4. We normalized the transac-
tions per second to the average value for vanilla MySQL (larger
values are better). Here, we see little difference between vanilla
MySQL and both plugin implementations for most workloads.
However, the ML classifier diverges largely for the insert, read-
only, and write-only and slightly for the read-write workloads.
Write-only and insert are tightly connected, since the former
comprises many insert statements. A potential cause is that

the ML-classifier has to process each query while the Petri
Net classifier processes only the configured queries. Thus, the
ML classifier might produce significantly reduced performance
compared to vanilla MySQL and the Petri Net classifier. On
average, over all use-cases with equal weight, the Petri Net
implementation reaches 99.8% of throughput, and the ML-
based implementation reaches 94.6% of throughput. However,
most database workloads resemble a read-write pattern, where
the ML-implementation performs without issues.

The performance evaluation shows that DIMAQS does not
create a significant performance loss for the Petri Net classifier
and for most use-cases with the ML classifier. Depending on the
use-case, potential users of DIMAQS can weigh the expected
transactions specific to their workload and use this data to
decide on which implementation and its security characteris-
tics. Our proof-of-concept prototype is not yet optimized for
performance. Neither Petri Net-based nor ML-based implemen-
tation of DIMAQS received extensive profiling for potential
bottlenecks. Thus, further performance improvements are likely
possible.

E. Security Considerations

In the following, we discuss potential attack scenarios against
DIMAQS and show how we defend against them.
DIMAQS disabling: An attacker may try to disable DIMAQS
to avoid detection. However, such a scenario would not be
successful since administrative privileges to the database are
insufficient to perform this task. One would need to have
administrative privileges to the file system to manipulate cor-
responding config files. As an additional burden, it is also
non-trivial for an attacker to detect that the system runs
under DIMAQS observation because the Query Rewriter
component of DIMAQS rewrites the queries in such a way that
it excludes information about DIMAQS from the results.
DIMAQS triggers removal: The next possible attack vector
is specific to MySQL implementation, which uses triggers.
An attacker may attempt to delete triggers, which are used to
deliver additional information to the DIMAQS plugin.

DIMAQS detects the removal of its specific triggers to defend
against this attack vector. Their absence becomes obvious
whenever the plugin does not receive information about atomic
values affected by the queries. Upon detection, DIMAQS
generates a notification for the administrator and backups all
the databases and tables affected by subsequent queries.
Evasion of detection: An attacker may try to evade detection
of DIMAQS. However, we based our detection on elementary
features—query type and presence of payment information. If
an attacker attempts evasion, the attack itself will morph into
a new attack form. For example, an attacker cannot get paid
without leaving payment information in a ransom message.
Otherwise, if the attacker neither scans nor deletes the DBMS,
then there is no attack. Further, we introduced a variable time
window for attack detection. An attacker may stretch out the
attack pattern beyond the window. However, this would require
the attacker to diverge from the scalability goals described in
Section II-B and, therefore, constitute a different type of attack.

VI. RELATED WORK

Many previous works explored intrusion detection systems
in databases. However, none explicitly focused on detecting
ransomware so far. Compared to our approach, related work
focuses on analyzing single queries [15], [32], while we aim to
detect malicious query sequences. Intrusion detection frame-
works [4], [7], [34], [22], [29], [24] examine database audit
logs to identify anomalous queries using role profiles. However,
those frameworks are limited to analyzing single queries. Hu
et al. [16], [17], who proposed a database intrusion detection
system utilizing (uncolored) Petri Nets, is the most comparable
to ours. However, they detect anomalies by modeling data
dependency relationships and regular data update patterns. In
contrast, we derive a model from malicious query sequences
and compare the sequences at runtime. Luckham et al. [25]
perform intrusion detection through complex event processing
(CEP). Romano et al. [13] propose a generic framework for in-
trusion detection using CEP examining different intrusions vec-
tors. CEP systems are only passive information processing and
monitoring tools, whereas DIMAQS actively prevents attacks.
Other works also proposed ML as a classifier for intrusion
detection. For instance, Kim et al. [20] use a combination of
CNN and LSTM to classify roles. Related works [5], [33], [6]
focus on role-based anomaly detection applying ML techniques.
However, none of these works to track a global state of the
DBMS to detect ransomware attacks using multiple accounts.

VII. CONCLUSION

In this work, we present DIMAQS, the first solution against
server-side ransomware. In its heart, DIMAQS uses two classi-
fiers to model malicious query sequences and matches them
against query sequences captured at runtime. The first is a
Colored Petri Net (CPN)-based classifier that introduces several
novel extensions to CPNs, reducing the system representation
complexity. The second classifier uses machine learning (ML),
eliminating the required hand-crafted modeling of observed
attacks and learning based on existing datasets.

Our solution is a MySQL plugin targeting and easily instal-
lable on existing servers. We evaluated our solution regarding
the precision of the attack detection as well as its performance,
showing promising results. We report no false negatives for
both classifiers, no false positives for the CPN classifier, and
0.003% false positives for the ML classifier. Performance-wise,
we see no significant impact on the TPC-H benchmark. For
the Sysbench benchmark, we only find significant performance
deviations for two out of eight scenarios and only regarding the
ML classifier. On average, the performance loss is below 1%
for the CPN classifier and below 6% for the ML classifier.

REFERENCES

[1] Colonial Pipeline boss confirms $4.4m ransom payment, May 2021.
[Online; accessed May 2022].

[4] E. Bertino, A. Kamra, E. Terzi, and A. Vakali. Intrusion Detection in
RBAC-administered Databases. In ACSAC, 2005.

[2] Global Ransomware Damage Costs Predicted To Exceed $265 Billion By
2031, Jun 2021. [Online; accessed May 2022].

[3] TPC-H Homepage, Jun 2022. [Online; accessed May 2022].
[5] S.-J. Bu and S.-B. Cho. A convolutional neural-based learning classifier

system for detecting database intrusion via insider attack. Information
Sciences, 512:123–136, 2020.

[6] S.-G. Choi and S.-B. Cho. Adaptive database intrusion detection using
evolutionary reinforcement learning. In SOCO’17-CISIS’17-ICEUTE’17.

[7] C. Y. Chung, M. Gertz, and K. Levitt. DEMIDS: A Misuse Detection
System for Database Systems. In Integrity and Internal Control in
Information Systems (IICIS), 1999.

[8] C. Cimpanu. MongoDB Apocalypse: Professional Ransomware Group
Gets Involved, Infections Reach 28K Servers. Bleeping Computer, 2017.

[9] A. Continella, A. Guagnelli, G. Zingaro, G. De Pasquale, A. Barenghi,
S. Zanero, and F. Maggi. ShieldFS: The Last Word in Ransomware
Resilient Filesystems. In Black Hat USA, 2017.

[10] A. Continella, A. Guagnelli, G. Zingaro, G. D. Pasquale, A. Barenghi,
S. Zanero, and F. Maggi. ShieldFS: A Self-healing, Ransomware-aware
Filesystem. In ACSAC, 2016.

[11] O. Corporation. MySQL 5.7 Manual, 2018.
[12] M. Dzulfakar. Advanced MySQL Exploitation. In Black Hat USA, 2009.
[13] M. Ficco and L. Romano. A Generic Intrusion Detection and Diagnoser

System Based on Complex Event Processing. In International Conference
on Data Compression, Communications and Processing (CCP), 2011.

[14] D. Golunski. MySQL-Exploit-Remote-Root-Code-Execution-Privesc-
CVE-2016-6662, 2017.

[15] W. G. J. Halfond and A. Orso. Preventing SQL Injection Attacks Using
AMNESIA. In ICSE, 2006.

[16] Y. Hu and B. Panda. Identification of Malicious Transactions in Database
Systems. In IDEAS, 2003.

[17] Y. Hu and B. Panda. A Data Mining Approach for Database Intrusion
Detection. In ACM Symposium on Applied computing (SAC), 2004.

[18] B. Ives, K. R. Walsh, and H. Schneider. The Domino Effect of Password
Reuse. Communications of the ACM, 47(4), 2004.

[19] K. Jensen. Coloured Petri Nets. 1997.
[20] T.-Y. Kim and S.-B. Cho. Optimizing cnn-lstm neural networks with pso

for anomalous query access control. Neurocomputing, 2021.
[21] A. Kopytov. akopytov/sysbench, 2022.
[22] V. C. S. Lee, J. A. Stankovic, and S. H. Son. Intrusion Detection in

Real-time Database Systems Via Time Signatures. In IEEE Real-Time
Technology and Applications Symposium (RTAS), 2000.

[23] Lindsey O’Donnell. PLEASE READ ME Ransomware Attacks 85K
MySQL Servers, December 2020. [Online; accessed May 2022].

[24] W. L. Low, J. Lee, and P. Teoh. DIDAFIT: Detecting Intrusions
in Databases Through Fingerprinting Transactions. In International
Conference on Enterprise Information Systems (ICEIS), 2002.

[25] D. C. Luckham and B. Frasca. Complex Event Processing in Distributed
Systems. Technical report, Stanford University, 1998.

[26] MediaWiki. MediaWiki/de — MediaWiki, The Free Wiki Engine, 2018.
[27] S. Morgan. Cybersecurity Business Report. Ransomware Damage Costs

predicted to hit USD 11.5B by 2019, 2017.
[28] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice

Hall PTR, 1981.
[29] A. Roichman and E. Gudes. DIWeDa - Detecting Intrusions in Web

Databases. In DBSEC, 2008.
[30] P. Rygielski. vikin91/BibSpace, 2022.
[31] semantic mediawiki.org. Semantic MediaWiki, 2018.
[32] Z. Su and G. Wassermann. The Essence of Command Injection Attacks

in Web Applications. In SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), 2006.

[33] S. Subudhi and S. Panigrahi. Application of optics and ensemble learning
for database intrusion detection. Journal of King Saud University -
Computer and Information Sciences, 2019.

[34] F. Valeur, D. Mutz, and G. Vigna. A Learning-Based Approach to the
Detection of SQL Attacks. In Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), 2005.

[35] O. Ziv. 0.2 BTC strikes back, now attacking MySQL databases, 2017.

	Introduction
	Framework
	Attack Scenario
	Adversary Model
	System Architecture
	Component Interaction
	Component Implementation

	Petri Net Classifier
	Machine Learning Classifier
	Data Augmentation and Labeling
	Data Pre-processing
	Model Training and Parameter Tuning
	Classifier Implementation

	Evaluation
	Data Sets
	Petri-Net Effectiveness Evaluation
	ML Effectiveness Evaluation
	Performance Evaluation
	Security Considerations

	Related Work
	Conclusion
	References

