
RIP StrandHogg: A Practical Detection Method on Android
Jasper Stang

Julius-Maximilians-Universität
Würzburg

Würzburg, Germany
jasper.stang@stud-mail.uni-

wuerzburg.de

Alexandra Dmitrienko
Julius-Maximilians-Universität

Würzburg
Würzburg, Germany

alexandra.dmitrienko@uni-
wuerzburg.de

Sascha Roth
KOBIL Systems GmbH

Worms, Germany
sascha.roth@kobil.com

ABSTRACT
StrandHogg vulnerabilities affect Android’s multitasking system
and threaten up to 90% of Android platforms, which translates to
millions of affected users. Existing countermeasures require modi-
fication of the OS, have usability drawbacks, or are limited to the
detection of certain attack versions. In this work, we aim to de-
velop a generic, efficient, and usability-friendly attack detection
method, which does not require OS modifications and can be em-
ployed by apps installed on any vulnerable Android platform. To
achieve our goal, we analyze StrandHogg attack techniques and
develop two countermeasures, one using Machine Learning and
the other one using ActivityCounter – a reliable attack indicator,
which we could synthetically engineer. Our first approach achieves
an average F1 score of 92% across all attack variations, while Activ-
ityCounter shows superior performance and efficiently detects all
attack versions without false positives. ActivityCounter is the first
solution without practical limitations, which can be easily deployed
in practice and protect millions of affected users.

CCS CONCEPTS
• Security and privacy → Mobile and wireless security; Mal-
ware and its mitigation.

KEYWORDS
Android, StrandHogg, StrandHogg Detection

ACM Reference Format:
Jasper Stang, Alexandra Dmitrienko, and Sascha Roth. 2021. RIP StrandHogg:
A Practical Detection Method on Android. In Conference on Security and
Privacy in Wireless and Mobile Networks (WiSec ’21), June 28–July 2, 2021,
Abu Dhabi, United Arab Emirates. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3448300.3468288

1 INTRODUCTION
StrandHogg [28] is a task hijacking attack on Android, which abuses
Android’s multitasking system. It belongs to the class of User In-
terface (UI) deception attacks [5], where an attacker forces users
to confuse malicious UI elements with the ones originating from a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8349-3/21/06. . . $15.00
https://doi.org/10.1145/3448300.3468288

legitimate app. As a result of task hijacking, an attacker can, e.g.,
steal security-sensitive user input [2, 4, 21, 29], or achieve privilege
escalation by deceiving the user into granting permissions.

UI deception attacks are difficult to address in a generic sense.
While a few attempts exist [1, 5], they require significant modifica-
tions of the OS to such an extent that the resulting systemmight not
anymore be considered as Android. Hence, defenses often target
specific types of UI attacks (e.g., [22, 23]).

StrandHogg stands out from the line of other task hijacking at-
tacks as, while being discovered in 2015, it was neither fixed in
any Android version, nor other practical defense methods were
developed. As of now, it is still feasible to launch this attack on An-
droid versions ranging from 4.4 to Android 10, which corresponds
to 90% of all Android platforms [24]. Furthermore, solutions pro-
posed in the related work have various drawbacks, e.g., require
OS-level modifications [27, 32], impose false negatives [32] or limit
functionality [33], thus affecting usability.

Moreover, recently a new variation of the StrandHogg attack
was discovered – it was described in the blog [26] and named as
StrandHogg 2.0 - the ‘evil twin’ attack. This second version was
recorded in a Common Vulnerabilities and Exposures entry (CVE-
2020-0096) and fixed in the patch level 2020-05-05 [17]. This leaves
devices with Android versions from 4.4 to 9.0, or 55% of all An-
droid platforms [24] vulnerable to both attack versions. Even more
worrying, many countermeasures [1, 20, 31] developed against the
original StrandHogg attack appeared toothless against the second
version.

In this paper, we aim to tackle the StrandHogg vulnerability of
the Android OS and look for a countermeasure, which is able to
deal with both StrandHogg attack versions at the same time. Fur-
thermore, we aim at a solution that would be capable of protecting
apps on all vulnerable Android versions, i.e., with versions ranging
from 4.4 to 10. To ensure the practicality of our defense method,
we avoid techniques that require modifications to the operating
system. Therefore, the defense method must be integrated into
each app that desires to be protected. A majority of vendors only
support their devices for a limited period (typically three years),
and, oftentimes, the devices no longer receive security fixes after
this period1.
Contributions: To achieve our goal, we develop two attack detec-
tion methods, both being capable of providing effective protection
for apps executing on any Android platform against both Strand-
Hogg versions. In particular, we make the following contributions:

1According to statistics from Malwarelytics [3], 20.5 percent of devices will never
receive a patch for StrandHogg v2 (CVE-2020-0096).

https://doi.org/10.1145/3448300.3468288
https://doi.org/10.1145/3448300.3468288

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Stang, Dmitrienko, Roth

Malicious Activity
FLAG_ACTIVITY_NEW_TASK

Victim Activity

Victim Task

Malicious
Application
Launch

Malicious Activity
FLAG_ACTIVITY_NEW_TASK

Victim Activity

Victim Task

Distraction Activity

Distraction Task

Malicious Activity
FLAG_ACTIVITY_NEW_TASK

Victim Activity

Victim Task

User
launches
victim app

T1 T2 T3 T4 T5
Figure 1: StrandHogg v1 Attack visualization. Dashed borders indicate a background task/activity. The topmost task/activity
is displayed in the foreground.

• We analyzed both StrandHogg attack methods in order to
gain a deep understanding of attack mechanics (cf. Section 2).
Using the gained knowledge, we implement both attack ver-
sions and utilize them in the evaluation of defense methods.
To the best of our knowledge no fully-working StrandHogg
v2 attack was already available online. We will, therefore,
make these implementations available for researchers2.

• We developed a first attack detection approach, which en-
ables a service provider to protect their mobile app from
StrandHogg attacks through the application of Machine
Learning (ML) (cf. Section 4). This method involves app
monitoring, collection of execution traces and relies on the
server’s help for attack inference. It achieves an average F1
score of 92% on traces collected on Android platforms with
versions from 4.4 to 10.

• Developing the ML-based method gave us knowledge gain
necessary for developing a second, more effective detec-
tion method, which we named ActivityCounter (cf. Section
5). It relies on a single numActivties attribute for attack
detection and does not require any server support. To real-
ize ActivityCounter, we had to solve technical challenges,
one to turn the numActivties attribute into a reliable at-
tack indicator and the other one to eliminate any changes
to the Android OS. ActivityCounter can detect both attack
versions on all affected Android platforms, has no false pos-
itives and no false negatives, and is privacy-friendly, since
it performs on-device attack detection. Furthermore, it is
a vendor-independent solution as it does not rely on any
vendor-specific components.

To summarize, both developed methods outperform existing
work since they can detect both attack versions, do not require
any changes to the OS, have little or no impact on usability, and
do not limit functionality. ActivityCouter is superior to all existing
defense methods including the ML-based approach, since it is more
effective, privacy-, and user-friendly. It can be deployed on any
vulnerable Android version and, hence, can vendor-independently
protect millions of affected users.

2Download link: https://github.com/ActivityCounter/StrandHoggAttacks

2 BACKGROUND
In this section, we provide the necessary background information
on Android and describe StrandHogg attacks and known mitigation
techniques.

2.1 Android
Understanding of StrandHogg attack internals requires knowledge
about several elements of the Android operating system: Activities,
Tasks, and Task Affinities.
Activities Activity is the main User Interface component in An-
droid. By means of displaying activities on the screen, Android apps
interact with the user. An app can display multiple activities for
different user interaction purposes such as searching in contacts
or writing a message. All activities must be defined in the app’s
manifest – the file that describes essential information about the
app like the package name, components or permissions [9].
Tasks To manage all opened activities of an application, the An-
droid OS keeps them in a task. Each task, therefore, consists of a
collection of activities. Usually, the user only interacts with one
activity at a time – the foreground activity of the task. The task
that contains the foreground activity, which the user is currently
interacting with, is called the foreground task. All other tasks are
therefore in a paused state, which makes them background tasks.
The activities in a task are kept in a stack ordered by the time the
activities were visited. That enables the user to switch back to pre-
vious activities by pressing, for instance, the back button on the
device [6].
Task Affinity Each activity can specify to which task it prefers to
belong. This can be done by setting the android:taskAffinity
attribute, in the manifest file, to the package name of the preferred
task. By default, each activity inherits the affinity of its own appli-
cation. That means an activity has to explicitly specify if it wants
to belong to a foreign task [7].

2.2 StrandHogg Attacks
Android’s android:taskAffinity attribute enables a highly dan-
gerous attack, where an adversary is able to hijack another app’s
foreground activity and display a malicious one instead. From 2015
to this day, there are 2 variations of the StrandHogg attack known,
which we refer to as StrandHogg v1 and StrandHogg v2 attacks.
StrandHogg v1 Attack. The original attack was first theoretically
described by Ren et al. in 2015 in the paper “Towards Discovering

https://github.com/ActivityCounter/StrandHoggAttacks

RIP StrandHogg: A Practical Detection Method on Android WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

T1 T2 T3 T4 T5

Victim Activity
FLAG_ACTIVITY_NEW_TASK
android:taskAffinity = default

Victim Task
Malicious
Application
Launch

Victim Activity
FLAG_ACTIVITY_NEW_TASK
android:taskAffinity = default

Victim Task

Distraction Activity
FLAG_ACTIVITY_NEW_TASK
android:taskAffinity = default

Victim Task
Malicious Activity
android:taskAffinity = victim task

Malicious Activity
android:taskAffinity = default

User
launches
victim app

Victim Activity
FLAG_ACTIVITY_NEW_TASK
android:taskAffinity = default

Distraction Task
Distraction Activity
FLAG_ACTIVITY_NEW_TASK
android:taskAffinity = default

Distraction Task

Figure 2: StrandHogg attack v2 visualization. Dashed borders indicate a background task/activity. The topmost task/activity is
displayed in the foreground.

and Understanding Task Hijacking in Android” [28]. Høegh-Omdal
et al. [25] presented a practical implementation approach for the
attack and discovered that the vulnerability was actively exploited
as early as in 2017. According to the authors, the attack is feasible
on Android devices with versions from 4.4 up to 10 [25]. The attack
does not work on the latest Android version 11.

A visualization of the attack is shown in Figure 1. Each step (T1
- T5) of the attack is marked on the x-axis. The attack involves
a malicious and a victim app, each having their own activities.
There are three activities: malicious activity, victim activity, and
distraction activity. The malicious and distraction activity are parts
of the malicious application, while the victim activity is the main
activity of the victim app. We will call the task in which the victim
activity resides as a victim task. Furthermore, the distraction activity
is used during an attack as a distraction to the user, and it belongs
to its own distraction task. The malicious activity is the core of the
attack and will be displayed instead of the victim activity, hence,
with this activity, an adversary can, for instance, steal passwords
and other sensitive input.

As the first step in the attack, a user launches a malicious appli-
cation on the device – this is shown as step T1 in the Figure 1. This
app will then launch the malicious activity with the flag FLAG_AC-
TIVITY_NEW_TASK. The flag will either create a new victim task, in
case none is currently running, or otherwise the victim task will
be brought to the front [13]. The malicious activity additionally
declares that it wants to belong to the victim task, by setting the an-
droid:taskAffinity attribute (T2). To prevent that the malicious
activity is instantly displayed, the distraction activity, belonging
to the adversarial app, is launched right afterward. This results
in the victim task becoming a background task, as the distraction
activity is displayed in the foreground (T3). The foreground task
only contains the distraction activity. The malicious activity will
reside in the victim’s task, which is in the background.

The user can now interact freely with the distraction activity
such as minimizing or closing it. The malicious activity will stay in
the victim task, despite the distraction activity’s closing. The victim
task stays in the background until the user resumes to it – it can be
resumed by either clicking the victim’s app icon or the activity in
the list of recent activities (T4). In case the victim task is resumed
by the user, the malicious activity will be displayed instead of the
victim’s activity (T5).

StrandHogg v2 The second version of the StrandHogg attack was
discovered by Høegh-Omdal [26] and was named as an evil twin
attack. This version does not rely on the android:taskAffinity
attribute and, hence, can evade many detection methods that were
developed for the first version. According to Promon [26], the
StrandHogg v2 attack affects devices with versions ranging from
4.4 to 9.0. The attack does not work on devices running Android
10 or 11. The attack was recorded in a Common Vulnerabilities
and Exposures entry (CVE-2020-0096) and fixed in the patch level
2020-05-05 [17].

A visualization of the attack can be seen in Figure 2. Each step (T1
- T5) of the attack is marked on the x-axis. Again, we introduce the
three activities: malicious activity, distraction activity, and victim
activity.

The attack exploits a confusion of the task affinity. In the first
step, the malicious application is launched on the device. In the
second step, the victim activity is launched (cf. Fig. 2 – T2). Right
after the victim activity was created, it is instantly minimized by
launching an array of activities (T3) consisting of the malicious
activity which has no flags set, the victim activity with the flag
FLAG_ACTIVITY_NEW_TASK and a seemingly benign distraction ac-
tivity, again with the flag FLAG_ACTIVITY_NEW_TASK. By launching
the victim activity for a second time, the order of foreground activi-
ties will be shifted. The absence of flags from the malicious activity
misleads the Android OS to set the task affinity to the victim app
(T4). The user can again interact freely with the distraction activity.
The attack is identical behavior-wise to the first StrandHogg attack
– as soon as the victim app’s icon is clicked, the malicious activity
will be launched instead of the victim activity (T5).

The attack works without setting the android:taskAffinity
attribute in the app’s manifest. This enables the attack to evade
detection methods that rely on an analysis of the app’s manifest.
Furthermore, it is possible to execute the attack entirely in memory,
as no prior preparations, such as declaring attributes in themanifest,
are required. The Fix for the attack forces the malicious activity
to declare the flag FLAG_ACTIVITY_NEW_TASK. Therefore, the task
affinity is set to the correct app and the attack is prevented [18].

3 ADVERSARIAL MODEL AND
REQUIREMENT ANALYSIS

In this section we present our attacker model, elaborate on assump-
tions and specify requirements for our detection method.

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Stang, Dmitrienko, Roth

Adversary Model Our adversarial model is inherited from Strand-
Hogg attacks –we consider an adversarywho developed amalicious
app, which, in turn, was downloaded by the victim’s user and in-
stalled on Android 4.4 to 10 versions. The malicious app requests
no permissions and does not collaborate with any other (potentially
malicious) apps installed on the same platform. Furthermore, the
attacker has no control of the underlying OS – hence, he is limited
by restrictions imposed by Android’s security mechanisms (e.g.,
Sandboxing and permission enforcement). The attacker’s primary
goal is to steal security-sensitive user input (such as passwords),
which is achieved through deception and luring the user to enter
sensitive input into a malicious activity, while the user believes he
communicates with the benign app.
Goals The goal of our detection method is to detect the StrandHogg
attack. Once detected, the user might be required to execute a
password reset, which prevents account stealing. Alternatively or
additionally, the user could be informed of the attack.
RequirementsWe formulate the following requirements for the
detection method:

• R1: Generalizability. We require that the defense mecha-
nism should be capable of defeating both StrandHogg attack
versions. The development of separate defense strategies
for each version is undesirable, as it would likely increase
complexity and consumption of resources.

• R2: Efficiency. We also require the solution to be efficient in
terms of run-time overhead and energy/memory consump-
tion. Detection methods that impose high overhead have
decreased chances for adoption.

• R3: Compatibility. Furthermore, we require that the de-
tection method should not rely on any modifications of the
operating system, since such modifications can only be im-
plemented by (impossible to control) device vendors and
even if implemented, often do not target older OS versions,
leaving many devices in the field vulnerable. As such, our
solution should be placed at the user-level rather than reside
at the system-level.

• R4: Usability. We require that the method should not affect
usability. In particular, it should not restrict or limit any
existing functionality in Android.

In the following sections, we present two solutions, the one based
on intrusion detection using machine learning and the second one
based on dynamic attribute analysis. In Section 6, we will elaborate
if these these methods fulfill the formulated requirements.

4 ML-BASED APPROACH
In this section, we explain our first attack detection method, which
is based on intrusion detection using Machine Learning (ML).
General Idea The general idea of our first approach is to self-
monitor app execution by the (potential victim) app, analyze execu-
tion traces – collected time series of monitored attributes – using
machine learning (ML) methods, and identify suspicious behav-
ior that might be indicative of the ongoing attack. The detection
system must be individually implemented into each sensitive app,
that needs to be protected. In particular, the victim app collects

execution traces and transmits them to the server, where the traces
are used for model training.
MethodologyOur methodology includes the following steps: First,
we constructed the dataset containing benign and malicious traces.
Second, we trained and evaluated the model using the dataset and
identified important features, and improved them through manual
feature engineering. Third, we performed an additional evaluation
of the best performing model to identify whether there is a cor-
relation between model performance, attack version, and attack
scenarios. The observations we make in this evaluation inspire us
to build a second defense method which we present in Section 5.

4.1 Data Collection and Pre-Processing
Until now, there is no dataset available that includes execution
traces of the StrandHogg attack. Hence, we implemented both
StrandHogg attack versions and constructed our own dataset con-
taining 900 benign and 1.032 malicious traces collected from a wide
range of mobile devices and emulator instances.
DataCollector App The collection of data was done by implement-
ing an Android app that will be referred to as DataCollector. The
app collected 148 different attributes, using common Android API
functions. Collected attributes included, for instance, tasks, intents,
and application life cycle events. The collection of attributes was
triggered every five seconds, which resulted in a time series of data,
or trace. Furthermore, some attributes, like life cycle events, were
collected every time a state change occurred. Intents were only
collected once they have been received by the DataCollector. Each
trace consists of several attribute-value pairs, i. e. observations.
TraceCollection StrandHogg v1 and v2 attacks were implemented
in such a way that they target our DataCollector app. Therefore,
the DataCollector corresponds to the victim app as shown in Figure
1 and Figure 2. Both attacks inject a malicious activity into the
task structure of our DataCollector app. This simulates an ongoing
StrandHogg attack as, for instance, used by password phishing
attacks. We then proceeded to collect traces on different devices,
such as Samsung Galaxy S2, Motorola G4, Xiaomi Redmi Note 9S,
and Nokia 7.2, with Android versions ranging from 4.2 to 10. Addi-
tionally, we collected traces on Android emulators with versions
ranging from 4.4 to 10.
(i) Benign tracesOur data set contains two different types of traces.
The first type is labeled as benign, those were collected without
executing any attack and act as baselines. Normal app usage was
simulated while collecting those traces, for instance, minimizing
and resuming to the app via the recent apps list. The duration of
the traces was roughly 30 seconds. Our benign data set contains
900 traces.
(ii) StrandHogg v1 traces The second type is labeled malicious,
hence, those traces were collected while a StrandHogg attack was
executed. We collected traces for both StrandHogg attacks. For the
StrandHogg v1 attack we considered two scenarios, as we thought
they may result in different attribute values in collected traces.

In the first scenario, traceswere collectedwhen theDataCollector
was in a minimized state, i.e., the activity was still present in the
recent apps list. In the second scenario, traces were collected with
the DataCollector closed. Note that even though the app was closed,

RIP StrandHogg: A Practical Detection Method on Android WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

the collection of attributes was continued, since the collection was
implemented as a foreground service.

Our dataset includes 586 traces collected during a StrandHogg
v1 attack with minimized DataCollector. For the scenario with a
closed DataCollector we collected 242 traces.
(iii) StrandHogg v2 traces Due to the nature of the StrandHogg
v2 attack, it is not possible to launch the attack with a closed Data-
Collector, as the attack starts the victim app in a minimized state
in the first step. Furthermore, we could not collect StrandHogg v2
traces for Android 10 devices, since Android 10 is not anymore
vulnerable (cf. Section 2). Hence, our collected StrandHogg v2 at-
tack traces consider the scenario with the minimized DataCollector.
There are 204 StrandHogg v2 traces in total that were collected on
emulators with Android platforms ranging from 4.4 to 9 versions.
Data Pre-processing Before using our data set as training data
for an ML model, we needed to transform the data set. This pre-
processing was done using python scripts. Those merge all traces
into a pandas data frame, a two-dimensional data structure provided
by the pandas framework [30], while preserving the correct labels.
Furthermore, we used Label Encoders to convert categorical values
into numerical ones. We removed the timestamp values from our
data set, as they most likely would have contributed to over-fitting.
In case certain column values were missing, we replaced them with
a default value.

4.2 Feature Engineering and Model Training
To build the best performing model, we had to go through an itera-
tive process of model training, evaluation, and feature engineering
to identify attributes that contributed the most to the classification
results.
Model TrainingWe split the entire data into two separate frames,
one consisting of 75% of our complete data set and intended for
training, and the second one holding 25% of data and used in the
evaluation. During the process of splitting the data, we ensured,
that the evaluation set contains traces from both attacks and both
scenarios.

We then used two classifiers, XGBoost and Random Forest, to
train models using the first data frame. Both classifiers were trained
using default parameters provided by the scikit-learn framework.
We trained the models to perform binary classification, therefore
each observation from the traces were classified into either benign
or malicious. Classification performance was evaluated using the
second data frame holding 25% of data, that were not used in the
training step. The results are depicted in Figure 3. The XGBoost
performance is slightly better than the Random Forest performance,
therefore, we focused on the XGBoost classifier for further testing.
Feature Analysis To identify important features, we generated
a feature importance distribution. The generation of feature im-
portance distributions is a standard benefit when using decision
tree methods. In this ranking, we noticed that out of 148 attributes,
the attribute android:numActivities had, by far, the highest con-
tribution (cf. Appendix Table 2). By evaluating this attribute man-
ually, we discovered that it is usually either set to one or two in
case of an attack. Interestingly, the value was never set to zero
for both benign and malicious traces. We discovered that the an-
droid:numActivities attribute only works as expected in case

Accuracy Precision Recall F1-score

84

86

88

90

92

94

Accuracy Precision Recall F1-score

84

86

88

90

92

94

Accuracy Precision Recall F1-score

84

86

88

90

92

94

Figure 3: XGBoost and Random Forest classifier results.
The y-axis shows percentage results. The gray/green bar
chart shows the XGBoost/Random Forest results, respec-
tively, before adding the manually engineered feature
(globalNumActivities). The blue bar chart shows XGBoost
classification results with the additional feature.

the Data Collector is in a minimized state. In case the Data Collector
is closed the attribute is always set to one, regardless of an ongoing
attack. Other features coincidentally divide the data by detecting
design differences between the Data Collector and malicious apps
or distinguish different devices by, for instance, their display identi-
fier or screen height. Other attributes such as task identifier are not
reliable for detection as they are not persistent between consecutive
runs.
Feature Engineering and Classification Improvement Based
on previous observations, we engineered an additional feature,
based on android:numActivities attribute. In particular, it was
set to one, for each observation in the entire trace, in case an-
droid:numActivities was greater or equal two at least one time
in the trace. This means, in case one or more observations have
an increased android:numActivities value, all observations in
the entire trace will have value one for the newly added feature,
otherwise the value is set to zero. Using this additional feature, we
were able to additionally improve the performance of our classifier
as seen in Figure 3. We refer to the newly added feature as global-
NumActivities. It has an importance of 57.68%. The accuracy of
the classifier improved by 5.38%, the Precision improved by 7.56%,
the Recall improved by 5.31%, and the F1-score improved by 5.94%.

4.3 Additional Evaluation of the Best
Performing Model

Our best performing model, as described in previous paragraphs, is
the one trained using XGBoost Classifier and when using the glob-
alNumActivities feature. The goal of the additional evaluation
is to identify if the model performs similarly well when detecting
various attack versions and/or scenarios. To perform such evalua-
tion, we again used our second data frame which was not used in
training. It was randomly sampled to select 50 benign traces and 50
traces of each attack type and scenario. These samples were then
combined into three validation datasets: (1) 50 benign traces and 50
StrandHogg v1 traces with minimized DataCollector, (2) 50 benign
traces and 50 StrandHogg v1 traces with closed DataCollector, (3) 50
benign traces and 50 StrandHogg v2 traces. Each of those validation

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Stang, Dmitrienko, Roth

set samples were individually classified. Our performance metrics,
depicted in Figure 4, show that the classifier is able to achieve
very good scores when classifying StrandHogg v1 traces that were
collected in a minimized state. The classification performance for
StrandHogg v2 traces is very good as well. However, for traces that
were collected in a closed state, the classification performance signif-
icantly drops. For instance, the accuracy drops by 12.45% compared
to the StrandHogg v2 classification accuracy. The low accuracy for
closed app state is due to the android:numActivities attribute
only working reliably in a minimized app state.

The very good performance we observed for both StrandHogg
versions for the scenario with the minimized app state inspired us to
develop a second defense approach based on android:numActivities
and minimized app state, which we discuss in the next section.

5 SECOND APPROACH: ACTIVITY COUNTER
In this section, we describe our second detection method, which
we call ActivityCounter. It performs detection locally on the device
and is efficient, deterministic, and yields 100% detection with no
false positives. The idea behind the detection method emerged
during the evaluation of our ML-based method and is based on
monitoring the numActivties attribute and forcing one activity
of the defending app to stay in a minimized state. The detection
method must be integrated into each app that needs to be protected,
for instance, online banking apps or apps that are potential targets
for phishing attacks. Furthermore, the detection method can be
used vendor-independently on any Android device.

5.1 Detection Method using Activity Count
First, we aim to gain an understanding, why the numActivties
attribute becomes a better attack indicator when the app is forced
to stay in minimized state.

We recall, that both versions of the StrandHogg attack inject
a malicious activity into the task structure of the victim app. We
previously observed, that the internal amount of activities (activity
count), in the current process, can be accessed. The first step is to get
a list of RunningTaskInfo elements via the method getRunning-
Tasks(int maxNum). According to the Android documentation, the

Accuracy Precision Recall F1-score
80

85

90

95

100

Accuracy Precision Recall F1-score
80

85

90

95

100

Accuracy Precision Recall F1-score
80

85

90

95

100

Figure 4: StrandHogg v1 trace (Test-Set) classification results
for closed (gray) andminimized DataCollector (blue). Y-axis
shows percentage results. Green bar chart shows Strand-
Hogg v2 trace (Test-Set) results.

method is deprecated as of Android API level 21, which corresponds
to Android version 5.0. However, for backwards compatibility rea-
sons, the method still works up to Android 10. The documentation
states: “For backwards compatibility, it will still return a small sub-
set of its data: at least the caller’s own tasks, and possibly some
other tasks such as home that are known to not be sensitive” [10].
Each returned task inherits the attribute numActivities from the
TaskInfo class. This attribute specifies the number of activities in
the particular task [15]. Furthermore, we observed that this attribute
only works reliably in a range above one, as described in Section 4.2.
Hence, the attribute only works reliably if at least one activity is
present, i.e., the app is minimized. That implies the attribute will
never drop to zero.

We could verify that the number of activities accessed via the
numActivities attribute increases by one, in case the app is mini-
mized and a StrandHogg attack is launched. However, due to An-
droid’s internal logic, this attribute will not drop to zero. That
means, in case no activity is present, the value will still be set to
one. Furthermore, in case of an attack, the attribute will again be
one, which is indistinguishable from the state of origin. To make
this attribute a perfect indicator for an ongoing attack, one needs
to guarantee that at least one activity is always present.

In case this condition is met, the StrandHogg attacks could be
reliably detected – one would need to count activities and, in case
the activity count is greater than the amount of activities that were
legitimately created, one can infer that a StrandHogg attack was
launched against the app.

5.2 Technical Challenges
In the previous sections, we elaborated on how the activity count
could be used for attack detection. However, we face two techni-
cal challenges to realize this approach which we describe in the
following.

CH1: Efficient Monitoring First of all, continuous background
execution is necessary to periodically validate the amount of ac-
tivities in our task. It is challenging to realize such monitoring
efficiently – constant monitoring is prohibitively expensive and is
likely to have a noticeable negative impact on the battery life of mo-
bile devices. This problem violates the requirement R2: Efficiency
described in Section 3.

CH2: No App Close The user is not allowed to close the appli-
cation, as the numActivities attribute is only a reliable indicator if
at least one activity of the app is opened/minimized. Preventing the
app from being closedmay have a high impact on the usability of the
device, which does not go along with R5: Usability requirement
(cf. Section 3).

5.3 Solving Challenges
In this section, we present our solutions to the previously described
technical challenges.

Our idea for solving the CH1: Efficient Monitoring challenge
is to place a hook that notifies our detection system in case the
number of activities changed in the particular task. Finding the
appropriate place in code to hook in is not straightforward, since
we need to eliminate any changes to the operating system to fulfill
the requirement R3: Compatibility.

RIP StrandHogg: A Practical Detection Method on Android WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

Device is started
→ BOOT_COMPLETED

App is minimized
→ onPause()

App is destroyed
→ onDestroy()

Launch Activity
→ EXCLUDE_FROM_RECENTS

Minimize Activity
→ moveTaskToBack()

App icon is clicked
→ onCreate()

Restart Activity
→ RETAIN_IN_RECENTS

Start Foreground
Service App is resumed

→ onResume()

Check for attack
→ evaluate numActivities

App is either closed
or resumed by the user

Repeat while Foreground
Service is running

Stop Foreground
Service

In case no attack occurred,
proceed with restart

Stop Foreground
Service

Figure 5: StrandHogg Attack detection Concept

The key to solving the second challenge CH2: No App Close
is to keep a minimized activity instance. To fulfill the requirement
R5: Usability, the minimized activity should not be displayed to
the user. In the following paragraphs, we present our solutions to
the challenges.
Launching minimized activity We could launch a minimized
activity unnoticeable to the user by using the flag FLAG_ACTIV-
ITY_ EXCLUDE_FROM_RECENTS. This flag prevents the activity from
being displayed in the recent apps list [12]. As soon as the activity is
created, it will instantly be sent to the background, i.e., into a mini-
mized state, by calling the method moveTaskToBack(boolean) [8].
As the activity specified the exclude from recents flag, it will lead
the Android OS to destroy the activity. However, a reference to the
minimized activity is still kept in the Android OS, for the case if
the app is opened again.

We could verify that the placed reference is sufficient to perma-
nently increase the numActivities attribute by one. Therefore, by
placing this minimized activity reference, every time the user closes
the last activity instance, we can ensure that activity count based
on the numActivities attribute works reliably.
Hooking the code for efficient monitoring Ideally, we want to
place a hook into the Android OS, which notifies us of changes
in the amount of activities in a particular task. However, to avoid
any changes to the operating system, we had to come up with a
workaround.

We observed an interesting behavior when placing minimized ac-
tivity instance references, as described in the previous paragraphs –
the placed activity reference automatically goes into a destroyed
state, once it is minimized. However, every time the user clicks on
the app’s icon, the previously destroyed activity is re-created. That
implies, that the onCreate() method of the activity is called. This
is due to the task being revived and as the activity was destroyed
earlier, it must now be re-created to be available to the user again.
This behavior is very fortunate for our detection system, as we
now have a callback each time the user clicks on our app’s icon.
We observed, that the onCreate() method of the destroyed activ-
ity will be called regardless of the foreground activity of the task.
Therefore, even in case an adversarial activity is in the foreground,
the onCreate() method will still be called.

We can now count the number of activities in our task via the
numActivities attribute, each time the user clicks our app’s icon,

i.e., when the onCreate() method is called. Based on these obser-
vations we can now build the final detection method.

5.4 Detection Method Concept
In this section, we describe the concept of the novel detection
method, based on the solutions we came up with, in the previous
paragraphs. We describe the approach for two scenarios. The first
scenario considers the closed app state, here we describe how a
callback is placed to get notified of potential attacks. The second
scenario considers the app in a minimized state, here we describe
how to periodically check for ongoing attacks.
Detection while the app is closed As previously elaborated, we
start by describing the detection technique while the app is in a
closed state. The concept is visualized in Figure 5. The essential
step is to guarantee that the app always receives a onCreate()
callback, in case the app’s icon is clicked. This callback needs to
work independently of the current foreground activity in the task.
This is achieved, as described in Section 5.3, by placing a minimized
activity reference. We place the reference when the device is started,
to guarantee that our detection method is launched at the earliest
possible time. It works by registering for the Android broadcast
BOOT_COMPLETED and launch the minimized activity as soon as the
broadcast is received. This can be seen in the step Device is started
in Figure 5. Now every time the user launches the app, by clicking
on the app’s icon, the onCreate()method of the destroyed activity
will be called. This process corresponds to the step App icon is
clicked in the Figure. In this callback, we check for an ongoing
attack, as specified in Section 5.1. Therefore, we evaluate if the
android:numActivities attribute is greater than the amount of
our own created activities. If no attack is detected, we need to
restart the app with the flag FLAG_ACTIVITY_RETAIN_IN_RECENTS
which is the inverse of the flag FLAG_ACTIVITY_EXCLUDE_FROM_-
RECENTS. Otherwise, the user would not be able to see the activity
in the recent apps list, which drastically reduces the user experience.
Therefore, the flag does not affect the attack detection but is critical
to maintaining the usability of the defense method.
Detection while the app is minimized In this paragraph, we
describe attack inference while the app is in a minimized state.
Assume no attack occurred and the app is in the foreground. The
user canminimize the application, at any time, and start another app.
This corresponds to stepApp is minimized in Figure 5. The other app
potentially launches a StrandHogg attack. The malicious activity

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Stang, Dmitrienko, Roth

will then be displayed, once the user resumes our app via the recent
apps list. That means, we need to periodically check whether an
attack occurred, while the app is intentionally minimized by the user.
We can do that by starting a foreground service, which periodically
evaluates the android:numActivities attribute. Empirically we
chose to evaluate the attribute every 2 seconds, as we were able to
detect every attack by using this interval.

In case no attack occurred, we need to handle two different
possibilities. Either the app is resumed by the user or it gets closed.
In case of resuming, the activity’s onResume()methodwill be called.
This process is described in the step App is resumed in the Figure. If
this callback is received, we stop the foreground service. However,
in case the user does not resume to the activity but rather closes it,
we need to place our activity reference again. We observed that the
onDestroy() method of our activity is always called, in case there
is a running foreground service present. This step is illustrated in
the Figure asApp is destroyed. Therefore, we can rely on this method
to detect when the user closes our activity. In case the activity’s
onDestroy() method is called, we stop the foreground service and
place the minimized activity reference.
Detection with multiple activities In case the app needs multi-
ple activities, we need to guarantee that the detection system can
not be bypassed by launching a different activity than the main
activity. We can ensure that the adversary needs to attack the main
activity of our app, by protecting each following activity with a
custom signature permission. Therefore, only our app is allowed to
launch an activity different from the app’s main activity.
Necessary Permissions In this paragraph, we describe the nec-
essary permissions for the detection method. An overview of the
necessary permissions can be seen in Appendix Table 3. To place
the minimized activity at the earliest possible time, the app needs to
receive a broadcast once the boot process is completed. This needs
the RECEIVE_BOOT_COMPLETED permission. Furthermore, we need
a running foreground service that periodically evaluates the num-
ber of activities in our task while the app is intentionally minimized
by the user. To do that, one needs the FOREGROUND_SERVICE per-
mission for Android versions 9.0 and higher. Furthermore, for the
Android versions below 5.0, which corresponds to API level 21, the
permission GET_TASKS is necessary to receive the list of running
tasks [14]. According to the Android documentation, as of Android
10, which corresponds to API level 29, there are certain restric-
tions on starting activities while the app is in the background [19].
The restrictions are ignored when certain exceptions apply. One of
those exceptions is that the app was granted the SYSTEM_ALERT_-
WINDOW permission by the user. Therefore, for Android 10 devices
our method additionally needs this permission to be able to always
place a minimized activity, even when being in the background.

5.5 Evaluation
In this section, we evaluate the effectiveness of our activity count
method through developing a proof-of-concept implementation
and empirical tests.
Proof-of-Concept Implementation We implemented the con-
cept as described in Section 5.4 within an app we refer to as Ac-
tivityCounter. For development, we used Android Studio and the

programming language Java. Our implementation has a main activ-
ity that handles the attack detection. Furthermore, we implemented
one permission-protected activity as described in Section 5.4. We
will provide the source code upon request.
Testbed We tested the implementation by use-case testing it on
different emulator devices. Each of the tests were executed on
emulator devices with versions: 4.4, 5.0, 6.0, 7.0, 8.0, 9.0, and 10.
Usability Tests The first test cases were performed to ensure the
usability of the detection method and were executed while no attack
was ongoing. Test cases included active interaction of the user with
the app and included such actions as starting, minimizing, and clos-
ing the ActivityCounter app and switching between different app
states. We additionally verified that the placed minimized activity
reference is not visible in the recent apps list. Therefore, the user
is not confused by some ActivityCounter activity still being in the
recent apps list, despite closing the ActivityCounter app.

We noticed, that the placement of a minimized activity reference,
in the case of ActivityCounter’s closing, is sometimes observable
by the user. This can be mitigated by using a (temporarily) trans-
parent main activity. We applied this mitigation technique in the
ActivityCounter implementation and the flickering was no longer
visible on a 8 year old device (Samsung S4 Mini).
Effectiveness Evaluation The second line of tests was intended
to ensure the reliability of the detection method. In this part of the
evaluation, we launched both StrandHogg attack versions, that were
implemented in such a way that they targeted our ActivityCounter
app. We tested two attack scenarios:

• Attack Scenario #1 - The ActivityCounter app is closed by the
user. (Therefore, a minimized activity reference was placed.)

• Attack Scenario #2 - The ActivityCounter app is intentionally
minimized by the user. (Therefore, the foreground service
is periodically evaluating the android:numActivities at-
tribute.)

To test the first attack scenario, we launched the ActivityCounter
app on the emulator device. We then proceeded to close the Ac-
tivityCounter app by opening the recent apps list and closing the
ActivityCounter activity. (Pressing the back button to close the
activity was considered as well.) In the next step, the StrandHogg
v1 attack was launched. After closing the distraction activity we
opened the ActivityCounter app by clicking on the ActivityCounter
app’s icon.We could verify that the attack was successfully detected.
We repeated the evaluation for the StrandHogg v2 attack. We could
again verify that the attack was reliably detected.

The second attack scenario was tested by opening the Activity-
Counter app and minimizing it via pressing the home button on
the emulator device. We verified, that the foreground service is
successfully started once the recent apps list is shown or the home
button is pressed. We then proceeded to launch the StrandHogg v1
attack against our ActivityCounter app. We verified that the app
can detect the attack reliably. We then repeated the test for the
StrandHogg v2 attack and ensured that this attack version can also
be reliably detected.
Reliability TestsOur further evaluation concerns the reliability of
our ActivityCounter app, whichmight be affected by the OS that can
kill background activities at any time, due to various reasons such

RIP StrandHogg: A Practical Detection Method on Android WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

as memory shortage. During the test, the first step was to launch
the ActivityCounter activity and close it right afterward, such that
a minimized activity reference will be placed. We then retrieved a
process list via the adb shell command ps. In this process list, we
identified the PID, belonging to our ActivityCounter app. We then
killed this process via the kill PID command. We then proceeded
to test the reliability of the app by launching the StrandHogg v1
attack. We could verify that the killing of the ActivityCounter’s
app process is not sufficient to bypass our detection method, as the
attack was successfully detected. We repeated this evaluation for
the StrandHogg v2 attack as well and achieved the same results.
Resilience against attack evasion Our last line of tests targets
the resilience of our detection method against evasion. One poten-
tial evasion strategy for the attacker would be to utilize the Android
flag FLAG_ACTIVITY_CLEAR_TASK. The general idea behind this ap-
proach is to clear all activities from the victim task. This would
remove the minimized activity reference from the task and there-
fore evade our detection scheme, as we no longer receive a callback
once the app’s icon is clicked. The Android documentation states:
“This flag will cause any existing task that would be associated with
the activity to be cleared before the activity is started. That is, the
activity becomes the new root of an otherwise empty task, and
any old activities are finished” [11]. The test was done by adding
the FLAG_ACTIVITY_CLEAR_TASK flag to the launch intent of both
StrandHogg attack versions. We could confirm, that the additional
launch flag does not affect the reliability of the detection technique.

6 DISCUSSION
In this section, we explain, how our approaches fulfill the targeted
requirements presented in Section 3. We start by discussing the
requirements for the ML-based approach presented in Section 4. We
then elaborate on how the ActivityCounter, presented in Section 5,
fulfills the requirements.
ML-based Approach Our detection method based on machine
learning is capable of detecting both StrandHogg attack versions.
Hence, we consider the requirementR1: Generalizability fulfilled.
However, the approach uses a background monitoring component
that periodically collects attributes to detect ongoing attacks. Con-
tinuous background monitoring is expensive in terms of run-time
overhead and energy consumption. The increased energy consump-
tion may drain the battery of the device faster, which will result
in a reduced user experience. Therefore, we consider the require-
ment R2: Efficiency not fulfilled. The approach only uses existing
Android API methods to collect the attributes. This makes it appli-
cable to a wide range of devices while being independent of any
modification of the operating system. Due to this fact, we consider
the requirement R3: Compatibility fulfilled. The last requirement
R4: Usability is not fulfilled, as we previously discussed that the
battery duration of the device may be reduced. Furthermore, the
approach suffers from false positives and negatives, due to the an-
droid:numActivities attribute not working reliably for closed
app state. This could lead to undetected attacks and unjustified
password resets, hence negatively impacting security and usability.
ActivityCounter The novel detection method, called Activity-
Counter, can detect both versions of the StrandHogg attack. There-
fore, we consider the requirement R1: Generalizability fulfilled.

Generally, this method does not require continuous background
monitoring, as it is only necessary once the app is intentionally
minimized by the user. The resource overhead of the background
monitoring component is acceptable as it only validates if an at-
tack occurred every two seconds. In our tests, the interval of two
seconds was sufficient to detect all StrandHogg attacks against the
ActivityCounter app. Furthermore, the malicious activity must be
present on the screen for a sufficiently long time to successfully steal
sensitive user input, such as passwords. The process of entering
credentials often takes longer than two seconds, therefore, we con-
sider the interval appropriate. In case the app is in the foreground
or closed, background monitoring is not necessary as we placed a
hook that notifies us in case the app is started. Usually, the app is
either in the foreground or minimized for short times by the user,
therefore, we consider the second requirement R2: Efficiency ful-
filled as well. We further required that the detection method should
not rely on any modification of the OS. Our approach works by only
using common Android API methods, that are available on Android
versions ranging from 4.4 to 10. Therefore, the defense technique is
applicable to any vulnerable Android platform without the need of
modifying the OS, as a consequence we consider the requirement
R3: Compatibility fulfilled. The last requirement R4: Usability
is fulfilled as well, as the detection method does not negatively
impact the usability of the device, e.g. by draining the battery or
suffering from false positives. As we elaborate in the next section,
no other proposed defense method fulfills all the above-mentioned
requirements.
Limitations One limitation of both detection methods is that it
must be integrated manually into each sensitive app that desires
to be protected. This approach is limited, since it only protects
applications if app developers have chosen to integrate it. Also,
this choice is not under control of end-users. Another limitation is
that the detection methods are specific to the StrandHogg attacks.
Further research is necessary to identify if the methods can be
utilized to detect other types of activity hijacking attacks.

7 RELATEDWORK
In this section, we overview related work on countermeasures
against StrandHogg attacks. They can be classified into three cat-
egories: runtime detection, static analysis, and enforcement of at-
tributes.
Runtime Detection Defense methods [27, 32] are based on the
Xposed framework. In particular, Yan et al. [32] proposed a new
security model “Android Window Integrity”. This model specifies
the capabilities for each app in the system and analyzes activity
transitions. In case an activity transition is against the rules imposed
by the security model, such as starting an activity while being in
the background, the user is asked for confirmation. Ren et al. [27]
identified the possibility of false positives when using the proposed
“Android Window Integrity” security model. The authors proposed
a new system called “ActivityShielder”, that reduces the risk of
false positives. It works by validating the integrity of the source
that causes a switch between activities. By doing so, the entire
foreground task integrity is validated.

Both techniques are capable of detecting activity hijacking at-
tacks, hence, both StrandHogg versions can be detected. Those

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Stang, Dmitrienko, Roth

Prevents/Detects No negative app No usability No False No OS modifi-
v1 v2 behaviour change impact Positives cation required

Static Analysis [1, 20, 31] ✓ ✗ ✓ ✓ ✓ ✓
Runtime Detection [27, 32] ✓ ✓ ✓ ✓ ✗ ✗

Enforcement of Attributes [33] ✓ ✓ ✗ ✗ ✓ ✓
ML-Based Approach ✓ ✓ ✓ (✗) ✗ ✓
ActivityCounter ✓ ✓ ✓ ✓ ✓ ✓

Table 1: StrandHogg Countermeasures Overview

methods, however, can not be implemented without vendor sup-
port as they both require modification of the OS.
Static Analysis This category of countermeasures relies on static
analysis of the bytecode, resources, and permissions of potential
malicious Android apps. Bianchi et al. [1] developed a tool intended
for static analysis of Android apps. It works by decompiling the
Dalvik ([16]) intermediate code as well as other app resources, in
order to detect risks indicating a task hijacking attack. Additionally,
a runtime defense mechanism is included, that uses an indicator in
the navigation bar. Zhou et al. [31] proposed a solution intended to
detect malicious apps by permission-based footprinting. Hwang et
al. [20] proposed a novel tool to detect activity hijacking attacks,
especially the first version of the StrandHogg attack, based on
analyzing used intents and the taskAffinity attribute in the app’s
manifest.

The StrandHogg v1 attack can easily be spotted using static
analysis techniques, which inspect the android:taskAffinity at-
tribute. “Attackers exploiting StrandHogg have to explicitly and
manually enter the apps they are targeting into Android Manifest”
[26]. Therefore, the attack can be detected by checking if an app has
a foreign package name set as task affinity. However, there are legit-
imate use cases for declaring task affinities to foreign applications,
hence, the approach could lead to false positives.

The StrandHogg v2 attack can not be detected using static anal-
ysis. This is due to its independence of attributes. The attack does
not require to specify any suspicious attributes in the app’s man-
ifest, prior to attack execution. Therefore, it is possible to launch
the attack entirely in memory, which circumvents static analysis
techniques.
Enforcement of Attributes Another mitigation for both Strand-
Hogg attacks was proposed by Promon [33]. The idea of the defense
method is setting the android:launchMode of the victim app to
singleInstance. While maybe effective, this mitigation technique
has severe usability drawbacks, which will likely confuse users,
such as preventing multitasking or recreating the activity instead
of resuming to it [7]. Furthermore, developers have to consider the
changed app behaviour, as the functionality of the app is limited.
SummaryWe summarize the discussed countermeasures in Table 1.
All already existing methods have drawbacks – for instance, the
runtime detection requires OS modification, which can only be
done with the support of the mobile platform vendors. However,
many devices are no longer supported, therefore, those defense
techniques can no longer be implemented. Other countermeasures,
such as static analysis, are only capable of detecting the StrandHogg
v1 attack. Moreover, countermeasures based on the enforcement of
attributes are capable of defending against both StrandHogg attack

versions, however, they negatively impact the behaviour of the
app. Those behaviour changes have extremely severe consequences
such as prevention of multitasking. Furthermore, those changes
negatively affect the development process of an app, as changed
behaviour has to be considered.

Our first approach, presented in Section 4, is based on machine
learning and capable of detecting both StrandHogg attack versions.
However, the approach suffers from false positives. Furthermore,
the usability of the device is slightly reduced as continuous back-
ground monitoring is necessary, which may shorten the battery of
the mobile device. We consider the approach more suitable than the
Enforcement of Attributes solution, as there is no negative behaviour
change, hence the implementation effort for developers is reduced.
Furthermore, we consider the constant monitoring a less severe
usability drawback than prevention of multitasking. Our second
approach – ActivityCounter, presented in Section 5, aims at elimi-
nating the drawbacks of the first approach. By placing a hook into
the OS we were able to get rid of the continuous background moni-
toring. The ActivityCounter is capable of reliably detecting both
StrandHogg attack versions without any false positives. Further-
more, it does not require any modification of the operating system,
as the approach only relies on native Android API methods.

8 CONCLUSION
The StrandHogg attacks affect up to 90% of all Android devices
around the globe and existing countermeasures cannot be straight-
forwardly applied for their protection – they either require OS
modification, or have poor usability, or are helpless against some
attack variations.

In this work, we aimed at a challenging goal to design a generic,
efficient and usable method that does not require vendor support
for deployment. To achieve our goal, we studied, analyzed, and
implemented both StrandHogg attack versions. Using the gained
knowledge, we were able to develop two novel detection techniques.
The first technique, based on machine learning, is capable of de-
tecting attacks with an average F1 score of 92 percent. It works by
collecting traces on Android devices and classifying them with the
help of the developed ML model. The second technique is based on
counting activities in the particular task and shows outstanding per-
formance – no false positives, no false negatives, and no drawbacks
such as negative usability impact or requirement of vendor support.
It can be applied to all vulnerable Android versions ranging from
4.4 to 10 and can detect all attack versions.

Overall, ActivityCounter is the first practical method that can
protect apps on millions of vulnerable Android devices against
StrandHogg attacks.

RIP StrandHogg: A Practical Detection Method on Android WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

REFERENCES
[1] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel, and G. Vigna.

2015. What the App is That? Deception and Countermeasures in the Android
User Interface. In 2015 IEEE Symposium on Security and Privacy. 931–948. https:
//doi.org/10.1109/SP.2015.62

[2] Qi Alfred Chen, Zhiyun Qian, and Z. Morley Mao. 2014. Peeking into Your App
without Actually Seeing It: UI State Inference and Novel Android Attacks. In
23rd USENIX Security Symposium (USENIX Security 14). USENIX Association, San
Diego, CA, 1037–1052. https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/chen

[3] Petr Dvorak. 2020. StrandHogg 2.0: Explained. https://www.youtube.com/watch?
v=avElCFVuXvo – 17:00.

[4] A. P. Felt and D. Wagner. 2011. Phishing on Mobile Devices. In IEEE Workshop
on Web 2.0 Security and Privacy.

[5] Earlence Fernandes, Qi Alfred Chen, Justin Paupore, Georg Essl, J. Alex Halder-
man, Z. Morley Mao, and Atul Prakash. 2016. Android UI Deception Revisited:
Attacks and Defenses. In Financial Cryptography and Data Security.

[6] Google. 2019. Android Documentation - Understand Tasks and Back Stack. Re-
trieved Feb 11, 2021 from https://developer.android.com/guide/components/
activities/tasks-and-back-stack

[7] Google. 2020. Android Documentation - <activity>. Retrieved Feb 11, 2021 from
https://developer.android.com/guide/topics/manifest/activity-element

[8] Google. 2020. Android Documentation - Activity. Retrieved Feb
17, 2021 from https://developer.android.com/reference/android/app/Activity#
moveTaskToBack(boolean)

[9] Google. 2020. Android Documentation - App Manifest Overview. Retrieved Feb 11,
2021 from https://developer.android.com/guide/topics/manifest/manifest-intro

[10] Google. 2020. Android Documentation - getRunningTasks. Retrieved Feb 15, 2021
from https://developer.android.com/reference/android/app/ActivityManager#
getRunningTasks(int)

[11] Google. 2020. Android Documentation - Intent (FLAG_ACTIVITY_CLEAR_TASK).
Retrieved Mar 8, 2021 from https://developer.android.com/reference/android/
content/Intent.html#FLAG_ACTIVITY_CLEAR_TASK

[12] Google. 2020. Android Documentation - Intent (FLAG_ACTIVITY_-
EXCLUDE_FROM_RECENTS). Retrieved Feb 17, 2021 from https:
//developer.android.com/reference/android/content/Intent#FLAG_ACTIVITY_
EXCLUDE_FROM_RECENTS

[13] Google. 2020. Android Documentation - Intent (FLAG_ACTIVITY_NEW_TASK).
Retrieved Feb 11, 2021 from https://developer.android.com/reference/android/
content/Intent#FLAG_ACTIVITY_NEW_TASK

[14] Google. 2020. Android Documentation - Manifest.permission. Retrieved
Mar 8, 2021 from https://developer.android.com/reference/android/Manifest.
permission#GET_TASKS

[15] Google. 2020. Android Documentation - TaskInfo. Retrieved Feb 15, 2021 from
https://developer.android.com/reference/android/app/TaskInfo#numActivities

[16] Google. 2020. Android Runtime (ART) and Dalvik. Retrieved Feb 11, 2021 from
https://source.android.com/devices/tech/dalvik

[17] Google. 2020. Android Security Bulletin - Mai 2020. Retrieved Feb 13, 2021 from
https://source.android.com/security/bulletin/2020-05-01

[18] Google. 2020. GoogleGit - ActivityStarter.java. Retrieved May 17, 2021
from https://android.googlesource.com/platform/frameworks/base/+/
a952197bd161ac0e03abc6acb5f48e4ec2a56e9d

[19] Google. 2020. Restrictions on starting activities from the background. Retrieved
Mar 8, 2021 from https://developer.android.com/guide/components/activities/
background-starts

[20] Sungjae Hwang, Sungho Lee, and Sukyoung Ryu. 2020. All about activity injec-
tion: Threats, semantics, detection, and defense. Software: Practice and Experience
50 (01 2020). https://doi.org/10.1002/spe.2792

[21] C. C. Lin, H. Li, X. Zhou, and et al. 2014. ScreenMilker: How to Milk Your Android
Screen for Secrets. In Network and Distributed System Security Symposium.

[22] B. Liu, S. Nath, R. Govindan, and J. Liu. 2014. DECAF: Detecting and Charac-
terizing Ad Fraud in Mobile Apps. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI).

[23] D. Liu, E. Cuervo, V. Pistol, R. Scudellari, and L.P. Cox. 2013. ScreenPass: Secure
Password Entry on Touchscreen Devices. In Annual International Conference on
Mobile Systems, Applications, and Services (MobiSys).

[24] S. O’Dea. [n.d.]. Mobile Android operating system market share by version
worldwide from January 2018 to January 2021. Retrieved March 13, 2021
from https://www.statista.com/statistics/921152/mobile-android-version-share-
worldwide/

[25] Promon. 2019. The StrandHogg vulnerability. Retrieved Feb 11, 2021 from
https://promon.co/security-news/strandhogg/

[26] Promon. 2020. StrandHogg 2.0 - The ‘evil twin’. Retrieved Feb 13, 2021 from
https://promon.co/strandhogg-2-0/

[27] C. Ren, Peng Liu, and S. Zhu. 2017. WindowGuard: Systematic Protection of GUI
Security in Android. In NDSS.

[28] Chuangang Ren, Yulong Zhang, Hui Xue, Tao Wei, and Peng Liu. 2015. Towards
Discovering and Understanding Task Hijacking in Android. In 24th USENIX
Security Symposium (USENIX Security 15). USENIX Association, Washington,
D.C., 945–959. https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/ren-chuangang

[29] Z. Wang, C. Li, and et al. Y. Guan. 2016. ActivityHijacker: Hijacking the Android
Activity Component for Sensitive Data. In International Conference on Computer
Communication & Networks.

[30] Wes McKinney. 2010. Data Structures for Statistical Computing in Python. In
Proceedings of the 9th Python in Science Conference, Stéfan van derWalt and Jarrod
Millman (Eds.). 56 – 61. https://doi.org/10.25080/Majora-92bf1922-00a

[31] Wu Zhou Xuxian Jiang Yajin Zhou, Zhi Wang. 2012. Hey, You, Get Off of
My Market: Detecting Malicious Apps in Official and Alternative Android
Markets. North Carolina State University (2012). https://www.researchgate.
net/publication/267787299_Hey_You_Get_Off_of_My_Market_Detecting_
Malicious_Apps_in_Official_and_Alternative_Android_Markets

[32] F. Yan, Y. Li, and L. Zhang. 2018. ActivityShielder: An Activity Hijacking Defense
Scheme for Android Devices. In 2018 27th International Conference on Computer
Communication and Networks (ICCCN). 1–9. https://doi.org/10.1109/ICCCN.2018.
8487367

[33] Wander Z. 2020. StrandHogg 2.0 Exploit Explained – Why Users and Android App
Developers should care. Retrieved Feb 27, 2021 from https://www.xda-developers.
com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/

A APPENDIX
A.1 Section 4 – Feature Importance

Feature Importance (in %)

numActivities 23,57%
displayId 7,43%
isFullscreen 7,05%
baseIntent:mForceLaunchOverTargetTask 6,50%
isConventionalMode 6,30%
configuration:screenHeightDp 4,57%
userId 4,50%
configuration:seq 4,35%
taskId 3,05%
resizeMode 2,87%
Table 2: XGBoost Classifier feature importance ranking.

A.2 Section 5 – Required Permissions

Android Version Required Permissions

4.4 RECEIVE_BOOT_COMPLETED
GET_TASKS

5.0, 6.0, 7.0, 8.0 RECEIVE_BOOT_COMPLETED

9.0 RECEIVE_BOOT_COMPLETED
FOREGROUND_SERVICE

10
RECEIVE_BOOT_COMPLETED

FOREGROUND_SERVICE
SYSTEM_ALERT_WINDOW

Table 3: Necessary permissions of ActivityCounter for dif-
ferent Android versions.

https://doi.org/10.1109/SP.2015.62
https://doi.org/10.1109/SP.2015.62
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/chen
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/chen
https://www.youtube.com/watch?v=avElCFVuXvo
https://www.youtube.com/watch?v=avElCFVuXvo
https://developer.android.com/guide/components/activities/tasks-and-back-stack
https://developer.android.com/guide/components/activities/tasks-and-back-stack
https://developer.android.com/guide/topics/manifest/activity-element
https://developer.android.com/reference/android/app/Activity#moveTaskToBack(boolean)
https://developer.android.com/reference/android/app/Activity#moveTaskToBack(boolean)
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/reference/android/app/ActivityManager#getRunningTasks(int)
https://developer.android.com/reference/android/app/ActivityManager#getRunningTasks(int)
https://developer.android.com/reference/android/content/Intent.html#FLAG_ACTIVITY_CLEAR_TASK
https://developer.android.com/reference/android/content/Intent.html#FLAG_ACTIVITY_CLEAR_TASK
https://developer.android.com/reference/android/content/Intent#FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS
https://developer.android.com/reference/android/content/Intent#FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS
https://developer.android.com/reference/android/content/Intent#FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS
https://developer.android.com/reference/android/content/Intent#FLAG_ACTIVITY_NEW_TASK
https://developer.android.com/reference/android/content/Intent#FLAG_ACTIVITY_NEW_TASK
https://developer.android.com/reference/android/Manifest.permission#GET_TASKS
https://developer.android.com/reference/android/Manifest.permission#GET_TASKS
https://developer.android.com/reference/android/app/TaskInfo#numActivities
https://source.android.com/devices/tech/dalvik
https://source.android.com/security/bulletin/2020-05-01
https://android.googlesource.com/platform/frameworks/base/+/a952197bd161ac0e03abc6acb5f48e4ec2a56e9d
https://android.googlesource.com/platform/frameworks/base/+/a952197bd161ac0e03abc6acb5f48e4ec2a56e9d
https://developer.android.com/guide/components/activities/background-starts
https://developer.android.com/guide/components/activities/background-starts
https://doi.org/10.1002/spe.2792
https://www.statista.com/statistics/921152/mobile-android-version-share-worldwide/
https://www.statista.com/statistics/921152/mobile-android-version-share-worldwide/
https://promon.co/security-news/strandhogg/
https://promon.co/strandhogg-2-0/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ren-chuangang
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ren-chuangang
https://doi.org/10.25080/Majora-92bf1922-00a
https://www.researchgate.net/publication/267787299_Hey_You_Get_Off_of_My_Market_Detecting_Malicious_Apps_in_Official_and_Alternative_Android_Markets
https://www.researchgate.net/publication/267787299_Hey_You_Get_Off_of_My_Market_Detecting_Malicious_Apps_in_Official_and_Alternative_Android_Markets
https://www.researchgate.net/publication/267787299_Hey_You_Get_Off_of_My_Market_Detecting_Malicious_Apps_in_Official_and_Alternative_Android_Markets
https://doi.org/10.1109/ICCCN.2018.8487367
https://doi.org/10.1109/ICCCN.2018.8487367
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/

	Abstract
	1 Introduction
	2 Background
	2.1 Android
	2.2 StrandHogg Attacks

	3 Adversarial Model and Requirement Analysis
	4 ML-Based Approach
	4.1 Data Collection and Pre-Processing
	4.2 Feature Engineering and Model Training
	4.3 Additional Evaluation of the Best Performing Model

	5 Second Approach: Activity Counter
	5.1 Detection Method using Activity Count
	5.2 Technical Challenges
	5.3 Solving Challenges
	5.4 Detection Method Concept
	5.5 Evaluation

	6 Discussion
	7 Related Work
	8 Conclusion
	References
	A Appendix
	A.1 Section 4 – Feature Importance
	A.2 Section 5 – Required Permissions

