
CrowdGuard: Federated Backdoor Detection in
Federated Learning

Phillip Rieger∗
Technical University of Darmstadt
phillip.rieger@trust.tu-darmstadt.de

Torsten Krauß∗
University of Würzburg

torsten.krauss@uni-wuerzburg.de

Markus Miettinen
Technical University of Darmstadt
markus.miettinen@tu-darmstadt.de

Alexandra Dmitrienko
University of Würzburg

alexandra.dmitrienko@uni-wuerzburg.de

Ahmad-Reza Sadeghi
Technical University of Darmstadt

ahmad.sadeghi@trust.tu-darmstadt.de

Abstract—Federated Learning (FL) is a promising approach
enabling multiple clients to train Deep Neural Networks (DNNs)
collaboratively without sharing their local training data. However,
FL is susceptible to backdoor (or targeted poisoning) attacks.
These attacks are initiated by malicious clients who seek to com-
promise the learning process by introducing specific behaviors
into the learned model that can be triggered by carefully crafted
inputs. Existing FL safeguards have various limitations: They
are restricted to specific data distributions or reduce the global
model accuracy due to excluding benign models or adding noise,
are vulnerable to adaptive defense-aware adversaries, or require
the server to access local models, allowing data inference attacks.

This paper presents a novel defense mechanism,
CrowdGuard, that effectively mitigates backdoor attacks
in FL and overcomes the deficiencies of existing techniques. It
leverages clients’ feedback on individual models, analyzes the
behavior of neurons in hidden layers, and eliminates poisoned
models through an iterative pruning scheme. CrowdGuard
employs a server-located stacked clustering scheme to enhance
its resilience to rogue client feedback. The evaluation results
demonstrate that CrowdGuard achieves a 100% True-Positive-
Rate and True-Negative-Rate across various scenarios, including
IID and non-IID data distributions. Additionally, CrowdGuard
withstands adaptive adversaries while preserving the original
performance of protected models. To ensure confidentiality,
CrowdGuard uses a secure and privacy-preserving architecture
leveraging Trusted Execution Environments (TEEs) on both
client and server sides.

I. INTRODUCTION

Federated Learning (FL) allows multiple clients to collabo-
ratively train a Deep Neural Network (DNN) on their private
data. In contrast to centralized learning approaches, in FL each
client trains its own DNN locally and shares only the trained
parameters of the model with an aggregation server [56]. Thus,
FL reduces concerns regarding the privacy of the clients’ local

*These authors contributed equally to this work

data, as they never leave the respective client, which is espe-
cially important in times of increased privacy awareness, legal
restrictions, and regulations [2], [3], [4]. FL also improves on
the resource usage, as the computationally expensive training
is parallelized and outsourced to the participating clients. As a
result, FL has become a popular technology and is applied in
various applications, including image recognition [74], [78],
[79], [80], e.g., between multiple hospitals [33], [74], [79],
natural language processing (NLP), e.g., text prediction on
smartphones [34], [57], personalization [17], risk classifica-
tion [25], or threat detection in IoT networks [64].

However, outsourcing the training process to individual
clients makes FL vulnerable to poisoning attacks. Here, an
adversary compromises a subset of the clients and lets them
submit manipulated model updates. Such attacks can be
untargeted [24], [46], [75] or targeted (so-called backdoor
attacks) [7], [66], [81], [86], [92]. In the following, we will
focus on targeted poisoning attacks that are more challenging
to detect (cf. Sect. III-B). These attacks cause the aggregated
model to misbehave at prediction time (also called inference)
if the input sample for the DNN contains a specific adversary-
controlled trigger. Moreover, in FL, the clients must trust
the server because several attacks have successfully inferred
information about the training data from the trained parameters
of a model [29], [36], [52], [63], [71], [76], [82], [88], [95].

The current defenses can be broadly classified into two
categories: Influence Reduction (IR) approaches [6], [7],
[15], [58], [62], [94] and Detection and Filtering (DF) ap-
proaches [10], [28], [61], [65], [73], [81], [96], [44]. IR
techniques aim to limit the impact of poisoned updates on
the model, while DF techniques try to detect and remove
the poisoned updates. These defenses employ techniques such
as clipping, noising, subgroup training, distance metrics, and
client-side analysis of the final predictions using the clients’
local data. However, the existing defenses still face several
challenges. First, they often assume that the training data of
different clients are independently and identically distributed
(IID). Hence, these defenses may not work effectively when
the training data of different clients differ, thus are non-IID.
Second, adaptive attackers aware of the defense mechanisms
can bypass these defenses. Finally, existing defenses do not
address the problem of unauthorized access to local models,
allowing inference attacks. We will elaborate on related work

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.23233
www.ndss-symposium.org

in detail in Sect. VII.

Our goals and contributions: We present CrowdGuard, a
backdoor-resilient and privacy-enhancing FL architecture that
effectively overcomes the limitations of existing solutions. The
key rationale of CrowdGuard is to leverage a secure client-
feedback-loop, where clients conduct local validation and ana-
lyze changes in the behavior of individual neurons. We define
a new Hidden Layer Backdoor Inspection Metric (HLBIM)
that enables CrowdGuard to identify poisoned models through
iterative pruning based on multiple significance tests for ana-
lyzing the models’ behavior. Although the adversary might be
able to inject a backdoor without affecting the final predicted
class on regular data, it cannot avoid changing the behavior
of at least a subset of deep-layer neurons to introduce the
backdoor functionality into the DNN. To mitigate manipulated
feedback from malicious clients, the server employs a multi-
layer clustering scheme to aggregate the feedback of different
validation clients. Utilizing the client-feedback-loop, analyzing
the changes in the behavior of individual neurons, and em-
ploying stacked robust aggregation of clients’ feedback enable
CrowdGuard to effectively identify poisoned models without
making assumptions about the attack or data scenarios. Using
the clients’ data provides a comprehensive overview of the
clients’ training objectives, allowing to identify both, benign
and poisoned models, even in scenarios where all clients’ data
are disjoint (non-IID).

To mitigate the privacy risk and prevent the feedback-loop
from allowing malicious clients to perform inference attacks
on the received local models, CrowdGuard leverages secure
enclaves and remote attestation to prevent unauthorized access
to the local models. By extending this concept to the server, we
effectively solve the problem of combining privacy-preserving
aggregation with backdoor mitigation. Thus, CrowdGuard
guarantees that clients’ data remains confidential and cannot
be inferred from the local models.

Our contributions include:

• We propose CrowdGuard, an architecture that enables secure
and privacy-preserving utilization of clients’ local data for
local model inspection. Thus, we provide the foundation for
a new class of poisoning detection algorithms. Additionally,
we remove the need for trust in the aggregation server
by utilizing secure, attestable enclaves on the server side
and combining the backdoor detection algorithm with an
efficient, secure aggregation (Sect. IV-A).

• We design a novel backdoor detection algorithm that ana-
lyzes the hidden layer outputs of local models to distinguish
between benign and backdoored models. As the adversary’s
primary goal is to change the model’s predictions for inputs
containing the trigger, it cannot disguise the backdoor in
all hidden layers without reducing the attack impact. The
in-depth analysis and iterative pruning enable CrowdGuard
to effectively identify benign and poisoned updates even
in non-IID data scenarios against sophisticated, defense-
adapted attacks (Sect. IV-B).

• We conducted an extensive evaluation of the efficiency and
effectiveness of CrowdGuard on various FL scenarios to an-
alyze different attack parameters, including various non-IID
scenarios, poisoning rates, backdoor types, and datasets such
as CIFAR-10 [43] and MNIST [21]. By analyzing changes
in the behavior of the neurons, CrowdGuard achieved

100% True-Positive-Rates (TPRs) and True-Negative-Rates
(TNRs) in a wide range of scenarios, outperforming exist-
ing defenses while avoiding their limitations. The runtime
evaluation showed an acceptable overhead of 29.5 seconds
on average for the client-side validation of 20 models using
enclaves on the CPU (Sect. V).

We are currently integrating CrowdGuard’s source code into
the OpenFL framework [27] to ensure that CrowdGuard can
be used not just for further research in this area but also for
real-world applications 1.

II. BACKGROUND

In the following, we describe the necessary background about
Federated Learning (FL) in Sect. II-A and targeted poisoning
attacks on FL in Sect. II-B.

A. Federated Learning

Federated Learning (FL) [41], [56], [93] is used for generating
or improving a shared machine learning (ML) model, i.e., a
Deep Neuronal Network (DNN), by collaborative efforts of
multiple clients Ck ∈ {C1, . . . CN} and a server S in an
iterative process [56]. The major benefit of FL is that the
clients Ck use their local data Dk for the training process.
These client-located data do not have to be shared with the
server S . Hence, such training is more privacy-preserving
than vanilla ML. Additionally, the extensive computations
during learning are distributed to multiple clients, so no
cost-intensive infrastructure is needed at S .

The learning process takes place over multiple FL rounds
that are supervised by the server S. At the start of each round
t, S first deploys a global model Gt to a randomly selected
group of clients Ci ∈ {C1, . . . , Cn}, which is a subset of
the total N clients. The n chosen clients initialize their local
model Lt

i with Gt and continue using their local dataset Di to
train the new local model Lt

i. The training is a regular learning
process configured by a number of hyper-parameters like, e.g.,
the learning rate, that optimizes one loss function. Afterward,
S collects all Lt

1, . . . , L
t
n models and aggregates them to a new

global model Gt+1, by averaging the differences and adding
them to Gt [56].

In detail, S computes the update of each weight for each
model, builds the average of these contributions and adds the
resulting value to the global model [56]. This algorithm is
called FederatedAveraging (FedAVG). The final contributions
are weighted with the global learning rate δ (see Eq. 1) [42].
After computing a new global model Gt+1, S can initialize a
new round, e.g., until a round limit is reached.

Gt+1 = Gt + δ(
1

n

n∑
i=1

(Lt
i −Gt)) (1)

Client Data Distributions. One major point that influences the
performance of any FL system regarding model accuracy but
also complicates the security mechanisms against malicious
contributions is the underlying distribution of the training
datasets Dk ∈ {D1, . . . ,DN} [48], [37]. Even if the overall

1https://github.com/TRUST-TUDa/crowdguard

2

https://github.com/TRUST-TUDa/crowdguard

(a) Pixel (b) Semantic (c) Benign

Fig. 1: Comparison of Backdoor Triggers.

amount of samples for each label in the whole system over
all clients C1, . . . , CN is equal, the data is unlikely to be
uniformly distributed among all clients so that all Dk follow
the same distribution [56]. Contrary to an independent and
identically distributed (IID) data scenario, a non-IID case
naturally delivers divergent trained models from each client.
Non-IID can manifest with different severities [97], i.e., all
clients can have samples of all available labels, but the overall
count for each label differs [49]. It is common to introduce a
peak non-IID rate of q ∈ [0, 1] in sample counts for one label,
the so-called main label of the client [14], [65]. The rest of the
labels are assumed to follow a uniform distribution [14], [65].
Alternatively, one can consider a specific distribution for all
sample counts, like the Dirichlet [59] or normal distribution,
with the peak at the main label.

Another situation is when some clients miss one label
entirely or only have data from one or two labels, which are
referred to as full 1-class and 2-class non-IID. The latter two
are special cases of a uniform non-IID distribution (q = 1).
Most of the backdoor defenses on FL, as well as approaches
improving the aggregation function, focus on either 1-class
and/or 2-class non-IID setups or the Dirichlet distribution with
different main labels within the clients’ datasets.

B. Poisoning Attacks on FL

In the past, FL has been shown to be vulnerable to so-called
poisoning attacks. Such attacks can be untargeted [75], [10] to
decrease the accuracy of the model and reduce the convergence
speed of the global model [24], [91], [46], or targeted, also
called backdoor attacks [7], [18], [8], [54], [30], which try
to add additional functionality to a model while maintaining
the main task accuracy (MA). All backdoor attacks have in
common that there exists an input trigger, which is embedded
within the raw data activating the backdoor. For a model that
predicts labels for samples from a domain X , the purpose of
the backdoor is to make the poisoned model G∗ predicting
the target label TA when feeding a sample from the trigger
set I ⊂ X to the model. Therefore, the adversary A wants to
achieve a high backdoor accuracy (BA) for samples from I,
as formalized in Eq. 2.

BA =
|{x ∈ I : f(x,G∗) = TA}|

|I|
(2)

Without further inspection, such backdoors remain unde-
tected within the resulting global model and pose a danger to
the model user. In FL, a poisoning attack can occur if one
or more clients Ci ∈ {C1, . . . Cn} are malicious and submit
a manipulated local model to the server for compromising
the aggregated model. Dependent on the attack algorithm and
the attacker’s capabilities, the adversary can manipulate the

input data, the complete learning process including hyper-
parameters, and the final weights of the trained local models
to inject and hide a backdoor (with high BA while maintaining
high MA). Furthermore, it can adapt to the defense by imitating
the behavior of benign clients (e.g., scaling of the model
weights) to stay undetected but still effective.

Different triggers have been proposed to activate the back-
doors: 1) Pixel backdoors that get activated by a certain
pixel pattern, like a red rectangle [7], [31], [53], which can
also be distributed in fractions over multiple poisoned local
models [92], 2) a Label-Swap backdoor that mislabels all
samples of one class to a target class, or 3) a Semantic
Backdoor that is activated when certain characteristics, e.g., a
car in front of a striped background, is present in the input [7].
Examples of all triggers are shown in Fig. 1. We elaborate on
these triggers in App. A. To achieve his goal, the adversary A
chooses one or more of the following concepts:
Data Poisoning: A manipulates the training dataset Di, so
that the resulting DA

i includes samples containing the trigger.
To trade-off the effectiveness against the detectability of the
attack, a respective ratio of malicious to benign samples, the
so-called Poison Data Rate (PDR), must be chosen by A.
Model Poisoning: The adversary manipulates the training
algorithm itself by changing hyper-parameters. Additionally,
A can optimize against several objectives [22] in the form of
additional loss functions (weighted by an α parameter) and
constrain the loss(es) to stay as close as possible to benign be-
havior, especially if the adversary is aware of the defense. The
weights of the resulting trained local models can be adapted
to benign models to circumvent straightforward defenses that
analyze the weights of all contributions and remove extreme
outliers. This process conducted by an adaptive attacker is
called constrain-and-scale [7].

C. Trusted Execution Environments

Trusted Execution Environments (TEEs) are programmable
secure areas located within a processor that allow the execution
of applications within secure enclaves, isolated from the re-
maining system. By using, e.g., memory encryption, access to
them from outside the enclave, even from privileged processes,
is restricted and thus guarantees the confidentiality of the en-
claves’ data. Attestation allows to verify the authenticity of the
TEE and the integrity of code executed within the TEE [19].
Examples of TEEs are Intel SGX [19], AMD SEV [39], ARM
TrustZone [69], and Nvidia Confidential Computing [68].

III. PROBLEM SETTING

In the following, we describe the considered system
(Sect. III-A) and characterize the threat model (Sect. III-B).

A. System Setting

In the setup, we consider mainly cross-silo settings2 with
N clients C1, . . . CN that have private datasets D1, . . . , DN

but will not share any data to prevent privacy leakages [1].
Further, we consider an aggregation server S that receives the
individual models and aggregates them using FedAVG [56].
Aligned with recent work on poisoning attacks [6], [7], [65],

2Real-world scenarios and projects are, e.g. the FeTS project [1].

3

Client 𝒞𝑖

TEE

Client 𝒞𝑛

TEE

Aggregation Server 𝒮

TEE

TEE

1

Client 𝒞1

2 3 5

4

76

𝐿1
𝑡 𝐿𝑖

𝑡 𝐿𝑛
𝑡

𝐺𝑡+1

𝐿2
𝑡 𝐿1

𝑡 𝐿1
𝑡

𝐿𝑛
𝑡 𝐿𝑛

𝑡 𝐿𝑛−1
𝑡

Fig. 2: Overview and steps of CrowdGuard.

we use an adapted version of the regular FedAVG algo-
rithm and scale the local models’ contributions equally with
1/n instead of weighting them based on their dataset sizes.
This prevents malicious clients from artificially increasing
their impact by reporting wrong dataset sizes. We keep the
global learning rate constant at δ = 1. In principle, multiple
aggregation algorithms exist [10], [32], [61], [94], which
either provide better performance or are more robust against
byzantine contributions from local models. Our method can be
used with different aggregation techniques since it is applied
before the aggregation takes place.

We assume that each client and the server have an arbi-
trary TEE available, allowing the execution of code in the
secure enclaves while isolating code and memory from the
remaining system, including privileged parts. Thus, the TEEs
shall prevent the remaining system from learning the data
inside the enclave and therefore preserving the data’s confi-
dentiality. Further, the TEE needs to allow a remote machine
to attest the code of the executed enclave. Depending on
the application, e.g., in cross-silo applications where different
institutions like hospitals collaboratively train a DNN, the
machines performing the local training can be assumed to be
powerful platforms, providing standard hardware features like
TEEs and thus making this assumption reasonable.

An overview of the considered system is shown in Fig. 2,
showing the clients, the aggregation server, and the individual
TEEs (marked in green). Fig. 2 also shows the individual steps
of our scheme, which we will discuss in Sect. III-D.

In contrast to existing work, we do not make any assump-
tions about the data distributions. Thus, the individual clients’
data can follow the same distribution (IID), be distributed
differently (non-IID), or even be disjoint.

B. Adversary Model

We consider two adversaries. The first, A, aims to inject
a backdoor into the FL system, while AP aims to learn
information about the clients’ data from the local model
updates, violating the privacy of the data.

1) Poisoning Attacker A: AB (for the sake of brevity, denoted
as A) aims to manipulate the model that is resulting from the
FL process and injects a backdoor into it by utilizing data
and/or model poisoning (see Sect. II-B). If a certain, adversary-
chosen trigger is present in the input (cf. Sect. II-B), the
backdoor shall make the aggregated model Gt+1 predicting
an adversary-chosen target class TA. From this goal, two
objectives follow:

O1 - Attack Impact: To inject a backdoor successfully,
A aims to make the aggregated model Gt+1 predicting the
backdoor target class TA for all trigger samples I from
the input domain X . Thus, its objective is to maximize the
accuracy on the backdoor task, e.g., the BA.

If the server S notices the attack, it repeats the training
process with a subset of clients until no backdoor is noticed
anymore or filters the poisoned contributions. Therefore, a
second objective for the adversary A is:

O2 - Stealthiness: Make the poisoned model updates incon-
spicuous such that S can neither identify the poisoned updates
nor notices the performed backdoor attack3.

From O2 also follows that the attack must not reduce the
performance of the aggregated model on the main task (MA).
If the predictions of the aggregated model Gt+1 for a sample
x ∈ X are denoted as f(x,Gt+1), Gt+1 is the aggregated
model without the poisoning attack, and Gt+1

∗ is the aggregated
model including the poisoned contributions, then O1 and O2
result in the following goal of the adversary A:

f(x,Gt+1
∗) =

{
TA if x ∈ I
f(x,Gt+1) if x ̸∈ I (3)

Aligned with previous work [10], [61], [65], [81], [45], we
assume that A fully controls nA < n/2 clients in one round and
overall NA < N/2 clients in the whole FL system.4 Thus, it can
freely manipulate their local datasets Di, change the training
process, or even manually change the submitted parameter
updates and replace parameters with arbitrary numbers5. The
ratio of poisoned models to all local models nA/n is denoted
as Poisoned Model Rate (PMR). Further, we assume that A
knows all algorithms the server or clients execute. Thus, A can
adapt its attack strategy and the client’s behavior, e.g., hyper-
parameters and the objective of the local training, with respect
to the deployed defense to make the attack inconspicuous
(adaptive adversary).

2) Privacy Attacker AP : The second adversary, AP , aims to
reconstruct information about the clients’ local data. Aligned
with existing work [6], [40], [65], we consider only privacy at-
tacks that learn information about the clients’ data by analyzing
the local model updates. The aggregation of FL anonymizes
the individual contributions, preventing AP from associating
gained information with a specific client, and also smoothens
the parameters. Thus, we will consider privacy attacks on the
aggregated model out of the scope of this work.

In our threat model, we consider AP to be a malicious
attacker that has arbitrary control over the aggregation server.
Further, AP can control some of the clients to analyze any
other client’s local model that this client might receive. In
contrast to existing work, the considered adversary AP even
fully controls the server S. However, the benign clients and
the server can use remote attestation to verify the code and au-
thenticity of the secure enclaves that are running on the server
and the clients, respectively, before sharing local models.

3This differs backdoor from untargeted attacks, as the latter one can always
be identified by a drop in the models’ utility

4In each round n clients are selected for training out of all N clients.
5It should be noted that an adversary can manipulate the local dataset that

is given to the client-side enclaves to manipulate their behavior.

4

3) TEE Security Assumptions: In the following, we consider
arbitrary TEEs that isolate executed secure enclaves and allow
a remote machine to attest the running enclave (cf. Sect. III-A).
Thus, CrowdGuard is not restricted to TEEs of certain manu-
facturers. However, we assume that all used TEEs are trusted.
Therefore, attacks on the used cryptographic algorithms and
attacks that extract keys burned into the TEE are out of the
scope of this paper.

Recently, several side-channel attacks have been proposed
that extract data, e.g., the received models or cryptographic
keys, from TEEs [13], [38], [87]. As discussed in App. A,
with this model stealing or inference attacks could be exe-
cuted. There exist already works to counter such attacks [9],
[20], [12], [77]. Therefore, we consider attacks on the TEE
architecture to be out of the scope of this work.

C. Requirements and Challenges

Based on the characterization of A and AP , the following
requirements for a backdoor defense can be derived:
R1: Prevent the backdoor attack, i.e., ∀x ∈ I : f(x,Gt+1

∗) =
f(x,Gt+1).
R2: To be practical, the defense scheme must not reduce
the benign performance of the resulting FL model, especially
in the absence of any attack. Therefore, if no attack was
performed and Gt+1 is the aggregated model obtained using
CrowdGuard, while Ĝt+1 was obtained using plain FedAVG,
then both model’s outputs should be equal: ∀x ∈ X :
f(x, Ĝt+1) = f(x,Gt+1).
R3: The defense must preserve the clients’ privacy. Thus, the
server S must not be able to access the models for running
inference attacks. Nor should any other party, e.g., the clients,
be able to run inference attacks on the models of other clients.

From these requirements, a number of challenges follow
that CrowdGuard will address in the rest of the paper:

C1: How to effectively distinguish benign and poisoned mod-
els, especially for non-IID scenarios, to fulfill R1? Sect. IV
explains how CrowdGuard can distinguish poisoned models
and benign models, being trained on abnormal data.
C2: The server S must not be able to access the individual
local models as this would enable S to run inference attacks
(cf. R3). However, to identify poisoned model updates, S has
to inspect the model updates Lt

i. A challenge that CrowdGuard
will address is, therefore, how to inspect the local models
without enabling any party to extract knowledge from them.
C3: CrowdGuard uses the predictions, including the hidden
state outputs, of the local models on the local data of other
clients for identifying a backdoor. However, the backdoor at-
tack should not change the predictions for non-triggered input
samples (cf. O2). Since it is unlikely that benign clients have
many triggered input samples, a challenge that CrowdGuard
will solve is how to use clients’ local data for identifying the
backdoor without having triggered samples.

D. Design of CrowdGuard

Due to the absence of validation data, existing approaches for
backdoor mitigation on the aggregation server are restricted to
using vector metrics or outlier detection [61], [81], [65]. These
methods have limited effectiveness in non-IID settings or
against sophisticated adversaries (cf. Sect. VII). To overcome

these limitations, CrowdGuard involves sending the local mod-
els to the clients and collecting their feedback on the individual
models to identify backdoored models. The use of such a
client feedback-loop and a validation algorithm that analyzes
changes in the outputs of the models’ individual layers enables
CrowdGuard to effectively identify poisoned models even in
non-IID settings. Fig. 2 provides an overview of the individual
steps of our approach, which are depicted in more detail
in App. A. To protect the local models’ confidentiality, all
transmissions are encrypted, the code runs in TEEs, and each
enclave is attested before receiving any model.

Each client begins with the setup of its secure-enclave,
before receiving the global model from the server, trains
its local model6, and sends the model encrypted to an en-
clave running on the aggregation server S (steps 1 and 2
in Fig. 2). After collecting the individual model updates, S
sends the local models to secure enclaves running on the
clients Ci ∈ C1, . . . , Cn, which are utilized as validation
clients (step 3 in Fig. 2). The validation is performed in
a secure enclave to ensure confidentiality and prevent the
client feedback-loop from increasing the surface for privacy
attacks. Then, the client-side enclaves validate the models by
analyzing changes in hidden layer outputs using the local
datasets Di ∈ D1, . . . ,Dn (addressing C1), denoted as Step
4 in Fig. 2. Our method employs a novel metric called Hidden
Layer Backdoor Inspection Metric (HLBIM) to analyze the
obtained values iteratively and identify poisoned models based
on statistical significance tests. The clients provide feedback
to the server by voting for each model, indicating whether
the local model is benign or suspicious (step 5 in Fig. 2).
Afterward, the server applies a stacked clustering schema to
combine the votes provided by the clients (step 6 in Fig. 2).
This step mitigates manipulated votes from malicious clients
who may provide manipulated data to the client-side enclave.
Finally, the server removes the models marked as poisoned and
uses a configured aggregation rule to aggregate the remaining
models before sending the aggregated model Gt+1 back to the
clients for further training rounds (steps 6 and 7 in Fig. 2).
It should be noted that although we focus on FedAVG as the
aggregation rule in this paper, other rules such as Krum [10],
trimmed mean [94], or median [94] can be used.

IV. CROWDGUARD

In the following, we describe the details of CrowdGuard,
starting with the overall architecture that allows utilizing
clients’ feedback in Sect. IV-A. Afterward, in Sect. IV-B, we
describe the algorithm that is executed on the client-side of
CrowdGuard to create the feedback and in Sect. IV-C, how
the feedback of different clients is aggregated to be robust
against manipulated feedback of malicious clients.

A. Privacy-Enhancing Architecture for Clients’ Feedback

Given the impracticality of assuming the aggregation server to
posses validation data [73], existing defenses are restricted to

6Depending on the respective application scenario, there are reasons for
performing also the training inside a TEE, such as confidentiality of the
training data, while there are also reasons against it, e.g., the computational
overhead. CrowdGuard focuses on a backdoor resilient aggregation and
supports both operational modes.

5

applying vector metrics, conducting outlier detection, or mak-
ing predictions on randomly generated data that do not produce
meaningful predictions. In addition, clients are reluctant to
share their data with the server, since this would undermine the
privacy advantage of FL, which allows for model training with-
out data sharing. Secondly, transmitting large datasets to the
server incurs significant communication overhead. However,
sending models to the clients is also undesirable due to the risk
of inference attacks by malicious clients (AP) [36], [52], [63],
[71], [76], [82], [95]. To overcome this dilemma, we propose a
secure feedback loop that enables client-side validation of local
models within TEEs (addressing C2). Additionally, server-side
operations are also executed within a secure enclave to prevent
abuse of the clients’ feedback, e.g., to obtain information about
their data. This guarantees the confidentiality of the processed
data, including the models and corresponding layer outputs,
even if AP has kernel privileges (fulfilling R3). Attesting the
enclaves prior to any data transmission guarantees that the
executed code does not leak the received models (cf. C2).

Setup Phase. During the setup phase, each client starts the
secure enclave responsible for client-side validation and feed-
back provision to the server. Once the enclave is launched, the
client shares its private dataset with the local enclave. Next,
the server attests the integrity and authenticity of client-side
enclaves. To mitigate the risk of fake validation requests from
the server, which could potentially exploit clients’ feedback to
infer their data, clients also perform an attestation process to
verify the correct execution of the FL server code. Notably,
the relocation of the server to a secure enclave establishes
a secure aggregation scheme. Hence, clients also attest the
server-enclave during the setup phase.

Validation Phase. After completing the system setup, the FL
process is initiated and the clients train their local models
orchestrated by the server (represented by steps 1 and 2 in
Fig. 2). After receiving the locally trained model from each
client, the server distributes these models to the client-side
validation enclaves (step 3 in Fig. 2). Each enclave utilizes its
local datasets to identify any models that have been poisoned
(step 4 in Fig. 2, for details on this algorithm, see Sect. IV-B)
and submits this feedback to the server (step 5 in Fig. 2). It
is important to note, that although the code of the validation
enclaves is attested, the malicious clients can still manipulate
their own validation result by providing manipulated validation
data to the enclave. Hence, using secure enclaves on the client
side only guarantees the models’ confidentiality but not the
votes’ integrity.

To address this issue, a robust aggregation algorithm needs
to be deployed on the server side to aggregate the feedback
and remove manipulated feedback as well as noisy feedback
from benign clients (see Sect. IV-C, step 6 in Fig. 2). Finally,
the server uses the aggregated feedback to remove poisoned
models, aggregate the remaining models and proceed with the
next FL round (step 7 in Fig. 2).

B. Hidden-Layer Analysis for Backdoor Detection

To identify poisoned models using benign validation data,
illustrated as step 4 in Fig. 2, CrowdGuard analyses the
outputs of the individual layers of the DNN to distinguish
between benign and backdoored (local) models. The result
is provided as votes to the server afterward. This happens in

Algorithm 1 HLBIM Matrix Generation for client Cj

1: Input:
2: Gt, ▷ Global model of round t
3: Lt

i , ▷ All local contributions of round t including Lt
j

4: Dj ▷ Local dataset of client Cj

5: Output:
6: HLBIMC/E

mj m l ▷ HLBIM matrices for Cosine & Euclidean distances
7: ▷ Generate deep layer outputs
8: DLO locals m l ← {}
9: DLO globals l ← {}

10: for s in Dj do
11: for m in Lt

i do
12: DLO locals m l ← deep layer outputs(s, m)
13: end for
14: DLO globals l ← deep layer outputs(s, Gt)
15: end for
16: ▷ Distance Generation
17: for distC/E in [COSINE-distance; EUCLIDEAN-distance] do
18: DLO distC/E

s m l ← distC/E(DLO locals m l, DLO globals l)
19: ▷ Scale relative distances to HLBIM
20: for dloC/E

s m l in DLO distC/E
s m l do

21: dlo relC/E ← dloC/E
s m l / DLO distC/E

s mj l

22: DLO squaredC/E
s mj m l ← |dlo relC/E-1| ∗ (dlo relC/E-1)

23: end for
24: DLO avgC/E

lab mj m l ← AVG(labels lab, DLO squaredC/E
s mj m l)

25: HLBIMC/E
mj m l ← CONCAT(labels lab, DLO avgC/E

lab mj m l)
26: end for

two steps: 1) extraction of a novel metric, the Hidden Layer
Backdoor Inspection Metric (HLBIM), from the local models
to inspect them for backdoors and 2) analyzing the HLBIM
via probabilistic tests to produce voting decisions.

HLBIM Motivation Analyzing two metrics with statistical
tests enables CrowdGuard to detect different model manip-
ulation strategies. Vectors (i.e., DNN’s parameters) can be
manipulated in two ways: Without changing direction, which
is the orientation of the vector (checked by Euclidean distance)
or with changing direction (increased Cosine distance) to the
previous vector state. Using both metrics enables the detection
of malicious model changes (addressing C3). HLBIM carves
out significant changes in the plain values of both distances.
The calculation of the HLBIM is explained in the following.

HLBIM Matrix Generation As depicted in Alg. 1 lines 1-6,
the global model Gt, the local models Lt

i ∈ {Lt
1, . . . , L

t
n}, and

the validation client’s local data Dj are used to generate two
HLBIM matrices based on Cosine (HLBIMC) and Euclidean
(HLBIME) distances. Both matrices are based on the deep
layer outputs (DLOs), which can be obtained by feeding the
local data into both, the local models and the global model.
During inference, we keep track of the outputs of each sample,
each model, and each layer, depicting one DLO in a respective
matrix (lines 7-15). Notably, CrowdGuard analyzes all layers’
DLOs. Otherwise, if CrowdGuard only considered a subset of
layers, the adversary could utilize the unconsidered layers for
injecting the backdoor without being detected. To prevent such
an attack, the DLO matrices are based on all layers.

The two DLO matrices for Euclidean and Cosine distances
are then used to calculate the final HLBIM within five steps
(lines 18-25): 1) Distances between the global models and
each local model are computed for each DLO (line 18). In
these distances, the backdoor behavior is not yet detectable
with high significance. 2) A ratio of the DLOs is generated,
using the validating client’s local model as a reference to
highlight differences between the models regarding a reference
model (line 21). The rationale is that each client assumes his

6

Algorithm 2 Voting Decision via Model Pruning for validation client Vj

1: Input:
2: HLBIMC/E

mj m l ▷ HLBIM matrices for Cosine & Euclidean distances
3: Output:
4: client voting ▷ Binary vector with client decisions for each Lt

i

5: ▷ Analyze HLBIM via dimension reduction
6: client voting model is benign ← Array of |i| ones
7: for dist typeC/E in [COSINE-distance; EUCLIDEAN-distance] do
8: significant ← True
9: pruned models ← {}

10: while significant do
11: ▷ Filter already pruned models
12: HLBIM pruned ← HLBIMC/E

mj m l ∀ m /∈ pruned models
13: ▷ Analyze remaining models
14: pc dim1 values ← PCA(HLBIM pruned)[0]
15: significant ← SIGNIFICANCE(pc dim1 values)
16: malicious models ← {}
17: if significant then
18: clusters ← AGGLOM(nclusters = 2, pc dim1 values)
19: malicious models ← MIN CLUSTER(clusters).models()
20: end if
21: pruned models.add(malicious models)
22: ▷ Safety Abort Criterion
23: if |pruned models| > FLOOR(|Lt

i| -1) / 2 then
24: malicious models.remove(MIN(malicious models))
25: significant ← False
26: end if
27: client voting model is benign[malicious models.indices] = 0
28: end while
29: end for

own model to be benign, while the ratio highlights already
small differences between the model updates. If the DLOs
are equal, the ratio will be one. 3) To further highlight
the differences between the ratios, the values are scaled by
subtracting one and squaring the result while retaining the
sign (line 22). 4) The resulting DLO matrices are averaged
over the sample dimension for each label, thereby carving out
the effect for each label class separately, with the first matrix
index changing from sample s to label lab (line 24). 5) To
reduce the matrix dimension without losing information and
thus saving computational costs in subsequent stages, the lab
dimension is flattened by concatenating the values (line 25). It
is important to keep the values from different labels separate
until the pruning. This separation ensures that only samples
from the same label, which traverse the model similarly, are
used by our method to identify abnormal behavior. Averaging
beforehand would lead to the loss of important information
and limit the effectiveness of the metric.

Voting Decision via Model Pruning To detect poisoned
models, the HLBIM matrices must be analyzed.7 As described
in Alg. 2, CrowdGuard first leverages a Principal Component
Analysis (PCA) on the HLBIM matrix8 to highlight the differ-
ences between different models (cf. line 14), before iteratively
pruning the poisoned models.

The PCA reduces the two-dimensional matrix (models m ×
layers l) to a single dimension by analyzing the Principal Com-
ponent (PC) values of the first dimension (pc dim1 values in
Alg. 2). To detect the presence of backdoored models, we rely
on statistical significance tests on the first PCA dimension.9
The intuition is that the median PC value is benign (cf.
Sect. III-B). If all models are benign, the PC values follow
a similar distribution and with this, the absolute distances to
the median value of the PC values above and below the median
value should follow the same distributions. A visualization of

7Euclidean and Cosine HLBIM matrices are analyzed independently.
8The first dimension mj of HLBIMC/E

mj m l is fixed to index j of the
validating client Vj . Therefore the matrix is two dimensional.

9App. A discusses, that using multiple PC dimensions is suboptimal.

such two distributions is shown in Fig. 3, where the blue and
dark red lines represent the two mentioned distributions.

To compare and identify significant differences between
these distributions, we analyze their means, variances, and out-
liers leveraging different significance tests (line 15 in Alg. 2).
Outliers are considered since in general the mean and the
variance of a distribution is not necessarily affected by few
outlier samples. First, CrowdGuard forces an equal mean via
Student-T-Test [55]. However, the variance can differ signifi-
cantly even for equal means, allowing an adversary to adapt the
backdoors according to these metrics. Therefore, CrowdGuard
checks for matching variance via F-Test10.

To enhance robustness and prevent the adversary from
attempting to fool the F-Test, we also employ the D-Test
(Kolmogorov-Smirnov) to analyze the overall distributions.
This additional test ensures equal goodness of fit of the
distributions. We set a significance level of 0.01 for each test. 11

Upon passing these tests, we investigate outliers that might not
influenced the former metrics. These outliers represent weakly
hidden poisoned models that would have a high impact on
the aggregated model. To identify such outliers, we set two
thresholds: 1) We analyze the interquartile range of all data
points by using a boxplot. 2) We analyze the distance of each
point regarding the interval spanned by the 3σ-rule [70]. Data
points lying outside the interval are marked as significant.12

The algorithm is provided in App. A.

If the tests indicate the presence of poisoned models, we
employ hierarchical agglomerative clustering [67] to generate
two clusters and prune the models located in the smaller one
(lines 16-21)13. This pruning is repeated until the significance
tests report the absence of suspicious models (line 15)14. Due
to the iterative pruning approach, we can detect and remove
different backdoors, within one FL round t, that would not be
detectable all together in a single cluster. The iterative pruning
approach enables us to detect and remove different backdoors
within a single federated learning round, which may not be
detectable as a whole in a single cluster.

One pruning sequence is visualized in Fig. 3b-Fig. 3d.
In Fig. 3d, no more significant models are detected. Another
example can be seen in Fig. 4e to Fig. 4g.

10Levene-Test [50] to asses equal variances.
11Typically, statistical tests use a significance level of 0.05. By using a lower

p-value, we aim to reduce the likelihood of False-Positives and increase the
sensitivity of CrowdGuard.

12The boxplot focuses on detecting single outliers not violating the 3σ-
rule [70], while the 3σ-rule outperforms the boxplot for multiple outliers
whose distance to the mean grow increasingly.

13Notably, the median is not suitable to separate both groups as it would
always split the data points into two equally-sized groups. However, if one of
them is discarded but significantly less than 50% of models are poisoned, this
will result in many FPs.

14Additionally, as a fine-tuning step, we add an abort criterion to stop
the pruning process if more than n/2 -1 models have been pruned. This
criterion is included to prevent obvious False Positives in a small number
of experiments. While this may theoretically allow for False Negatives, i.e.,
undetected poisoned models due to the abort criterion coinciding with False
Positives, our experiments (see Sect. V) show that the backdoor leads to
significant differences within certain DLOs even for benign input samples.
Consequently, the PC values of poisoned models differ more from the median
(benign) value compared to benign models, ensuring that malicious models
are consistently identified first.

7

10

5

0

5

10

PC
A(

HL
BI

M
)[0

]

Median
Benign Models
Malicious Models
Distribution 1
Distribution 2

(a) Pruning round 1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

PC
A(

HL
BI

M
)[0

]

Median
Benign Models
Malicious Models
Distribution 1
Distribution 2

(b) Pruning round 2

0

5

10

15

20

PC
A(

HL
BI

M
)[0

]

Median
Benign Models
Malicious Models
Distribution 1
Distribution 2

(c) Pruning round 3

5

0

5

10

15

20

PC
A(

HL
BI

M
)[0

]

Median
Benign Models
Distribution 1
Distribution 2

(d) Pruning round 4

Fig. 3: Visualized distributions generated by Alg. 4 for pruning CrowdGuard with n = 100, PMR = 40%. Distributions are
considered to differ significantly, indicating backdoors found from (a) - (c). Poisoned models are pruned iteratively.

C. Voting Aggregation

Stacked Clustering: After the clients provided their votes
in the form of binary vectors to the server15, the server is
confronted with potentially malicious votes from adversaries
as well as with unintentional wrong votes of benign clients,
which can occur if a model exceeds, i.e., an outlier threshold
slightly. To address this issue, we employ a two-level stacked
clustering, that selects the most representative voting vector
from all submissions. The purpose of the first level is to
eliminate obvious malicious votes by pruning the smaller of
two clusters, as due to the majority assumption the larger
cluster has to be the benign one. The second clustering is a
plain-majority-voting on the rest, which are expected to be
mostly benign votes. Thus, this step ensures the robustness
of the aggregation against minor misclassifications of benign
clients and adversaries, deviating only slightly from benign
votes to remain inconspicuous.

In comparison, for plain majority voting, in a scenario with
49% adversarial clients who vote for all malicious models to
be benign, a single incorrect vote of one benign client for a
poisoned model can result in the acceptance of this model.

As depicted in Alg. 3 in detail, the server first generates two
clusters on the binary voting vectors by agglomerative clus-
tering [67] and identifies the bigger one as votes from benign
clients, which is reasonable due to the majority assumption (cf.
Sect. III-B). However, this cluster can contain minor errors of
benign clients as well as malicious clients that manipulate their
voting to be similar to benign behavior. Therefore, we conduct
a second clustering to extract the most frequent binary voting
vector by using DBSCAN [23] and inspecting the cluster sizes

15It is worth noting, that each client does not evaluate its own local model,
but just reports it as benign by default.

Algorithm 3 Voting Filtering via Stacked Clustering
1: Input:
2: voting matrix ▷ Matrix of client votes. Dimensions: (|Ci| × |Lt

i|)
3: Output:
4: aggregated voting ▷ List with final voting decisions for each Lt

i

5: ▷ Majority Cluster Detection
6: clusters ← AGGLOM(nclusters = 2, voting matrix)
7: majority cluster ← MAX CLUSTER(clusters)
8: ▷ Miss-Classification Compensation
9: filtered cluster ← DBSCAN(majority cluster, min samples=1, ϵ=0.5)

10: aggregated voting ← {”all-benign”}
11: max count ← 0
12: for cluster in filtered cluster do
13: count ← |cluster|
14: if count > max count then
15: aggregated voting ← cluster[0].decision
16: max count ← count
17: end if
18: end for

of the output. The voting of the biggest cluster is the final result
of the voting aggregation.

Robustness: The stacked clustering ensures robustness in
scenarios where every malicious client marks every benign
model as malicious and vice versa, since these manipulated
votes are removed after the first clustering. Malicious feedback,
where malicious clients vote as benign as possible, trying to
invert the decision for one specific model, will be mitigated by
the second clustering. The same holds for minor voting errors
of benign clients. Leveraging the stacked clustering approach,
which relies on the majority assumption, the algorithm remains
robust against PMRs of up to 49%.

This strategy of first identifying benign votes by majority
and then selecting the best voting via majority as the final
decision outperforms naı̈ve majority voting, which would not
ignore False-Positives of benign clients, making it less robust.
We discuss respective experiments in App. A.

V. EVALUATION

In this section, we first depict our experimental setup in
Sect. V-A and then describe the influence of various parameters
in Sect. V-B. Afterward, in Sect. V-C, we investigate the
runtime performance of our approach.

A. Experimental Setup

To simplify the comparison of our evaluation with other
poisoning defenses, we aligned our experimental setup with
recent works [7], [14], [73], as we describe in the following.

Computational Setup: All experiments were implemented in
Python using the Deep Learning library PyTorch [5]. The
experiments were executed on a server with an Intel Xeon
5318S with Intel SGXv2, 2 Nvidia RTX A6000, and 512 GB
main memory, from which 128GB were reserved as secure
memory. For executing Python code inside an SGX enclave,
we leveraged the library Gramine [83].

Datasets: For our evaluation, we use the popular benchmark
datasets CIFAR-10 [43], consisting of 50k training images
and 10k test images, and the MNIST [21] dataset, consisting
of 60k training images and 10k test images. Both datasets
contain samples from 10 classes and are frequently used for
evaluating poisoning defenses [7], [15], [28], [56], [61], [65],
[73]. To simulate the FL setup, we split the training dataset
into local datasets Dk ∈ {D1, . . . , DN} consisting of 2 560
samples16, one Dk for each Ck ∈ {C1, . . . , CN}. Aligned with

16The dataset size of 2560 samples is chosen based on other approaches
(between 600 [7], [96] and 2000 [81]) to ease the comparison.

8

0 1 2 3 4 5
Layer

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

 -
(C

os
in

e
Di

st
an

ce
 to

)

Model 0
Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Model 7
Model 8
Model 9

Model 10
Model 11
Model 12
Model 13
Model 14
Model 15
Model 16
Model 17
Model 18
Model 19

(a) Plain Cosine Distance

0 1 2 3 4 5
Layer

1000

800

600

400

200

0

HL
BI

M

Model 0
Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Model 7
Model 8
Model 9

Model 10
Model 11
Model 12
Model 13
Model 14
Model 15
Model 16
Model 17
Model 18
Model 19

(b) HLBIMC for one
label

0 10 20 30 40 50 60
Layer

5000

4000

3000

2000

1000

0

HL
BI

M

Model 0
Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Model 7
Model 8
Model 9
Model 10

Model 11
Model 12
Model 13
Model 14
Model 15
Model 16
Model 17
Model 18
Model 19
Median

(c) HLBIMC

0 10 20 30 40 50 60
Layer

5

4

3

2

1

0

1

HL
BI

M

Model 0
Model 1
Model 2
Model 3
Model 4
Model 5

Model 6
Model 7
Model 8
Model 9
Model 10
Median

(d) HLBIMC for benign
models only

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

PC
A(

HL
BI

M
)[0

]

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Model 7
Model 8
Model 9
Model 10

Model 11
Model 12
Model 13
Model 14
Model 15
Model 16
Model 17
Model 18
Model 19
Median

(e) PCA in round 1
5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

PC
A(

HL
BI

M
)[0

]

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Model 7

Model 8
Model 9
Model 10
Model 11
Model 14
Median

(f) PCA pruning round 2

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

PC
A(

HL
BI

M
)[0

]

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6

Model 7
Model 8
Model 9
Model 10
Median

(g) PCA pruning round 3
5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

PC
A(

HL
BI

M
)[0

]

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

PC
A(

HL
BI

M
)[0

]

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Model 7
Model 8
Model 9
Model 10
Model 11
Model 14

(h) Outlier detection
boxplot

Fig. 4: Visualization of intermediate outputs of CrowdGuard with default configurations (models 0 to 10 are benign).

existing work [14], [73], we created datasets for different non-
IID scenarios: 1) For 1-class non-IID with a non-IID rate q, a
main label is chosen randomly for each client and q percent of
samples in Di are changed to samples with the respective main
label, while the remaining labels are chosen from all labels
uniformly distributed. Therefore, for a non-IID rate of q = 1.0,
each client only uses data from its main label(s), such that the
data of different clients are disjoint if they have different main
labels. 2) For 2-class non-IID we do the same but choose the
subsequent label of the main label as ”second main label”.
3) For Dirichlet and Normal distribution, we produced label
counts according to the respective distribution.

For the CIFAR-10 dataset, we used a light version of the
Resnet-18 network, as described by Bagdasaryan et al. [7],
which delivers five deep layers and one final layer output.
For MNIST, we reimplemented a version of the Convolutional
Neural Network (CNN), following Cao et al. [15].

Default Configurations: The default parameters and config-
urations, including hyperparameters for our experiments, are
provided in Tab. IV in App. A. In our default setup, we use
the CIFAR-10 [43] dataset, an adaptive adversary leveraging a
constrain-and-scale attack [7] to inject a semantic backdoor, a
Poisoned Data Rate (PDR) of 0.1, a PMR or 0.45 and set α to
0.7. We utilize |Ci| = 20 clients to participate in the FL round
t as well as in the feedback loop. We select the main label of
each client according to its index i, so that we have the most
disjoint label settings and prevent getting multiple clients with
the same main label by chance.

B. Outputs and Influence Factors

In Sect. V-B1, we visualize and explain the output of our
experiments and list all configurations. Afterward, we discuss
the parameters and other influencing factors in Sect. V-B2.

1) Experiment Outputs: To improve the comprehension of our
approach, in Fig. 4 we visualize the intermediate outputs of
our algorithm. The experiment is conducted with our default
configurations from Tab. IV and therefore contains 20 clients.

Fig. 4a depicts the plain Cosine distance from each local model
Lt
i to the global model Gt for one label (in this case, label 8)

averaged over that label. As explained in Sect. IV-B, from
this metric alone, one cannot clearly identify the poisoned
models. To enable backdoor detection, we produce the matrices
containing our novel metric HLBIM, which can be seen for
Cosine distance in Fig. 4b for one label. Subsequently, in
Fig. 4c, we can then observe the whole HLBIMC plot. The
malicious models are responsible for the peaks. This can be
analyzed by comparing the values for HLBIMC to the ones in
the poisoned-free version in Fig. 4d. According to Alg. 2, we
conduct the PCA on the HLBIM matrices to obtain Fig. 4e,
which is used in the first pruning round of our significance
test. The results of the second and third rounds of pruning are
depicted in Fig. 4f and Fig. 4g. At this step, we end up with
just benign models, which results in negative significance tests.
Fig. 4d shows the cleaned HLBIMC graph used to produce
the last PC values in Fig. 4g. Fig. 4h shows an exemplary
boxplot of our outlier detection algorithm during the second
pruning round (cf. Fig. 4f). The abnormalities in the malicious
models derive from their local BA, which in our experiments
is always 100%. This means the attacker is able to incorporate
the backdoor in his local model.

Conducted Experiments: Tab. I lists all of our conducted
experiments, each changing one parameter of the default con-
figuration. The used metrics are defined in App. A. Addition-
ally, we tested the defense against two untargeted poisoning
attacks: 1) We randomly selected the labels for each sample
in the training and test set. 2) We changed the learning
algorithm to maximize the loss function. Both experiments
delivered 100% defense success rate. Thus we can claim that
CrowdGuard also reduces the risk of untargeted poisoning
attacks. Furthermore, the following two combined attacks that
integrate two backdoors with different triggers and target labels
TA at once have been evaluated and results are reported in
Tab. I. The following two scenarios were considered: 1) Every
A attempts to inject both backdoors. 2) Half of the malicious
clients integrate one backdoor, and the other half integrate a
different backdoor.

9

2) Influence Factors: In App. A we evaluate different factors
that might affect the performance of CrowdGuard (α, the
PDR, and the distribution of local data). However, in all cases
CrowdGuard effectively identifies benign and poisoned models
independently from the scenario. Thus, it achieves 100% True-
Positive-Rate (TPR) as well as True-Negative-Rate (TNR).
Further, we observe that CrowdGuard has no negative impact
on the MA (fulfilling R2). The same perfect detection rates
are achieved in our other experiments, listed in Tab. I.

Disjoint Data Scenario: We conducted an experiment with
only six benign and four malicious clients in 1-class non-
IID for q = [0.0] and assigned samples from each of the ten
existing labels in the dataset to a different client. This setup
results in completely disjoint training data, which reflects a
full non-IID scenario. CrowdGuard was also effective in the
detection of the four malicious clients even in this edge-case
scenario, fulfilling C1.

Besides that, we tested a scenario, where all 20 clients were
benign and changed this setting to a 1-class non-IID scenario,
where 40% of clients possess the same main label, e.g., we
assigned only red cars from CIFAR-10. We observed that the
defense did not falsely filter out benign models and hence such
a scenario does not negatively affect the convergence.

MNIST: In addition, we evaluated CrowdGuard on the MNIST
dataset in 1-class and 2-class non-IID with q = [0.0, 1.0]
scenarios starting from FL round 100 using the Label Swap
backdoor and also for a smaller learning rate of 0.001 at the
malicious clients. This showed that our approach is not re-
stricted to one specific dataset, thus not hindering deployment
in real-world scenarios.

Varying PMR: Our experiments are conducted with the
biggest Poisoned Model Rate (PMR) possible regarding the
Ci clients and, since we are pruning the malicious models, a
smaller PMR would still result in the same outcome. Hence,
we can conclude that the PMR has no influence. In the default
setting, the PMR has a maximum value of 9/11 = 45%.
To stress this parameter to the maximum, we conducted an
additional experiment with n = 100 clients and a PMR of
49%. The results also show perfect detection rates of 100%,
making the approach effective in small and large FL setups.

Randomly Initialised Model: The only exception with regard
to CrowdGuard’s effectiveness occurred in the first round
(t = 0) when starting with a randomly initialized model.
Here, CrowdGuard accepted all models, including the poisoned
models. However, as the model’s parameters of all models were
changed significantly, the impact of the poisoned models was
negligible. Therefore, the BA remained 0% and the attack was
not effective, while the adversary was not able to inject the
backdoor in later rounds (t ≥ 1). This experiment showed
two facts: 1) It is harder for an attacker to implement the
backdoor as long as the model did not converge to a certain
MA, as already discussed in earlier work [7]. 2) Nevertheless,
CrowdGuard already detected 100% of malicious models in
round t = 1, meaning our approach is not limited to already
converged global models Gt.

Robustness against Adaptive Adversaries: An adversary
can adapt to the defense in various ways by integrating a
second loss function (cf. Bagdasaryan et al. [7]). Thereby,
the adversary can try to minimize the distance of the model

weights to the global model Gt or first train a benign local
model and then try to adapt precisely to our defense algorithm
by leveraging DLOs measured on that model. We conducted
experiments with both adaptation strategies, finding that the
former delivered better results for the adversary, meaning
that poisoned models were harder to identify by CrowdGuard
(regarding the significance level). Thus the more difficult-to-
handle adaptation method is part of our default setting but
does not prevent CrowdGuard from detecting the backdoor.
The most relevant reason for that is, that the adversary cannot
adapt to the other clients’ local data. If the adversary increases
the level of adaptiveness extremely, he fails in introducing the
required BA in the local model, so that his contribution is
averaged out, even without clipping or noising methods (cf.
adversarial’s dilemma in Sect. II-B), fulfilling R1.

As the client-side validation algorithm compares the PC
values of the individual models against each other, a sophis-
ticated adversary might try to adapt its attack by splitting
all malicious clients into different groups leveraging different
PDRs. To show CrowdGuard’s robustness in such scenarios,
we conducted an experiment where two groups of malicious
clients use different PDRs of 10% and 30%. However, the
iterative running enabled CrowdGuard to identify all benign
and poisoned models effectively.

Overall, CrowdGuard is robust in various scenarios, in-
dependent of specific FL system settings, and therefore ap-
plicable in real-world scenarios. The reasons for the high
success rates are that the usage of benign validation data
allows a detailed analysis of the local models’ behavior. In
addition, benign clients rarely deliver wrong votes due to our
significance test (cf. Alg. 4) based on HLBIM. Even if the
malicious clients manipulate the voting of its secure enclave,
they are compensated by the subsequent stacked clustering
voting aggregation.

C. Runtime Overhead of CrowdGuard

To analyze the performance overhead introduced by
CrowdGuard, we measured the runtime of the different
phases of CrowdGuard’s client-validation in a TEE (SGX)
and compared it to the execution outside of a TEE on the
CPU for our default setting with 20 models. Further, we also
measured the runtime when using the GPU for the predictions.
The results, being averaged over ten executions, are shown in
Tab. II. As the table shows, the overhead for the attestation
is with 0.1s in average negligible, as well as the time for
the pruning. The HLBIM calculation takes similar time for
all three versions, as it is done for all three platforms on the
CPU, also if an accelerator is available. The main difference
between the individual versions is the time that is needed for
predicting the DLOs. Here, using an accelerator, i.e., a GPU,
shows a significant performance improvement. We elaborate
on the runtime overhead in Sect. VI-C.

D. Comparison with Existing Approaches

Tab. III shows the comparison of CrowdGuard with several
state-of-the-art IR approaches [28], [62], [96], as well as DF
methods [10], [81], [94] in our default scenario. Notably,
existing approaches make certain assumptions about the attack
strategy and data scenario: Zhao et al. assume that the attack

10

Analyzed Parameter Parameter Values TPRs TNRs FPRs FNRs

Data distributions

CIFAR-10, 1-class non-IID, q = [0.0, 0.1, ..., 1.0]
CIFAR-10, 2-class non-IID, q = [0.0, 0.1, ..., 1.0]

CIFAR-10, Dirichlet
CIFAR-10, Normal

MNIST 1-class non-IID, q = [0.0, 1.0]

100%
100%
100%
100%
100%

100%
100%
100%
100%
100%

0%
0%
0%
0%
0%

0%
0%
0%
0%
0%

Adversarial adaptation rate α α = [0.1, 0.2, ..., 0.9] 100% 100% 0% 0%
Poison Data Rate (PDR) pdr = [0.1, 0.2, ..., 0.9] 100% 100% 0% 0%

Poison Model Rate (PMR) & number of clients n
pmr(n = 20) = [0.05, 0.1, ..., 0.45]
pmr(n = 100) = [0.01, 0.2, ..., 0.49]

pmr(n = 10) = [0.1, 0.2, ..., 0.4], (1-class non-IID q = 0.0)

100%
100%
100%

100%
100%
100%

0%
0%
0%

0%
0%
0%

Poisoning
Pixel Backdoors , Label Swap, Semantic

2 combined attacks
2 untargeted attacks

100%
100%
100%

100%
100%
100%

0%
0%
0%

0%
0%
0%

Starting FL round t
t = 1000
t = 0
t >= 1

100%
100%
100%

100%
0%

100%

0%
100%

0%

0%
0%
0%

Malicious Training Learning Rate(M-LR) LR = [0.01, 0.001] 100% 100% 0% 0%

TABLE I: Listing of conducted experiments with TPR, TNR, FPR, and FNR of CrowdGuard. The default settings are used and
only the analyzed parameter is changed for one experiment. Multiple parameters within brackets denote multiple experiments.

Platform Attestation Model
Transmission Predictions HLBIM Pruning Total

SGX 0.1 4.0 19.7 5.5 0.1 29.5
CPU - 2.6 10.5 5.0 0.0 18.1
GPU - 2.7 4.8 5.1 0.0 12.8

TABLE II: Average evaluation times of CrowdGuard’s steps
in SGX, outside SGX on a CPU and on a GPU in seconds.

reduces the MA [96], which does not always hold in practice
(cf. O2) and hence, hinders detection. Median [94], instead,
effectively mitigates the attack but cannot handle the non-IID
scenario and drops the MA to the performance of a naı̈ve
classifier. Existing DF approaches make assumptions about the
attack strategy and data distribution: Auror [81] clusters the
parameters of all model updates into two clusters once and
considers the smaller cluster as suspicious. This approach fails
for the highly non-IID scenario that we described in Sect. II,
showing the advantage of CrowdGuard’s iterative pruning.
Krum assumes the benign models to have low distances among
each other [10], which does not hold for the non-IID scenario
and can be easily circumvented by an adaptive adversary
(cf. Sect. V-B2), while FoolsGold [28] cannot handle the case
that some benign clients have similar data, thus having updates
that point in the same direction. In comparison, CrowdGuard
does not make any assumptions about the data scenario or the
attack strategy while still being able to identify all poisoned
and benign models correctly.

It should be noted that Tab. III showing our default scenario
contains non-IID data distributions (disjoint data). As each
client optimizes for its own training set, few benign models
can negatively affect the MA on the test set containing all
labels. In this special case the MA can improve by excluding
benign models. For example, Krum selects one local model as
new global model, which might have superior performance on
the main task in the test set, but cannot prevent the backdoor
from being active.

In a separate experiment, we also evaluated BaFFLe [6] on
CIFAR-10 data. Notably, BaFFLe first needs a benign warm-
up phase without attacks [6]17, which we set to 30 rounds
starting from FL round 100. It is necessary to evaluate multiple
rounds to analyze BaFFle’s ability to accept a benign aggre-
gation model. This ensures that BaFFle does not reject every
update. Therefore, we performed this comparison in a separate

17We discuss the real-world applicability of this precondition in Sect. VII.

Approach BA MA TPR TNR PRC

No Attack 0.0 62.0
No Defense 80.0 61.5
Differential Privacy [62] 80.0 50.6 - - -
Zhao et al. [96] 100.0 61.2 - - -
Median [94] 0.0 10.0 - - -
FoolsGold [28] 0.0 10.0 100.0 9.0 47.4
Krum [10] 100.0 63.8 88.9 0.0 42.1
Auror [81] 80.0 68.4 0.0 100.0 -
CrowdGuard 0.0 62.0 100.0 100.0 100.0

TABLE III: Experiment results of CrowdGuard and six
state-of-the-art defenses (three IR-based and three DF-based
approaches) for the CIFAR-10 datasets in terms of Backdoor
Accuracy (BA), Main Task Accuracy (MA), True-Positive-
Rate (TPR), True-Negative-Rate (TNR), and Precision (PRC)
for one FL round t, all values in percentage.

experimental setting using a less converged model, hence these
results are not included in Tab. III. We observed that BaFFLe
was not resilient to the constrain-and-scale attack [7], resulting
in a BA of 80%, while CrowdGuard effectively identified
also in this setting benign and poisoned models (TPR=100%,
TNR=100%, BA=0%). CrowdGuard is more efficient than
BaFFLe, because CrowdGuard analyzes the outputs of all
layers, while BaFFLe focuses on the output of the last layer,
which an adversary will always try to make inconspicuous
(O2).

E. Alternative Aggregation Techniques

As described in Sect. II-A, we focus on a version of
FedAVG for aggregation that weights all accepted clients’
models equally, regardless of their dataset sizes. To show
the general applicability of CrowdGuard, we conducted an
experiment where we weighted the accepted models’ based
on the dataset sizes which were reported by the clients.
We observed the same performance as in our default setting
(TPR=100%, TNR=100%) and the aggregated model achieved
a MA of 62%. Notably, the ability of CrowdGuard to filter
poisoned models is independent of the concrete aggregation
function, as the aggregation is performed after the filtering
process is finished.

VI. DISCUSSION

In the earlier sections, we introduced CrowdGuard, a novel
defense against backdoors in FL that is fully compatible
with secure aggregation techniques. In the following, we will
discuss its security, parameters, as well as its limitations.

11

A. Parameterization

In our significance-based algorithm (cf. Alg. 4), we introduce
thresholds in the form of significance levels, that function as
parameters for CrowdGuard. The p-value of the probabilistic
tests is set to 0.01 and the outlier thresholds are dynamic values
based on the observed data. Thus, we purely rely on proba-
bilistic thresholds and do not include empirically determined
limits, that are dataset-dependent. We demonstrated that those
parameters paired with Alg. 3 are robust against (un)targeted
poisoning attacks. Naturally, higher p-values might stop the
iterative validation although anomalous values are still present,
hence increasing the probability of FNs, and, conversely, lower
p-values make it more sensitive toward outliers leading to more
rejected benign models and an increased FPR.

B. Necessity of TEEs

CrowdGuard requires the availability of a TEE on the server
side and at clients. In the considered cross-silo scenario, where
multiple larger computation centers collaborate on training a
DNN, the availability of TEEs is reasonable to assume. While
not all devices currently have TEEs, many of today’s mobile
devices possess TEEs (e.g.,ARM-TrustZone). Although their
deployment is restricted to vendors, this might change in the
future. In scenarios with TEE-less clients it would be possible
to, e.g., select only a subset of all clients for the feedback loop.
Notably, in this case it is no longer guaranteed that the majority
of the selected clients will be benign. In comparison, if all
clients are used, this is guaranteed by the underlying threat
model Sect. III-B. Our analysis provided in App. A shows the
probability of selecting a malicious majority in such a scenario.
We note that for smaller PMRs it is negligible even if only 50
out of 1000 clients are selected for validation. Therefore, in
scenarios with TEE-less clients, stronger assumptions about
the maximal PMR are necessary.

C. Computational Overhead

Overhead of Computations. Validating the individual local
models introduces an additional performance overhead. In
Sect. V-C, we evaluated this overhead and measured the run-
times of the individual phases of CrowdGuard. Although the
total runtime of 25.5s in average seems to be acceptable given
much longer time needed for training a model, this overhead
can still be further reduced. The major part of the overhead
is created by the prediction of the DLOs. One strategy to
improve the performance of CrowdGuard would be utilizing
ML accelerators, that include TEEs [68] or TEEs, that expand
their security guarantees to accelerators [85], [98]. Also, the
clients could decide to use only a representative subset of their
local dataset for the validation. Other possible strategies to
further optimize the runtime performance include parallelizing
the calculations for the different models in each step, e.g.,
calculating the distances between the local models’ and global
model’s DLO for different local models in parallel. Further
improvements could be achieved by using a more performance-
oriented language than Python. However, as the focus of this
paper is on the design of a defense against poisoning attacks
in FL, we consider those optimizations to be out of the scope.
Therefore, it is left to future work to optimize the runtime
performance of CrowdGuard.

Memory Overhead Regarding memory, CrowdGuard needs
to hold the parameters of one DNN, the predicted DLOs of
two DNNs, the DLOs for the global model, and for the one
local model at the same time. In our setup for CIFAR-10 these
aggregate to 94 218 float-numbers per sample. After calculat-
ing the local model’s DLOs, the distance to the global model
DLOs can be determined and only these distances for each
layer, i.e., a single number for each layer, need to be stored
when continuing to process the next model. Depending on the
available system resources, models that were not processed
so far can be either stored (encrypted) on the file system, or
the server sends the models sequentially to the clients. Hence,
memory might be a limitation of CrowdGuard in some TEEs.
Nevertheless, newer architectures, such as SGXv2 [47], also
provide large amounts of memory within an enclave.

Overhead of Client-Side Validation. The other aspect that
causes the overhead is the distribution of the local updates to
other clients. While the effort is negligible in the considered
cross-silo scenario of a few collaborating computing centers,
this overhead might become more relevant when applying
CrowdGuard to other scenarios with large numbers of par-
ticipants. In Sect. VI-B, we discussed the option to consider
a subset of all clients for validation to the cost of stronger
security assumptions required. Analogously, this can also be
used to reduce the computation overhead.

VII. RELATED WORK

In the recent past, a large number of backdoor attacks and
defenses have been proposed. In the following, we discuss the
approaches that are most relevant to this work and categorize
them into the following types: DF approaches that aim to
detect backdoored models (Sect. VII-A) and IR approaches
that mitigate the backdoors without identifying the poisoned
models (Sect. VII-B). Afterwards, we will investigate privacy
attacks and defenses (Sect. VII-C).

A. Filtering Approaches

Auror [81] clusters selected parameters of the model updates
on the server using k-means. In comparison, CrowdGuard
considers the outputs of all neurons. Additionally, Auror is vul-
nerable to multi-backdoor attacks where different clients inject
different backdoors [65], like in our combined attack scenarios.
The significance-test-based algorithm of CrowdGuard handles
such attacks by iteratively pruning the backdoored models.

FoolsGold [28] assumes all clients to be non-IID. For
its analysis, it sums up all model updates that each client
submitted to create a client-specific update history, before
using the Cosine to compare the update histories of differ-
ent clients. However, it can be circumvented by adaptive
attacks [7] and fails to handle IID scenarios. Further, the update
history allows an adversary to gain trust by behaving benign
for several rounds before performing its attack. Flame [65]
combines an outlier-detection-based approach with clipping
and noising. However, the noising reduces the performance
of the model, while the outlier detection fails in non-IID
scenarios. In comparison, CrowdGuard does not affect the
performance of the models and handles IID and advanced non-
IID scenarios even with disjoint data.

DeepSight [73] uses different techniques to extract finger-
prints of the training data from the models’ parameters and

12

predictions to distinguish benign and backdoored models. Its
classification relies on the assumption that poisoned models
were trained on fewer labels as benign models. However, e.g.,
if the benign clients are trained only on a single label (cf.
experiments for q=0.0 in Sect. V), this assumption does not
hold, while CrowdGuard can also in this corner case effectively
distinguish benign and backdoored updates.

Zhao et al. [96] is the closest to our work, as it also
inspects the local models on the client side. The detection
mechanism is based on the local models performance (MA) on
the clients’ local data, which means the output of the last layer
only. To protect the privacy of the local models, Zhao et al.
rely on applying differential privacy (DP) on the local models.
In comparison, CrowdGuard analyses the deep layer outputs
and also detects sophisticated backdoors in models that do not
affect the predictions for benign samples, therefore maintaining
the MA, which is beneficial, since stealthy backdoor attacks
do not affect MA (O2 in Sect. III-B). Further, performing the
client-side analysis in TEEs guarantees the privacy of the local
models but does not affect the analysis results. In comparison,
applying DP, i.e., adding noise, changes the models and thus
affects the results. Also, it is challenging to determine suitable
parameters for DP, as too low parameters do not protect privacy
while too strong parameters significantly affect the models’
predictions and thus also the analysis results. Additionally, the
clients have to report the number of samples for each label
to the server to enable the server to choose suitable validation
clients for each model [96]. The filtering decision of Zhao et al.
is based on empirical thresholds instead of statistical tests as
utilized in our approach. Hence, CrowdGuard is independent
of the dataset and model which results in a better real-world
applicability.

FLARE utilizes a server-side dataset and applies KNN
on a single layer’s plain outputs [89]. However, assuming
the presence of a server-side dataset is not practical [73]. In
addition, focusing the analysis on a single layer allows the
adversary to bypass the defense by fixing this single layer and
hiding in others. Thus, CrowdGuard is the first approach that
uses all layers’ outputs to identify poisoned models without
triggered samples.

B. Mitigation Approaches

Other approaches try to mitigate the backdoor without iden-
tifying the poisoned models. Yin et al. [94] proposed two
approaches: One uses the parameters’ median as a rule for
aggregation, while the other one removes extreme parameter
values and aggregates the remaining ones. Krum [10] selects
a single model as an aggregated model that minimizes the
distance to a fraction of other models. However, the approaches
of Yin et al. [94] and Blanchard et al. [10] do not work well
in non-IID scenarios, preventing benign-but-outlier models
from being included in the aggregation. Naseri et al. [62]
propose using Differential Privacy (DP) for mitigating back-
doors. However, besides the drawback that this strategy always
reduces the model’s performance, the DP level needs to be
chosen manually. Here, a too high value makes the model
unusable while a too low value is ineffective. In comparison,
CrowdGuard works without any dataset-specific parameters
and relies on the significance level (p-value) of the statistical
tests instead. Chen et al. look on models’ behavior during

prediction and detects if input data triggering a backdoor
are used [16]. For triggered samples, the predictions differ
obviously, making detection straightforward. By leveraging
HLBIM, CrowdGuard’s validation algorithm allows detecting
poisoned models without triggered data, even if the DLOs
differ only marginally. BaFFLe [6] aggregates all local models
and analyzes the final layer’s output of the aggregated model
via client feedback. Placing the backdoor detection after the
aggregation allows the usage of secure-aggregation schemes.
Therefore, BaFFLe relies for privacy protection on the se-
curity of the chosen secure-aggregation mechanism and the
anonymity of the aggregated model. In contrast, CrowdGuard
inspects every layer of the individual local models on the client
side. Therefore, BaFFLe’s backdoor identification is based on a
postulate that backdoors affect the predicted class for regular
data which is not practical (see O2 in Sect. III-B). Further,
BaFFLe cannot detect attacks in early rounds but needs mul-
tiple benign rounds for building a benign history, requires
several empirically determined thresholds, and discards the
whole training round if an attack is detected. In comparison,
CrowdGuard is round independent, uses only statistical thresh-
olds based on probabilities that are independent of dataset and
model, and allows training a model even in the presence of
adversaries by filtering the poisoned updates.

In addition, all IR approaches have the disadvantage that
the malicious clients cannot be identified and, hence, per-
manently excluded, but will permanently try to inject the
backdoor, requiring the respective defense to always perfectly
mitigate the poisoned models.

C. Privacy Attacks and Defenses

Privacy Attacks: There are several attacks against ML mod-
els that are capable of leaking private information such as
membership inference attacks [36], [82], property inference
attacks [29], and label inference attacks [95]. Additionally,
inference methods that reconstruct the whole input have been
developed [76] not only for centralized ML processes but
also in the area of FL [90]. The TEE-based architecture of
CrowdGuard prevents inference attacks on the local models
before the aggregation anonymizes the individual clients’
contributions, while the aggregation of many models impedes
inference attacks on the aggregated model [63]. Thus, not only
attacks are detected, but the real-world applicability of FL is
pushed.

Secure Aggregation Techniques: Various approaches have
been proposed to prevent honest-but-curious [26] or fully
malicious servers [11], [60], [35] from accessing the local
model updates. For example, Bonawitz et al. [11] use a secret-
sharing protocol to allow the clients the calculation of noise
that will cancel out during aggregation. However, this approach
is not compatible with state-of-the-art backdoor defenses.
Fereidooni et al. [26] use secure multi-party computation.
However, these approaches create significant overhead for the
clients and server. In the past, different approaches have been
proposed using TEEs for the aggregation step. In PPFL [60],
the whole FL process (training and aggregation) is performed
inside a TEE. Hashemi et al. [35] implemented Krum [10]
on SGX. In comparison to both, cryptograpy-based and TEE-
based secure aggregation, CrowdGuard not only implements
secure aggregation inside a TEE. Instead, CrowdGuard also

13

provides an architecture to securely leverage clients’ data for
backdoor detection, without taking any privacy risk for local
models or datasets.

VIII. CONCLUSION

Privacy of sensitive data and defenses against poisoning at-
tacks are central security considerations when it comes to
Federated Learning (FL). To satisfy these needs, we propose
CrowdGuard, a model filtering defense against targeted poison-
ing attacks that introduces a client feedback loop leveraging
the clients’ local data for model assessment. In contrast to
existing approaches, CrowdGuard does not only rely on the
vector metrics or models’ accuracies but analyzes changes in
the behavior of the deep layers’ neurons to identify backdoor
behavior. This enables CrowdGuard to identify poisoned mod-
els independent of the clients’ data distribution or the attack
strategy.

CrowdGuard has three core components: 1) A novel TEE-
based architecture that allows using clients’ data for the model
validation without creating new privacy-attack vectors. 2) A
significance-based backdoor detection algorithm that executes
statistical tests operating on HLBIM, a novel metric based on
the deep layer outputs of local models allowing to identify
adversarial models. 3) A stacked clustering scheme, which
compensates rogue votes of adversarial clients during the
feedback loop. Thereby, our proposed architecture preserves
the privacy, integrity, and confidentiality of local models and
consequently client data by leveraging secure environments.

We evaluate our approach in various FL settings and show
the independence of those factors. Additionally, CrowdGuard
does not reduce the FL performance and is not circumventable
by adaptive adversaries that are aware of the defense, making
it applicable in real-world scenarios.

ACKNOWLEDGMENT

This research received funding from Intel through the Pri-
vate AI Collaborate Research Institute (https://www.private-ai.
org/), as well as from the OpenS3 Lab and the Hessian
Ministry of Interior and Sport as part of the F-LION project,
following the funding guidelines for cyber security research.

REFERENCES

[1] The federated tumor segmentation (FeTS) initiative. https://www.med.
upenn.edu/cbica/fets/#FeTSCollaboratingSites6. Accessed: 2023-04-02.

[2] Health Insurance Portability and Accountability Act, 1996.
https://www.govinfo.gov/content/pkg/PLAW-104publ191/pdf/
PLAW-104publ191.pdf.

[3] California Consumer Privacy Act, 2018. https://leginfo.legislature.ca.
gov/faces/billTextClient.xhtml?bill id=201720180SB1121.

[4] General Data Protection Regulation, 2018. https://eur-lex.europa.eu/eli/
reg/2016/679/oj.

[5] Pytorch, 2022. https://pytorch.org.
[6] Sebastien Andreina, Giorgia Azzurra Marson, Helen Möllering, and

Ghassan Karame. BaFFLe: Backdoor Detection via Feedback-based
Federated Learning. In ICDCS, 2021.

[7] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and
Vitaly Shmatikov. How To Backdoor Federated Learning. In AISTATS,
2020.

[8] Mauro Barni, Kassem Kallas, and Benedetta Tondi. A new backdoor
attack in cnns by training set corruption without label poisoning. In
2019 IEEE International Conference on Image Processing (ICIP), pages
101–105. IEEE, 2019.

[9] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent
Laporte, David Pichardie, and Alix Trieu. Formal verification of a
constant-time preserving c compiler. Proceedings of the ACM on
Programming Languages, 2020.

[10] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien
Stainer. Machine Learning with Adversaries: Byzantine Tolerant Gra-
dient Descent. In NIPS, 2017.

[11] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. Practical Secure Aggregation for Privacy-Preserving Ma-
chine Learning. In CCS, 2017.

[12] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso
Frassetto, Kari Kostiainen, and Ahmad-Reza Sadeghi. Dr. sgx: Auto-
mated and adjustable side-channel protection for sgx using data location
randomization. In CCS, 2019.

[13] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure:
SGX cache attacks are practical. In USENIX Workshop on Offensive
Technologies (WOOT 17). USENIX Association, 2017.

[14] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong.
Fltrust: Byzantine-robust federated learning via trust bootstrapping. In
NDSS, 2021.

[15] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Provably secure
federated learning against malicious clients. In AAAI Conference on
Artificial Intelligence, 2021.

[16] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig,
Benjamin Edwards, Taesung Lee, Ian Molloy, and Biplav Srivastava.
Detecting backdoor attacks on deep neural networks by activation
clustering. arXiv preprint arXiv:1811.03728, 2018.

[17] Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang He.
Federated meta-learning with fast convergence and efficient commu-
nication. In arXiv preprint arXiv:1802.07876, 2018.

[18] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Tar-
geted backdoor attacks on deep learning systems using data poisoning.
In arXiv preprint arXiv:1712.05526, 2017.

[19] Victor Costan and Srinivas Devadas. Intel sgx explained. In Cryptology
ePrint Archive, 2016.

[20] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. Binsec/rel:
Efficient relational symbolic execution for constant-time at binary-level.
In IEEE S&P. IEEE, 2020.

[21] Li Deng. The mnist database of handwritten digit images for machine
learning research. In IEEE Signal Processing Magazine, volume 29,
pages 141–142. IEEE, 2012.

[22] Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda)
for multiobjective optimization. Comptes Rendus Mathematique,
350(5):313–318, 2012.

[23] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al.
A density-based algorithm for discovering clusters in large spatial
databases with noise. 1996.

[24] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong.
Local Model Poisoning Attacks to Byzantine-Robust Federated Learn-
ing. In USENIX Security, 2020.

[25] Hossein Fereidooni, Alexandra Dmitrienko, Phillip Rieger, Markus
Miettinen, Ahmad-Reza Sadeghi, and Felix Madlener. Fedcri: Federated
mobile cyber-risk intelligence. In NDSS, 2022.

[26] Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirho-
seini, Helen Möllering, Thien Duc Nguyen, Phillip Rieger, Ahmad-Reza
Sadeghi, Thomas Schneider, Hossein Yalame, et al. Safelearn: Secure
aggregation for private federated learning. In IEEE Security and Privacy
Workshops (SPW). IEEE, 2021.

[27] Patrick Foley, Micah J Sheller, Brandon Edwards, Sarthak Pati, Walter
Riviera, Mansi Sharma, Prakash Narayana Moorthy, Shi-han Wang,
Jason Martin, Parsa Mirhaji, Prashant Shah, and Spyridon Bakas.
Openfl: the open federated learning library. Physics in Medicine &
Biology, 2022.

[28] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. The limitations
of federated learning in sybil settings. In RAID, 2020.

[29] Karan Ganju, Qi Wang, Wei Yang, Carl A Gunter, and Nikita Borisov.
Property inference attacks on fully connected neural networks using
permutation invariant representations. In CCS, 2018.

14

https://www.private-ai.org/
https://www.private-ai.org/
https://www.med.upenn.edu/cbica/fets/#FeTSCollaboratingSites6
https://www.med.upenn.edu/cbica/fets/#FeTSCollaboratingSites6
https://www.govinfo.gov/content/pkg/PLAW-104publ191/pdf/PLAW-104publ191.pdf
https://www.govinfo.gov/content/pkg/PLAW-104publ191/pdf/PLAW-104publ191.pdf
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB1121
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB1121
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://pytorch.org

[30] Yansong Gao, Bao Gia Doan, Zhi Zhang, Siqi Ma, Jiliang Zhang,
Anmin Fu, Surya Nepal, and Hyoungshick Kim. Backdoor attacks and
countermeasures on deep learning: A comprehensive review. In arXiv
preprint arXiv:2007.10760, 2020.

[31] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets:
Identifying vulnerabilities in the machine learning model supply chain.
In arXiv preprint arXiv:1708.06733, 2017.

[32] Rachid Guerraoui, Sébastien Rouault, et al. The hidden vulnerability
of distributed learning in byzantium. In International Conference on
Machine Learning, pages 3521–3530. PMLR, 2018.

[33] Gozde N Gunesli, Mohsin Bilal, Shan E Ahmed Raza, and Nasir M Ra-
jpoot. Feddropoutavg: Generalizable federated learning for histopathol-
ogy image classification. In arXiv preprint arXiv:2111.13230, 2021.

[34] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy,
Françoise Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon,
and Daniel Ramage. Federated learning for mobile keyboard prediction.
In arXiv preprint arXiv:1811.03604, 2018.

[35] Hanieh Hashemi, Yongqin Wang, Chuan Guo, and Murali Annavaram.
Byzantine-robust and privacy-preserving framework for fedml. In ICLR
Workshops, 2021.

[36] Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro.
Logan: Membership inference attacks against generative models. In
Privacy Enhancing Technologies, 2019.

[37] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the
effects of non-identical data distribution for federated visual classifica-
tion. In arXiv preprint arXiv:1909.06335, 2019.

[38] Wei Huang, Shengjie Xu, Yueqiang Cheng, and David Lie. Aion attacks:
Manipulating software timers in trusted execution environment. In
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 173–193. Springer, 2021.

[39] David Kaplan, Jeremy Powell, and Tom Woller. Amd memory encryp-
tion. In White paper, 2016.

[40] Youssef Khazbak, Tianxiang Tan, and Guohong Cao. Mlguard: Miti-
gating poisoning attacks in privacy preserving distributed collaborative
learning. In International Conference on Computer Communications
and Networks (ICCCN). IEEE, 2020.

[41] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter
Richtárik. Federated optimization: Distributed machine learning for
on-device intelligence. In arXiv preprint arXiv:1610.02527, 2016.

[42] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning:
Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

[43] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. Citeseer, 2009.

[44] Kavita Kumari, Phillip Rieger, Hossein Fereidooni, Murtuza Jadliwala,
and Ahmad-Reza Sadeghi. Baybfed: Bayesian backdoor defense for
federated learning. In IEEE S&P. IEEE Computer Society, 2023.

[45] Huimin Li, Phillip Rieger, Shaza Zeitouni, Stjepan Picek, and Ahmad-
Reza Sadeghi. Flairs: Fpga-accelerated inference-resistant & secure
federated learning. arXiv preprint arXiv:2308.00553, 2023.

[46] Liping Li, Wei Xu, Tianyi Chen, Georgios B Giannakis, and Qing Ling.
Rsa: Byzantine-robust stochastic aggregation methods for distributed
learning from heterogeneous datasets. In AAAI Conference on Artificial
Intelligence, 2019.

[47] Mingyu Li, Yubin Xia, and Haibo Chen. Memory optimization system
for sgxv2 trusted execution environment. International Journal of
Software & Informatics, 12(3), 2022.

[48] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua
Zhang. On the convergence of fedavg on non-iid data. In International
Conference on Learning Representations, 2019.

[49] Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou.
Fedbn: Federated learning on non-iid features via local batch normal-
ization. In arXiv preprint arXiv:2102.07623, 2021.

[50] Tjen-Sien Lim and Wei-Yin Loh. A comparison of tests of equality of
variances. Computational Statistics & Data Analysis, 22(3):287–301,
1996.

[51] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. Composite
backdoor attack for deep neural network by mixing existing benign

features. In CCS, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[52] Pengrui Liu, Xiangrui Xu, and Wei Wang. Threats, attacks and defenses
to federated learning: issues, taxonomy and perspectives. Cybersecurity,
5(1), 2022.

[53] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai,
Weihang Wang, and X. Zhang. Trojaning attack on neural networks.
In NDSS, 2018.

[54] Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflection
backdoor: A natural backdoor attack on deep neural networks. In
European Conference on Computer Vision, pages 182–199. Springer,
2020.

[55] Edward H Livingston. Who was student and why do we care so much
about his t-test? 1. Journal of Surgical Research, 118(1):58–65, 2004.

[56] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. Communication-Efficient Learning of Deep
Networks from Decentralized Data. In AISTATS, 2017.

[57] Brendan McMahan and Daniel Ramage. Federated learning: Collabora-
tive Machine Learning without Centralized Training Data. Google AI,
2017.

[58] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang.
Learning Differentially Private Language Models Without Losing Ac-
curacy. In ICLR, 2018.

[59] Thomas Minka. Estimating a dirichlet distribution. 01 2003.
[60] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego

Perino, and Nicolas Kourtellis. Ppfl: privacy-preserving federated
learning with trusted execution environments. In Annual International
Conference on Mobile Systems, Applications, and Services, 2021.

[61] Luis Muñoz-González, Kenneth T. Co, and Emil C. Lupu. Byzantine-
Robust Federated Machine Learning through Adaptive Model Averag-
ing. In arXiv preprint:1909.05125, 2019.

[62] Mohammad Naseri, Jamie Hayes, and Emiliano De Cristofaro. Local
and central differential privacy for robustness and privacy in federated
learning. In NDSS, 2022.

[63] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive pri-
vacy analysis of deep learning: Passive and active white-box inference
attacks against centralized and federated learning. In IEEE S&P. IEEE,
2019.

[64] Thien Duc Nguyen, Samuel Marchal, Markus Miettinen, Hossein Fer-
eidooni, N. Asokan, and Ahmad-Reza Sadeghi. DÏoT: A Federated
Self-learning Anomaly Detection System for IoT. In ICDCS, 2019.

[65] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen
Möllering, Hossein Fereidooni, Samuel Marchal, Markus Miettinen,
Azalia Mirhoseini, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas
Schneider, and Shaza Zeitouni. FLAME: taming backdoors in federated
learning. In USENIX Security, 2022.

[66] Thien Duc Nguyen, Phillip Rieger, Markus Miettinen, and Ahmad-Reza
Sadeghi. Poisoning Attacks on Federated Learning-Based IoT Intrusion
Detection System. In Workshop on Decentralized IoT Systems and
Security, 2020.

[67] Frank Nielsen. Hierarchical Clustering, pages 195–211. 02 2016.
[68] Nvidia. Nvidia h100 tensor core gpu architecture. In White paper,

2022.
[69] Sandro Pinto and Nuno Santos. Demystifying arm trustzone: A

comprehensive survey. ACM Comput. Surv., 51(6), jan 2019.
[70] Friedrich Pukelsheim. The three sigma rule. The American Statistician,

48(2):88–91, 1994.
[71] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De Cristofaro.

Knock knock, who’s there? membership inference on aggregate location
data. In NDSS, 2018.

[72] John A Rice. Mathematical statistics and data analysis. Cengage
Learning, 2006.

[73] Phillip Rieger, Thien Duc Nguyen, Markus Miettinen, and Ahmad-Reza
Sadeghi. Deepsight: Mitigating backdoor attacks in federated learning
through deep model inspection. In NDSS, 2022.

[74] Holger R Roth, Ken Chang, Praveer Singh, Nir Neumark, Wenqi Li,
Vikash Gupta, Sharut Gupta, Liangqiong Qu, Alvin Ihsani, Bernardo C
Bizzo, et al. Federated learning for breast density classification: A
real-world implementation. In Domain Adaptation and Representation

15

Transfer, and Distributed and Collaborative Learning, pages 181–191.
Springer International Publishing, 2020.

[75] Benjamin IP Rubinstein, Blaine Nelson, Ling Huang, Anthony D
Joseph, Shing-hon Lau, Satish Rao, Nina Taft, and J Doug Tygar.
Antidote: understanding and defending against poisoning of anomaly
detectors. In ACM SIGCOMM Conference on Internet Measurement,
2009.

[76] Ahmed Salem, Apratim Bhattacharya, Michael Backes, Mario Fritz,
and Yang Zhang. Updates-leak: Data set inference and reconstruction
attacks in online learning. In USENIX Security, 2020.

[77] Fan Sang, Ming-Wei Shih, Sangho Lee, Xiaokuan Zhang, Michael
Steiner, Mona Vij, and Taesoo Kim. Pridwen: Universally hardening
sgx programs via load-time synthesis. In USENIX Security, 2022.

[78] Micah Sheller, Anthony Reina, Brandon Edwards, Jason Martin, and
Spyridon Bakas. Federated Learning for Medical Imaging. In Intel AI,
2018.

[79] Micah Sheller, Anthony Reina, Brandon Edwards, Jason Martin, and
Spyridon Bakas. Multi-Institutional Deep Learning Modeling Without
Sharing Patient Data: A Feasibility Study on Brain Tumor Segmenta-
tion. In Brain Lesion Workshop, 2018.

[80] Micah J. Sheller, Brandon Edwards, G. Anthony Reina, Jason Martin,
Sarthak Pati, Aikaterini Kotrotsou, Mikhail Milchenko, Weilin Xu,
Daniel Marcus, Rivka R. Colen, and Spyridon Bakas. Federated learn-
ing in medicine: facilitating multi-institutional collaborations without
sharing patient data. In Scientific Reports, volume 10, page 12598,
2020.

[81] Shiqi Shen, Shruti Tople, and Prateek Saxena. Auror: Defending
Against Poisoning Attacks in Collaborative Deep Learning Systems.
In ACSAC, 2016.

[82] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
Membership inference attacks against machine learning models. In
IEEE S&P. IEEE, 2017.

[83] Chia-Che Tsai, Donald E Porter, and Mona Vij. {Graphene-SGX}:
A practical library {OS} for unmodified applications on {SGX}. In
USENIX Annual Technical Conference (USENIX ATC), 2017.

[84] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin,
and Yuval Yarom. Cacheout: Leaking data on intel cpus via cache
evictions. In IEEE S&P. IEEE, 2021.

[85] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted
execution environments on gpus. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages 681–696, 2018.

[86] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vish-
wakarma, Saurabh Agarwal, Jy-yong Sohn, Kangwook Lee, and Dim-
itris Papailiopoulos. Attack of the tails: Yes, you really can backdoor
federated learning. In NIPS, volume 33, 2020.

[87] Jinwen Wang, Yueqiang Cheng, Qi Li, and Yong Jiang. Interface-
based side channel attack against intel sgx. In arXiv preprint
arXiv:1811.05378, 2018.

[88] Lixu Wang, Shichao Xu, Xiao Wang, and Qi Zhu. Eavesdrop the
Composition Proportion of Training Labels in Federated Learning. In
arXiv preprint:1910.06044, 2019.

[89] Ning Wang, Yang Xiao, Yimin Chen, Yang Hu, Wenjing Lou, and
Y Thomas Hou. Flare: defending federated learning against model
poisoning attacks via latent space representations. In Asia Conference
on Computer and Communications Security, 2022.

[90] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang,
and Hairong Qi. Beyond inferring class representatives: User-level
privacy leakage from federated learning. In IEEE INFOCOM 2019-
IEEE Conference on Computer Communications. IEEE, 2019.

[91] Zhaoxian Wu, Qing Ling, Tianyi Chen, and Georgios B. Giannakis.
Federated variance-reduced stochastic gradient descent with robustness
to byzantine attacks. In IEEE Transactions on Signal Processing,
volume 68, pages 4583–4596, 2020.

[92] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba: Distributed
backdoor attacks against federated learning. In International Conference
on Learning Representations, 2020.

[93] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated
machine learning: Concept and applications. ACM Trans. Intell. Syst.
Technol., 10(2), jan 2019.

C) Send 𝐺𝑡to all 𝐶𝑘

Clients Server

D) Local training on 𝐷𝑖

E) Collection of local

contributions 𝐿𝑖
𝑡+1

B) Select 𝐶𝑘for 𝑡

G) Send 𝐿𝑖
𝑡+1to all 𝐶𝑖

H) Local analysis on 𝐷𝑖

I) Report decision

about all 𝐿𝑖
𝑡+1

Decision
Aggregation

K) 𝐹𝑒𝑑𝐴𝑉𝐺 algorithm

L) Distribute 𝐺𝑡+1 to all clients

𝒜𝑝
𝒜 /𝒜𝑝

A) Setup TEEs

Defense Setup

2

3

4

5

6J)

CrowdGuard CrowdGuard’s Client
Feedback Loop

1

7

Fig. 5: Execution sequence of CrowdGuard. Green indicates
the utilization of secure environments.

[94] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett.
Byzantine-robust distributed learning: Towards optimal statistical rates.
In International Conference on Machine Learning, pages 5650–5659.
PMLR, 2018.

[95] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep
leakage from gradients. In arXiv preprint arXiv:2001.02610, 2020.

[96] Lingchen Zhao, Shengshan Hu, Qian Wang, Jianlin Jiang, Chao Shen,
Xiangyang Luo, and Pengfei Hu. Shielding collaborative learning:
Mitigating poisoning attacks through client-side detection. IEEE Trans-
actions on Dependable and Secure Computing, 18(5):2029–2041, 2020.

[97] Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. Federated learning
on non-iid data: A survey. In Neurocomputing, volume 465, pages 371–
390. Elsevier, 2021.

[98] Jianping Zhu, Rui Hou, XiaoFeng Wang, Wenhao Wang, Jiangfeng Cao,
Lutan Zhao, Fengkai Yuan, Peinan Li, Zhongpu Wang, Boyan Zhao,
Lixin Zhang, and Dan Meng. Enabling privacy-preserving, compute-
and data-intensive computing using heterogeneous trusted execution
environment, 2019.

APPENDIX

Fig. 5 depicts a detailed overview of the FL setup with
CrowdGuard activated as a defense mechanism against targeted
poisoning attacks.

Alg. 4 shows the algorithm that the individual clients execute
during the validation to analyze the HLBIM values and de-
termine, whether there is still a significance for the presence
of poisoned models in the calculated PCA values, such that
CrowdGuard needs to perform another pruning iteration.

It is also a valid proposition to consider leveraging multiple
PC dimensions instead of solely relying on PC dimension
one. However, our experiments have consistently demonstrated
that the first PC dimension encompasses over 65% (mostly

16

exceeding 80%) of the explained variances obtained through
PCA. This measure signifies the significance and efficacy of
this particular dimension in effectively segregating the data
points. Incorporating the second dimension merely contributes
to a marginal increase in the explained variances, which is why
we opt to prioritize the utilization of the first dimension. This
approach not only ensures computational efficiency but also
maintains an intuitive framework.

An additional factor that influences our decision is the
internal methods employed by CrowdGuard. Specifically, the
statistical tests implemented within CrowdGuard are specif-
ically designed to handle one-dimensional data. Employing
multiple dimensions would necessitate the implementation of
alternative algorithms, such as clustering methods. However,
the statistical tests constitute the core of CrowdGuard and are
instrumental in yielding the positive effects associated with
this defense mechanism.

Algorithm 4 Significance Test on PC Values
1: Input:
2: pc dim1 values, ▷ A list of values
3: Output:
4: significant ▷ Indicator if the values are contain abnormalities
5: ▷ Generate distributions
6: median ← MEDIAN(pc dim1 values)
7: upper ← {}
8: lower ← {}
9: for value in pc dim1 values do

10: distribution value ← value − median
11: if value >= 0 then
12: upper.append(distribution value)
13: else
14: lower.append(abs(distribution value))
15: end if
16: end for
17: ▷ Significance tests
18: mean significant ← T-TEST(upper, lower)
19: var significant ← F-TEST(upper, lower)
20: dist significant ← D-TEST(upper, lower)
21: outlier quartil significant ← OUTLIER BOXPLOT(pc dim1 values)
22: outlier sigma significant ← OUTLIER 3σ(pc dim1 values)
23: ▷ Aggregate result
24: significant ← mean significant OR var significant OR dist significant

OR outlier quartil significant OR outlier sigma significant

Research knows about various kinds of triggers for different
scenarios, i.e. [51], [18], but we will only explain few of them,
which are also used in our experiments:

• Pixel Backdoor: This is a backdoor in the domain of
image classification, where a pixel pattern is placed on
the benign input image [7], [31], [53], as visualized in
Fig. 1a and the label is changed to the desired TA. In
another injection strategy called Distributed Backdoor,
this trigger is distributed between multiple adversarial
clients. Each client incorporates a fraction of the pattern
into their local model. The final trigger is a combination
of all the fractions [92].

• Label Swap: All samples of one label are swapped to TA.
To create a poisoned dataset DA

i , only changes regarding
the label mapping are mandatory in Di.

• Semantic Backdoor: In this case, the input data contain
a specific characteristic within the benign image, that
should trigger a swap to TA. Examples regarding the
CIFAR-10 [43] dataset are the mapping of cars in front

Default Configurations
Parameter Default Value

Dataset CIFAR-10
Clients n |Ck| = |Ci| = 20
Epochs 10

Samples per client 2560
Batch Size 64
Backdoor Semantic Backdoor
IID rate q 0

Poison Data Rate (PDR) 0.1
Starting round t 1000

Adaptive adversary rate18α 0.7
Poison Model Rate (PMR) 0.45 (= 9/20)

Benign Learning Rate 0.01
Malicious Learning Rate 0.01

TABLE IV: Listing of the default FL setup configurations.

of a striped background (cf. Fig. 1b) to TA, but leave all
other car samples like Fig. 1c in its benign states [7].

In the past, different side-channel attacks have been proposed
that extract data from TEEs [13], [38], [87]. Different targets
for such attacks in CrowdGuard are possible. The direct target
would be using side-channel attacks to first extract the local
models of other clients from an enclave and then perform a
model inference attack [29], [36], [52], [63], [71], [76], [82],
[88], [95] on the extracted models. However, existing inference
attacks have a low bandwidth of less than 100 bytes/s [84],
which is negligible compared to the size of a DNN model.

Another option would be using such side-channel attacks
to extract the cryptographic keys from the enclave and use
this key to fake a TEE, thus to break the TEE completely.
Also, an attacker could try to extract the keys that are used for
the encrypted communication, i.e., the TLS session key, use
the extracted key to eavesdrop the local models during their
transmission and then run a model inference attack against the
eavesdropped models. However, while attacks are proposed,
defenses against such attacks are also frequently developed.
Examples against such side-channel attacks include the usage
of constant-time encryption algorithms [9], [20] or techniques
that randomized the data locations inside the memory [12],
[77]. Thus, we consider such attacks to be out of the scope of
this paper and assume TEEs to be trusted.

The probability of violating the majority assumption, when a
subset of all clients is randomly selected for validation, follows
a hypergeometric distribution [72]. Fig. 7 shows the probability
that more than 50% of the selected validation clients are mali-
cious for different Poisoned Model Rates (PMRs) and different
numbers of validation clients (for overall 1000 clients). As it
can be seen, the probability for small PMR values becomes
negligible already for less than 50 validation clients.

In Tab. IV, the default parameter configurations for our exper-
iments are depicted.

Besides the accuracy on the benign main task (Main Task
Accuracy, MA) and the backdoor task (Backdoor Accuracy,
BA), we also evaluate the filtering capabilities of CrowdGuard
by measuring the True Positive Rate (TPR) and True Negative
Rate (TNR). For this purpose, we consider a benign model that
is correctly recognized by CrowdGuard to be a True Negative
(TN), a poisoned model that is correctly identified as True
Positive (TP) and analogously for False Positives (FP) and

18Adaptive adversary from Bagdasaryan et al. [7].

17

0.2 0.4 0.6 0.8
0%

20%

40%

60%

80%

100%

MA + Defense
MA
BA + Defense
BA
Defense TNR
Defense TPR

(a) α

0.2 0.4 0.6 0.8
Poison Data Rate (PDR)

0%

20%

40%

60%

80%

100%

MA + Defense
MA
BA + Defense
BA
Defense TNR
Defense TPR

(b) PDR

0.00 0.25 0.50 0.75 1.00
q

0%

20%

40%

60%

80%

100%

MA + Defense
MA
BA + Defense
BA
Defense TNR
Defense TPR

(c) 1-class non-IID

0.00 0.25 0.50 0.75 1.00
q

0%

20%

40%

60%

80%

100%

MA + Defense
MA
BA + Defense
BA
Defense TNR
Defense TPR

(d) 2-class non-IID

Normal Dirichlet
Distribution

0%

20%

40%

60%

80%

100%

MA + Defense
MA
BA + Defense
BA
Defense TNR
Defense TPR

(e) Distributions

Fig. 6: Influence of parameters.

0 200 400 600 800 1000
#Validation Clients

0.0

0.5

1.0

Pr
ob

ab
ilit

y

PMR = 10%
PMR = 25%
PMR = 33%

PMR = 40%
PMR = 45%
PMR = 49%

Fig. 7: Probability for more than 50% of adversaries being
selected as validators out of 1000 clients for different PMRs.

Scenario Majority K-Means Agglomerative DBSCAN CrowdGuard
TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR

Default 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
All Benign + 1 FN 88.9 100.0 88.9 100.0 88.9 100.0 100.0 100.0 100.0 100.0
Default + 2 FP 100.0 100.0 100.0 100.0 100.0 100.0 0.0 100.0 100.0 100.0
All Benign + 2 FN 77.8 100.0 77.8 100.0 77.8 100.0 0.0 100.0 100.0 100.0
Malicious Split 100.0 100.0 0.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0

TABLE V: Experimental result for the comparison of different
aggregation rules for combining individual votes.

False Negatives (FN). The TPR is then defined as:

TPR =
TP

TP + FN
(4)

The TNR is calculated as:

TNR =
TN

TN + FP
(5)

As discussed in Sect. III-B, we assume that the malicious
clients can submit arbitrary votes by providing corresponding
data to their enclave.

The stacked clustering ensures the integrity of the filtering,
even if A can manipulate the votes that are reported by the
enclaves of the malicious clients (cf. Alg. 3). Tab. V shows
the results of our ablation study for the vote aggregation of
CrowdGuard. We compare the stacked-clustering with different
alternatives, in particular, majority voting, where a model is
rejected if a majority of clients votes for its rejection, and K-
Means, where the votes of the individual clients are clustered
using K-Means and a model is accepted if at least one client
in the majority cluster votes for acceptance. In addition, we
evaluated the individual components of the stacked clustering
(Agglomerative and DBSCAN) separately. We evaluate these
aggregation rules for the votes that we observed for our default
setting (Default). Further, we consider two scenarios, where
all malicious clients vote for accepting all models but one/two
benign clients do not detect one poisoned model (All Benign +
1 FN and All Benign + 2 FN). Further, we evaluate a scenario
where all clients vote as observed in our default setting but two
clients consider a single benign model to be poisoned (Default
+ 2 FP). In another setting, the adversary splits the clients

0 5 10 15 20
Principal Component

0

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f E
xp

la
in

ed
 V

ar
ia

nc
e

(a) Absolute

0 5 10 15 20
Principal Component

0

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f E
xp

la
in

ed
 V

ar
ia

nc
e

(b) Relative

Fig. 8: Comparison of the expected variance of the PCA
with absolute or relative distances used in the routine of
CrowdGuard. The figures are based on the Cosine distances
in the first pruning round.

into two groups: One group votes for accepting all models
and one group for rejecting all models (Malicious Split). As
Tab. V shows, only the stacked clustering of CrowdGuard
always detects all malicious models (TPR=100%), while the
other aggregation rules miss some of the models, or, in the
case of K-Means, even accept all poisoned models.

To analyze the impact of using the relative distance in the
HLBIM metric, we conducted an additional experiment for
an adapted version of HLBIM, that utilizes absolute distances
instead of relative versions. However, we observed that this
adapted metric provides less insight into the models’ behavior
and it is more challenging to use these values to distinguish
between benign and poisoned models.

The reason for this is that utilizing relative distances allows
us to consider the relative magnitude of updates. When a
given parameter value is relatively small compared to another
parameter that undergoes the same update value, the relative
update becomes more relevant. After executing the PCA, this is
also visible in the capability of the first Principal Component
(PC) dimension to separate the data points, as measured by
the explained variance. By leveraging the relative distances,
we were able to enhance this capability by an average of
10%, as can be seen in Fig. 8. This improvement in separation
capability resulted in better overall performance, particularly
in edge cases.

Thus, using relative distances proved to be more mean-
ingful and beneficial for the HLBIM, allowing for improved
detection and differentiation of poisoned models from benign
values.

In Fig. 6 We depict graphs illustrating the influence of
parameters in Fig. 6. As it can be seen, the defense is inde-
pendent of α, the PDR, and the non-IID scenario and achieves
100% True-Positive-Rate (TPR) as well as True-Negative-Rate
(TNR). The Main Task Accuracy (MA) is higher if the defense
is activated, so we do not decrease the benign FL performance.

18

	Introduction
	Background
	Federated Learning
	Poisoning Attacks on FL
	Trusted Execution Environments

	Problem Setting
	System Setting
	Adversary Model
	Poisoning Attacker A
	Privacy Attacker AP
	TEE Security Assumptions

	Requirements and Challenges
	Design of CrowdGuard

	CrowdGuard
	Privacy-Enhancing Architecture for Clients' Feedback
	Hidden-Layer Analysis for Backdoor Detection
	Voting Aggregation

	Evaluation
	Experimental Setup
	Outputs and Influence Factors
	Experiment Outputs
	Influence Factors

	Runtime Overhead of CrowdGuard
	Comparison with Existing Approaches
	Alternative Aggregation Techniques

	Discussion
	Parameterization
	Necessity of TEEs
	Computational Overhead

	Related Work
	Filtering Approaches
	Mitigation Approaches
	Privacy Attacks and Defenses

	Conclusion
	References
	Appendix

