

DIMAQS – Dynamic Identification of Malicious Query Sequences Master Thesis Presentation

Michael Jobst

Advised by: Prof. Dr.-Ing. Alexandra Dmitrienko

Michael Jobst - DIMAQS - Dynamic Identification of Malicious Query Sequences

1 Introduction

- 2 Attack & Requirement Analysis
- 3 Background
- 4 Proposed Solution
- 5 Evaluation
- 6 Conclusion & Future Works

1 Introduction

- 2 Attack & Requirement Analysis
- 3 Background
- 4 Proposed Solution
- 5 Evaluation
- 6 Conclusion & Future Works

UNIVERSITÄT What is Database Ransomware?

Outline Introduction Attack & Requirement Analysis Background Proposed Solution Evaluation Conclusion & Future Works

Two known Ransomware types:

- Crypto Ransomware
- Locker Ransomware

imposed 5 billion USD loss in 2017 predicted to hit 11.5 billion in 2019

What about Database Ransomware?

- first appearance in 2016
- connect to DBMS and deleting (dropping) databases/tables
- attacks against MySQL, MongoDB, ElasticSearch, Cassandra, Hadoop, and CouchDB

UNIVERSITÄT Prerequisites & Goals

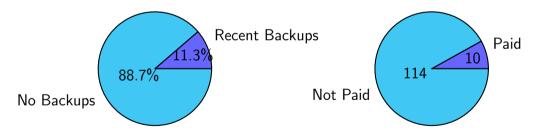
Outline Introduction Attack & Requirement Analysis Background Proposed Solution Evaluation Conclusion & Future Works

Database Ransomware

- Dropping of Databases and Tables
- Demanding ransom to get database dump (copy of the data) back
- No evidence for such dumps

Goals

- Protect from data loss
- Detect malicious sequences, not only single malicious queries (SQLi)
- Determine database ransomware attacks



1 Introduction

- 2 Attack & Requirement Analysis
- 3 Background
- 4 Proposed Solution
- 5 Evaluation
- 6 Conclusion & Future Works

- More than 45.000 servers compromised in total since 2016
- BinaryEdge: 124 companies and institutions were victims between 3rd January 2017 and 15th January 2017

a) 11.3% of victims had recent database backups, 88.7% had not

b) 114 victims did not pay ransom, 10 did: no response

1 Brute Force Password / Connect

2 Execute SQL Statements (Malicious Query Sequence, varying)

- List Databases
- Drop Databases
- Create Database (e.g. 'PLEASE_READ')
- Create Table (e.g. 'WARNING')
- Insert Ransom Message

3 Disconnect

- 1 Brute Force Password / Connect
- 2 Execute SQL Statements (Malicious Query Sequence, varying)
 - List Databases
 - Drop Databases
 - Create Database (e.g. 'PLEASE_READ') ← not indicating
 - Create Table (e.g. 'WARNING')
 - Insert Ransom Message
- 3 Disconnect

UNIVERSITÄT Requirement Analysis

Outline Introduction Attack & Requirement Analysis Background Proposed Solution Evaluation Conclusion & Future Works

Requirements

- System, that tracks the executed queries
- Backup dropped (permanent) Databases/Tables
- Hide backed up database tables and DIMAQS information from unprivileged users
- Allow authentication for privileged mode
- Restore backed up database tables by privileged users
- Notify Administrator about incidents

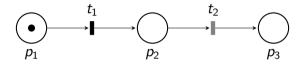
1 Introduction

- 2 Attack & Requirement Analysis
- 3 Background
- 4 Proposed Solution
- 5 Evaluation
- 6 Conclusion & Future Works

Query Sequence Analysis

Colored Petri net (CPN) consists of

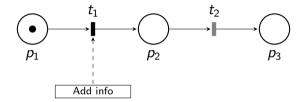
- Places (Circles)
- Transitions (Bars)
- Tokens (Dots)
- Arcs
- ShieldFS
 - Backup data at the right time
 - Copy data to a safe storage space


Single Query Analysis (SQLi)

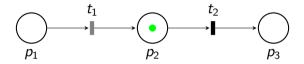
```
Benign Query: SELECT * FROM A WHERE id = 3
Malicious Query: SELECT * FROM A WHERE id = 3 OR 1 = 1
```

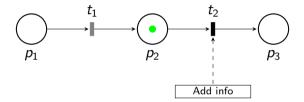
Query Sequence Analysis

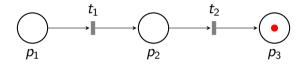
- 1: SELECT * FROM information_scheme.tables
- 2: CREATE TABLE A ...
- 3: INSERT INTO A ...



Token at p_1 ; Transition t_1 active


Michael Jobst — DIMAQS – Dynamic Identification of Malicious Query Sequences


Transition t_1 fires and adds information to token from p_1


Token at p_2 ; Transition t_1 is disabled; Transition t_2 is enabled

Transition t_2 fires and adds information to token from p_2

one Token at p_3 ; Transition t_2 is disabled

- Dynamic Color Creation based on added information
- Token Duplication
- Transition Action & Condition (additional query type and value checks)
- Transition Always Action (fires immediately when active)
- Place Action (e.g. Query Rewriting, Backup Databases)
- Token Merging
- Token Expiration (remove Tokens after a certain period of time)

ShieldFS

- Backup strategy inspired by ShieldFS
- Developed in July 2016 to cope with crypto ransomware
- Copy files on the fly when process is suspicious
- Acts on file system level

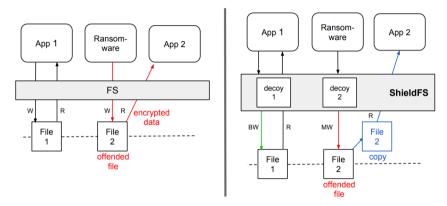
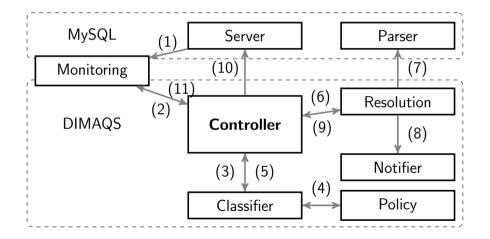
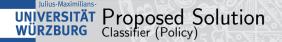
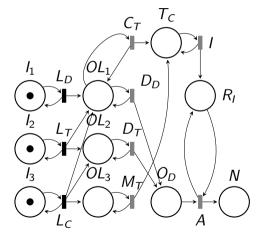


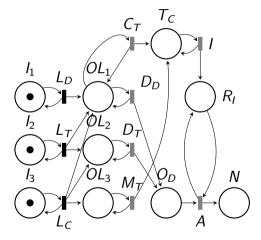
Figure: On the right ShieldFS shadowing a file offended by ransomware malicious write, in comparison to standard file systems (on the left)

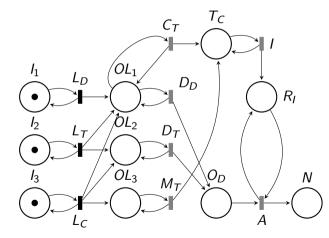

1 Introduction


- 2 Attack & Requirement Analysis
- 3 Background
- 4 Proposed Solution
- 5 Evaluation
- 6 Conclusion & Future Works

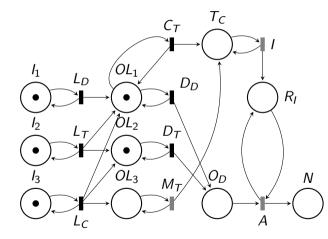


- MySQL auditing plugin
- not limited to users and connections (global observation)
- CPN enhancements to reduce complexity and improve performance
- act on certain queries
 - move tables instead of dropping
 - notify administrator when attack detected
 - hide sensitive information (backed up data)
 - create triggers for newly created table




Place	Description
I_{1-3}	Initial places
OL_1	Object "Database" listed
OL_2	Object "Table" listed
OL_3	Object "Column" listed
T_C	Table created
O_D	Object "Database" or
	"Table" deleted
R_{I}	Ransom message inserted
Ν	Admin notification to be sent

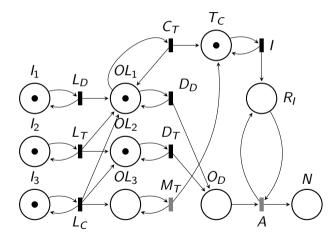
Transition	Description				
L _D	List Databases				
LT	List Tables				
L _C	List Columns				
C_T	Create Table				
D_D	Drop Database				
D_T	Drop Table				
M_T	Modify table				
1	Insert ransom message				
Α	Always				



Initial places I_{1-3} contain one empty token. Other places do not contain tokens.

Transitions L_D , L_T , and L_C are active and will be triggered on matching queries.

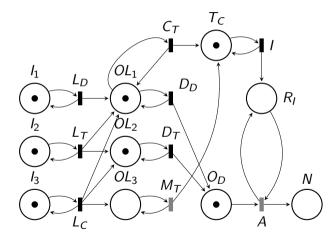
All other transitions are disabled.


After transition L_T was triggered.

Initial states I_{1-3} still contain tokens.

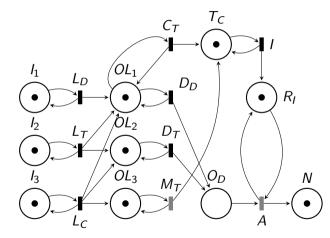
Token from I_2 is transferred to the places OL_1 and OL_2 .

Tokens contain transition information which tables and databases were listed. The transitions C_T , D_D , and D_T become active.



After firing C_T . Tokens from OL_1 are copied to T_C .

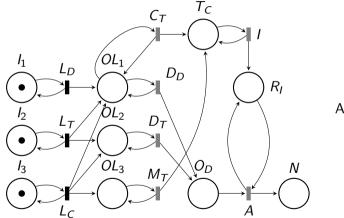
C_T adds information about the created table to the transferred tokens. Transition **I** becomes active.



After firing D_T . Tokens from OL_2 are copied to O_D .

Transition D_T adds information about the dropped Table to the transferred tokens.

A does not become active because of R_{I} .



After firing I. Tokens from T_C that match the Table name are transferred to R_I . I adds information about inserted message.

A becomes active and fires immediately until O_D does not contain tokens anymore. Token values from R_I are merged with the token values from O_D .

After token expiration.

UNIVERSITÄT WÜRZBURG

Outline Introduction Attack & Requirement Analysis Background Proposed Solution Evaluation Conclusion & Future Works

1 Introduction

- 2 Attack & Requirement Analysis
- 3 Background
- 4 Proposed Solution
- 5 Evaluation
- 6 Conclusion & Future Works

Self generated: False Negatives

13485 tests

False Positives

- Bibspace
 - Query logs from 13th of April 2018 to 22nd of May 2018
 - contains 52085 queries
- MediaWiki
 - Query logs from 3rd of April 2018 to 22nd of May 2018
 - contains 2514764 queries

False Negatives

- no false negatives occurred
- 100% detection rate
- expected, since policy is designed to capture attacks from the malicious data set

False Positives

Query set	I_1	I_2	I_3	OL_1	OL_2	OL_3	T_C	O_D	RI	Ν
Bibspace	1	1	1	2	2	0	24	0	0	0
MediaWiki	1	1	1	7	5	1	0	0	0	0

No false positives occured

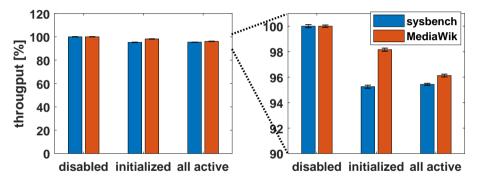
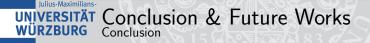


Figure: Performance influence of DIMAQS for sysbench and MediaWiki. Values are normalized to the respective value for the disabled plugin.

Limitations


- Variations of BitCoin values
- Renaming of tables during classification
- Capturing of new attack forms requires adjustments of the policy
- Possibility to fill up secure storage space

UNIVERSITÄT WÜRZBURG

Outline Introduction Attack & Requirement Analysis Background Proposed Solution Evaluation Conclusion & Future Works

1 Introduction

- 2 Attack & Requirement Analysis
- 3 Background
- 4 Proposed Solution
- 5 Evaluation
- 6 Conclusion & Future Works

- Ransomware is an emerging threat
- DB Ransomware attacks have severe consequences as attackers do not always create dumps.
- DIMAQS uses a colored Petri net-based classifier
- DIMAQS implemented as MySQL plugin
- allows to reduce complexity of system representation
- performance overhead below 5%

- Token Merging functionality needs enhancements to increase performance and reduce Notifications
- Trace table renaming during classification
- Detect other malicious query sequences (INTO_OUTFILE)

SinaryEdge Attack analysis

https://docs.google.com/spreadsheets/d/ 1QonE9oeMOQHVh8heFIyeqrjfKEViLOpoLnY8mAakKhM/

ShieldFS

http://shieldfs.necst.it/continella-shieldfs-2016.pdf

Questions ?

Michael Jobs

michael.jobst@stud-mail.uni-wuerzburg.de