FADE: Towards Flexible and Adaptive Distance Estimation Considering Obstacles

Vision Paper

Marius Hadry
University of Würzburg, Germany
marius.hadry@uni-wuerzburg.de

Veronika Lesch
University of Würzburg, Germany
veronika.lesch@uni-wuerzburg.de

Samuel Kounev
University of Würzburg, Germany
samuel.kounev@uni-wuerzburg.de

ABSTRACT
In the last decades, especially intensified by the pandemic situation in which many people stay at home and order goods online, the need for efficient logistics systems has increased significantly. Hence, the performance of optimization techniques for logistic processes are becoming more and more important. These techniques often require estimates about distances to customers and facilities where operators have to choose between exact results or short computation times. In this vision paper, we propose an approach for Flexible and Adaptive Distance Estimation (FADE). The central idea is to abstract map knowledge into a less complex graph to trade off between computation time and result accuracy. We propose to further apply concepts from self-aware computing in order to support the dynamic adaptation to individual goals.

CCS CONCEPTS
• Theory of computation → Facility location and clustering.
• Applied computing → Transportation.
• Computing methodologies → Modeling methodologies.

KEYWORDS
Distance estimation, Self-awareness, Logistics, Optimization

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ICPE ’22, April 09–13, 2022, Beijing, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06...
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
In recent decades, the demand for road freight transport has increased significantly around the world. For example, in the last two decades, the demand in Germany has increased from 350 to about 500 billion tonne-kilometers [16]. Developments such as just-in-time production and e-commerce will further push these numbers up in coming years. Especially in times of Covid-19, e-commerce has experienced a strong upswing; for example, in the UK, the share of e-commerce of the total retail sales has increased five-fold [1, 2].

To cope with such a transport volume, efficient and optimal logistics services are gaining in importance. An example of a problem whose solution is of crucial importance for efficient logistics is the Facility Location Problem (FLP), which addresses the optimal location of depots to service all customers [7]. This problem can only be optimized by iteratively assessing new solutions, which requires the calculation of distances between locations. The distance can either be estimated using distance functions, for example, using the Manhattan distance [22] or the ℓp-norm [22], or by calculating the actual distance using shortest path algorithms like Dijkstra’s algorithm [8] operating on a road network [18]. Distance functions provide very fast estimates, e.g., in \(O(1)\) using Manhattan distance, with possibly high deviation from the actual distance due to detours around obstacles like rivers or lakes. Exact distance measures, on the other hand, offer accurate results but demand high computation times, e.g., \(O(E \log V)\) for Dijkstra’s algorithm [8].

Given that the solution quality of optimization algorithms depends on the accuracy of distance estimates, operators aim at methods with high accuracy. However, this results in reduced performance of the optimization algorithm since “existing methods are too expensive to use for solving large-scale real problems” [13, p.217].

To address this conflict, we propose a Flexible and Adaptive Distance Estimation (FADE) technique that aims at providing flexibility in trading off between the computation time and distance estimation quality. We construct a graph of an abstracted map and consider the passability of map sectors. We dynamically fade out details of the road network to reduce the complexity, that is the number of nodes, of the resulting graph and achieve a performance gain by trading off accuracy for efficiency. Afterwards, we envision the integration of concepts from self-aware computing [17], such as the LRA-M loop, to dynamically adapt the accuracy of the estimation to the current road network and user goals. FADE can be used not only for the mentioned FLP but also for various logistics problems as well as in general for a more efficient and at the same time more accurate estimation of distances. In summary, this paper makes the following contributions:

- Definition of the exemplary Facility Location Problem (FLP).
- Design of a Flexible and Adaptive Distance Estimation approach (FADE) and application of self-awareness concepts.
- Prototypical evaluation of the trade-off potential.

In the following, Section 2 discusses related work and Section 3 presents our example problem. Section 4 proposes FADE, Section 5 summarizes a prototypical evaluation, and Section 6 discusses challenges. Finally, Section 7 concludes the paper.
2 RELATED WORK

Several functions have been used in the literature to estimate the distance between two points in a plane such as the Manhattan distance [22], the Euclidean distance [6], and the ℓ_p-norm also known as the Minkowski distance [22]. More sophisticated approaches include the Multi-Layer-Perceptron (MLP) [4] that is able to distinguish between different regions. Since these approaches focus on Cartesian coordinates, the Haversine formula allows to calculate the distance between two points on a sphere [19, 20, 24]. Existing functions for distance estimation do not consider obstacles explicitly, such as rivers, lakes, and mountains, which limits the applicability in real-world optimization problems.

Other approaches explicitly consider obstacles and calculate distances using visibility graphs [3, 5]. In visibility graphs, only nodes that can see each other, meaning there is no obstacle in between, are connected by an edge. While the estimated distances using this approach might be more accurate compared to state-of-the-art distance functions, their application in optimization problems such as FLP is infeasible. This is due to a constantly changing graph resulting from new depot locations which comes with a visibility check to all other nodes. In contrast, we propose to preprocess the graph in order to reduce its size and, hence, omit the need for modifications during the optimization process.

3 EXAMPLE PROBLEM DOMAIN

An example domain, where distance estimation could be applied is the facility location problem (FLP) [7, 23]. FLP addresses the issue of placing depots as effectively as possible so that a number of customers can be served. Customer locations are given and depots should be placed accordingly. There are several variations of this problem including the integration of existing depots, capacities for the depots, or time constraints that have to be met when serving customers, to name a few examples. Since FLP is known to be NP-complete, solving the problem optimally is usually not feasible, especially if the problem instances are large [23].

Since the problem is hard to solve exactly, optimization algorithms are usually used to find an approximation of the optimal solution. Nature-inspired algorithms like Genetic Algorithms [14], Particle Swarm Optimization [15], NSGA-II [9], or Ant Colony Optimization Algorithms [10] are suitable to achieve this. These algorithms apply concepts of exploration and exploitation and assess the large variety of solutions while searching for the best possible solution. A solution in the context of FLP consists of the locations of the depots that should be placed. In some cases, this can also incorporate further properties of the facilities like their size. The assessment of possible solutions means that the distance between customers and depots has to be calculated many times, significantly increasing the computation time when using shortest path algorithms like Dijkstra’s algorithm operating in $O(E \log V)$ [8], based on actual road networks. For example, the road network of Germany consists of 11.5 million nodes [21]. It is also not feasible to save and reuse previously calculated distances, as the depots are moved in each solution and iteration. Even a small movement of a depot could lead to significantly worse results, as the previously used road might no longer be accessible from the new location and a new route planning needs to be triggered.

As an alternative, simple functions like the Euclidean distance or the Manhattan distance can be applied. However, those functions disregard the existence of obstacles like rivers or lakes and can only provide rough estimates. Estimates often highly deviate from the actual distances and thus jeopardize the quality of the solutions of the aforementioned optimization techniques. Even in countries with highly developed road networks, there are still obstacles that make it hard to use such a simplified function. In the case of obstacles like rivers or lakes, the actual distance can increase massively when compared to the estimations, if the next bridge is far away or one has to find a way around an obstacle.

4 FLEXIBLE DISTANCE ESTIMATION

This section presents the idea of flexible and adaptive distance estimation. We present the general idea in Section 4.1 and then discuss the application of self-aware computing concepts in Section 4.2.

4.1 General Idea

Existing approaches mentioned in Chapter 2 either focus on solving the distance computation exactly or make use of mathematical formulas that try to approximate the distance. This results in either high computation times or strongly simplified estimates. The general idea is to find a trade-off between the accuracy and the computation time when calculating distances between two points in a road network. Note that the presented approach is only meaningful for estimating distances and not intended for actual road network-based route planning.

For this purpose, we aim to construct a simplified graph that captures (1) areas that are passable with high likelihood and (2) areas with obstacles that are generally not passable. This simplified graph is designed to be less complex compared to a road network graph and, hence, should speed up the computation time while maintaining a given level of accuracy. We identified that obstacles like rivers or lakes strongly influence the actual distance as bridges are required to cross them or one has to find a way around them. Thus, in the first instance, the approach focuses on this problem. It is important to note that the approach can and should be extended to also consider other types of obstacles if the use case requires it. Figure 1 illustrates our proposed approach to distance estimation.

In the first step, we create an abstract map that solely contains obstacles, such as rivers or lakes, and ways through them, for example, bridges, if they exist. This abstract version can be created directly from available information about the road network and polygons that resemble the obstacles or by extracting knowledge from existing map images. Other information like the exact location of roads, or positions and size of buildings are no longer of interest, as we assume those areas as passable.

In the second step, we place a grid above this rendered abstract map. Then, we analyze every field within this grid and decide whether a vehicle is able to drive through this field (indicated by a white field) or if it is impassable (indicated by a black field). The classification of the fields can be achieved by different methods such as rules, image processing, or neural networks, depending on the complexity of the abstracted map. The resulting black-white grid map can then be used for the construction of an undirected graph, where a node represents a field of the abstracted map. In
case the field is white and there are also neighbors colored white, we create the node and assign edges to all available neighbors as vehicles are able to drive there. If the field is marked black, the corresponding node has no edges assigned. By applying this technique, we reduce the number of nodes in the graph and, thus, speed up the computation time. The resulting graph can then be optimized to enhance the speed of the route calculation within it, for example, by the application of Contraction Hierarchies [11].

The first two steps are considered as a preprocessing phase. In the third and last step, we calculate the distance between locations. To do so, one selects a start and target location. These locations are mapped to the graph, meaning that we search for the closest nodes that reflect the coordinates of the start and target point best. Afterward, well-known algorithms for calculating the shortest paths in graphs can be applied to obtain a result. Such algorithms include Dijkstra [8], A* [12], and Contraction Hierarchies [11].

The proposed procedure is capable of taking obstacles into account and should generally be more precise than the regular line distance. In the simplest case, where all fields within the grid are of the same size, the distance can be estimated by the number of edges that need to be traversed multiplied by a constant factor. To further refine the estimation, one could also calculate the distance between the point where a field was entered and the point where it was exited. This can be achieved by weighing edges that are vertical or horizontal differently than diagonal edges.

The presented approach can easily be extended during the preprocessing phase. Instead of only considering areas that are classified as obstacles or passable, one could also define other regions. This could be used to define different edge weights according to the detected region type. As an example, areas containing steep mountains are more likely to have serpentines that are longer than straight streets. The same principle can be applied to further cases, like cities or rural areas without highways. Mapping such behavior can be achieved by refining the classification in the second step, which would then result in different edge weights in the graph.

4.2 LRA-M Loop Adaptation

The proposed approach for estimating distances under the consideration of obstacles works with a grid in which every field has the same size. This is disadvantageous when considering regions with smaller obstacles that would get dismissed in too large fields. However, using a higher resolution allowing the consideration of smaller obstacles increases the size of the graph, and therefore slows down the required computational time. To tackle this problem, one could either find a resolution that fits both needs or the resolution could be dynamically changed depending on the properties of the region that is represented by a field. In areas that do not contain obstacles of interest, fields could be merged so that the resulting graph comprises fewer nodes and edges. When merging fields, the edge weights of the resulting graph have to represent that merging. The simple procedure of counting the amount of edges that need to be traversed is no longer feasible in this case.

Adaptive resolutions of the graph can be achieved by integrating concepts from self-aware computing, in particular, the LRA-M loop described by Kounev et al. [17]. We map several tasks to the components of the LRA-M loop displayed in Figure 2. The entire approach is considered as the self. This means that not only the preprocessing phase but also the distance estimation is part of it. Goals can be specified by the user to define the prioritization of accuracy vs. computational time. The Model component keeps track of the graph that is used for the distance calculations and is regularly updated during the Learning phase. The Reasoning component calculates distances using the current model. Then, the accuracy, as well as the required computation time, are used to check if the model suits the
which refers to a height of about 440 m and a width of about 230 m.

will update the model accordingly and learn which resolution fits

The original routable graph of OSM for cars contains 190,061 nodes

To analyze the feasibility of FADE, we prototypical implemented

map using OpenStreetMap (OSM)

and that OSM requires 200 ms, 505 ms, and 740 ms for identifying

sine distance function deviates most in terms of estimated distance

the results of our evaluation in Table 1 which shows that Haver-

of-the-art Haversine and Manhattan distance functions. We present

combined. Further, we compare the distance estimation to the state-

graph of OSM. For the evaluation, we compare the estimated dis-

in the preliminary evaluation, we extracted an abstracted map

2. Then, the prototype places a

which needs to be considered when constructing the graph.

Adaptive Distance Estimation—which abstracts a map to reduce

for node identification, distance calculation, and both processes

During the learning process in the LRA-M loop, different opera-

operation that increases the resolution of an area. This results

operation inverts the zoom-in operation and reduces the

important that an operation is invertible to ensure that the model can always be

adjusted to the specified goals.

5 PROTOTYPICAL EVALUATION

To analyze the feasibility of FADE, we prototypical implemented

the general idea in Python using the network analysis package

NetworkX\(^1\). This includes a manual extraction of an abstracted

map using OpenStreetMap (OSM)\(^2\). Then, the prototype places a

grid on the abstracted map and analyzes passability properties of

the fields. Finally, the prototype receives geographic start and target

coordinates, identifies the related nodes in the passability graph

and executes the Dijkstra implementation of NetworkX.

In the preliminary evaluation, we extracted an abstracted map

from the area around the German city Würzburg of around 6162 km\(^2\).

The original routable graph of OSM for cars contains 190,061 nodes

and 211,795 edges with about 2,000 bridges and 2,000 water areas.

For placing the grid, we defined a total of 178 rows and 341 columns

which refers to a height of about 440 m and a width of about 230 m.

The resulting graph contains 58,627 nodes and 229,213 edges which

means a node reduction of about 70 % compared to the routable

graph of OSM. For the evaluation, we compare the estimated dis-

distance in meters as well as the computation time in milliseconds

for node identification, distance calculation, and both processes

combined. Further, we compare the distance estimation to the state-

of-the-art Haversine and Manhattan distance functions. We present

the results of our evaluation in Table 1 which shows that Haver-

sine distance function deviates most in terms of estimated distance

compared to the ground truth calculated using pgRouting\(^3\) on OSM,

followed by FADE and the Manhattan distance. The time measure-

ments show that the distance functions can be computed very fast

and that OSM requires 200 ms, 505 ms, and 740 ms for identifying

user-specified goals. If this is not the case, the Learning component

will update the model accordingly and learn which resolution fits

to the current area of the map as well as the given goals. This

allows for faster adaptations in future executions of the approach.

During the learning process in the LRA-M loop, different opera-

tions can be applied to the current model. For one, we identified

a zoom-in operation that increases the resolution of an area. This

results in more nodes and connections in the graph which also

increases the accuracy but slows down the required runtime. The

zoom-out operation inverts the zoom-in operation and reduces the

resolution but accelerates the time to result. It is important that

an operation is invertible to ensure that the model can always be

adjusted to the specified goals.

<table>
<thead>
<tr>
<th>Method</th>
<th>Distance [m]</th>
<th>Node Identification [ms]</th>
<th>Distance Calculation [ms]</th>
<th>Combined [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>std</td>
<td>mean</td>
<td>std</td>
</tr>
<tr>
<td>Haversine</td>
<td>4090</td>
<td>-</td>
<td><1</td>
<td>-</td>
</tr>
<tr>
<td>Manhattan</td>
<td>4890</td>
<td>-</td>
<td><1</td>
<td>-</td>
</tr>
<tr>
<td>OSM (SQL)</td>
<td>5146</td>
<td>200.567</td>
<td>35.145</td>
<td>505.633</td>
</tr>
<tr>
<td>FADE</td>
<td>4455</td>
<td><1</td>
<td>-</td>
<td>2.233</td>
</tr>
</tbody>
</table>

Table 1: Results of the prototypical evaluation analyzing distance [m] and computation time [ms] in 30 repetitions.

the nodes, calculating the distance, and computing both processes

combined, respectively. FADE, even if in a very early prototypical

state, highlights the trade-off potential as the distance estimation

is better compared to the Haversine function while keeping the

computation time low with zero ms for node identification, two ms

for distance calculation, and two ms for the combined process.

6 DISCUSSION AND OUTLOOK

The presented approach comes with challenges that need to be

solved during the implementation. First of all, different types of

bridges need to be considered as some might not be built for vehicles

but pedestrians or other use cases. Depending on the size of the

rendered abstracted map, bridges might be too small and do not

show up when applying the grid. This could result in areas being

unreachable as no bridge leads in or out of the region. After the

graph construction, the start and target locations need to be mapped

to the graph which could result in one or both of them being within

an obstacle. Finally, bridges might be passable in one direction only

which needs to be considered when constructing the graph.

While the presented prototypical evaluation highlights the po-
tential of FADE, a full-scale evaluation needs to be conducted to

analyze the quality of the solutions with regards to the computa-
tion time in a statistically significant manner. Hence, the trade-off

needs to be assessed by analyzing speed-up and quality metrics.

Besides OSM, other distance services could be considered to further

strengthen the expressive power of the results. Finally, different

resolutions for the map will yield different performance results of

FADE. This could be related to the current region of the planning

horizon which would directly lead to the selection of different grid

sizes based on the region by applying self-aware concepts.

7 CONCLUSION

The performance of optimization techniques especially applied in

logistic processes became more and more important due to increas-
ing transport volumes in the last years. One significant performance

factor for these techniques is the exact computation and estimation

of distances. In this vision paper, we propose FADE—a Flexible and

Adaptive Distance Estimation—which abstracts a map to reduce

the complexity of the road network graph and allow one to trade

off computation time vs. result accuracy. The integration of con-

cepts from self-aware computing allows for dynamic adaptation of

given computation time and accuracy requirements. Our proposed

technique can not only be applied in the proposed facility location

problem but also in various logistic and general problems requiring

distance information.
ACKNOWLEDGMENTS
This work was funded by Bayerisches Verbundforschungsprogramm (BayVFP) – Digitalisierung under grant No. DIK0314/02.

REFERENCES