The Descartes Modeling Language: Status Quo

Samuel Kounev

University of Würzburg
http://se.informatik.uni-wuerzburg.de/

Symposium on Software Performance, Stuttgart, Nov 27, 2014
Main References

- **Fabian Brosig.** *Architecture-Level Software Performance Models for Online Performance Prediction.* PhD thesis, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, 2014. http http

- **Nikolaus Huber.** *Autonomic Performance-Aware Resource Management in Dynamic IT Service Infrastructures.* PhD thesis, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, 2014. http http
Elastic Resource Provisioning

Challenges

- When exactly should a reconfiguration be triggered?
- Which particular resources should be scaled?
- How quickly and at what granularity?
Semantic Gap Problem

Applications
- Multiple tiers
- Multiple resource types

Resource Allocation

Complex Software Stacks
- Multiple layers
- Heterogeneous

End-to-end QoS metrics
Application SLAs

Resource Allocations in Each Tier & Each Layer
Modeling methods for predicting at run-time the effect of dynamic changes on the system Quality-of-Service (QoS)
 - Current focus: availability and performance (response time, throughput and resource/energy efficiency)

Model-based algorithms and techniques for autonomic system adaptation during operation

Goal:
 - End-to-end QoS guarantees
 - High resource/energy efficiency
 - Low operating costs
Descartes Modeling Language

Adaptation Process Model

Strategies Tactics Actions

Adaptation Points Model

Architecture-level Performance Model

Application Architecture Model

Resource Landscape Model

Usage Profile

Degrees-of-Freedom

Descartes Modeling Language (DML)

Software

Infrastructure
The Descartes Modeling Language

Samuel Kounev, Fabian Brosig, Niklas Huber
Descartes Research Group
Chair of Software Engineering
Department of Computer Science
University of Würzburg, Germany

October 13, 2014
v1.0

http://descartes.tools/dml
Online Performance Prediction

Architecture-Level Performance Model

Online Performance Prediction

VM-Instances = (1...16)

vCPU = (2...4)

Autonomic Decision Making
Model-Based System Adaptation

1. Problem Anticipation
 - Load Forecasting

2. Adaptation on the Model Level
 - Adaptation Process Model
 - Architecture-Level Performance Model

3. Adaptation Impact Prediction
 - Online Perf. Prediction

4. Adaptation Execution on Real System
 - System

S. Kounev

Language

Tool Chain

Summary
Descartes Tool Chain

http://descartes.tools
Descartes Tools

Below you see a list of the tools we develop. Please click on the tool name to get more information:

Descartes Modeling Language:
- DML Specification
 - Implementation in EMF (Eclipse Modeling Framework)
- DML Bench
- DNI - Descartes Network Infrastructures Modeling

Workload Characterization & Model Extraction:
- LIMBO Load Intensity Modeling Tool
- WCF (Workload Characterization and Forecasting Tool)
- LibReDE (Library for Resource Demand Estimation)
- SPA (Storage Performance Analyzer)

Declarative Performance Engineering:
- DQL (Descartes Query Language)

Benchmarking:
- BUNGEE Cloud Elasticity Benchmark
- hinjector Hypercall Attack Injector

Stochastic Modeling:
- QPME (Queueing Petri net Modeling Environment)
DML Bench

- Editors
 - Textual and graphical editors for DML models
- Solvers
 - Solvers for conducting performance prediction
- S/T/A Adaptation Framework
 - Execution of adaptation process on the model level

http://descartes.tools/dml_bench
Example of a performance query specified with DQL

```
SELECT s.avgResponseTime,
app.utilization,
dbs.utilization
CONSTRAINED AS FAST
FOR RESOURCE
  'ApplicationServer' AS app,
RESOURCE 'DBServer' AS dbs,
SERVICE 'processOrder' AS s;
```
DNI - Descartes Network Infrastructure Modeling

- Language for perf. modeling of data center networks
 - network topology, switches, routers, virtual machines, network protocols, routes, flow-based configuration, ...

- Model solvers based on simulation (OMNeT)

http://descartes.tools/dni
LibReDE

- Library for Resource Demand Estimation
 - Ready-to-use implementations of estimation approaches
 - Comparison of the accuracy of different approaches
 - Selection of a suitable approach for a given scenario

http://descartes.tools/librede
LIMBO

- Load Intensity Modeling Tool
 - Automated model extraction from recorded traces
 - Creation and composition of custom models
 - Emulation of job arrivals for load generation

http://descartes.tools/limbo
WCF

- **Workload Classification & Forecasting Tool**
 - Use of multiple alternative forecasting methods in parallel
 - Selection of method based on its accuracy in the recent past

http://descartes.tools/wcf
BUNGEE

- Framework for benchmarking elasticity
 - Current focus: IaaS cloud platforms

http://descartes.tools/bungee
Summary

- Descartes Tool Chain
 - **DML Bench** - Editors, solvers and adaptation framework
 - **DQL** – Declarative query language
 - **DNI** – Descartes network infrastructure modeling
 - **LibReDE** - Library for resource demand estimation
 - **LIMBO** – Load intensity modeling tool
 - **WCF** – Workload classification & forecasting tool
 - **BUNGEE** - Framework for benchmarking elasticity
Questions?

http://www.descartes-research.net

http://descartes.tools
Employed Modeling & Analysis Methods

Descriptive Architecture-level Models → DML
- OMG Meta Object Facility (MOF)
- MOF-based meta-models
- (UML MARTE)
- (UML SPT)

Predictive Performance Models
- Bounding techniques
- Operational analysis
- Statistical regression models
- Stochastic process algebras
- (Extended) queueing networks
- Layered queueing networks
- Queueing Petri nets
- Machine learning-based models
- Detailed simulation models

Workload Forecasting
- AR(I)MA
- Extended exp. smoothing
- tBATS
- Croston’s method
- Cubic smoothing splines
- Neural network-based

Resource Demand Estimation
- Regression-based techniques
- Kalman filter
- Nonlinear optimization
- Maximum likelihood estimation
- Independent component analysis

Regression Analysis
- MARS
- CART
- M5 trees
- Cubist forests
- Quantile regression forests
- Support vector machines

S. Kounev