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Abstract. Today’s data centers face continuous changes, including de-
ployed services, growing complexity, and increasing performance require-
ments. Customers expect not only round-the-clock availability of the
hosted services but also high responsiveness. Besides optimizing software
architectures and deployments, networks have to be adapted to handle
the changing and volatile demands. Approaches from self-adaptive sys-
tems can optimize data center networks to continuously meet Service
Level Agreements (SLAs) between data center operators and customers.
However, existing approaches focus only on specific objectives like topol-
ogy design, power optimization, or traffic engineering.

In this paper, we present an extensible framework that analyzes net-
works using different types of simulation and adapts them subject to
multiple objectives using various adaptation techniques. Analyzing each
suggested adaptation ensures that the network continuously meets the
performance requirements and SLAs. We evaluate our framework w.r.t.
finding Pareto-optimal solutions considering a multi-dimensional cost
model, and scalability on a typical data center network. The evalua-
tion shows that our approach detects the bottlenecks and the violated
SLAs correctly, outputs valid and cost-optimal adaptations, and keeps
the runtime for the adaptation process constant even with increasing
network size and an increasing number of alternative configurations.

Keywords: network, modeling, simulation, self-adaptation, optimiza-
tion

1 Introduction

Modern technologies like cloud computing enable dynamic and flexible allocation
of computing and storage resources without requiring the cumbersome booking
of dedicated resources in advance [36]. Such technologies enable the dynamic
instantiation of new services and create new opportunities for novel applications.



It also supports flexible on-demand scaling of services depending on the workload
intensity.

In addition to computing and storage resources, networks also have to be
adapted and scaled accordingly to handle the variation of traffic. The perfor-
mance requirements of a network, like bandwidth or latency, are usually speci-
fied in Service Level Agreements (SLAs). Different approaches exist to manage
resources and traffic flows in network infrastructures. Examples include Vir-
tual Local Area Networks (VLANS) that support isolation and prioritization of
traffic, dynamic routing protocols for determining shortest paths, and Software-
defined Networking (SDN) [25] that enables fine granular control of data traffic
on a per traffic flow basis. Besides these techniques, sophisticated Quality of Ser-
vice (QoS) configuration parameters, license upgrades, or hardware changes are
valid adaptation approaches for network infrastructures. Configuration of these
comprehensive configuration options could be a challenging task with increasing
network size and complexity.

Network designers and performance experts can make an educated guess for
network optimizations to meet the QoS criteria, but this raises several issues.
First, with increasing size and complexity of networks, it is challenging to suggest
SLA compliant and cost-optimal solutions, even for experts, and especially to
validate them before applying them to a real network. Second, educated guesses
might also require hypothetical what-if analyses, which require dedicated mea-
surements or monitoring data. Third, relying on human intervention is generally
undesirable due to limitations on availability and time-to-result. Existing rec-
ommendation tools for network optimizations either only support a limited set
of adaptation operations, cover only specific objectives, or do not verify the
adaptations, resulting in a trial and error approach [14, 44, 3].

In this paper, we propose a framework for network optimization that in-
tegrates a network simulation for bottleneck and SLA violation detection and
suggests verified network adaptations. A network model is analyzed under a
specified workload to obtain information about the performance characteris-
tics of links, interfaces, switches, and nodes. Based on the analysis results, our
framework detects bottlenecks and the resulting SLA violations. An iterative
MAPE-K adaptation control loop [2] resolves these bottlenecks using objective-
oriented strategies and adaptation tactics that ensure that the network complies
with current SLAs under given technical constraints. Multiple adaptation tactics
are triggered in parallel by a Branch & Bound algorithm [31] to determine the
diversity of possible solutions, leveraging different types of adaptations like con-
figuration changes, hardware replacements, or rerouting of flows. Before applying
a solution to a real-world network, a simulation verifies the suggested adapta-
tions on the modeled system. The returned solutions all lie on the Pareto-front,
i.e., they are all cost-optimal.

The proposed approach enables data center networks to autonomically react
and adapt to environmental changes for compliance with a given set of pre-
defined SLAs. The approach furthermore considers costs in multiple dimensions
and autonomically selects the cost-optimal solutions. Software-based adapta-



tions, e.g., configuration changes or traffic rerouting, can be applied automati-
cally, without the need for human intervention and before the actual SLA vio-
lation occurs.

The remainder of this work is structured as follows. Section 2 discusses re-
lated work. Section 3 presents an overview of our framework, the workflow of the
used models. Section 4 describes our multi-objective MAPE-K-based adaptation
process, which our adaptation framework uses. Section 5 presents and discusses
the evaluation results, including two data center network scenarios for effective-
ness and scalability investigation. Section 6 addresses aspects of future work.
Lastly, Section 7 concludes this paper.

2 Related Work

For single-objective problems, a system can be optimized towards the single best
solution, but for multi-objective problems (MOPs), the optimization has to deal
with several potentially conflicting goals. Consequently, the optimization ends
with no clear optimal solution, but the Pareto-front [7] represents a multitude of
so-called Pareto-optimal solutions. To handle the optimization of MOPs, several
generic approaches exist, such as evolutionary algorithms [13] (e.g., NSGA-II [16]
or SPEA2 [27]), scatter search [34], particle swarm optimizers [40], or ant colony
optimization [18]. Several frameworks provide generic applicable implementa-
tions of optimization techniques, e.g., jMetal [19], Opt4J [32], and ECJ [33] to
mention only a few. A recent study on optimization in the field of self-adaptive
systems [21] found that self-adaptive systems often integrate generic optimiza-
tion techniques by customizing the representation of the required information
for specific modeling of a specific application, cf. Rainbow [22], hence, reducing
the applicability of such an approach. As MOP modeling is an integral part of
the optimization, we also pursue domain-specific modeling.

Consequently, the remainder of this section focuses on related work in the
two areas of (i) network performance modeling and simulation and (ii) network
optimization.

2.1 Network Performance Modeling and Simulation

Existing approaches for network modeling and network performance simulation
do not completely integrate both aspects of modeling and simulation. They can
be categorized as (i) approaches that focus on simulating the network perfor-
mance directly and (ii) approaches that generate a model of the network and
apply simulation-based evaluation.

Tools from the first category, focusing on simulation, are amongst others,
OPNET [12], OpenWNS [8], Georgia Tech Network Simulator (GTNetS) [41],
and IKR SimLib [45]. The scope of these tools is simulating large-scale topolo-
gies and more complex systems. The widely used approaches OMNeT++ [48],
ns-3 [11], CloudSim [10], and DNT [42] belong to the second category and support
modeling and simulation.



We chose the Descartes Network Infrastructures modeling language (DNI) [42]
as a basis for our work as it provides a fine-grained description of networks,
including a detailed performance specification of network interfaces [24]. The
generic modeling approach allows the definition of custom protocol stacks and
an autonomous traffic pattern extraction from real networks. The modular de-
sign of DNI supports multiple exchangeable simulation tools like OMNeT++ or
SimQPN [29]. SimQPN is a discrete event simulator based on stochastic model-
ing and analysis of Queueing Petri Nets (QPNs) [4] and is already used in other
modeling languages for self-adaptive software systems, for modeling of Java EE
applications [28], and message-oriented event-driven systems [43]. We use and
extend DNI to specify the network structure, its configuration, the traffic pat-
terns, and the adaptation points.

2.2 Network Optimization

In the literature, several network optimization approaches focus on the design-
time optimization of network topology [14, 38, 1], energy efficiency [44], or net-
work virtualization [39]. However, as our approach deals with the optimization of
networks at runtime, we focus on runtime approaches. The identified related ap-
proaches can be classified into three categories: (i) service placement, (ii) power
optimization, and (iii) traffic optimization.

The service placement approach optimizes the number of deployed services,
for example, by using linear programming [9]. Approaches optimizing power con-
sumption, for example, by turning off as many unneeded network components as
possible, use greedy bin packing algorithms or linear programming for rerouting
and placement optimization [20, 50, 46]. The third category of traffic optimiza-
tion enhances the bandwidth, traffic flow distribution, or link utilization by using
Markov Chain approximations [26], bin packing heuristics [6], CPLEX [47], or
linear programming [5].

Although many of the approaches validate their suggested changes, these val-
idations are often based on simple analytical models that are only suitable for
a small range of applications. Existing simulative approaches are often too com-
plex, which might violate runtime constraints for complex scenarios. However, a
validation of the adaptation on the model level is useful; otherwise, the changes
would have to be applied to a real network to obtain further information about
additional bottlenecks and to determine whether all objectives are fulfilled. Our
approach uses a feedback loop combined with network simulation to evaluate
and improve the optimization plan without the need to execute the changes on
a running network. Furthermore, existing approaches focus on specific objec-
tives while our approach provides multiple adaptation tactics to cover possible
alternative approaches for ensuring the fulfillment of multiple objectives. These
tactics, as well as further objectives, can be easily extended.



3 Approach

This section provides an overview of our network adaptation approach, includ-
ing the input models, the applied concepts MAPE-K and Branch & Bound,
the underlying adaptation techniques, and the output models. Our adaptation
approach pursues the following objectives and quality criteria:

— Bottleneck detection: Bottlenecks are identified and localized through net-
work analysis.

— Model-based: The adaptation process integrates a model of the network,
which enables analysis without influencing the real network.

— Online network adaptation: A network and its current state can be monitored
and adapted in an autonomic manner at runtime.

— Validation: The suggested solutions are validated based on an analysis for
each adaptation.

— Multi-objective: The adaptation considers multiple objectives and executes
different adaptation tactics with various solution approaches (such as rerout-
ing, reconfiguration, or hardware change).

— Efficient: Bounding mechanisms filter non-optimal branches to reduce the
number of analyses.

— Extendable: New adaptation tactics can be easily added.

— Multiple solutions: Pareto-optimal solutions taking into account the multi-
dimensional costs model.

The network optimization requires a network modeling language to define the
network structure, the network configuration, and the workload. To analyze the
network, i.e., to determine the utilization and detect the bottlenecks, a network
analysis is used, which has to support the chosen network modeling language.
Replacing the network modeling language and the analysis is easy due to the
design of our network optimization approach. Depending on the selected network
modeling language, both simulative and analytical methods can be used.

3.1 Input Models

The adaptation process requires several input models, which are depicted on top
of Figure 1 and are introduced in the following. We refer the interested reader
to [23] for a detailed specification of the respective meta-models.

The network model describes the network structure, its configuration, and
the current workload. The structure captures the topology of the network, which
includes physical and virtual nodes, the connections between them, the network
interfaces, and the performance descriptions of all entities. The configuration
defines the initial routes for the traffic flows as well as the used protocols and
protocol stacks. The workload describes all flows between the nodes and specifies
the type of flow as well as their source, destination, size, and temporal behavior.
For the network model, we chose the Descartes Network Infrastructures Mod-
eling Language (DNI) [42]. Existing adapters allow simulating a DNI network
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Fig. 1. Abstract illustration of network optimization algorithm.

model by OMNeT++ [49] or SimQPN [29]. Although our current implementa-
tion bases on DNI, the framework’s modularly design allows integrating other
network modeling languages. The interchangeability also applies to the analysis
component, i.e., simulation or analytical method.

The adaptation points define the valid alternative components such as nodes,
links, and components within the network model. This model also specifies the
alternative configuration parameters, performance specifications and settings for
the components. The adaptation points further describe the costs for component
replacement or configuration changes. The multi-dimensional cost model can
capture several cost aspects like downtime, handling time, or the total cost of
ownership (TCO).

The Service Level Agreements (SLAs) contain the agreed performance char-
acteristics (e.g., minimum bandwidth guarantees) between the customers and
the network operator. The SLAs’ objectives are bound to a specific link, switch,
network interface, flow, or combination of them. The goal of network optimiza-
tion is to fulfill all objectives.

3.2 Adaptation Process: MAPE-K

There are two challenges when eliminating a bottleneck in a network: On the
one hand, the effect of a configuration change or a replacement cannot be fully
predicted. On the other hand, eliminating a bottleneck can result in an addi-
tional bottleneck at another location, so-called bottleneck shifting. Through the
integration of a MAPE-K control loop, the effects of changes can already be de-
tected on the model, without being applied to the real network, and if necessary
improved in further iterations. Therefore, the proposed control loop in Figure 1
solves the aforementioned challenges.

The four phases of the MAPE-K adaptation control loop Monitor, Analyze,
Plan, and Execute as well as the Knowledge base are integrated by our approach
as follows: The monitoring phase uses the network model as an input parameter



to capture the current network structure, configuration, and workload. These
data are passed to the analysis phase, which triggers the network analysis, de-
picted on the left side of Figure 1. The analysis determines the used bandwidth,
utilization, latency, and packet loss of nodes, including their components such
as backplanes and interfaces, as well as links. These performance characteristics
are used to localize the bottlenecks and to identify the violated objectives. The
analysis result and the violated objectives are passed to the subsequent planning
phase to determine operations that could eliminate the bottlenecks. The possible
adaptation operations are derived from the domain knowledge and the provided
adaptation points. If there are several, more performant options available for one
parameter, e.g., alternative backplane speeds, the cost-optimal solution is cho-
sen first. Branching supports the exploration of several solutions. The suggested
adaptation operations are integrated into an adaptation plan, which is passed
to the execution phase. The execution phase applies the scheduled adaptation
operations to the network model so that the changed network can be analyzed
again by the loop in the next iteration. If all bottlenecks have been eliminated
by the scheduled operations, the proposed adapted network model is valid and is
output. Otherwise, further adaptations will be applied in subsequent iterations.
The knowledge base contains the defined SLAs and the adaptation points, as well
as other user constraints and configuration parameters. As depicted in Figure 1,
the knowledge base is accessible from all MAPE phases.

After one or several possible solutions are found, these proposed operations
can be executed on a real-world network. If the adaptation operations can be
executed in an automatic manner, such as changing configuration parameters or
rerouting, they can be passed to a network management software API or, in case
of Software-defined Network (SDN) to an SDN controller [25]. Manual changes
can be forwarded to network operators.

The whole adaption process can be triggered continuously or event-based
to react to changes in workloads, network structure, or configuration. Using
forecasted workloads [51] allows a proactive adaptation or what-if analysis.

3.3 Adaptation Process: Branch & Bound

Sometimes it cannot be predicted if a particular operation will eliminate the
bottleneck. Due to the multiple cost dimensions, there may be several cost-
optimal solutions. To address this challenge, our adaptation framework employs
a Branch & Bound algorithm to track different adaptation operations in par-
allel [37]. This algorithm explores different solution candidates if it is unclear
which solution strategy will be most cost-optimal. For example, to increase the
bandwidth, the algorithm will explore a branch of upgrading a network interface
and explore another branch to replace the whole switch. Solutions that do not
improve the system or violate constraints are bounded to limit the number of
tracked branches.



3.4 Output Models

Adaptation plan models are used to describe the required adaptation on a net-
work. Depending on the number of valid solutions, one or a set of adaptation
plans are output. They represent the delta between the original network state
and the desired one. An adaptation plan defines the replacement of entities like
entire nodes or just individual components, the change of configuration param-
eters, or the modification of routes in a descriptive manner.

Depending on the validation status, different terminologies are used for the
solutions identified in our network optimization algorithm:

— Solution candidates are network models that have not yet been validated
w.r.t. SLA compliance. Further adaptations may be necessary on the model
or it may be discarded later.

— Solutions are network models for resolving the SLA violations. The solutions
are validated by analysis while at the same time ensuring that they do not
violate filter criteria (bounding).

— Cost optimal solutions are solutions that are cost-optimal in terms of repre-
senting the Pareto-front.

The adaptation framework outputs a set of solutions with the following prop-
erties. First, the solution resolves all SLA violations, even if created by bottleneck
shifting (verified by analysis). Second, they are cost-optimal and represent the
Pareto-front concerning the multi-dimensional cost model.

4 Adaptation Process

This section describes the adaptation process of the multi-objective network
optimization, based on the MAPE-K adaptation control loop with Branch &
Bound (cf. Section 3.3). The process of the adaptation is separated into multiple
modules (see Figure 2). This section describes each of these modules.

4.1 Analysis

The purpose of the analysis module is to analyze the network model, including
the workload to determine, among other things, the utilization and throughput
of components as well as packet loss and waiting times. To take the previously
scheduled adaptations into account, the adaptation plan, which is empty in the
first iteration, is applied to the network model. This adapted network model
is analyzed through simulative or analytical methods, depending on the used
network modeling language. The analysis is invoked as an external module, as
depicted in Figure 2, which is not in the scope of our network optimization.
Instead of the current workload, predicted workloads can be used for proactive
adaptation of the network for adjusting to future demands. Customized network
models for what-if analysis, e.g., changes in the network structure or additional
customers, are also supported. The result of the analysis is passed to the under-
lying SLA violation detection.
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4.2 SLA Violation Detection

The SLA violation detection module receives the results from the network anal-
ysis and uses the provided SLAs to determine if objectives are violated. If all
objectives are fulfilled, the process outputs the current adaptation plan as no
further adaptations are necessary. If all objectives are already fulfilled in the first
iteration, this represents the trivial case in which the adaptation plan is empty,
and the network complies with all SLAs without the need for adaptations. If
the module detects an SLA violation, the objective, and the associated bottle-
neck are marked for adaptation and are passed to the next module, the strategy
selection (cf. Figure 2).

4.3 Branching through Strategies and Tactics

The strategy selector chooses a high-level goal, i.e., an adaptation strategy, by
evaluating the violated objectives identified in the SLA violation detection. If
multiple strategies can resolve a bottleneck, all of them are started indepen-
dently by branching, as shown in Figure 2. For each of these strategies, several
adaptation tactics exist. Those are specific algorithms to reach the goal. For
example, a bottleneck on an overloaded link can be handled either by rerouting



one of the respective flows or increasing the link capacity. Several tactics can be
run in parallel and independent from each other using our branching approach.

4.4 Adaptation Tactics

An adaptation tactic is a stateless, black-box algorithm to discover suitable net-
work adaptations. Hence, it is self-contained and does not require any historical
knowledge about the system. It can be implemented as part of the adaptation
framework or as an externalized module, as shown in Figure 2. Each tactic has its
scope, such as optimizing interface performance, replacing links, or optimizing
routes. Through the network-specific domain knowledge, only tactics that can
remedy the bottlenecks are triggered. This knowledge characterizes our domain-
specific concept, which is not possible in more generic approaches.

Our adaptation framework currently supports ten tactics focusing on per-
formance optimization and rerouting. Developers can easily extend them by im-
proving/adjusting the adaptation-related to an existing objective, or adding new
adaptations like energy optimization or addressing security concerns. In combi-
nation with the iterative evaluation of the suggested adaptations, this helps to
avoid stability issues that might arise through uncoordinated adaptations ap-
plied directly to the network, such as oscillations, overshooting, or damping of
adaptation effects [30]. Due to space constraints, we only describe the tactics for
alternative routes and interface upgrades in the following. Other tactics can be
found in the implementation given in our Git repository>.

Alternative Routes. Rerouting is particularly useful in data centers where
alternative paths exist that are intended for load-balancing purposes. In con-
trast to existing flow optimization algorithms, our approach tries to minimize
the number of changed routes. We use the Dijkstra algorithm to search for alter-
native routes [17]. The Dijkstra algorithm is a greedy algorithm and searches in
its native version the shortest path between two nodes. Although a network is
already a graph with nodes and edges, the Dijkstra algorithm cannot be applied
directly on the network, as it does not consider the capacities of interfaces and
nodes. To take this into account, each entity is transformed into one input and
one output graph node in a preprocessing step. The algorithm of the rerouting
tactic removes flows that should not be rerouted from the graph, and the ca-
pacities of the other links are reduced by the bandwidths of these flows to avoid
a bottleneck shifting. The Dijkstra shortest-path algorithm is then executed for
every flow on the overloaded link, and one or multiple candidate solutions are
passed to the next module.

Interface Upgrade. This tactic addresses the replacement of network in-
terfaces. The upgrade of an interface can either be hardware-based for physical
nodes or software-based for virtual machines or SDN. Examples for physical re-
placements are small form-factor pluggables (SFPs), which are frequently used
in network devices to connect fiber optic cables. This tactic leverages the bottle-
neck determined by the SLA violation detection, to identify the interface, which

3 https://gitlab2.informatik.uni-wuerzburg.de/descartes/dni-adaptation



should be upgraded. A separate adaptation process is initiated for each interface
representing a bottleneck, identified by the SLA violation detection. The adap-
tation points model defines the valid alternative interfaces and configuration
parameters that are compatible with the containing device. As a replacement,
the most cost-effective, performance-optimizing interface is selected first. If the
performance optimization is not sufficient yet, further optimization occurs in the
next iteration of the MAPE-K adaptation control loop. Additionally, if there is
no uniquely cost-optimal or performance-optimal solution, the tactic creates a
branch for each possibility and returns all potential solutions.

4.5 Bounding through Filters

The filter module receives the adaptation plans from the tactics, which are all
tracked in independent branches. Sometimes branches are generated which are
redundant, exceed cost limitations, are not cost-optimal, or violate user con-
straints. To save computation time and increase the efficiency of the adaptation
process, the filter module bounds (i.e., cuts) such branches, as intended by the
Branch & Bound algorithm. Figure 2 shows the four stages of this module. In
the following, this section briefly describes them.

Adaptation Count Bounding. To avoid a complete redesign of the net-
work which usually increases downtime and risk of errors, this filter removes
branches that exceed the specified limit of adaptation operations to ensure that
network optimization is applied with manageable effort.

Cost Constraint Bounding. This filter removes branches that exceed a
specified limit for at least one cost dimension. Since the tactics select the most
cost-effective adaptations, a branch that exceeds the cost limit can be safely
removed, as the costs of this branch can only increase in subsequent iterations.

Cost Optimization Bounding. If multiple branches are tracked in parallel,
some branches can become irrelevant once cost-optimal solutions are found on
other branches. This filter module bounds branches exceeding the costs in all
dimensions compared to an already found solution.

Redundancy Eliminator. By branching several times in repeated itera-
tions, different branches can result in the same adaptation operations. Since
identical branches lead to the same results in further iterations, this filter dis-
cards branches with redundant adaptation plans.

Adaptation plans, which are not bounded in the filter module, are passed
to the next iteration of the adaptation process, as shown in Figure 2. This is
repeated until a valid solution is discovered, no further possible adaptations are
found, or the solution is bounded later.

4.6 Solutions

The adaptation process discovers all cost-optimal (Pareto-optimal) solutions. To
apply the computed adaptations, these solutions do not represent an adapted
network model; instead, solutions simply consist of adaptation plans, i.e., a list



of adaptation operations to be performed on the network. This makes it easier to
interpret and to apply in practice. By applying these adaptation operations on
the network model, the resulting network model can be generated. The solutions
have the following three characteristics: (i) Every solution is validated through
analysis and fulfills the SLA. (ii) Every solution is cost-optimal, and the set of
all solutions represents the Pareto-front. (iii) Every solution does not exceed the
specified amount of adaptation operations and does not exceed the defined cost
limits in any dimension.

5 Evaluation

We evaluated our framework w.r.t. different qualitative and quantitative aspects.
Section 5.1 validates our network adaptation process that the found Pareto-
optimal solutions resolve the bottlenecks, i.e., no further SLA violations exist,
and are cost-optimal. Section 5.2 presents an analysis of the scalability of our
approach within an example network model with cascaded adaptation opera-
tions. Section 5.3 summarizes the results of the evaluation and discusses their
applicability.

All experiments are executed on a notebook with an Intel i7-7500U CPU with
2.7 GHz and 16 GB RAM. The used operating system is Windows 10 64-Bit,
running an OpenJDK 11.0.2.

5.1 Pareto-optimality and Performance

The adaptation framework outputs cost-optimal solutions representing the Pare-
to-front [15,19]. This is particularly important since the multi-dimensional cost
model can provide several most favorable solutions for different cost dimensions.
Depending on a weighting function, the most appropriate solution is selected for
applying it to the respective real-world network. Our framework focuses only on
cost-optimized solutions through our objective-oriented approach, the sophisti-
cated bounding mechanism, and several filters. This is especially important since
every further solution candidate is analyzed and leads to a longer duration for
the overall process.

In this evaluation, we investigate the aspects of: (i) finding all Pareto-optimal
solutions and (ii) the performance gain of our optimized algorithm compared to
a brute-force approach. For this experiment, we use a small network consisting of
9 nodes, 8 links, and 20 alternative configurations. They possible adaptations are
annotated by costs that are partly specified in opposite ways, which means that
some are preferred for a low investment and others for short handling time. This
leads to several best solutions, depending on the weights of the cost dimensions.
We executed the experiment in two different setups. In the first setup, the net-
work is adapted by our optimized approach with objective-oriented strategies,
smart selection of alternative configurations, and bounding after introducing the
artificial bottleneck. A second setup uses a brute-force approach to explore all
possible adaptations and find all valid solutions as a baseline. The use of the
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Table 1. Comparison between brute-force and our approach regarding solutions, so-
lution candidates, and runtime.

Observed metric Brute-force Optimized approach
cost-optimal solutions 3 3
solutions 231 3
solution candidates 3190 10
overall duration (sec.) 6379 24

brute-force algorithm ensures that all solutions are found, therefore especially
including all cost-optimal ones.

Figure 3 depicts all returned solutions from both setups. The x-axis presents
the cost dimension of the investment, while the y-axis shows the cost dimension of
handling time. As the brute-force algorithm outputs all found solutions — which is
a significantly higher number than the number of solutions that our optimization
approach outputs — it also contains all cost-optimal solutions. Our approach only
returns three solutions. However, it can be concluded from Figure 3 that these
are the three cost-optimal solutions.

Table 1 shows a comparison between the brute-force and our optimized ap-
proach. We validated in Figure 3 that both approaches return all three cost-
optimal solutions. The brute-force approach identified 231 solutions. However,
taking the focus on of our cost objective into account, 228 of them are non-
optimal solutions, and hence, not useful in practice. As our optimization ap-
proach works in a goal-oriented manner and bounds useless branches, it creates
only 10 solution candidate models, much less than the brute-force approach with
3190 solution candidates. The number of solution candidates especially affects
the algorithm’s run-time, since each candidate model has to be analyzed and a



small number of models leads to a shorter overall duration. For that reason, the
brute-force approach takes 6379 seconds, and our optimization approach only
takes 24 seconds, including the time necessary for the simulative analysis, for
calculating all cost-optimal solutions.

5.2 Scalability

Data center networks typically consist of a vast amount of nodes and links. While
Section 5.1 only considers a small network topology due to the execution of the
time-intensive brute-force run, this section focuses on the scalability aspect of our
adaptation algorithm. An addition to the previous section, the selected scenario
requires multiple subsequent adaptations to remedy the violated SLAs.

The considered network, depicted in Figure 4, represents a fat-tree topology
commonly used in data centers. It consists of two core switches on the top, access
and edge switches on the subsequent layers, and at least some servers with VMs.
We consider each pair of access and edge switches and two servers with VMs as
one block. The core switches are independent of the number of blocks. The initial
setup contains one block; more blocks will be added later during the evaluation.
As each block consists of 6 nodes and the number of core switches is independent,
the number of overall nodes can be derived from the number of blocks as follows:

|nodes| = 2+ 6 - |blocks| (1)

The notation |z| is taken from graph theory and describes the number of ele-
ments x, e.g., |nodes| means the amount of nodes. Each block adds 10 links to
the network, 6 within the block, and 4 links to the core switches. Therefore the
number of links can be derived from the number of blocks as follows:

[links| = 10 - |blocks]| (2)

For each link, six alternative bandwidths are specified in the adaptation
points by replacing the cable or reconfiguration. Furthermore, each switch can
be replaced by three alternatives. As the number of nodes and links increases
with the network size, the number of adaptation points also increases, which can
be determined by the following formula:

ladaptationpoints| = 6 - |links| + 4 - (Jnodes| — 2 - |blocks|) (3)

The relationship between the number of blocks, nodes, links, and adaptation
points is depicted in the first four columns of Table 2.

Figure 4 illustrates the scenario for the scalability evaluation: VM1 initiates
a transmission of a 20 GB file to VM2. Initially the flow is routed over the red
path, from VM1 over E1-A1-E2 to VM2. In the network, the links between VM1
and E1 as well as between E1 and Al represent bottlenecks, denoted by the
lightning symbol in Figure 4. These bottlenecks may be caused either by links
with insufficient bandwidth or through the impacts of other flows. To remedy the
bottleneck between VM1 and E1, a link upgrade is the only feasible adaptation



Block 1 Block 2 Block N

Fig. 4. Network used for the scalability evaluation.

Table 2. Runtime of our adaptation process considering increasing network sizes.

Blocks Nodes Links Ad.ap. Bran. Anal. Bound. Sol. Adaptation process
points bran. (mean) (sd)

1 8 10 84 5 4 2 2 0.693s 0.108s

32 50 388 5 4 2 2 0.695s 0.120s

10 62 100 768 5 4 2 2 0.715s 0.130s

20 122 200 1528 5 4 2 2 0.547s 0.145s

30 182 300 2288 5 4 2 2 0.690s 0.105s

40 242 400 3048 5 4 2 2 0.547s 0.2565s

50 302 500 3808 5 4 2 2 0.792s 0.446s

Adap. points = number of adaptation points; Bran. = number of generated branches;
Anal. = number of executed analysis, i.e., simulations; Sol. = number of returned solutions

operation defined in the adaptation points. The second bottleneck between E1
and A1l can either be resolved by another link upgrade or by bypassing the
insufficient link using the blue dashed path from E1 over A2 to E2. The resulting
two possible solutions are: (i) link upgrades from VM1 to E1 and from E1 to
A1, or (ii) one link upgrade from VM1 to E1 and rerouting the flow over the blue
dashed path (E1-A2-E2). The adaptation framework correctly determines the
two solutions. However, finding the solutions is not discussed here, as we focus
in this section on the scalability of our approach.

To investigate our approach’s scalability, the presented setup is adjusted by
a variable number of blocks, each consisting of two access switches, two edge
switches, and two servers (cf. Figure 4). The initial network contains one block,
and more blocks are added so that the network sizes of 1, 5, 10, 20, 30, 40,
and 50 blocks can be examined, as depicted in Table 2. The adaptation of each



setup with a fixed number of blocks was repeated 10 times. The source code of
our adaptation framework, the input models, a script for running the scalability
experiments, a description of how to run the tests, and the output measurement
results can be found on our Git repository .

Table 2 shows that independent from the number of blocks, five branches
have been generated during each adaptation runs, representing the link upgrade
between VM1 and E1 (two; one for each cost dimension), the subsequent link
upgrade between E1 and Al (two; one per cost dimension), and the parallel
rerouting. The constant number of four network analyses results from the ini-
tial analysis, the analysis after the first link upgrade between VM1 and E1, and
the final analysis of the two solutions. In each of the runs, two branches are
bounded by the redundancy eliminator. This number results from the parallel
tracked cost-efficient solutions, which finished in identical adaptation plans and
therefore, could be eliminated. Table 2 shows that the required time for the adap-
tation process is constant, independent from the network size and the number
of adaptation points, and varies between 0.547 and 0.792 seconds.

5.3 Discussion

In Section 5.1, our adaptation process was compared to an approach determining
all solutions via brute-force. We purposefully chose a small example network for
this experiment, as the time-consuming brute force approach made the evalua-
tion of bigger networks infeasible. Even with this network size, it becomes clear
how important the reduction to the relevant solutions is. Although the chosen
brute force solution represents a lower baseline, it shows clearly the applicability
of our adaptation approach as it finds all cost-optimal solutions only within a
few iterations by objective orientation and domain knowledge.

The evaluation of scalability in Section 5.2 shows that our approach performs
well, even on increasing network sizes and an increasing number of adaptation
points. Due to the target-oriented approach, the size of the network beyond
the bottleneck does not matter, so that the number of branches, analyses, and
truncated branches remains constant. This also applies to the adaptation time,
which remains constant on a wide-scaled network. The required time for the
adaptation process is below 0.8 seconds for all investigated network sizes. In
cases of physical changes, which require human hands-on, this time is negligible.
Given a self-adaptive autonomic environment, the time for the adaptation is
acceptable compared to, e.g., flow rule installation time in SDN switches [35].

The evaluation does not consider the time required to analyze the network.
This depends on the used method (simulative or analytical) and the chosen
network modeling language. Our ongoing research includes comparing the ex-
periments presented in this paper with results using different network modeling
approaches and a variety of different network analysis approaches. These results
can be utilized to analyze different modeling approaches and/or to compare the
performance of different analysis methods.

* https://gitlab2.informatik.uni-wuerzburg.de/descartes/dni-adaptation



6 Future Work

As future work, we aim to extend our framework with tactics concerning the
placement and movement of virtual network functions (VNFs) and virtual ma-
chines (VMs) of data centers. This enables our framework to actively organize
the flow of network traffic in order to optimize network performance. A further
direction could be to develop an adapter to connect our optimization framework
to a real data center network. This enables the fully autonomous management
of the network concerning software changes (e.g., SDN flow rerouting, recon-
figurations) using our approach. Our multi-dimensional cost-model will become
useful as we can associate different changes with different types of costs (e.g.,
investment cost, required working hours, expected downtime, network stability).
In combination with other advanced monitoring and forecasting techniques, our
approach will also be able to warn and possibly even proactively react to per-
formance issues before they appear in the network.

7 Conclusion

To continuously meet the requirements in changing environments with frequently
changing demands, networks have to be adapted at runtime. Several approaches
exist for the adaptation and optimization of networks, however, these either
focus on design-time or are limited to a single objective. In this paper, we present
a multi-objective adaptation framework for the online adaptation of networks
through different adaptation techniques. A MAPE-K adaptation control loop
enables iterative adaptations until all SLAs are met. Branch & Bound tracks
different solutions and filters useless solution candidates at an early stage.

The strategies and tactics consider the objectives to only trigger meaning-
ful adaptation operations w.r.t. to the violated SLA. Adaptation tactics use
network-specific domain knowledge for choosing alternative configurations. Ad-
ditional adaptation tactics can be easily added. Each solution candidate is an-
alyzed to provide only SLA compliant solutions. The resulting solutions are all
cost-optimal and represent the Pareto-front.

A comparison to a brute force approach shows that all cost-optimal solutions
are found, where the simulation ensures the correctness. An additional scenario
demonstrates the subsequent execution of adaptation operations and identifies
a constant adaptation time even on large networks and an increasing number of
adaptation points.
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