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Abstract. In a fast-paced world, software systems require autonomic
management. In order to enable accurate and proactive autonomic sys-
tems, reliable time series forecasting methods are required. However,
most forecasting methods have either a high variance of accuracy and/or
time-to-result. To this end, forecasting methods with robust performance
are demanded. In order to select the best-suited approach, a fair bench-
mark of forecasting methods is needed. In this work, the challenges of
forecasting in autonomic computing and the associated approaches are
outlined.
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1 Introduction

Nowadays, software systems are pushed to their limits, on the one hand, by the
fast living and changing requirements of their users and, on the other hand,
by a huge amount of data that they create or have to process. Although cloud
computing is a paradigm that allows facing the increasing scale and complexity of
modern software, clouds respectively data centers require skilled IT professionals
for configuration and maintaining these systems.

Already in 2001, IBM released the vision of autonomic computing as they
observe that programs or environments tend to grow more and more complex.
Further, they assume that this complexity exceeds the human capacity [1]. Al-
most 20 years later, we have billions of interconnected devices (smartphones,
IoT, ...), an innumerable amount of services/applications, and approaches such
as organic computing [2], self-aware computing [3], and more that build upon
this vision.

All these approaches have in common that they are equipped with sensors and
interact with their environment. Based on the observations, the systems plan and
execute actions either to adjust to the environment or adapt the environment.
However, when triggering actions based on observations, the system only reacts.
These actions have an inherent delay that may lead to problems.

In nature, animals or humans have the ability, which is commonly called
intuition, to ”predict” upcoming events. In order to upgrade the systems with
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this ability, i.e., allowing the system to be proactive, the systems require accurate
and reliable forecasting methods.

In many research areas, forecasting is an established but important discipline
that allows predicting the future by examining the past observations. Based on
the ”No-Free-Lunch Theorem” [4] of 1997, which states that there is no optimiza-
tion algorithm that is best suited for all scenarios, an analogy can be drawn to
the forecasting of time series since the methods try to model the historical data
best. So there is no forecasting method that performs best for all time series.
In other words, forecasting methods have their benefits and drawbacks depend-
ing on the specific use cases respectively time series. Indeed, expert knowledge
is required for choosing the best forecasting method. However, expert knowl-
edge is expensive, may take a long time to deliver results, and it cannot be
completely automated. In order to overcome this, this work identifies problems
and the corresponding 7 challenges of forecasting in the context of autonomic
computing. These challenges are grouped in online, offline, and benchmarking
challenges. Further, this work proposes approaches to face these challenges, sug-
gests auto-scaling as a use case of a proactive automatic system, and shows some
preliminary results.

The remainder of this work is structured as follows: The next section presents
briefly foundations regarding time series and forecasting methods. In Section 3,
the challenges of forecasting in the context of autonomic computing are stated.
Section 4 presents the ideas to face the challenges and suggest an use case for an
proactive autonomic system. Preliminary results of tackling one of the challenges
are discussed in the Section 5. In Section 6, related work is summarized before
the paper is concluded.

2 Time Series Forecasting

In order to better understand the following sections respectively recapitulate
common terms, this section introduces foundations from the field of time series
and forecasting methods.

2.1 Time Series Foundations

This section gives a short introduction to common terms in the context of fore-
casting. A univariate time series is a sequence of data points ordered by equidis-
tant time steps. Mathematically, let yt ∈ R be an observation at date t, the
univariate time series is defined by

Y : {yt}Tt=1 .

Especially in the context of autonomic computing, systems have several sensors.
Either the observations of each sensor can be saved as a univariate time series
or the observations of correlated sensors can be stored as a multivariate time
series. In other words, a time series can also be multivariate and has for each
date at least two observations. In the following, the term time series is used for
a univariate time series.
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Decomposition A further mathematical definition of a time series can be de-
rived by decomposing the time series into its components. Indeed, there are
different decomposition methods that lead to diverse components. In this work,
STL (Seasonal and Trend decomposition using Loess) [5] is considered for time
series decomposition. STL is a commonly used method, where the time series
is decomposed in the trend component T , the seasonal component S, and the
irregular component I or noise:

Y (t) = T (t) � S(t) � I(t).

The operation � depends on whether the time series has an additive or multi-
plicative decomposition. The trend is the long-term movement in time series,
i.e., upwards, downwards, or stagnate. Usually, the trend is a monotone function
unless extrinsic events trigger a break and cause a change in the direction. The
presence of recurring patterns within a regular period in time series is called
seasonality. These patterns are caused by climate, customs, or traditional habits
such as night and day phases. Figure 1 depicts an exemplary decomposition of
a time series.
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Fig. 1: Examplary time series decomposition.

Box-Cox Transformation As observed data may contain complex patterns,
an adjustment respectively simplification of this data can improve the forecast-
ing model. To this end, there exist different methods. A useful approach is the
Box-Cox transformation [6]. This transformation depends on the transformation
parameter λ. The parameter can be estimated with the method introduced by
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Guerrero [7]. The Box-Cox transformation is defined as follows:

wt =

{
ln(yt) if λ = 0;

(yλt − 1)/λ otherwise.

Based on this model, the forecast is conducted. Then, the forecast is re-trans-
formed with the same λ:

yt =

{
exp(wt) λ = 0;

(λwt + 1)1/λ otherwise.

Error Measurements In order to evaluate the accuracy of forecasting results,
several error measurements can be used. Each method has its use cases, benefits,
and drawbacks. Thus, the selection of the measurements has to be done carefully.
A common method for error measurement is the mean absolute percentage error:

MAPE =
1

T

T∑
t=1

|yt − ft
yt
|.

In this equation, ft is the forecast value, yt the observation at date t, and T the
observed period of time. The MAPE is chosen for reflecting the forecast accuracy
due to its measure characteristics: (i) It represents the percentage of average
absolute error compared to the original observations. (ii) Also, the MAPE is
independent of the scale of the measurement. (iii) Further, due to the absolute
error, contrary signed errors do not offset each other. [8]

2.2 Forecasting Methods

As forecasting is an important aspect in many research fields, there exist different
methods from different disciplines. In this work, three methods are outlined as
they are part of the approach: (i) an artificial neuronal network method from the
field of deep learning, (ii) seasonal ARIMA from the field of statistical methods,
and (iii) extreme gradient boosting from the field of machine learning.

ANN The Artificial Neuronal Network is a feed-forward neuronal network that
is trained with lagged values of a time series. In contrast to other neuronal
networks, the feed-forward neural network moves the information only in one
direction. That is, there are no loops or cycles in the network. In order to forecast
time series, this network consists of one hidden layer. In addition, the number
of lags and nodes in the hidden layer are automatically selected. [9]

sARIMA In 1938, H. Wold lays the groundwork for using ARMA models for
time series. An ARMA model is a combination of an autoregressive AR(p) model
and a moving-average MA(q) model. Here, the order p determines the number
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of past values and the order q determines the number of past errors. As ARMA
models require a stationary time series, ARIMA models overcome this restriction
with differencing of the time series. In contrast to ARIMA, sARIMA is capable
of modeling seasonal data. To this end, each non-seasonal component of the
ARIMA model is extended with its seasonal counterpart. [10]

XGBoost In 2014, a scalable end-to-end tree boosting system called eXtreme
Gradient Boosting was released. This method uses tree boosting. That is, a tree
ensemble model with additive functions are created. Each function corresponds
to an independent tree structure. In terms of time series forecasting, the leaves
of regression trees are summed up to predict the output. The method tries to
select a model with simple and predictive functions. This is done in an additive,
greedily manner that is also known as gradient tree boosting. [11]

3 Challenges

In this section, the challenges, which arise in the field of autonomic computing,
are outlined. The following challenges are grouped into three groups: (i) general
challenges, (ii) online challenges, and (iii) benchmark challenges. The general
challenges occur before applying time series forecasting. The online challenges
arise in addition to the general challenges in an online scenario. The bench-
mark challenges concern themselves with how to compare different forecasting
methods.

3.1 General Challenges

Based on its former work [12], D. Wolpert postulated the ”No-Free-Lunch Theo-
rem” [4] in 1997. It claims that there is no optimization algorithm that performs
best for all scenarios. That is, improving the performance of one aspect normally
leads to a degradation in performance for some other aspect. As forecasting
methods try to best fit to historical data, parallels can be drawn to optimization
problems. In other words, if a forecasting method is tuned for a specific time
series, it gets worse for another time series. Thus, there is no forecasting method
that outperforms the others for all time series. In order to underline this state-
ment, a measurement over 50 time series is conducted. The forecast error and
time-to-result are listed in Table 1. For instance, The forecasting method ANN
performs worst according to the accuracy and has a standard deviation of more
than 300%. In contrast, sARIMA has the lowest average forecast error, but has
the highest average time-to-result and also the highest standard deviation. Based
on this example and the theorem, the following challenge can be formulated:

Challenge 1

How to build/find a generic forecasting approach that delivers robust
forecasting accuracy?
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Here, robust means that the variance in forecasting results should be reduced,
not necessarily improving the forecasting accuracy itself.

Table 1: Accuracy and time-to-result comparison.

Method
MAPE Time-to-Result

Avg [%] SD [%] Avg. [s] SD [s]

ANN 80.98 306.56 31.75 91.88
sARIMA 24.92 41.14 82.32 248.52
XGBoost 49.43 162.39 0.011 0.01

As autonomic systems have multiple sensors, software systems tend to gen-
erate a high amount of different and heterogeneous data. This results in mul-
tivariate time series. Although there is an extension for ARIMA for handling
multivariate time series, the most statistical methods do not support multivari-
ate time series. Thus, machine learning algorithms are used as forecasting tools.
Due to the nature of these data, there is a need for data selection. This is also
known as feature selection in the context of machine learning. As the selection
is a crucial part for the quality, the following challenge can be formulated:

Challenge 2

How to automatically select the important features for forecasting?

Besides the feature selection, also the transformation of the data influence the
forecasting accuracy. Hence, transforming the historical data may lead to simpler
patterns that usually allows more accurate forecasts [10]. There are different
kinds of transformations as calendar adjustments or mathematical transforma-
tions. As calendar adjustments require human intervention, only mathematical
transformations are suitable in autonomic systems. Thus, the subsequent chal-
lenge can be posed:

Challenge 3

How to automatically transform the features for increasing the forecast
accuracy?

This challenge is tackled in a preliminary evaluation in Section 5.

3.2 Online Challenges

While forecasting, for example, the visitors of a zoo has no time constraints, the
time-to-result in the context of autonomic computing has strict requirements.
However, time to result varies heavily for traditional approaches as shown in
Figure 2 or in Table 1. The diagram shows the time-to-results distribution of
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the introduced methods in Section 2.2. Each method forecasts 50 time series and
is depicted on the horizontal axis. The vertical axis is in log scale and shows the
time-to-result in milliseconds. For instance, the time-to-result of ARIMA ranges
from approximately 200 milliseconds to 2,000,000 milliseconds. Similarly, ANN
and XGBoost show both a high degree of variance. The table lists forecast error
and time-to-result. For instance, sARIMA has a standard deviation of 248.52%
for the time-to-result. Therefore, the next challenge can be stated:

Challenge 4

How to build/find a generic forecasting approach that has a reliable
time-to-result?

Here, reliable means that the variance in time-to-result should be reduced with-
out degrading the time-to-result itself.

1e+02

1e+04

1e+06

ANN

sA
RIM

A

XGBoo
st

Methods

T
im

e 
[m

s]

Time Distribution

Fig. 2: Examples for Challenge 4.

As autonomic systems may plan actions in advance, the future values have
to be forecast. The longer the forecast, the less accurate is the forecast towards
the end. Thus, the planned actions may be updated as new data may influence
the decision process. In other words, the regular incoming information allows
quantifying the accuracy of the forecast. In order to update the forecasts, there
are different approaches. One solution is to build a new forecast model with each
new observation. Another option is to refine the model with the new data if this
is possible for the forecasting method. In contrast to building a new model or
updating the model with the incoming data, a further approach is to use the old
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model until a significant deviation between observation and forecast take place.
Indeed, each of this approach has its strengths and weaknesses. That is, there is
a trade-off between time-to-result and the accuracy of the forecast. In order to
investigate this trade-off, the following challenge can be formulated:

Challenge 5

How to refine/refit the forecast model with incoming data?

3.3 Benchmarking Challenges

As forecasting is an important part of the decision-making process and is used
in many fields, there is a broad range of academic work concerning forecasting.
However, the degree of quality of the evaluations suffers, on the one hand, due to
the lack of commonly used respectively good data sets or, on the other hand, on
the methodology. For instance, the proposed forecasting methods (see Section 6)
only predict the next value. From a statistical perspective, only the next value is
important, but planning in advance requires multiple values. However, there is
one work out of the surveyed ones that forecasts up to 15 points. Indeed, this is
also a short range in the context of automatic computing, where a fine granularity
leads to several data points in a short time span. Further, the surveyed papers
compare their approaches on a small data set ranges from 1 to 10 time series.
Also, a comparison with other methods either is missing or contains only a few
methods. Upon this, the authors only consider the forecast accuracy. By taking
these limitations into account, the next challenge can be stated:

Challenge 6

How to compare different forecasting methods in a fair manner?

As stated in Section 2.1, there exists several measures for evaluating the
accuracy of a forecast. Although the measure MAPE is used for this work based
on its advantages, the selected measure has some characteristics that introduce
issues in the context of automatic computing. For example, suppose there are
two different time series, each with a forecast. The two forecast values f1 = 3,
f2 = 3 are predicted for the observations y1 = 2, y2 = 4. In other words, the first
forecast overestimates and the second forecast underestimates the observation.
Although both forecast values differ by one, the error measure has two different
values: MAPE1 = 0.5 and MAPE2 = 0.25. That is, MAPE prefers forecasting
methods that underestimate the observations. In practice, underestimation may
lead to faults. Thus, additional metrics or new metrics have to be considered
while comparing forecasting methods. The resulting challenge is:

Challenge 7

What are suitable/reliable metrics for quantifying the forecast?
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4 Approaches and Ideas

This section presents the ideas to face the identified challenges from Section 3. On
the one hand, a hybrid forecasting method is envisioned and, on the other hand,
a benchmark for forecasting method is planned. Further, a use case showing the
importance of forecasting in the context of autonomic computing is outlined.

4.1 Hybrid Forecasting

In order to tackle Challenge 1 and 4, the idea is to design a hybrid machine
learning mechanism that combines different forecasting methods. The prelimi-
nary version is able to improve the forecast accuracy and to reduce the variance
of the results while maintaining a short time-to-result on two time series [13].
The proposed hybrid forecasting approach is called Telescope according to the
analogy with the vision of far-distanced objects. The mechanism is implemented
in R and can be found at GitHub1.

The current version supports only univariate time series with a seasonal
pattern. The core idea of the approach is to leverage additional information from
the time series itself and consists of three fundamental steps: (i) Preprocessing of
the time series, (ii) building the forecast model, and (iii) forecasting the future
behavior of the time series.

In the preprocessing step, the frequency, i.e., the length of a period, of the
time series is estimated and anomalies are removed. In this approach, the as-
sumption is that the frequencies match the human behavior (e.g., hourly, daily,
weekly, ...). For the model learning, the machine learning algorithm eXtreme
Gradient Boosting is chosen due to its success at Kaggle challenges2. In order
to create features for XGBoost, the time series is decomposed via STL in its
components: trend, season, and noise. Further, a second season is determined
from the time series. This second frequency allows capturing a better seasonal
model as, for example, a time series has a weekly pattern (first season retrieved
by STL) and a daily pattern. With the usage of clustering and ANN, this second
seasonal pattern is detected. Afterward, the model is trained with both sea-
sonsonal patterns and the trend. The irregular component is ignored since it is
hard to predict and so, correlated with a high error rate. For the forecasting,
the seasonsal patterns and the trend have to be forecast. As the seasonsonal
patterns are per definition recurring, both patterns can be pursued. In contrast,
the trend is predicted with ARIMA. Finally, XGBoost combines the ”predicted”
components to forecast the time series.

To face Challenge 2 and to enhance Telescope for multivariante time series,
an autonomic feature selection process is envisioned. As the current version uses
XGBoost as machine learning approach, a further improvement is to dynam-
ically choose the most suitable machine learning approach based on the time
series characteristics. Also, the extension to support multivariate time series is

1 https://github.com/DescartesResearch/telescope
2 https://github.com/dmlc/xgboost/tree/master/demo
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intended. In order to tackle Challenge 5 and improve Telescope for online usage,
different strategies of model refinement will be investigated.

4.2 Forecast Benchmark

Due to the lack of good data sets and the sometimes arbitrary evaluations (see
Challenge 6), the idea is to establish a forecast benchmark. On the one hand, the
concept is that the benchmark takes control over the evaluation. This leads to a
uniform evaluation of forecasting methods. On the other hand, the benchmark
provides a broad data set with a high degree of diversity. Further, the data set
is split into different use cases, for instance, time series that are related to the
finance sector. This allows benchmarking forecasting methods in different fields.

Indeed, there are data sets such as the M3 Competition3 that contains 3003
time series from different domains. However, most time series have a high degree
of similarity and a length below 100 data points. In other words, this data set
is, for instance, not suitable for validating forecasting methods in the context
of autonomic computing as time series in this domain are generally larger. For
instance, when sampling data each second, actions that are planed hourly have
to take 3600 data points into account.

Besides the data set, fair competition among the forecasting methods is re-
quired. That is, the forecast benchmark has to fulfil the requirements of bench-
marking principles. As highlighted in Challenge 7, the current metrics may not
be capable of comparing different forecasting methods in a fair manner. Thus, the
benchmark has to introduce also a new set of metrics. Besides, the benchmark
requires a good reporting system and usability.

4.3 Use Case

Autonomic systems are the solution for problems that are to complex for human
beings. In the course of digitization, the Internet usage is fast-paced and has
changing requirements. Also, the increasing amount of connected devices has
an influence on the usage. In the last years, cloud computing emerged as a
computing model that allows fast access to resources and has a high level of
scalability.

Due to these benefits and the requirement of the Internet usage, the de-
ployment of autonomic resource management systems arose in cloud computing.
In practice such as in AWS (Amazon Web Services), reactive mechanisms are
used that trigger releasing respectively provisioning of resources. As the name
indicates, these mechanisms react to workload changes and try to adapt the re-
sources to the current workload. However, these approaches are pragmatic and
the actions are delayed. The lag can be seen in Figure 3. This diagram shows
the scaling behavior of the reactive auto-scaler introduced by Chieu et al. [14].
On the horizontal axis the time in minutes and on the vertical axis the amount
of resources are depicted. The blue dashed curve depicts the demanded amount

3 https://forecasters.org/resources/time-series-data/m3-competition/
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of resources. The black curve shows the supplied resources by the auto-scaler.
Especially when the demand changes, the adaptions of the auto-scaler lags be-
hind.

Thus, the idea is to extend such reactive methods to be proactive respec-
tively improve the forecast accuracy of already proactive auto-scalers in order
to achieve a better auto-scaling performance. Here, the performance is mea-
sured by metrics proposed by SPEC4 [15]. In context of the use case, one work
was published concerning about the input of auto-scalers [16] and another work
introduces a new proactive mechanism with a reactive fallback [17].
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Fig. 3: Example.

5 Preliminary Results: Feature Engineering

In order to investigate the influence of feature transformation and tackle Chal-
lenge 3, preliminary experiments are conducted. To this end, the forecast accu-
racy of ANN and sARIMA are observed while transforming the historical data.
The used data set contains the fma package from R. For the experiments four
transformations are used: (i) identity function Id: x 7→ x, (ii) natural logarithm
Log: x 7→ ln(x), (iii) square root Sqrt: x 7→

√
x, and (iv) box-cox transformation

Box (see Section 2.1).

Table 2: Feature transformations and the resulting forecast performance.

Rank
ANN sARIMA

Id Log Sqrt Box Id Log Sqrt Box

1 34% 32% 7% 31% 31% 36% 10% 29%
2 8% 27% 43% 24% 11% 22% 45% 20%
3 25% 23% 35% 19% 20% 19% 42% 23%
4 33% 18% 14% 25% 37% 23% 04% 28%

4 Standard Performance Evaluation Corporation
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Table 2 shows for both ANN and sARIMA the proportion of the achieved
rank while using a certain transformation. For instance, sARIMA with Log
achieves on 36% of the time series the best forecast compared to the other
transformations. In other words, when choosing Id for ANN, there is the prob-
ability of 34% that this transformation is the best one compared to the other
ones. However, in 33% Id leads to the worst forecast. For both forecasting meth-
ods, Sqrt achieves in less than 11% the best forecast. Further, it can be stated
that adjusting the data in these experiments (in ANN 64% and sARIMA 69%
cases of the time series) increase the forecast accuracy. To sum up, there is no
transformation that outperforms the other ones and thus, the selection is crucial.

Based on the information from Table 2, different transformation strategies
are investigated. First, each strategy adjusts with a specific transformation the
data. Then, the adjusted time series is forecast by both ANN and sARIMA.
Afterward, the mean rank of the forecast of ANN and sARIMA is reported. The
observed strategies are: (i-iv) using the associated transformation on each time
series, (v) choosing a random transformation (Random), and (vi) the proposed
automatic approach for the transformation selection (Aut). The latter approach
adjusts each time series with each of the four transformations. Then, for each
transformation the forecast model is built. Based on the model accuracy, the
best transformation is selected. Afterward, the chosen adjusted time series is
forecast. Finally, for each strategy the forecast is re-transformed and the accuracy
is calculated.

Table 3: Average performance of different strategies.

Id Log Sqrt Box Random Aut

Avg. Rank 2.60 2.14 2.48 2.44 2.50 2.42

The average ranks over all time series and both forecasting methods of the
different approaches are depicted in Table 3. Due to the 4 transformations, the
ranks range from 1 to 4. Random achieves an average rank of 2.5. That is, when
choosing a transformation randomly, the forecast is either the second or third
best forecast. The best rank is achieved while transforming the data with Log.
The automatic selection of the transformation has a rank of 2.6. That is, it is
better to choose random selection than this approach.

Table 4 investigates why Aut has the worst rank. Therefore, for each trans-
formation, the loss of rank is listed. As the automatically selection takes the
transformation for each time series with the best model accuracy rank, the loss
of rank reflects the difference between the expectation of having the best fore-
casting rank and the actual forecast rank. For example, Log achieved the best
rank for ANN and sARIMA over 44 time series based on model accuracy. When
using the logarithmic transformation, however, ANN only achieves the best fore-
cast for 10% of these time series. For all transformations and both methods,
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more than the half of the selected transformations achieves a rank worse than 1.
Hence, the selection of the transformation based on the model accuracy achieves
a rank worse than 2.5. These results underline Challenge 3. To this end, further
and more intelligent approaches are required for achieving a better forecasting
method recommendation.

Table 4: Rank loss after taking the best model transformation.

Loss
ANN sARIMA

Id Log Sqrt Box Normal Log Sqrt Box
(2) (44) (10) (27) (0) (44) (11) (28)

0 0% 39% 10% 48% 0% 48% 9% 39%
-1 0% 11% 20% 7% 0% 9% 27% 7%
-2 0% 18% 50% 19% 0% 14% 64% 14%
-3 100% 32% 20% 26% 0% 30% 0% 39%

6 Related Work

This section introduces related work of the fields (i) time series forecasting, (ii)
feature engineering, and (iii) and auto-scaling. To the best of my knowledge,
there is no forecast benchmark or a generic comparison method between fore-
casting methods in the literature.

6.1 Time Series Forecasting

In order to minimize the variance of single forecasting mechanisms and to face
the ”No-Free-Lunch Theorem”, many hybrid mechanisms have been developed.
These approaches can be grouped into three categories. The first and oldest
category is the ensemble forecasting. This technique was introduced by Bates
and Granger in 1969 [18] and combines the results of at least two forecasting
methods. Further works in this field are form R. Clemen [19] and D. Menezes
[20]. The second category uses forecast recommendation, where the best forecast
method is guessed based on certain time series characteristics. The approaches
either use an expert system [21] or machine learning techniques [22]. The last
category uses the decomposition of time series to leverage additional information
of a given time series. These approaches split the time series into linear and non-
linear parts [23,24,25] or decompose the time series in its components (trend,
seasonality, and noise) and/or further components [26].

6.2 Feature Engineering

In the scope of this work, two works are of interest. Khurana et al. [27] introduce
a framework for feature selection and engineering. To this end, a transformation
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graph and reinforcement learning are used to explore suitable features and trans-
formations. Further, J. Heaton [28] observed that the machine learning approach
influences the features to consider as different methods can learn different kind
of relationships.

6.3 Auto-Scaling

Lorido-Botran et al. [29] survey existing auto-scalers and propose a classification
of auto-scalers into five groups: (i) threshold-based rules, (ii) queueing theory,
(iii) control theory, (iv) reinforcement learning, and (v) time series analysis. Fur-
ther, Nikravesh et al. propose a kind of expert system to improve the prediction
accuracy of auto-scaling [30].

7 Conclusion

Due to the fast-paced and changing requirements, software systems have a high
degree of complexity. Thus, managing of some of these systems may exceed
the human capacity. One solution is the usage of autonomic systems. In order
to enable autonomic computing with proactive actions, reliable and accurate
forecasting methods are required. Although forecasting is an important and es-
tablished part of decision making, in the context of autonomic computing, there
are challenges, such as a high variance in accuracy and time-to-result, that have
to be faced. Thus, this work identifies 7 challenges (see Section 3) that have to be
faced and proposes approaches to tackle them. The goals are, on the one hand,
to develop a hybrid forecaster, which has robust performance, and, on the other
hand, to establish a forecast benchmark for comparing different forecasting meth-
ods in a fair manner. Further, auto-scaling as use case for proactive autonomic
computing is introduced. Based on the challenges, preliminary experiments are
conducted.

Besides the challenges, proposed solutions, possible extensions, and the pre-
liminary experiments, a lot of work have to be done. Firstly, the evaluation of the
proposed hybrid forecasting method have to extended as the preliminary experi-
ments covers two time series. Further, the method has to be enhanced to handle
time series without seasonality. As autonomous systems have multiple sensors,
an extension for multivariate time series is required. Although the results of the
automatic feature transformation is currently not promising, further approaches
have to be investigated.
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