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Abstract—Nowadays, in order to keep track of the fast-
changing requirements of Internet applications, auto-scaling is
used as an essential mechanism for adapting the number of
provisioned resources to the resource demand. The straight-
forward approach is to deploy a set of common and open-
source single-service auto-scalers for each service independently.
However, this deployment leads to problems such as bottleneck-
shifting and increased oscillations. Existing auto-scalers that scale
applications consisting of multiple services are kept closed-source.
To face these challenges, we first survey existing auto-scalers and
highlight current challenges. Then, we introduce Chamulteon,
a redesign of our previously introduced mechanism, which can
scale applications consisting of multiple services in a coordinated
manner. We evaluate Chamulteon against four different well-
cited auto-scalers in four sets of measurement-based experiments
where we use diverse environments (VM vs. Docker), real-world
traces, and vary the scale of the demanded resources. Overall,
Chamulteon achieves the best auto-scaling performance based on
established user-oriented and endorsed elasticity metrics.

Index Terms—Cloud Computing, Auto-Scaling, Elasticity,
Workload Forecasting, Service Demand Estimation, Container,
Benchmarking, Metrics

I. INTRODUCTION

“Cloud computing has emerged as a popular computing
model to support processing large volumetric data using clus-
ters of commodity computers” [1, p. 1]. Essentially, cloud
computing provides elastic on-demand access to data center
resources. Although there are threshold-based scaling mech-
anisms such as the ones used in Amazon EC2, business-
critical applications in clouds are usually still deployed with
over-provisioned resources. This strategy is pursued to avoid
becoming dependent on an auto-scaling mechanism with its
possibly wrong or badly-timed scaling decisions. There are
exceptions like Netflix, which uses its own auto-scaling engine
called Scryer'.

Current research in the scientific community is focused on
novel approaches for reliable proactive auto-scaling to improve
auto-scaling mechanisms and increase the trust of the industry
in auto-scaling. Generally, auto-scalers can be distinguished
based on whether they are capable of scaling applications
composed of only one service or applications consisting of
multiple services. Examples from the first category include
Chameleon, which we proposed in our previous work [2], and
the famous open-source auto-scalers React, Adapt, Hist, and

INetflix ~ Scryer: https://medium.com/netflix-techblog/scryer-netflixs-
predictive-auto-scaling-engine-a3{8fc922270

Reg [3]-[6]. In contrast, popular auto-scalers from the second
category, such as AutoMap, AGILE, and CloudScale [7]-[9],
are closed-source.

Modern applications are often designed based on a micro-
service architecture, and thus they consist of multiple services.
As the associated auto-scalers mentioned above are closed-
source, the straightforward implementation of an auto-scaling
mechanism for such applications is to instantiate an open-
source individual single-service auto-scaler for every service.
That is, each service is observed and scaled independently by
an auto-scaler. However, this approach can lead to problems
like oscillations and bottleneck shifting. B. Urgaonkar et
al. [10] provide a detailed example of these problems.

Another approach is the implementation of a black-
box auto-scaler for applications consisting of multiple ser-
vices [10]. This auto-scaler makes scaling decisions based
on the observed end-to-end response time of the application.
Whenever one of the services becomes a bottleneck, the
response time will increase and cause a violation of the
service-level agreement (SLA). The auto-scaler can detect this
and trigger the auto-scaling mechanism. However, the problem
is how to determine which particular services need to be scaled
and by how much.

To tackle the described problem, we formulate the following
three research questions: (RQ1) What mechanisms exist for
scaling applications with multiple services and what are the
open challenges? (RQ2) How can we enable coordinated
scaling of applications with multiple services? (RQ3) How
well does our Chamulteon approach perform compared to
state-of-the-art auto-scaling mechanisms?

Towards addressing the aforementioned questions, our con-
tribution is four-fold:

1) We survey existing auto-scalers for applications consist-
ing of multiple services and discuss challenges for such
auto-scalers as well as their benchmarking (Section II).

2) We redesign our white-box auto-scaler Chameleon [2]
to enable the coordinated scaling of applications with
multiple services. That is, we introduce the components,
the decision making logic and the conflict resolution
introduced by proactive scaling coupled with a reactive
fallback (Section III-A). The redesigned version, called
Chamulteon, maintains a performance model of the
application, observes and predicts the request arrival
rates, and estimates the service time of each service.



This approach is applicable also to classical multi-tiered
applications without changes.

3) We conduct measurement-based experiments with real-
world system traces in different environments: the
stressed application is, first, deployed on virtual ma-
chines and then, deployed in Docker containers. Further,
we change the scale of peak demand from 20 to 60 to
120 application instances.

4) We compare Chamulteon with the open-source auto-
scalers React, Adapt, Hist, and Reg [3]-[6] (Section V).
To the best of our knowledge, existing auto-scalers for
applications with multiple services are closed-source.
We analyze the results with a set of SPEC-endorsed
elasticity metrics [11], in addition to metrics capturing
the user-perspective. Further, we define a new aggre-
gation metric to capture the coordinated auto-scaling
performance overall in a single score (Section IV-D3).
The results of the experiments show that Chamulteon
exhibits the best auto-scaling performance in comparison
to the other auto-scalers.

II. STATE-OF-THE-ART AND OPEN CHALLENGES

Based on what we collected from recent [12] and established
survey articles [13] in addition to a systematic literature search,
we start by giving an overview of existing auto-scalers for
applications composed of multiple services or tiers. Then, we
discuss the difference between our approach and existing auto-
scalers. Finally, we present the challenges that existing multi-
service auto-scalers face and the challenges for benchmarking
such mechanisms.

A. Scaling Applications with Multiple Services

This section surveys state-of-the-art auto-scaling approaches
for scaling multi-service applications. We consider both re-
active and proactive auto-scalers. Table I summarizes the
surveyed auto-scalers.

In 2018, Khorsand et al. [14] presented the FAHP approach
for autonomic resource management of multi-tier cloud ap-
plications. This work implements a MAPE-K loop leveraging
a fuzzy analytic hierarchy process. The performance depen-
dencies between the different tier are black-box. FAHP is
evaluated in simulation using real workload traces.

The HybridScaler [15] presented by Wu et al. in 2016 is
designed for multi-tier web applications. This approach is
considered as hybrid because it combines vertical reactive
scaling to accommodate bursting workloads with proactive
horizontal scaling for mid- to long-term workload changes.
HybridScaler maintains a resource pressure model per tier and
is aware of the applied cost-model, i.e., to optimize in the case
of an hourly billing interval. There is no dedicated focus on
how to realize the coordination of scaling between the different
services.

In 2015, Beltran presented AutoMAP [7], a reactive auto-
scaler. Its provisioning model is based on response time
triggers, so it implements a rule-based approach. It supports
vertical and horizontal scaling as well as cost-effectiveness.

Cost-effectiveness in this context means finding the optimal
resource configuration via choosing virtual machine image
sizes to reduce overall costs.

The AGILE auto-scaler is a proactive mechanism introduced
by Nguyen et al. in 2013 [8]. It uses a wavelet-based approach
for providing medium-term resource demand predictions of up
to two minutes. Based on these predictions new application
server instances are started up to be prepared for the load
peak. AGILE’s architecture consists of agile slaves and an
agile master. The slaves monitor resource usage, and the agile
master maintains a dynamic resource pressure model for each
application using online profiling.

Shen et al. [9] introduced in 2011 an elastic resource
scaling approach called CloudScale. CloudScale is a proactive
approach that supports vertical scaling for voltage and memory
scaling and migrates virtual machines out of overloaded hosts.
It uses a hybrid prediction approach that consists of signature-
driven and state-driven algorithms. If SLO violations can be
solved by local scaling, scaling of CPU and memory is applied.
Otherwise, the approach migrates virtual machines out of the
over-utilized host until the utilization of the host is reduced.

Zhu and Agrawal [16] introduced in 2010 an approach
based on control theory for vertical scaling of applications
in cloud environments. They focus on a series of interacting
service components and scale them independently. The vertical
scaling is based on CPU cycles and memory allocation. They
take a fixed time-limit and a resource budget into account to
maximize the Quality of Service (QoS). They developed a
system model to capture the relationship between the input
of the system and its performance. The model uses an auto-
regressive-moving-average with exogenous inputs (ARMAX)
of second order to represent the system behavior.

Sharma et al. introduced in their work from 2012 an
approach based on queueing theory [17]. Their approach
can scale the targeted application horizontally and vertically.
The vertical scaling is executed by choosing differently sized
virtual machine images. The application is modeled as a chain
of M/G/1-PS queues, and the decision logic considers the
end-to-end response time. The approach has a cost-aware
component that reconfigures the scaling decisions to find the
most cost-efficient heterogeneous configuration.

In 2010, Bi et al. [18] proposed an approach that uses
a flexible hybrid queueing model to determine the number
of virtual machines for each tier. The method collects per-
formance metrics (like arrival rate, average service time and
CPU utilization) and analyses them to find appropriate scaling
decisions. The first tier is modeled as an M/M/n queueing
system and the preceding tiers as multiple M/M/1 systems
with FCFS scheduling.

B. Distinctive Features of Chamulteon

Like the majority of the reviewed algorithms, Chamulteon
is based on queueing theory and supports horizontal scal-
ing. Though some approaches support vertical scaling like
AutoMAP [7], CloudScale [9], HybridScaler [15], and the
approach from U. Sharma [17], only CloudScale supports



TABLE I
OVERVIEW OF RELATED WORK

Related Methodology reactive (r) / vertical (v) / Cost- Evaluation Open-

‘Work proactive (p)  horizontal (h)  Efficient experimental (exp) / simulative (sim)  Source
[14] MAPE loop, fuzzy logic r h no sim: RUBIS, real workloads X
[15] resource pressure model r&p h&v yes exp: RUBIS, real workload X
[7] response time, threshold triggered r h&v yes exp: RUBIS, synthetic workload X
[8] wavelets, resource demand prediction P h no exp: RUBIS, real workloads X
[9] load pattern extraction (FFT) p v no exp: RUBIS, real workloads X
[16] control theory, ARMAX r v no exp: GLFS, Volume Rendering X
[17] queueing network M/G/1-PS r h&v yes sim & exp: TPC-W, real workload X
[18] que. net. first: M/M/c, rest: M/M/1 p h no exp: RUBIS, synthetic workload X

migration of virtual machines. As there is no high demand
for migrations of micro-service instances, Chamulteon does
not support migration. In contrast to the evaluation/simulation
of the reviewed approaches, Chamulteon is evaluated with
different realistic experiment setups, resource demands, and
real-world traces.

Although a recent survey [12] highlights the importance
of combining reactive and proactive auto-scaling mechanisms,
most approaches can scale applications either proactively or
reactively. In contrast to existing hybrid auto-scalers (e.g.,
HybridScaler [15]) that combine reactive and proactive mech-
anisms, Chamulteon: (i) leverages long-term predictions from
time series analysis in combination with (ii) predictive models
from queueing theory, and also integrates a (iii) reactive
fallback mechanism. Due to these two integrated mechanisms,
Chamulteon has to resolve conflicts introduced by the different
decisions. The reviewed approaches do not explicitly address
this issue.

C. Challenges

In contrast to scaling applications with only one service,
the scaling of applications consisting of multiple services in-
troduces many more challenges. A short overview is discussed
in this section.

1) Auto-Scaling Challenges: When applying auto-scalers to
applications that consist of multiple services diverse challenges
arise. The first and most crucial challenge is which properties
to consider when scaling an application? The individual ser-
vices have their specific service demands, requirements for
scalability, and maximum capacity. All of these constraints
need to be considered when scaling the application in a
coordinated manner. The second challenge is the selection
and configuration of an auto-scaling approach? Most auto-
scalers found in the literature are either proactive or reactive.
Both approaches have specific advantages and disadvantages.
Proactive mechanisms can scale at an early stage of a load
spike. However, the workload forecasts they are based on
are not always reliable due to the uncertainty of forecasting
models. With reactive scaling, this uncertainty is eliminated
as all decisions are made based on actual measurements, but
such mechanisms can only react after an overload situation
occurs. In case an auto-scaler implements both proactive and

reactive mechanisms, the process of deciding based on which
mechanism the application should be scaled poses a crucial
challenge. Finally, another challenge is how auto-scalers that
employ both horizontal and vertical scaling can find a trade-off
between these two approaches to satisfy the demand?

2) Benchmarking Challenges: Various metrics are used to
quantify the scaling behavior of an auto-scaler such as cost,
system, and user-oriented metrics. While using the system
metrics in applications containing only one service is easy,
the usage becomes more difficult with applications containing
multiple services. For applications with one service, there is
only a limited number of possible configurations that can
be measured and quantified. In contrast, an application with
multiple services has [ n; possible configurations (n; is the
maximum allowed number of resources for service 7). So, it
takes a long time to measure and quantify each configuration.
Furthermore, there may be configurations that are equally
optimal regarding the served requests. Thus, the challenge
is how to find the optimal configurations for multi-service
applications?

III. THE CHAMULTEON APPROACH

We now present Chamulteon, a novel auto-scaling mech-
anism specifically designed to support the coordinated auto-
scaling of multi-service applications. Chamulteon is based on
our original auto-scaler Chameleon [2], which is a hybrid
proactive auto-scaler combining multiple different proactive
methods coupled with a reactive fallback mechanism. The
system consists of two independent cycles: (i) the reactive
cycle that monitors the application and scales reactively in
short intervals and (ii) the proactive cycle which predicts the
demand at longer intervals for a set of future scaling intervals.

In Section III-A, we highlight the changes and components
of Chamulteon. After that, we explain the decision-making
process. In Section III-C, the resolution of conflicts introduced
by the two cycles is explained. Finally, the assumptions and
limitations of Chamulteon are stated.

A. Redesign of the Original Chameleon

Chamulteon is based on a redesign of the basic architecture
and workflow of Chameleon for scaling single services, which
consists of four main components: (i) a controller, (ii) a
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Fig. 1. Components of Chamulteon.

performance data repository, (iii) a forecasting component,
and (iv) the service demand estimation component. The per-
formance data repository contains a time series storage and
an instance of a descriptive performance model of the dy-
namically scaled application based on the Descartes Modeling
Language (DML) [19], [20]. Figure 1 shows the architecture
of Chamulteon. The red lines show the reactive cycle; the blue
dashed lines depict the proactive cycle. The newly introduced
components, as well as the changed components, are high-
lighted with a green dotted line.

The first change compared to the original Chameleon is
the service management. This component allows Chamulteon
to make decisions for each service while taking each ser-
vice and its associated decisions into account. The decisions
are made with knowledge about the other services, so that
scaling can be triggered earlier on succeeding services. This
approach allows removing oscillations. Moreover, a Cost-
Awareness Component called Fox [21] has been added, which
is useful when running an application in a public cloud. This
component, if activated, reviews all decisions proposed by the
Controller and evaluates whether they are cost-efficient or not.
Currently, there are two implemented charging strategies that
are used by Amazon EC2 and the Google Cloud. Finally, the
forecasting component now leverages a hybrid decomposition-
based forecasting method Telescope [22], designed specifically
for auto-scaling use-cases.

1) Forecasting Component [2]: To enable proactive deci-
sions, the arrival rates for the next reconfiguration intervals are
forecast. To minimize the forecasting overhead, this compo-
nent is only called if an earlier forecast has no more predicted
values for future arrival rates or a configurable drift between
the forecast and the recent monitoring data is detected. The
drift is calculated based on the mean absolute scaled error
metric (MASE) [23].

2) Service Demand Estimation Component [2]: The Li-
bReDE library offers eight different estimation approaches for
service demands on a per request type basis [24]. We use
the estimator based on the service demand law to minimize
the estimation overhead. As input, the request arrivals per
resource and the average monitored utilization are required.

For complex service deployments, LibReDE requires structural
knowledge about the application deployment that is provided
by the DML performance model instance.

3) Cost-Efficiency Component: The cost efficiency compo-
nent, FOX [21], leverages knowledge of the charging model
of the public cloud and reviews the scaling decisions proposed
by the auto-scaler in order to reduce the charged costs to
a minimum. More precisely, FOX delays or omits releasing
resources to avoid additional charging costs if the resources
will be required again within the charging interval. By using
this review logic, the charging interval of each resource is
utilized as efficiently as possible.

4) Summary of the Redesign: To enable scaling of ap-
plications with multiple services, the main differences are
summarized: (i) The request arrival rates are only monitored
and forecast for the user-facing service. (ii) The amount of
requests arriving at each service is determined based on the
scaling decision for the predecessor service. (iii) For the
dynamic on-demand forecasting, we use a novel forecasting
method called Telescope [22]. This method is specifically
designed for such use cases; it has a reliable forecast accuracy
and a short time-to-result. (iv) The service management and
cost-awareness components are added as new components.

B. Decision Making Process

The decision making process consists of a proactive and
a reactive phase, invoked from corresponding proactive or
reactive monitoring cycles for predefined auto-scaling inter-
vals. Both cycles make decisions for each service based on
the theoretical queueing theory-based utilization p. Therefore,
Chamulteon transforms the instance of the DML performance
model into a product-form queueing network [19], [25],
whereby each service is modeled as an M/M/n/co queue.
As each service instance is mapped to exactly one resource
instance (e.g., container), the resource instance and the service
instance are interchangeable in the modeling perspective.
If the utilization exceeds/undershoots the predefined service
thresholds, the required number of instances is calculated.
After all decisions are made, they can further be adjusted for
cost-efficiency if the associated component is activated.

Algorithm 1 depicts the proactive decision finding for a spe-
cific predicted arrival rate and service. The decisions are made
based on the predicted arrival rate A, the estimated service
demand p, and the number of running instances n (lines 2—4).
The arrival rate for each service is estimated according to the
forecast. If the service is the user-facing service, the arrival
rate is equal to the predicted value. Otherwise, the predicted
arrival rate is estimated based on an invocation graph. This
graph is extracted from the DML model that also captures
the request types and their control flows. More precisely,
the algorithm checks whether there are enough instances to
process the incoming arrival rate for each service. If there
are too few resource instances, the arrival rate )\ is set to the
maximum arrival rate that can be served by the bottleneck
service. Otherwise, the arrival rate A is equal to the predicted
arrival rate (line 5).



Algorithm 1: Proactive decision logic.

1 Decision Logic for service s at time t in the future

2 A = getForecast(?);

3 = getAvgServiceDemand(s);

4 n = getNumlnstances(s);

5 A = estimateArrivals(\,s); // estimates future
arrival rates based on invocation graph

6 p= TA’”; // calc. the future avg. utilization

7 if p > p_upper then

8 while p > p_upper do

9 ‘ p = ﬁ; // calc. new avg. util.

10 n = min(n, maxInstances(s));

11 else if p < p_lower then

12 while p < p_lower do

13 ‘ p= ﬁ; // calc. new avg. util.

14 n = max(n, minlnstances(s));

15 return decision(n, s, t);

Based on this information, the service utilization is calcu-
lated (line 6). If the calculated utilization exceeds the upper
threshold, the number of required instances is computed using
the target utilization. If the predicted number of instances
exceeds the pre-set maximum allowed number of instances for
this service, the prediction is limited to the pre-set maximum
(lines 7-10). Analogously, if the calculated utilization falls
below the lower threshold, the number of required instances is
calculated based on the minimum allowed number of instances
for this service (lines 11-14). Differently than shown, the
safety clause for jumping out of both while loops is when
the maximum or minimum number of instances is reached.
Finally, a prediction with the number of required instances for
the specific time and service is returned.

C. Decision Conflict Resolution

As Chamulteon consists of a proactive and reactive cycle,
management of scaling decisions created by the two cycles
is required. That is, conflicts have to be resolved, and the
execution of the decisions has to be scheduled.

1) Scope Resolution: Each decision for a service has a
valid period in which no other decision is executed. Due to
the different reconfiguration intervals of reactive and proactive
cycles, there may be a reactive and proactive decision for the
same time interval. If the proactive decision is trustable and
wants to scale up or down, the reactive decision is omitted.
Otherwise, the proactive decision is skipped. In this context,
trustable is a threshold that refers to the model accuracy of
the underlying forecast on which the decision is based.

2) Time Resolution: As Chamulteon executes a new fore-
cast as soon as a drift between the last forecast and the mon-
itored arrival rates occurs, there may be proactive decisions
with different underlying forecasts for the same time period.
Assuming that decisions based on the newest forecast contain
more up-to-date information, all proactive events for the same
time period are skipped.

D. Assumptions and Limitations

We make the following explicit assumptions: (i) To obtain
good forecasts with a model of the seasonal pattern, the
availability of two days of historical data is required. With
less historical data, the forecasts contain only trend and noise
components resulting in a decreased accuracy and fewer proac-
tive scaling decisions. (ii) Chamulteon requires an external
monitoring component that collects the required values (e.g.,
the arrival rate). (iii) Chamulteon is currently focused on
request-based applications as it relies on the respective service
demand estimation models. (iv) The DML model has to be
either created manually or by use of an external tool. (v) Each
service instance is deployed on homogeneous resources.

IV. EVALUATION METHODOLOGY AND SETUP

In this section, we describe the evaluation methodology and
setup. First, the evaluation environment is described. Section
IV-B summarizes the considered application and respective
workloads. Afterwards, Section I'V-C introduces the competing
auto-scalers considered in the evaluation. We define the set
of elasticity and user-oriented metrics for evaluating and
comparing the different auto-scalers in Section I'V-D.

A. Evaluation Environment

The experiment setup consists of multiple components:
the benchmark application, a load balancer, the auto-scalers
under evaluation, and the load generator. Our experimental
environment is based on CloudStack?. CloudStack manages
virtualized KVM-server hosts and is running in a cluster of
11 identical servers (HP DL160 Gen9 with eight physical
cores @2.4Ghz and 32GB). Eight of them are reserved for
CloudStack with overbooking and hyperthreading deactivated.
The remaining three servers are used to host the load balancer
(Traeﬁk3), the CloudStack management system, Chamulteon,
and the other auto-scalers, as well as the load driver*. For the
evaluation, we use up to 20 virtual machines (Debian 4.9.110
with 2 vCPUs and 8 GB) on which either the application or
a Kubernetes (Rancher’ v2.1.0 + kubectl v1.11.3) cluster are
deployed. Within the Kubernetes cluster, we run up to 120
Docker (v17.03.2-ce) containers.

B. Workload and Application

We use two existing traces from real-life systems to generate
representative load intensity profiles: (i) The BibSonomy trace
consisting of HTTP requests to servers of the social book-
marking system BibSonomy [26] during April 2017. (ii) The
German Wikipedia® trace containing the page requests to all
German Wikipedia projects during December 2013. For a
feasible experiment run duration, we pick a selected subset
from the traces covering one day and accelerate them to last
either an hour or six hours. Due to the fast provisioning times

2CloudStack: https://cloudstack.apache.org/

3Traefik: https://traefik.io/

4Load-Gen.: https://github.com/joakimkistowski/HTTP-Load-Generator
SRancher: https://rancher.com/

SWiki Source: https://dumps.wikimedia.org/other/pagecounts-raw/2013/



of Docker containers, measurements covering one hour are
sufficient. In contrast, for the VM setup, the experiments are
longer and cover 6 hours.

The stressed benchmark application represents a lightweight
micro-service application with three different services: (i) Ul
service, (ii) validation service, and (iii) data service. The
application is written in Java and is deployed on a Tomcat
server (v8.5). The load generator requests data by sending
HTTP requests to the Ul service. The UI forwards each request
to the validation service for checking its validity. After that,
the request is redirected to the data service. This service
provides the requested data and sends the response to the Ul
for rendering the content. On average, for each request, the Ul
service needs 0.059 seconds, the validation service needs 0.1
seconds, and the data service needs 0.04 seconds to process
the request. These values are determined with LibReDE (c.f.
Section III-A2) and represent the service demand of requests
for each service. The service demand captures the average time
required from each service for processing a request, excluding
any waiting times. That is, the UI can handle up to 17 requests
per second, the validation service ten requests per second, and
the data service 25 requests per second.

C. Competing Auto-Scalers

For the evaluation, we select five representative auto-scalers
that have been published in the literature over the past decade
(2008 [5], 2009 [3], 2011 [6], and 2012 [4]). The auto-scalers
can be grouped into two classes: (i) auto-scalers that build
a predictive workload model based on long-term historical
data [5], [6] and (ii) auto-scalers that only use recent history
to make auto-scaling decisions [3], [4]. In the remainder of
this section, we describe each of these in more detail.

Each auto-scaler is called periodically and receives a set
of input values and returns the amount of resources (number
of service instances) that have to be added or removed. The
input consists of the following parameters: (i) the accumulated
number of requests during the last interval, (ii) the estimated
service demand per request determined by LibReDE as used
in Chamulteon, and (iii) the number of currently running
instances. The competing auto-scalers are available online’.
We used the default configurations, which are also used in a
simulative evaluation [27].

As these auto-scalers are not designed to scale applications
with multiple services, we extend these auto-scalers to enable
scaling such applications. For each service, we deploy an
instance of the associated auto-scaler. Further, we adjust the
arrival rates at each service. That is, the first service receives
the actual observed request rate as input. As inputs for the sec-
ond and third instances, the number of requests are calculated
using the following formula, where r(i) is the request rate at
service ¢, n(i) is the number of instances of service ¢, and s(i)
is the service rate at service <.

ifi=0
if7i>0

measured arrival rate

"= \minr(i — 1).n(i ~ 1) 566~ 1)

7Competing auto-scalers: https:/github.com/ahmedaley/Autoscalers [27]

Hence, the request rate at the second and third service is
calculated as the minimum of the request rate at the preceding
service and the number of service instances of the predecessor
service multiplied by the service rate per instance. Thus, if the
capacity of the predecessor service is exceeded, the maximum
request rate this service can handle is forwarded to the next
service. If the service does not operate at full capacity, the
arriving request rate is forwarded to the next service.

1) React: In 2009, Chieu et al. [3] presented a reactive
scaling algorithm for horizontal scaling. React provisions VM
instances based on a threshold or a certain scaling indicator
of the web application. The considered indicators include: the
number of concurrent users, the number of active connections,
the number of requests per second, and the average response
time per request. React monitors these indicators for each VM
and calculates the moving average. Afterwards, the number of
active VM instances (i.e., with active sessions) above or below
the given threshold is determined. Then, if all VMs have active
sessions above the threshold, new web application instances
are provisioned. If there are VMs with active sessions below
the threshold and with at least one VM that has no active
session, idle instances are removed.

2) Adapt: Ali-Eldin et al. [4] propose an autonomic elas-
ticity controller that changes the number of VMs allocated
to a service based on both monitored load changes and
predictions of future load intensity. We refer to this technique
as Adapt. The predictions are based on the rate of change
of the request arrival rate, i.e., the slope of the workload,
and aims at detecting the envelope of the workload. The
designed controller adapts to sudden load changes and prevents
premature release of resources, reducing oscillations in the
resource provisioning. Adapt tries to improve the performance
regarding the number of delayed requests and the average
number of queued requests, at the cost of some resource over-
provisioning.

3) Hist: Urgaonkar et al. [5] propose a provisioning tech-
nique for multi-tier web applications. The proposed method-
ology adopts a queueing model to determine how much re-
sources to allocate in each tier of the application. A predictive
technique based on building Histograms of historical request
arrival rates is used to determine the amount of resources to
provision at an hourly timescale. Reactive provisioning is used
to correct errors in the long-term predictions or to react to
unanticipated flash crowds. We refer to this technique as Hist.

4) Reg: Igbal et al. propose a regression-based auto-scaler
(hereafter called Reg) [6]. This auto-scaler has a reactive
component for scale-up decisions and a predictive component
for scale-down decisions. When the capacity is insufficient,
a scale-up decision is taken and new VMs are added to
the service in a way similar to React. For scale-down, the
predictive component uses a second order regression to predict
future load. The regression model is recomputed using the
complete history of the workload each time new measurement
data is available. When the current load is lower than the
provisioned capacity, a scale-down decision is taken using the
regression model.



D. Evaluation Metrics

To compare and quantify the performance of different auto-
scalers, we use a set of both system- and user-oriented metrics.
The system-oriented metrics consist of elasticity metrics [28].
As user-oriented metrics, we report the percentage of SLO
violations, and the user satisfaction reflected by the application
performance index.

When using only individual metrics for judging the perfor-
mance of auto-scalers, the results can be ambiguous. Hence,
we define the auto-scaling worst-case deviation of each auto-
scaler from the theoretically optimal auto-scaler. Each elastic-
ity and aggregate metric is explained in the remainder of this
subsection. For the following equations, we define: (i) 1" as the
experiment duration and the current time as t € [0, 77, (ii) s;
as the resource supply at time ¢, and (iii) d; as the demanded
resource units at time ¢. The demanded resource units d; is
the minimal amount of resources required to meet the SLOs
under the load intensity at time ¢. At denotes the time interval
between the last and the current change either in demand d or
supply s. The resource supply s; is the monitored number of
running resources at time t.

1) Provisioning Accuracy 60y and 0o [28]: These metrics
describe the relative amount of resources that are under-
provisioned or over-provisioned during the measurement inter-
val, that is, the under-provisioning accuracy 6y is the amount
of missing resources required to meet the SLO in relation
to the current demand normalized by the experiment time,
whereas, the over-provisioning accuracy 6o is the amount
of resources that the auto-scaler supplies in excess of the
current demand normalized by the experiment time. Values
of this metric lie in the interval [0, 00), where O is the best
value and indicates that there is no under-provisioning or over-
provisioning during the entire measurement interval.
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2) Wrong Provisioning Time Share Ty and 7o [28]: These
metrics capture the time in percentage, in which the system is
under-provisioned or over-provisioned, during the experiment
interval, that is, the under-provisioning time share Ty is the
time relative to the measurement duration, in which the system
has insufficient resources, whereas, the over-provisioning time
share 1o is the time relative to the measurement duration, in
which the system has more resources than required. Values
of this metric lie in the interval [0, 100]. The best value O is
achieved when no under-provisioning or no over-provisioning
is detected within a measurement period.
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3) Auto-scaler Worst-Case Deviation s: As described be-
fore in Section II-C2, the benchmarking of auto-scaling for
applications with multiple services is challenging. To face
the issue of how to compare system elasticity in a setting
with multiple different services, we introduce the auto-scaler
worst-case deviation ¢ metric. The basic idea is to compare
the auto-scalers with respect to their worst behavior across
all services. This makes sense since the services depend on
each other and the system performance is limited by the
worst service performance. In other words, the worst elasticity
metrics across all services are considered.

In a first step, the elasticity metrics for each service
S1,...,8n are calculated. Then, for each metric the worst
performance across all services is selected:

Tu = max(Ty,s,),  To = max(To,s,)

Oy == maz(0ys,), Oo:=maz(0o,s,)

In order to calculate the deviation, we calculate the overall
worst-case provisioning accuracy 6 and the overall worst-case
wrong provisioning time share 7. We then calculate the average
for both metrics consisting of both components:

A éU + éo
0[%)] = —

Tu + 7o

#9%) =

In the last step, we compute the Euclidean distance to de-
termine the worst-case deviation of the considered auto-scaler
from the theoretically optimal auto-scaler. As the theoretically
optimal auto-scaler is assumed to know when and how much
the demanded resources change, the values for worst-case
provisioning accuracy 6 and worst-case wrong provisioning
time share 7 are equal to zero. In other words, if an auto-
scaler is compared to the theoretically optimal auto-scaler, the
Euclidean norm can be used.

%) = 10,7) — (0,0)l2 = (B, 7)1 = /62 + 72

4) Application Performance Index [29]: The Apdex (ap-
plication performance index) is an open standard measure
developed by a consortium of companies that measures user
satisfaction on a uniform scale of 0% to 100%. The best value
of 100% is achieved when all requests are served within the
agreed response time (SLO). In addition to the SLO violations
that reflect whether a request is served within the required time
frame, this metric can be used to provide additional insight on
how bad the violations are from a user’s perspective. For the
calculation, we define: (i) v as the number of satisfied requests,
i.e., requests within the SLO. (ii) € as the number of tolerating



requests, i.e., requests that exceed the SLO within a toleration
interval. (iii) {2 as the number of total requests.
v+0.5-¢€
Q
V. EXPERIMENT RESULTS

Apdex|%] :=

In this section, we benchmark Chamulteon against the other
auto-scalers. Section V-A explains how to interpret the results
of the measurements. In Section V-B, we compare the auto-
scalers in the virtual machines and Docker container setups.
Afterwards, the scalability of the auto-scalers is investigated
in Section V-C. Section V-D concludes the evaluation with a
list of key findings. Finally, we discuss threats to validity.

A. Introduction to the Results

Before discussing the results, we introduce the experiment
format: Figure 2 shows the Wikipedia trace scaled by Reg.
The first three plots in the figure show the scaling behavior
for each service; the bottom plot shows the request evaluation
from the SLO perspective. For each plot, the x-axis shows the
time of the measurement in seconds. In the scaling plots, the
amount of demanded resources is depicted as a blue dashed
curve and the amount of supplied resources as a red curve. In
the request evaluation plots, the requests sent per second are
depicted as a blue dashed line and the requests that are served
within the SLO response time as a green line.

We showed this figure as it is a good example of the
bottleneck shifting mentioned above. While the first service
is scaled after 60 seconds to satisfy the demand, the second
service is scaled 60 seconds later, and the last service 120
seconds later. This behavior can be explained as follows: in the
first 60 seconds, the first service can handle a lower number
of responses and thus, the underlying services also receive
fewer requests. After the first service is scaled, the second
service cannot handle all received requests, and therefore,
the last service again receives a lower number of requests.
This effect can be seen until 900 seconds as the resource
supply for each service is increasing slower than the pre-
vious service supplies. Similar to the observations in the
articles [2], [27], [30], Reg exhibits a high rate of oscillations
(between second 1000 and 1600) that cannot be explained.
After second 2000, Reg tends to over-provision without any
oscillations. In contrast, Figure 3 shows the scaling behavior of
Chamulteon. In this and the following experiments, the cost-
component is deactivated. The scaling behavior of Chamulteon
exhibits neither bottleneck shifting nor oscillations. Due to the
configuration of Chamulteon, the system is always allocated
slightly more than the required amount of resources, and thus
almost all requests can be served within the SLO. Note that
during the whole experiments, the cost-awareness component
is deactivated. On the one hand, we want to investigate and
compare the scaling performance of Chamulteon. On the other
hand, the component was evaluated in our previous work [21].

The scaling performance of Reg and the other auto-scalers
is shown in Table II. Each column shows an auto-scaler
and each row represents a metric: the average provisioning

accuracy (fy and fp) and the average wrong provisioning
time share (Ty and 7o) for each service, the auto-scaler worst-
case deviation ¢, the SLO violations, and the user satisfaction
(Apdex). Due to the bottleneck shifting and the oscillations,
Reg exhibits the worst 0y (15.3%) and also the worst 7
(52.2%). These metrics are also reflected by the highest SLO
violations (37.3%) and the lowest user satisfaction (31.1%).
Ir
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Fig. 2. Scaling behavior of Reg on the Wikipedia trace.
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Fig. 3. Scaling behavior of Chamulteon on the Wikipedia trace.

B. Docker vs. VM Scaling

In this section, we evaluate how well Chamulteon scales
different setups in comparison to the other auto-scalers. In the
first scenario, the application was deployed on Docker (with up
to 120 containers), and due to the fast container provisioning



TABLE II
EVALUATION ON WIKIPEDIA TRACE (DOCKER).

Metric Chamulteon Adapt Hist Reg React
EU 3.7% 12.6%  7.0% 153%  5.3%

0o 29.3% 102%  32.1% 8.8% 13.1%
TU 14.9% 347%  25.6% 522%  23.6%
To 84.4% 549%  69.4% 412%  69.7%
S 52.9% 50.6%  58.1% 52.9%  50.3%
SLO 6.2% 242%  12.5% 373% 11.2%
Adpex  77.7% 51.6% 67.8% 31.1% 72.8%

times, the application was scaled every minute. Further, the
application was stressed for one hour. In the second scenario,
the application was deployed on virtual machines (with up
to 20 VMs); it was scaled every 2 minutes and stressed for
6 hours. In other words, the scenarios differ in the amount
of scaling instances, the scaling interval, and the experiment
duration. The results are shown in Table II for Docker and in
Table III for the VM scenario.

In the Docker scenario, Chamulteon exhibits the best 8y
and Ty followed by React. However, Chamulteon has the
second worst §p and worst To. This is because Chamulteon
is configured to slightly over-provision to achieve good user
metric values. As discussed in Section IV-D focusing on
individual elasticity metrics may lead to ambiguous results,
we compare the auto-scalers based on the aggregated metric .
React achieves the best value for ¢ and is slightly better
than Chamulteon. However, Chamulteon has the lowest SLO
violations and the highest user satisfaction. In contrast to
the first scenario, in the second scenario (VM), React and
Chamulteon swapped in the ranking for the basic elasticity
metrics. Accordingly, React exhibits the best 6, 7r7, SLO
violations, and user satisfaction metrics followed closely by
Chamulteon. While the best ¢ is achieved by Reg, the worst
performance is achieved by React due to its high 7. That is,
almost during the entire measurement period, React keeps the
system in an over-provisioned state.

In summary, React and Chamulteon have achieved the best
user-oriented metrics with distance to the other auto-scalers.
However, taking ¢ and the user-oriented metrics into account,
Chamulteon shows only a slight deviation from the winner,
React has by far the worst value for ¢ in the second scenario.
That is, Chamulteon delivers more robust performance in both
scenarios compared with React.

C. Scalability

In this experiment, we stressed the application, which was
deployed in Docker, with the BibSonomy trace while scaling
the demand. In the first scenario, the application required at
maximum 120 containers and in the second 60 containers.
The results are shown in Table IV for the small setup and
in Table V for the large setup. Independent of the scale,
Chamulteon achieves for both experiments the best Oy, Tu,
SLO violations, and user satisfaction metrics. In the small
setup, React has the worst ¢, but the second best SLO violation

TABLE III
EVALUATION ON WIKIPEDIA TRACE (VM).

Metric Chamulteon Adapt Hist Reg React
éU 0.9% 9.7% 4.5% 7.3% 0.2%
0o 15.6% 6.0% 239% 102%  47.5%
TU 3.0% 31.0% 157% 24.0% 0.8%
To 60.6% 157% 38.7% 24.0% 94.1%
S 37.0% 349%  37.1% 348% 57.8%
SLO 2.0% 191%  5.1% 126%  1.0%
Adpex  83.2% 30.7%  69.8% 503%  92.0%
TABLE IV

EVALUATION ON BIBSONOMY WITH SMALL SETUP.

Metric Chamulteon Adapt Hist Reg React
Oy 2.0% 9.7% 543% 11.0% 3.5%

o 19.1% 9.3% 189% 4.9% 14.9%
TU 7.4% 40.6% 23.8% 427% 14.5%
To 78.8% 40.7%  612% 323% 68.5%
S 47.4% 50.1%  48.77% 48.7%  56.1%
SLO 7.3% 178% 119% 23.4% 10.5%
Adpex  90.5% 79.8%  84.6% T1.2% 81.5%

and user satisfaction. Concerning the user metrics, Hist is
slightly worse than React. In the large setup, Hist has the
second best SLO violations and user satisfaction followed by
React. In both setups, Reg has the worst user metrics.
Regarding scalability, Chamulteon (8.97%) has the lowest
relative deviation between both setups, followed by Hist
(13.57%). The highest difference has React with 43.88%.

D. Summary of Evaluation Findings

We conducted four different sets of experiments to investi-
gate the auto-scaling performance. We varied the deployment
(Docker vs. VM), the scale (20, 60 and 120 instances), and
the used workload trace (Wikipedia vs. BibSonomy). We
summarize the main findings of our evaluation as follows:

1) Chamulteon exhibits in three out of four experiments the
best user-oriented metrics and in two the best worst-case
auto-scaling deviation. In the remaining experiments,
Chamulteon achieves the second best values. Concerning
scalability, Chamulteon exhibits a relative deviation of
only 8.97%. In contrast to the other auto-scalers, the

TABLE V
EVALUATION ON BIBSONOMY WITH LARGE SETUP.

Metric Chamulteon Adapt Hist Reg React
1% 2.4% 175% 5.9% 154%  5.6%

o 19.5% 7.7% 24.6%  4.6% 9.4%

TU 6.9% 50.8%  283% 554%  32.6%
To 89.7% 389% 657% 36.0% 55.1%
S 51.4% 558%  56.1% 59.1% 53.3%
SLO 9.6% 332% 129% 363% 153%
Adpex  77.1% 428%  754% 352% 74.1%




bottleneck shifting effect could not be observed when
using Chamulteon.

2) Although React is a reactive auto-scaler, it achieves in
two experiments the second best user-oriented metrics.
However, React tends to strongly over-provision the
system and differs in scalability by 43.88% between the
small and large scenario.

3) Hist also exhibits in two experiments the second best
user-oriented metrics due to its tendency to over-
provision. With respect to scalability, Hist exhibits the
second lowest deviation.

4) Reg and Adapt tend to under-provision and thus, exhibit
the worst user-oriented metrics.

E. Threats to Validity

Although our experimental analysis covers different scenar-
ios and we compare different auto-scalers, the results may not
be generalizable to other types of applications or to closed-
source auto-scalers. In principle, for the evaluated competing
auto-scalers, a comparable behavior has been observed in the
related work on auto-scaler evaluation [2], [27], [30].

In our evaluation, we employed for each service the same
auto-scaler. Indeed, it is possible to use different mechanisms
for each service. However, the selection of the scalers and
the order in which they are used is a crucial part. Thus, even
though in theory by experimenting with different combinations
of auto-scalers in different orders, one may achieve better re-
sults, in practice, finding an optimal configuration is extremely
challenging, and one has no guarantee that this configuration
would remain static as the system and workload evolve.

As Chamulteon is intended to prioritize satisfying the user,
the experiments show a slight over-provisioning. This behavior
seems to be contrary to the cost-efficiency approach, but in
our evaluation, the cost-awareness component was deactivated.
Moreover, in our context, cost-efficiency is not equivalent
to using as few instances as possible. The cost-awareness
component tries to use the accounted instances as efficiently
as possible. For example, in the case of an hourly charging,
resources would not be released if they are paid and might be
needed again in a few minutes to avoid paying double costs
for the same resources.

To reduce the risk of a bias in the evaluation, we used
an established set of metrics: (i) user-oriented metrics such
as the SLO violation and Adpex and (ii) system oriented
metrics that are officially endorsed by SPEC [11]. Also, our
own worst-case auto-scaling deviation judges over- and under-
provisioning equally, not introducing customizable weights
that may be configured in a way to favor a given auto-scaler.

VI. CONCLUSION

In this article, we presented Chamulteon, a novel auto-scaler
for coordinated auto-scaling of applications with multiple ser-
vices. Chamulteon is a fundamental redesign of our previously
proposed hybrid auto-scaler Chameleon.

Chamulteon combines forecasting and service demand es-
timation, which is enriched with application knowledge cap-
tured in a descriptive software performance model. The service

demand estimation is implemented by integrating established
open-source tools developed as part of our previous work.
The forecasting of arriving requests is realized by a hybrid
decomposition based method specifically designed for auto-
scaling scenarios. In the evaluation, we employ a set of SPEC-
endorsed elasticity metrics, in addition to metrics capturing the
user’s perspective. We compare Chamulteon against existing
popular auto-scalers.

We employ a micro-service-based benchmark application
deployed either on VMs or in Docker containers in our
private cloud. To emulate realistic workloads, we use two real-
world load profiles. In the experiments, we investigate the
scalability of the auto-scalers and their scaling behavior on
different deployments. For the other auto-scalers, we observe
typical scaling behavior characteristics. Chamulteon achieves
in three out of four experiments the best user-oriented metrics
and in two experiments the best elasticity metrics. In the
remaining experiments, Chamulteon exhibits the second best
metric results. Also, Chamulteon exhibits the lowest variation
between the different setup sizes.

We see potential to extend our proposed Chamulteon auto-
scaler, first, by adding support for vertical and nested auto-
scaling. The vertical scaling could be combined with horizon-
tal scaling, where a decision logic can evaluate which scaling
direction is more efficient. Therefore, a separate cost function
needs to be added. Deciding between the two options would
require a significant extension to the decision logic that may,
for example, be solved with machine learning. Auto-scaling on
nested resource layers, for instance, the possibility of adding a
new VM or adding a new container in an existing VM, poses a
new challenge on its own. Second, the request rate at preceding
services is calculated regarding their capacity and the actual
request rate arriving at the considered service. Currently, the
return path is not considered. If the first service is scaled
so that the request rate can be processed, but the maximum
capacity is exceeded at a preceding service, this information
is not passed to the first service. If this information would be
provided to the first service, the auto-scaler could scale down
to the maximum capacity of the bottleneck resource and save
instance time. Third, besides the existing cost-awareness com-
ponent, it is possible to add another component responsible
for optimizing energy consumption. This component should
monitor the energy consumption and execute voltage scaling,
e.g., by tuning the CPU frequency or stopping virtual machines
in exchange for a higher CPU frequency. The overall target of
this component should be to minimize the energy consumption
of the whole application.
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