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ABSTRACT
Cyber-physical systems (CPSs) are used in various applica-
tion fields. In those, multiple CPSs can cooperate by exchang-
ing information (processed sensor data, derived data, etc.)
to fullfill a task. Thus, cyber-physical networking plays an
essential role. The communication in a cyber-physical net-
work (CPN) as well as with the local sensors and actuators
is complex. The applications of CPSs may use different pro-
gramming abstractions, e.g. callbacks, streams, etc. for the
interaction. Also CPNs are used in changing environments.
Thus, they are afflicted with dynamic non-functional require-
ments. Due to this, an adaptive communication is important
to enforce the resulting Quality of Service (QoS) constrains.
Classical middleware architectures do not cover all of these
aspects. In this paper we propose an architectur for a mid-
dleware that is designed to the needs of cyber-physical net-
working. Therefore, we strive to integrate multiple program-
ming abstractions and communication protocols in an easy
to use middleware. Also, we focus on the QoS-aspects of the
communication to sensors, actuators and other CPS. Those
constrains require an end-to-end view of system and a com-
munication architecture that adapts to the changing available
communication infrastructure in CPNs and correspondingly
in CPSs. Therefore, this approach eases the development,
test and maintenance of CPSs and CPNs.
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1 INTRODUCTION
Cyber-physcial systems (CPSs) are omnipresent these days.
For example they can be found in smart home environments,
remote patient monitoring or traffic management. Those
systems offer support in our daily routines. Today, CPS are
mostly no longer isolated. Several CPS have to cooperate to
achieve their goals. For this, communication between differ-
ent CPSs, e.g. various cars or home environment systems,
is necessary. Thus, cyber-physical networking plays an in-
creasingly important role.
A cyber-physical network (CPN) is formed by several CPSs
that are linked to the physical environment by sensors and
actuators. These systems are typically coupled by a network
and cooperate in order to fulfill a task. Therefore, they ex-
change processed sensor data and share information that
changes their execution including the control of actuators.
The interaction over a CPN as well as with the local sensors
and actuators is constrained by non-functional requirements
e.g. latency and deadlines. Furthermore CPSs are used in
changing environments. In those the communication band-
width can vary and other CPSs can appear or vanish any
time. Due to this an adaptive communication is important
to enforce Quality of Service (QoS) constrains. In addition,
applications of CPSs may use different programming abstrac-
tions, such as streams, remote procedure call (RPC), callback
or event-based approaches. As a result, the development,
testing and maintenance of CPSs and CPN is rather complex.
To relieve the system designers and to provide interoperabil-
ity, a middleware which combines the mentioned aspects in
a uniform way is needed.
Therefore, this paper has two contributions: First, we show
the lack in the usability of classical middleware architecures
for CPS. Furthermore, deficiencies in existing CPS middle-
ware are identified. Second, we consequently will present an
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architectural approach which closes the gap between classi-
cal middlewares and CPSs.
The paper is structured as follows: Section 2 discusses related
work. Following, Section 3 describes research challenges aris-
ing in the domain of CPSs. To tackle these challenges, Section
4 presents our concept for a CPNmiddleware which operates
within specified QoS bounds. Finally, Section 5 concludes
this paper with a summary and future work.

2 RELATEDWORK
As computing devices became more and more mobile, the
research area of CPSs emerged out of the areas of Perva-
sive/Ubiquitous Computing and developments in the Internet-
of-Things (IoT) domain. The connection to the physical world
by sensors and actuators in combination with a distributed
heterogeneous system is a big challenge. A classical middle-
ware like CORBA (Common Object Request Broker Archi-
tecture) allows to map interface specifications to different
programming languages and the interoperable inter-orb pro-
tocol (IIOP) provides interaction across different platforms
with respect to programming languages and operation sys-
tem [14]. Therefore, CORBA in combinition with IIOP can
be used for the development and deployment of applica-
tions in distributed heterogeneous environments but there
is no interaction to the physical world provided. This also
holds true for other classical middleware approaches like e.g.
DCOM [9], .NET [10] and Java RMI [8].
Self-organizing middleware architectures have been re-
searched in the frame of the Organic Computing initiative
[12]. There, bio-inspired principles are used to acquire so-
called self-x capabilities. The OCµ respectively AMUN mid-
dleware [11] as well as the AHS [15] rely on artificial hor-
mones. In contrast, the CARISMA middleware [6] uses an
agent based approach featuring the ContractNet protocol.
All these middleware architectures mainly deal with self-
organizing task distribution. CPS aspects like sensor and
actuator communication were no research focus there.
The connection of the physical world and computation de-
vices regard new challenges for systems, especially real-time
communication, context-awareness, adaptiveness, hetero-
geneity of devices and communication channels, scalability,
or security [1–3]. As a result, the landscape of cyber-physical
middlewares is diversified. The existing middlewares focus
on different aspects.
Zhang, Gill, and Lu present an extension of the TAO middle-
ware for timing aspects [16]. There, each functionality is seen
as a sequence of events and scheduled to devices by a central
scheduler. However, the authors do neither further stress the
communication functionality nor adaptation and communi-
cation aspects. RDDS offers a publish/subscribe based data

distribution middleware supporting semantic aware com-
munication [4]. Further, this approach enables reactive and
proactive adaptations to keep QoS bounds. Nevertheless, it
does not offer programming abstractions and is focused on
data dissemination rather than communication itself. iLAND
enables time-bound reconfigurations of service-oriented soft
real-time systems [1]. It offers reconfiguration graphs and
paths for service compositions and discovery but neglects to
cover specifics of the communication channels for enabling
QoS-bounded communication. In [7], the authors extend the
Flexible Time-Triggered (FTT) paradigm by a middleware
architecture called FTT-MA. FTT-MA focuses on scheduling
and resource management for dynamic reconfiguration at
runtime. A very first prototype was implemented in CORBA.
However, FTT-MA neglects communication specifics.
None of the presented works address multiple aspects (real-
time communication, context-awareness, adaptiveness, het-
erogeneity of devices and communication channels, scala-
bility, security) at the same time which is vital for a CPN
middleware.

3 RESEARCH CHALLENGES
In this paper we want to propose a concept for a middleware
that is designed to the needs of cyber-physical networking,
hence, networking between CPSs. It differs from existing
approaches as it strives to integrate communication with the
physical word via sensors and acutators and QoS constrained
communication with other cyber-physical devices into one
middleware framework. To achieve this, we have to address
multiple challenges in the CPSs development at the same
time. For instance, the QoS-bound communication in CPSs
and the communication to sensors and actuators requires an
end-to-end view of the systems. Therefore, an approach that
not only controls the network connection but also includes
scheduling aspects, data dissemination, and adaptation of
applications, devices and network connections is necessary.
CPSs are usually build of three components[2]:
(1) Sensors and actuators: The connection between cy-

ber world and physical world
(2) System and application software
(3) Communication network: The connection between

CPSs
Whereas most of the research concentrates on the first two
components, we want to concentrate on cyber-physical net-
working. A CPN is shown in Figure 1. In this network, every
CPS is linked to its sensors and actuators. In order to fullfill
a task, the CPSs cooperates by exchanging information (pro-
cessed sensor data, derived data, state information etc.), that
changes their execution including the control of actuator, via
a network. An application example of a CPN in the field of
Ambient Assisted Living (Smart Home) is shown in Figure 2.
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Figure 1: A Cyber-Physical Network containing sev-
eral Cyber-Physical Systems

The task of this CPN is to monitor and regulate the health
condition of a patient, e.g. by a pacemaker and a blood sugar
regulator. In order to fulfill this task, multiple CPSs (blue
boxes) cooperate with each other. Doing so, the overall sys-
tem can detect several different health issues by consulting
local or more advanced global health knowledge and react
accordingly to keep the patient as healthy as possible (im-
mediate detection and reaction to critical issues, emergency
calls, automated detection of long term issues, automated
consultation of a human doctor etc.). The interaction over
a CPN as well as with the local sensors and actuators is
constrained by non-functional requirements. For instance
the loss of values has to be prevented. Therefore, sampling
rates to the sensors have to be guaranteed as well as reaction
time has to stay in bounds when a sensor signals data. The
same holds true for controlling actuators where deadlines
have to be guaranteed. Due to this, different assurances for
applications for receiving and delivering data are important.
Besides best-effort services, these may be classified in:

• Periods
• Deadlines
• Reaction time

In addition applications may use different programming ab-
straction, namely the following:

• Streams
• Remote procedure call (RPC)
• Callback
• Event-based communication

All these communication types and programming abstrac-
tion can also be seen in the example in Figure 2.
Furthermore, the surrounding conditions of CPSs, and re-
spectively the networks of CPSs, can change during runtime.
For example the position of the sensors and actuators can

move, e.g. a moving patient being monitored and tracked,
a moving car or robot. Additionally, the available commu-
nication infrastructure, e.g. the bandwidth, can vary. This
for instance can happen when a patient is moved and there-
fore his communication is switched from fast Home-WLAN
connection to a slow mobile connection. Also CPSs can dy-
namically vanish (out of reach or failure) and appear (within
reach) in the CPN. As a result, adaptive communication plays
a major role to enforce QoS constrains. Besides this QoS con-
strains in CPNs, several other challenges for CPSs/CPNs can
be found, e.g. interoperability, robustness and dependability
[1–3]. In our example in Figure 2 the life of the patient can
be dependent of the system functionality. Thus, the system
needs a fail-operational behavior. Also the different compo-
nents (CPSs) have to cooperate by exchanging information
and using this information to provide the specified services.
Consequently, a system designer has an ambitious job if he
wants to consider all possible requirements, programming
abstractions and challenges, when working with CPSs and
correspondingly with CPNs. In this paper, we present our
concept of a CPN middleware, as depicted in Figure 3, which
simplifies the development, testing an maintenance of CPSs
and CPN by integrating interfaces to several programming
abstractions, offering end-to-end QoS guarantees and adapts
the communication to changing conditions.

4 ARCHITECTURE
Figure 3 shows the architecture of our CPN middleware.
There are four possible scenarios for the communication in
a CPN:
(1) Communication between an application a and an ap-

plication b in the same CPS
(2) Communication between an application a in a CPS to

its sensors/actuators
(3) Communication between an application a in CPS 1 to

another application b in CPS 2
(4) Communication between an application a in CPS 1 to

the sensors/actuators of another CPS 2
As the environment is dynamic and the conditions of the
system can change constantly even when the communica-
tion is already in progress, an end-to-end view of the system
is required for QoS-bound communication. Every presented
scenario can have non-functional requirements like dead-
lines, periods and reaction times. Therefore, the presented
architecture offers an easy-to-usemodeling approach for QoS
constraints of the applications by providing the possibility to
define the requirements for the end-to-end communication.
This can be either implemented by interface parameters or by
aspect oriented programming techniques. The compliance of
the time-bounds is observed and managed by the MAPE-K
loop [5], which is a central component for the adaptation
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Figure 2: Application example of a CPN in the field of Ambient Assisted Living (Smart Home)
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Figure 3: Architecture of our Cyber-Physical Networking Middleware

in this approach. The MAPE-K cycle is a feedback control
loop which was first introduced by IBM and can be seen as
architectural blueprint for autonomic computing. Therefore,
it can be realized in many different ways using techniques
from e.g. artificial intelligence. It has five essential functions:

(1) Monitor:Observation of the details from themanaged
resources

(2) Analyse: Analysis of the monitored data
(3) Plan: Planning of the actions needed to achieve the

objectives
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(4) Execute: Change the behavior of the managed re-
sources based on the actions recommended by the
plan function

(5) Knowledge: Knowledge about current and past data,
strategies, etc. to manage the resources successfully

Due to the end-to-end nature of the QoS constrains, this
loop not only has to act locally, but as well in coordination
with MAPE-K loop of other middleware instances. This can
happen by monitoring the actual values of local and global
communication properties (communication requirements:
available data bandwidth, communication time, ping time,
etc.) and comparison of them to their set values. Afterwards
the needed actions (adjustment of the communication param-
eters and communication channels, dislocation of functions
and dropping of unnecessarily functions) to keep the defined
QoS-constrains can be planed and executed. The output of
the execute stage finally controls the communication parame-
ters of the scheduler in our middleware, which is responsible
for marschalling the programming abstraction, prioritizing
the resulting messages, preempt lower priority messages,
etc. A possible realization of the analyze and plan stages of
the MAPE-K loop is to extend the concept of learning classi-
fier systems[13]: the distributed learning classifier systems
(DLCS). Figure 4 shows the basic principles of such a system.
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(local actions, 
global actions) 

(Software-)Sensors (Software-)Actuators 

CPN

6. Modify 2. Select matching rules 3. Select best actions
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Figure 4: Distributed Learning Classifier Systems

Starting from the monitor stage, the current system condi-
tion (e.g. a current response time) is retrieved and compared
to a rule set. This rule set consists of local rules only valid
for this CPS and global rules valid for the entire CPN. Rules
matching the condition are selected and written to the rule
set. From this, the actions of the best matching and rewarded
rules are written to the action set. Action can contain local
actions only executable in this CPS or global actions which
can be executed in the entire CPN. The best actions are then
executed. The result is monitored and the reward for the ap-
plied rules is updated (increased if positive result, decreased
if negative result). Furthermore, new rules can be created

by genetic algorithms. The big advantage of DLCS is the
low resource demands, which are suitable for CPS with low
computational resources.
The adaptation to the changing environment has to be au-
tomatic and autonomous. Therefore, we use concepts from
the field of self-adaptive systems. We have decided to rely
on the MAPE-K cycle because it very well fits our architec-
ture and has be proven to be effective in self-management
of distributed systems. This approach even offers the possi-
bility to schedule the communication of tasks with dynamic
non-functional requirements.
Furthermore, the data transmission tasks between the com-
munications partners in the earlier presented scenariosmight
need different programming abstractions. Those can bemapped,
also dependent on the communication partners, to various
communication protocols. Therefore, the task of the mid-
dleware is to find out which programming abstractions and
which communication protocols are required and to provide
them for the data transmission between the communication
partners. In the following, some example combinations of the
requirements, abstractions and protocols for the scenarios
are shown.
Scenario 1 is a basic communication between two applica-
tions in the same CPS. Therefore, the applications can use
the same programming abstractions, e.g. RPC, or different
ones, e.g. RPC and callback. Local communication between
applications on the same CPS will usually be routed via the
loopback interface on the communication protocol level. The
communication between two applications in the same CPS
also can have non-functional requirements like delivery dead-
lines of messages in order to meet the execution deadlines
of applications. Scenario 2 is an application communicating
with local sensors and actuators of the CPS. Here, we can
assume that we have a specific period for the sensor commu-
nication and a deadline for the actuator communication. For
the data transmission between an application a and the sen-
sors/actuators mostly event-based communication is used.
This programming abstraction can then e.g. be mapped to
the communication protocol ASI (Actuator-Sensor-Interface)
for the direct communication with the sensors/actuators. Sce-
nario 3 is a little bit more complex, because now we look at
communication between different CPSs. This time we might
have a fixed reaction time as QoS-bound. For the communi-
cation between two applications of different CPSs we pass
data through two middleware instances. Therefore, the appli-
cations can use different programming abstractions for the
communication. As example application a in CPS 1 can use
RPC and application b in CPS 2 can use streams. For the com-
munication between those application both programming
abstractions can be mapped to the same communication pro-
tocol, e.g. TCP (Transmission Control Protocol). In scenario
4 we have a communication between an application a in
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CPS 1 and the sensor/actuator of another CPS. Let’s assume
that this communication has a specific period for the sensor
sampling, a reaction time to the sensor data and a deadline
for the actuator control. For the data transmission applica-
tion a in CPS 1 can use e.g. callback (as soon as a sensor
data value becomes available). This can be mapped to the
communication protocol UDP (User Datagram Protocol) for
the connection to the other CPS. There the communication
protocol CAN (Controller Area Network) can be used for the
communication with the sensor/actuator.
As can be seen, multiple combinations of requirements, pro-
gramming abstractions and communication protocol can
occur in CPNs. The presented middleware architecture there-
fore supports multiples of them for the CPSs to use. Since
not all application scenarios might need all of these compo-
nents, we rely on a microkernel concept. Components like
programming abstractions and communication protocols are
only included when needed. This saves resources, which is
important on CPS with low computational resources.

5 CONCLUSIONS
In this paper we presented an architectural approach for a
CPN middleware. Our objective is to develop such a middle-
ware that combines all the challenges presented in Section 3
in a uniform way. To achieve this, it is necessary to classify
and understand interactions between applications in CPNs
with respect to communication over the network as well
as communication to sensors and actuators. For the analy-
sis of functional and non-functional requirements we will
examine different application fields in the CPS domain, e.g.
the automotive area and smart home environments. In each
area, different aspects of cyber physical networking can be
found. We are going to analyze the communication between
CPS by e.g. considering the vehicle-to-vehicle and vehicle-
to-infrastructure communication in the automotive domain.
Also the data transfer within a car, and correspondingly in
one CPS, to sensors and actuators will be observed. Eventu-
ally, we will determine which programming abstractions and
communication protocols are used in CPNs and therefore
have to be provided by the uniform middleware. Further-
more, we want to focus on the QoS-aspects of the network
communication. For this we will analyze the requirements
of the CPSs for the end-to-end communication and provide
a possibility to define them, e.g. by parameter passing or in
an aspect-oriented programming style.
To evaluate our results, a prototypic implementation will
be realized. Thereby, the communication can be adjusted
based on the available communication infrastructure and the
non-functional requirements of the CPSs. For this adaptive
behavior we use the MAPE-K approach in our conception
(see Figure 3). For this is only an abstract control loop, an

appropriate implementation of the sections monitor, analyze,
plan, execute and knowledge and their connections has to
be realized. As example, classifier systems can be used for
the implementation of the analyse and plan section.
Finally, the developed prototype will be evaluated in different
scenarios in the CPS domain.
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