Evaluating Approaches for Performance Prediction
in Virtualized Environments

Fabian Brosig*, Fabian Gorsler?, Nikolaus Huber* and Samuel Kounev*
Karlsruhe Institute of Technology (KIT), Germany
*Email: {nikolaus.huber, fabian.brosig, kounev} @kit.edu, ifabian.gorsler@ student.kit.edu

Abstract— Performance management and performance pre-
diction of services deployed in virtualized environments is a
challenging task. On the one hand, the virtualization layer makes
the estimation of performance model parameters difficult and in-
accurate. On the other hand, it is difficult to model the hypervisor
scheduler in a representative and practically feasible manner. In
this paper, we describe how to obtain relevant parameters, such as
the virtualization overhead, depending on the amount and type of
available monitoring data. We adapt classical queueing-theory-
based modeling techniques to make them usable for different
configurations of virtualized environments. We provide answers
how to include the virtualization overhead into queueing network
models, and how to take the contention between different VMs
into account. Finally, we evaluate our approach in representative
scenarios based on the SPECjEnterprise2010 standard bench-
mark and XenServer 5.5, showing significant improvements in
the prediction accuracy and discussing further open issues for
performance prediction in virtualized environments.

I. INTRODUCTION

In application performance and resource management, ser-
vice providers are faced with questions such as: How much
resources should be allocated to meet service-level agreements
(SLAs)? How should the system configuration be adapted to
avoid performance problems arising from changing customer
workloads? Answering such questions for non-virtualized ex-
ecution environments is already a complex task [1]. In vir-
tualized environments, this task is even more complicated
because resources are shared. Moreover, since changes in the
usage profiles of one service may affect services that are
hosted on the same physical host, capacity planning has to be
performed continuously during operation. Proactive applica-
tion performance management requires the ability to predict
performance of applications in the following two recurring
scenarios: i) under varying service workloads in order to
anticipate when performance SLAs will be violated based on
workload forecasts ii) under different system configurations
in order to find a suitable configuration that avoids SLA
violations and ensures efficient resource usage. Given that
computation details are abstracted by an increasingly deep
virtualization layer, the following research questions arise:
What is the performance overhead when virtualizing execu-
tion environments? How should the overhead be taken into
account when conducting performance predictions? Can the
performance-influencing factors be abstracted in a generic
performance model?

Table I shows a motivating example illustrating the in-
fluence of the virtualization overhead on application-level
performance metrics. We compare the performance of an op-

’ Throughput ‘ ‘ Native AppServer ‘ Virtualized AppServer
X UappServer | Ravg UappServerv M Ravg
35 149% | 26ms 158% | 32ms
65 24.8% 27ms 27.2% 39ms
100 35.7% 28ms 40.0% 48ms
154 53.2% 31ms 60.7% 100ms

TABLE I: Native vs. Virtualized Setup: Response Times of
CreateVehicleEJB in SPECjEnterprise2010

eration CreateVehicleEJB of the SPECjEnterprise2010!
benchmark in two different deployment scenarios. In the first
scenario, the benchmark is deployed in a native application
server without use of virtualization. In the second scenario,
the benchmark is deployed in a virtualized application server
on an identical physical machine. The application server virtual
machine (VM) is the only guest VM hosted by the hypervisor.
We investigate the operation’s average response times and
the utilization of the application server under four different
load conditions (in a range from 15% to 60% utilization
of the application server CPU). In the four load scenarios,
the virtualized application server is slightly higher utilized
than the native one. The average response times, however,
are significantly higher in the virtualized setup. Obviously,
the virtualization overhead plays an important role when
investigating performance properties in virtualized systems.

Existing approaches to quantify, model and predict the
virtualization performance overhead often do this either in
a black-box fashion (using for example constant overhead
factors [2] or probabilistic models that do not capture the
performance-relevant factors explicitly [3]) or focus on specific
aspects such as storage I/O [4] or cache contention effects [5].

In this paper, we provide the following contributions: i) an
approach to estimate virtualization overhead factors. ii) a
generic approach how to consider virtualization overheads in
classical queueing network models, and iii) an evaluation in
a representative environment. In a set of evaluation scenarios
based on the SPECjEnterprise2010 standard benchmark and
XenServer 5.5, we show significant improvements in the
prediction accuracy using our approach. At the same time, we
discuss open issues and challenges of performance prediction
in virtualized environments.

1 SPEC]Enterprise2010 is a trademark of the Standard Performance Evaluation Corp. (SPEC). The SPECjEnterprise2010
results or findings in this publication have not been reviewed or accepted by SPEC, therefore no comparison nor performance
inference can be made against any published SPEC result. The official web site for SPECjEnterprise2010 is located at
http://www.spec.org/jEnterprise2010.

’ Throughput Virtualized AppServer

X H Ubomaino_|

UappServervm | Ravg

35 11.6% 15.8% 32ms

65 18.9% 27.2% 39ms

100 25.2% 40.0% 48ms
154 30.6% 60.7% 100ms

TABLE II: VM Utilization vs. Domain-0 Utilization when
running CreateVehicleEJB in SPECjEnterprise2010

II. BACKGROUND

Virtualization Technologies: The Xen hypervisor is an
open source bare-metal hypervisor (type-I). With the Xen
hypervisor, multiple para-virtualized or full-virtualized virtual
machines (guest domains) can be executed on a single server
sharing the physical resources. A scheduler integrated in
the hypervisor schedules the access of all domains to the
available physical CPUs. For access to other devices and for
managing the guest domains, Xen uses a privileged control
domain (Domain-0). Domain-0 contains the device drivers to
access the physical devices. All communication of the guest
domains with the physical devices goes through Domain-0.
This causes additional management overhead in terms of CPU
consumption. For example, if a guest domain sends a disk I/0
request, Domain-0 requires CPU time to process the request
on behalf of the guest domain.

The VMware ESX hypervisor uses another popular I/O
model for VMs. In ESX, it is the hypervisor itself that
contains device driver code and provides shared access to
the physical devices. However, the problem of accounting the
virtualization overhead induced by I/O accesses remains. In
this paper, we demonstrate our findings and approaches using
XenServer 5.5, although most of them can be applied in a
straight-forward manner to other state-of-the-art virtualization
platforms. Considering Xen as an example, we specifically
address the additional challenge of modeling the virtualized
application and the driver domain (Domain-0) separately [6].

Measuring and Accounting VM Overhead: We use Xen-
mon [7], [6] to obtain monitoring data from a Xen-virtualized
system. Reported metrics include CPU utilization, network I/O
and disk I/O accesses. Xenmon collects monitoring data both
from the hosted guest VMs and from Domain-0, i.e., it reports
resource usage of physical resources as well as resource usage
at the virtualization layer issued by guest VMs and Domain-0.

When it comes to quantifying the virtualization overhead,
the resource utilization attributed to Domain-0 becomes of
interest. The monitoring data in Table II shows the same
scenario as in Table I with added information on the utilization
accounted to Domain-0, reported by Xenmon. The utilization
of Domain-0 ranges from 12% to 31%, depending on the load
level. At the highest load level, the utilization of Domain-0
is half of the utilization measured directly at the application
server VM. This explains the highly increased response times
of CreatevVehicleEJB. The system is already heavily uti-
lized, i.e., > 90%. Recall that the application server VM is the
only running guest VM and thus the only one responsible for
the observed Domain-0 load. However, when different guest
VMs are consolidated on one physical machine, the utilization
accounted to Domain-0 is partitioned among the guest VMs.
When considering the physical resource utilization caused by

D Mean service demand of workload class w;, ; (without the
Wi, j virtualization overhead).
Ouw, 4 Virtualization overhead factor for workload class w; ;.

w Throughput of workload class w; ;.

TABLE III: Performance Model Parameters

a specific VM, the corresponding Domain-0 partition has to
be added to the utilization obtained at the VM level.

III. PROBLEM FORMULATION

A hypervisor running on a physical machine hosts n virtual
machines VMy,...,VM,, where V M, processes workload
classes w; ;. The virtual machines and the hypervisor share the
available physical resources. The focus is on the CPU resource
because other metrics such as disk and network I/O rates are
not directly impacted by the virtualization layer, given that
running an application in a virtualized environment will not
cause more network packets to be sent or more disk requests
to be generated. However, as explained in Section II, even
when focusing on the physical CPU resource, the network and
disk I/O traffic of the VMs cannot be neglected since they
induce additional processing overhead.

The major performance metrics of interest are the response
times R, ; of a service belonging to a certain workload class
w; 5, the CPU resource utilization of the physical machine
(Uiotal), and the utilization measured inside a virtual machine
V' M; (Uy ;) without the incurred virtualization overhead. To
motivate the proposed approaches for taking the virtualization
overhead into account, we shortly describe the native base sce-
nario with one application running on one physical machine.
According to classical performance modeling techniques, as
described for example in [1], the physical machine can be
modeled as a queue. The service demand D,, of workload
class w can be obtained using the Service Demand Law [1], [8]
Dy, =UY, ../ Xw, where U}”, . is the portion of the utilization
caused by workload class w, and X, is the request throughput
of the workload class. Observations X,, and U;?, , have to
refer to the same timeframe.

When running the application in a virtualized environment,
the following issues need to be addressed: i) How to obtain
the virtualization overhead of workload class w; ;? ii) How
to include the virtualization overhead in the service demand
of workload class wj; ;? iii)) How and where to schedule the
virtualization overhead? The following sections describe how
we handle these issues.

IV. PERFORMANCE MODEL PARAMETERIZATION

Table III shows the relevant model parameters when mod-
eling application performance in virtualized infrastructures.
The service demands D,, ; can be derived using existing
techniques that are based on utilization Uy ps, and throughput
measurements X, ; inside the VM [1], [8]. The challenge is
to estimate the virtualization overhead factors O, ;. There are
different ways to obtain the relevant overhead, depending on
the amount and type of available monitoring data.

At design-time and
(micro-)benchmarks

deployment-time, typically
are used to characterize the target

virtualization infrastructure [9], [6], [7], [10], [11]. By
comparing benchmark results on the native and the virtualized
system, benchmark-specific virtualization overheads are
derived. A virtualization overhead factor O,, ; is then
estimated according to the most similar mix of benchmark
workload types corresponding to workload class w; ;.

In the following, we present how we combine the work of
[12] and [6] as an approach to estimate virtualization overhead
factors based on run-time Domain-0 utilization measurements.
We compute

Owi,j =1 + UEJUZ);TLO/UXT;}}V}J

where Uy/}7 is the measured utilization of VM; due to w;
and Up? . is the measured Domain-0 utilization partition
induced by wj; ;. However, when running more than one
VM, the latter Domain-0 partition has to be approximated.
The authors in [12] describe a method that partitions the
Domain-0 utilization in different blocks, where each block
can be assigned to a guest VM that caused the utilization. As
input, the method requires VM monitoring data of disk I/O,
network I/0O and CPU usage for each guest VM as well as
for Domain-0. The output is an approximation of the per-VM
physical resource utilization. The method uses a regression
model based on micro-benchmark results (obtained in a native
and a virtualized setup) as a starting point, and calibrates the
model using run-time monitoring data of disk I/O and network
I/O metrics as well as resource utilization metrics of Domain-0
and the guest VMs. The regression model estimation error
is continuously observed and triggers a calibration process
when a certain threshold is reached. This way, the model
reflects workload dynamics that may be caused by changes
in workload patterns. The authors propose a guided regression
as a calibration approach, for details we refer to [12]. Note
that the evaluation scenarios for partitioning CPU utilization
presented in [12] exhibit a relative error of lower than 10%,
mostly around 5%.

V. PERFORMANCE MODEL STRUCTURE

In this section, we describe how to construct performance
models that take the virtualization overhead into account. The
idea is to adapt classical performance modeling techniques
making them usable for performance prediction in virtual-
ized environments. In this paper, we use queueing networks
to model system performance. We assume that the relevant
model parameters listed in Table III are available including
the number of VMs, the VM-specific CPU demands and the
VM-specific overhead in terms of induced CPU demand on
Domain-O0.

In a virtualized environment there are n VMs sharing
the same physical machine which has m cores. Each V M;
has an allocated number of vCPUs ranging from 1 to m.
To describe the mapping of queues to processing resources
in an abstract fashion, we first introduce a notation for the
resource allocations: The available processing resources, i.e.,
the number of cores, are represented by the set Res(total) :=
{0,...,m — 1}. The set of resources assigned to VM; is
denoted as Res(VM;) C Res(total). Res(Dom0) is de-
fined accordingly. Figure 1 illustrates an example of possible
resource allocations. There are four VMs V My, ...,V My
and Domain-0, each assigned a portion of the available

Res(VM,)
Res(VM;)
Res(VM,)
Res(VM;)
Res(Dom0)

Res(total)

Processing Resources

Fig. 1: Assigned Processing Resources in a Virtualized Envi-
ronment

W;i: OWI* DWi

\wj: OWJ’"DWJ
ﬁ?s(DomO)

Fig. 2: Disjoint Resource Sets

Wi DWi
paliill,

Res(VM;)

w;: Dy,
~11IY

Res(VM;)

processing resources Res(total). Resource sets Res(V My)
and Res(V M3) are identical. Resource sets Res(V Ms) and
Res(Dom0) are partially overlapping. The remaining pairs of
resource sets are disjoint.

Figures 2 and 3 show how different types of resource sets
can be mapped to queueing networks taking into account the
resource sharing. The virtualization overhead O, ; * Dy, ; is
induced on Domain-0 after processing the VM-internal service
demand Dy, ;, i.e., the virtualization overhead O for a service
demand D is assumed to not be executed in parallel. This is
because VMs are typically blocked due to I/O wait when using
Domain-O0.

Figure 2 shows how a disjoint pair of resource sets
Res(VM;) and Res(VM;) is mapped to queues. Non-
overlapping resource sets are modeled as separate (multi-
server) queues. The overhead is scheduled on a separate
dedicated queue representing Domain-0.

Figure 3(a) and Figure 3(b) show how pairs of identical
resource sets are mapped to queues. In case one of the

wi: D, + Owi* Dy,

Res(VM;) & Res(Dom0)

Res(VM;) & Res(VM;)
@ ®

Fig. 3: (a) Equal Resource Sets Res(V M;) and Res(Dom0),
(b) Equal Resource Sets Res(V M;) and Res(V M;)

resource sets represents Domain-0, i.e., the pair is {Res(V M),
Res(Dom0)}, the resource sets are mapped to one (multi-
server) queue with a service demand for workload class w; of
Dy, + Oy, * Dy, (see Figure 3(a)). For a pair {Res(V M;),
Res(VM;)}, the resource sets are mapped as shown in Fig-
ure 3(b). There is one (multi-server) queue with two workload
classes w;, w; having VM-internal service demands Dy, , Dy; .

For partially overlapping resource sets Res(V'M;) and
Res(V' Mj), the service demands D.,,, D,,; may be scheduled
in three different ways. There are demands D,, that are
scheduled on the resource set Res(V M;)\ Res(V M;), respec-
tively demands D, that are scheduled on the resource set
Res(V Mj) \ Res(V M;), and demands of both D, and D,
that are scheduled on the resource set Res(V M;)NRes(V M;).
The probability of each of the described scheduling paths
depends on the hypervisor scheduler. Such complex scheduling
strategies are not supported in standard queueing network
models.

VI. EVALUATION

We installed the SPECjEnterprise2010 Java EE bench-
mark in a system environment we describe in the following.
The benchmark application is deployed in VMs hosted on
XenServer 5.5. The VMs are running CentOS 5.3 and we use
Oracle WebLogic Server (WLS) 10.3.3 as application server.
The virtualized blade server has a 4-core Intel Xeon CPU. As
a database server (DBS), we use Oracle Database 11g, running
on four 6-core AMD CPUs. The benchmark driver is running
on a separate blade server. The benchmark workload is
generated by an application that is modeled after an automobile
manufacturer. The benchmark driver executes five benchmark
operations. A dealer may Browse through the catalog of cars,
Purchase cars, or Manage his dealership inventory, i.e.,
sell cars or cancel orders. In the manufacturing domain, work
orders for manufacturing vehicles are placed, triggered either
through WebService or RMI calls (CreateVehicleWS or
CreateVehicleEJB).

For the evaluation, we considered different resource allo-
cation scenarios while varying the number of VMs, the VM
configuration, amount of resources as well as the type and
intensity of the workload. We selected the two SPECjEnter-
prise2010 benchmark operations CreateVehicleEJB and
Browse as workload types. We injected different load levels,
ranging from low to high load. For performance modeling, we
used classical queueing network models, which were directly
mapped to Queueing Petri Nets (QPNs) and solved using the
simulation engine SimQPN [13]). Furthermore, note that in
our setup the database server is clearly under-utilized. For the
considered injection rates, the response times of database re-
quests are almost constant. This is important because our study
is focussed on evaluating the performance of the application
server when running it to a virtualized environment.

Scenario 1: In this scenario, we considered a VM with
one VCPU running next to Domain-0, i.e., without any over-
lap in the resource allocations. Note that in XenServer 5.5,
Domain-0 has one vCPU allocated by default. Given that there
is only one VM, we can obtain the virtualization overhead
factor by considering Upomo and Uy gy, .- For the opera-
tion CreateVehicleEJB, the overhead factor is 0.34, for

Through- -Baseline-
put Rel. Prediction Error Rel. Prediction Error
X Uwrs | Ubomo | Rauvg Uwrs | Ubomo | Ravg
CreateVehicleEJB, Res(VMwrs) = {1}, Res(Dom0) = {0}, m = 2
17.8 -30% n.a. -15% -3% -5% 2%
32.6 -26% n.a. -16% -2% -1% -5%
50.0 -24% n.a. -17% +3% +6% -6%
76.8 -22% n.a. -13% +3% +17% -4%
Browse, Res(VMwrs) = {1}, Res(Dom0) = {0}, m = 2
23.1 -25% n.a. -23% -4% -5% -71%
46.4 21% n.a. -15% -1% -1% 2%
69.3 21% n.a. -13% -1% +2% -3%
92.7 -20% n.a. -4% +1% +6% +5%

TABLE IV: Results: Scenario 1 with a single VM

Throughput Measured
XcvEe, XBRO Uiotal | RA%, | Ruvg

‘ Rel. Prediction Error
Vsotar | RYZ, | RGO,

CreateVehicleEJB (CVE) and Browse (BRO):
Res(V Mzro) = Res(V Mcyz) = {0,...,3}, Res(Dom0) = {?}, m =4

35.7, 424 0.23 34ms 16ms -11% -41% -11%
64.6, 77.3 0.37 39ms 19ms -0% -48% -23%
100.1,119.8 0.54 54ms 34ms +5% -61% -52%

TABLE VI: Results: Scenario 3 with two VMs

Browse, it is 0.29. We evaluate the prediction accuracy for
two kinds of performance models. First, we build a baseline
model where we obtain service demand D¢ catevehicleEss
using Uy g, .4, 1.€., Without considering the virtualization
overhead. Second, we build a model following the approach
described in Section V, explicitly taking into account the
virtualization overhead. Table IV shows the corresponding
prediction errors. The utilization and response time predictions
are clearly of much higher accuracy compared to the baseline
model.

Scenario 2: Here, we consider two VMs, the first
one running CreateVehicleEJB, the second one running
Browse. While the guest VMs are sharing physical cores 1
to 3, Domain-0 is pinned to core 0. The performance model is
parameterized with measurement data obtained at the medium
load level, taking the virtualization overhead into account
as described in Section V. Table V shows the measurement
results and prediction errors. The total utilization as well as
Domain-0-specific utilization is predicted with an error of less
than 10%. The response time predictions are of lower accuracy
(with error up to 40%) due to low level synchronization
effects in Domain-0 that are not reflected in our model. We
intentionally refrain from modeling such low level details of
the hypervisor scheduler in order to strike a balance between
model accuracy and model compactness. Prediction errors of
up to 40% for system response time are typically considered
acceptable for capacity planning purposes [1].

Scenario 3: In this scenario, we again run two VMs
(CreateVehicleEJB and Browse). In contrast to the pre-
vious scenario, the guest VMs are this time sharing four vCPUs
and Domain-0 is not pinned to a certain core. Since Domain-0
is expected to be executed on the four cores as they become
available, we can consider Res(Dom0) = {0, ..., 3}. Table VI
shows the corresponding results. While for the utilization, the
prediction error rates are acceptable, the predicted response
times have a high error.

Throughput Measured

‘ Utotal l Ubomo l Ring ‘ Ry

Rel. Prediction Error

‘ Utotat | Ubomo

XcvEe, XBRO quvﬁg Rf{fg
CreateVehicleEJB (CVE) and Browse (BRO):
Res(V Mzro) = Res(VMeys) = {1,...,3}, Res(Dom0) = {0}, m =4
35.5,42.5 0.21 0.20 29ms 14ms +1% -11% -28% +7%
65.1, 77.7 0.37 0.33 33ms 16ms +4% +0% -34% +0%
100.6,119.5 0.58 0.45 42ms 29ms +5% +12% -41% -33%

TABLE V: Results: Scenario 2 with two VMs

VII. RELATED WORK

Approaches to predict the performance overhead based on
machine learning techniques include for example [14], [15].
Kousiouris et al. use Artificial Neural Networks (ANNs) to
predict the impact of real-time scheduling parameters, VM
deployment and workload type on the system performance
based on measurements using six different Matlab benchmark
tests [14]. Kundu et al. also use benchmark results to train
ANNGs to predict the performance overhead for CPU, memory
and I/O [15]. Watson et al. [3] use quantile regression to obtain
a probabilistic performance model making it possible to predict
the response time of the RUBiS benchmark depending on the
allocated resources at the VM level. However, in all these
approaches, a performance model that makes the performance-
relevant factors explicit is not provided.

Jung et al. [2] use layered queueing networks (LQN) for
performance prediction. They claim to explicitly consider the
performance-relevant influences of the hypervisor as part of
their modeling approach, which is evaluated in the context of
the RUBiS benchmark. Unfortunately, they do not describe or
quantify the specific parameters they use, making it difficult
to generalize this approach and apply it to other performance
models. The approach of Menascé [16] uses analytical queue-
ing models to quantify the slowdown of virtualized applica-
tions in server consolidation scenarios. However, in [6], [12]
it is shown that using the total CPU time as apportionment
factor to derive workload-specific virtualization overhead, as
done in [16], typically results in a rough approximation at best.

VIII. CONCLUDING REMARKS

In this paper, we evaluated how to predict the performance
of virtualized environments. We described different ways to
obtain relevant model parameters, such as the virtualization
overhead, depending on the amount and type of available mon-
itoring data. We provided a generic approach how to integrate
the virtualization overhead in queueing network models.

We evaluated different virtualization setups in a representa-
tive experimental environment. We used the industry-standard
SPEC;jEnterprise2010 benchmark application and deployed it
on a XenServer 5.5 virtualization platform. In single VM
setups, the model predictions reach a satisfying accuracy and
clearly outperform the baseline where the virtualization over-
head is neglected. In consolidated virtualization environments
with more than one guest VM, the modeling approach based
on classical queueing networks is less accurate for response
times and still quite accurate for predicting VM utilization
and physical machine utilization. Since the response times are
typically underestimated, Domain-0 seems to induce additional
delays and contention effects that are not yet captured by our
queueing model. We intentionally refrained from modeling

such low level details of the hypervisor scheduler since we
aimed to come up with a compact model that is practically
usable and provides a balance between accuracy and com-
plexity. As part of our future work, we plan to consider
further VMM configuration options resulting in more complex
resource allocation scenarios.

REFERENCES

[1] D. A. Menascé, V. A. F Almeida, and L. W. Dowdy, Capacity
Planning and Performance Modeling™ From Mainframes to Client-
Server Systems. Prentice Hall, Englewood Cliffs, NG, 1994.

[2] G. J. G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and
C. Pu, “Generating adaptation policies for multi-tier applications in
consolidated server environments,” in /CAC, 2008.

[3] B.J. Watson, M. Marwah, D. Gmach, Y. Chen, M. Arlitt, and Z. Wang,
“Probabilistic performance modeling of virtualized resource allocation,”
in ICAC, 2010.

[4] G. Casale, S. Kraft, and D. Krishnamurthy, “A model of storage
i/o performance interference in virtualized systems,” in Int. Conf. on
Distributed Computing Systems Workshops, 2011.

[5] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell, “Modeling virtual
machine performance: challenges and approaches,” SIGMETRICS Per-
formance Evaluation Review, 2010.

[6] T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy, “Profiling and
modeling resource usage of virtualized applications,” in Middleware,
2008.

[71 D. Gupta, R. Gardner, and L. Cherkasova, “XenMon: QoS monitoring
and performance profiling tool,” HP Labs, Tech. Rep. HPL-2005-187,
2005.

[8] G. Pacifici, W. Segmuller, M. Spreitzer, and A. Tantawi, “Cpu demand
for web serving: Measurement analysis and dynamic estimation,” Per-
formance Evaluation, vol. 65, no. 6 - 7, pp. 531 — 553, 2008.

[9] N. Huber, M. von Quast, M. Hauck, and S. Kounev, “Evaluating
and Modeling Virtualization Performance Overhead for Cloud Envi-
ronments,” in Int. Conf. on Cloud Comp. and Services Science, 2011.

[10] Y. Koh, R. C. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu, “An
analysis of performance interference effects in virtual environments,” in
Int. Symp. on Performance Analysis of Systems and Software, 2007.

[11] K. Ye, X. Jiang, S. Chen, D. Huang, and B. Wang, “Analyzing and
modeling the performance in xen-based virtual cluster environment,” in
Int. Conf. on High Perf. Computing and Communications, 2010.

[12] L. Lu, H. Zhang, G. Jiang, H. Chen, K. Yoshihira, and E. Smirni,
“Untangling mixed information to calibrate resource utilization in
virtual machines,” in Int. Conf. on Autonomic Computing, 2011.

[13] S. Spinner, S. Kouneyv, and P. Meier, “Stochastic Modeling and Analysis
using QPME: Queueing Petri Net Modeling Environment v2.0,” in Int.
Conf. on Application and Theory of Petri Nets and Concurrency, 2012.

[14] G. Kousiouris, T. Cucinotta, and T. Varvarigou, “The effects of schedul-
ing, workload type and consolidation scenarios on virtual machine
performance and their prediction through optimized artificial neural
networks,” Journal of Systems and Software, vol. 84, no. 8, 2011.

[15] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, and K. Dutta, “Mod-
eling virtualized applications using machine learning techniques,” in
International Conference on Virtual Execution Environments, 2012.

[16] D. A. Menascé, “Virtualization: Concepts, applications, and perfor-
mance modeling,” in CMG-CONFERENCE, 2005.

