Power to the Applications: The Vision of
Continuous Decentralized Autoscaling

This is the author version of the work. Original publication available soon in IEEE Xplore
Martin Straesser, Stefan Geilller, Tobias Hof3feld, Samuel Kounev
University of Wiirzburg, Wiirzburg, Germany
Email: {martin.straesser, stefan.geissler, tobias.hossfeld, samuel.kounev} @uni-wuerzburg.de

Abstract—Autoscaling has been one of the most active research
areas since the beginning of the cloud computing era. Nearly
all previously proposed approaches focus on decision-making
based on averaged monitoring values of many service instances
at fixed points in time. This limits responsiveness and can lead to
service level objective (SLO) violations when the load suddenly
increases. Our vision of continuous decentralized autoscaling
avoids these issues by giving individual service instances the
power to make scaling decisions in a distributed fashion. Each
instance performs self-monitoring and evaluates its state. The
service instance initiates upscaling if it detects an overload or
downscaling if its load is below a specified threshold. By randomly
determining scaling timing, we achieve quasi-continuous scaling
behavior when multiple service instances are deployed. We
discuss challenges regarding analytical modeling, simulation, and
real-world evaluation of this approach.

Index Terms—autoscaling, self-management, probabilistic ap-
proach, microservices, cloud computing

I. INTRODUCTION

Autoscaling is one of the key challenges in modern con-
tainer clouds. Numerous researchers have developed autoscal-
ing approaches over the past decades, ranging from threshold-
based methods to deep learning-based approaches [1]. How-
ever, our previous work [2] showed that many research au-
toscalers are not adopted in practice and that flexible autoscal-
ing approaches are demanded.

Traditional autoscalers usually have two things in common:
i) One autoscaler is usually responsible for a group of service
instances. For microservices, horizontal scaling is mainly used,
i.e., the number of service replicas is increased or decreased
during scaling. Scaling decisions are made based on metrics
that are averaged over all instances. ii) Scaling decisions are
made at fixed periods. Often, autoscalers offer the possibility
to set a scaling interval or cooldown times. Accordingly, the
state of a service is evaluated at regular intervals. In summary,
with traditional autoscaling, scaling decisions for a group of
service instances are made by a central instance at fixed times.
This has the following drawbacks: First, there is a single point
of failure. No scaling occurs if the autoscaler, or the associated
monitoring, fails or is incorrectly configured. Second, reaction
times are already limited by design since decisions occur in
fixed intervals. Choosing this interval too large can lead to
violations of service level objectives (SLOs) in case of rising
loads; too small intervals can lead to rapid up- or downscaling
behavior [3].

Instead of viewing autoscaling as a problem in which the
optimal number of instances must be decided at discrete points
in time, we envision autoscaling as a continuous process.
In our approach, individual service instances make indepen-
dent scaling decisions, forming an overall scaling behavior.
Comparable approaches for P2P architectures [4] and stream
processing applications [5], [6] already showed the concepts’
potential. Because the instances make the decisions at different
times, there is a high frequency of scaling decisions. Our
approach converges into a quasi-continuous process if many
service instances are active. Random events play a critical role
in this process, as not only the time of a scaling decision is
determined randomly, but also the scaling decision is made
based on probabilities in addition to instance-local monitoring
metrics.

II. PROPOSED APPROACH

Our approach puts the task of autoscaling in the hands of the
applications. We consider autoscaling as a MAPE loop, similar
to previous works [4], [7]. In traditional autoscaling, the
analysis, planning, and execution tasks lie with the autoscaler,
as Fig. 1 shows. The service instances only expose monitoring
values. In decentralized autoscaling, the instances additionally
perform the analysis and planning steps and only pass their
scaling decisions to an executor component. The existence of
this component has only technical reasons. Communication
with a control instance is necessary to perform a scaling
decision in a cloud environment. For example, a scaling
decision in Kubernetes must be handled via the control plane.
If the instance itself had to execute a scaling action, it would
need access to the control plane, requiring additional libraries
and authentication. The decentralized autoscaling approach
assumes that service instances can collect and process their
own monitoring data. This is in line with modern monitoring
libraries like Micrometer [8], which are often used to expose
monitoring data at specific endpoints.

In the decentralized approach, each service instance exe-
cutes the scaling algorithm depicted in Algorithm 1. After
collecting recent monitoring data, it is checked whether met-
rics violate any SLOs. Depending on the result, it is evaluated
whether upscaling or downscaling should take place. After
the decision, a waiting time passes until the process is started
again. We draw the waiting time as a random sample from
a predefined distribution . Constant waiting times would,

Traditional Autoscaling

Service Instances

Cluster Control

Metric Collector Plane
- o O o

=]

Decentralized Autoscaling
Service Instances

Cluster Control
Plane

Scaling Executor

‘ Monitoring Analysis E Planning Execution ‘

Fig. 1. Traditional and decentralized autoscaling.

in theory, lead to all instances making their decision almost
simultaneously, which could lead to rapid up- or downscaling
behavior [3]. Random waiting times lead to a near-continuous
scaling process [9], [10], especially for many instances, as
nearly every time, one instance makes a scaling decision.

Algorithm 1 Algorithm for Decentralized Autoscaling
Input: SLOs m*, D,U : R — [0; 1], Distribution W
1: while instance is running do
Collect recent monitoring data into m;
Draw sample r from a uniform distribution in [0; 1]
if m; violates SLOs then
P(UP) =U(m; —m*)
if r < P(UP) then decision = UP
else decision = HOLD
else
P(DOWN) = D(my —m*)
10: if r < P(DOWN) then decision = DOWN
else decision = HOLD
12: end if
13: Submit decision to executor
14: Draw sample w from W and wait for time w
15: end while

R A A S o

—_

In every iteration, an instance chooses one of the three
action alternatives: upscaling (UP), downscaling (DOWN), or
no action (HOLD). We propose the following concept for
decision-making: Let M be a scaling metric with a desired
upper threshold m* and let m, be the current value of M at a
scaling time ¢. We now consider the deviation Am = m;—m*.
If Am is positive, the current measured value is above the set
threshold, so we may want to scale up. The probability P(U P)
for an upscaling action is calculated based on a function
U, which takes the value of Am as input. U should be a
monotonically increasing function, meaning that the larger
Am, the higher the upscaling probability P(U P). Similarly, if
Am is negative, we consider a function D that calculates the
downscaling probability P(DOW N). We then make the final
decision by drawing an equally distributed random number
from the interval [0;1] and comparing it to either P(UP)
or P(DOWN). Fig. 2 visualizes this principle. If m* is a
lower threshold, the upscaling or downscaling routines must

P(1UP) P(UP) = U(m, - m*)

P(DOWN) my
1 -
P(DOWN) = D(m, - m*)
P(HOLD) i my
1
1-P(DOWN) 1-P(UP)
mt

m*

Fig. 2. Visualization of the scaling behavior for one instance.

be swapped, depending on the sign of Am.

III. RESEARCH ASPECTS

In the following, we describe the theoretical and practical
research aspects of this project.

Modeling: An analytical assessment of this approach is com-
plex. The main research questions are: Under what conditions,
e.g., for which functions U and D, is the system stable, i.e.,
for a constant load also a constant number of instances is
supplied? What are the requirements for the scaling metric
M? Secondly, we look at the scaling dynamics. For example,
what is the (expected) time until the optimal number of
instances is reached in case of a sudden load peak? We
plan to apply methods of discrete-time analysis. Challenges
include that instances are dynamically replicated and removed
in the process and that the (expected) time between two
scaling decisions within the system depends on the number of
deployed instances. We plan to build on models from network
survivability research [11].

Simulation: The analytical model is complex and is unlikely
to be able to handle dynamic workloads. Therefore, it is
essential to pursue a simulation-based approach for model
validation. In addition, simulation allows testing any configu-
ration of the model parameters U, D, and more. We might also
include other parameters, such as the startup time of service
instances, in our analysis. We plan to develop a discrete event
simulation for this purpose.

Real-World Evaluation: Ultimately, the insights gained from
modeling and simulation must also be applied in practice.
Critical questions for the real-world evaluation of a prototype
are: What metrics are available and reliable for scaling? Are
there problems arising with real microservice applications?
How does the approach compare to traditional autoscalers?

IV. CONCLUSION

In this paper, we presented our vision for a new autoscaling
approach. It is based on three key features: (i) Decentral-
ism: service instances make individual scaling decisions. (ii)
Probabilism: Decisions and decision times are determined
probabilistically. (iii) Continuity: Distributed decisions gen-
erate high decision frequencies, converging towards a near-
continuous scaling process for many instances. This project

promises exciting results both from a theoretical and a prac-
tical point of view and aims to eliminate some conceptual
drawbacks of traditional autoscalers.

[1]

[2]

[4]

[5]

[6]
[7]

[8]
[9]

[10]

[11]

REFERENCES

P. Singh, P. Gupta, K. Jyoti, and A. Nayyar, “Research on auto-scaling of
web applications in cloud: survey, trends and future directions,” Scalable
Computing: Practice and Experience, vol. 20, no. 2, 2019.

M. Straesser, J. Grohmann, J. von Kistowski, S. Eismann, A. Bauer, and
S. Kounev, “Why is it not solved yet? challenges for production-ready
autoscaling,” in Proceedings of the 2022 ACM/SPEC on International
Conference on Performance Engineering, ser. ICPE ’22. New York,
NY, USA: Association for Computing Machinery, 2022.

M. Straesser, S. Eismann, J. von Kistowski, A. Bauer, and S. Kouneyv,
“Autoscaler evaluation and configuration: A practitioner’s guideline,”
in Proceedings of the 2023 ACM/SPEC International Conference on
Performance Engineering, ser. ICPE °23. New York, NY, USA:
Association for Computing Machinery, 2023.

N. M. Calcavecchia, B. A. Caprarescu, E. Di Nitto, D. J. Dubois,
and D. Petcu, “Depas: a decentralized probabilistic algorithm for auto-
scaling,” Computing, vol. 94, 2012.

M. M. Belkhiria and C. Tedeschi, “A fully decentralized autoscaling
algorithm for stream processing applications,” in Euro-Par 2019: Par-
allel Processing Workshops: Euro-Par 2019 International Workshops,
Gottingen, Germany, August 26-30, 2019, Revised Selected Papers 25.
Springer, 2020, pp. 42-53.

G. R. Russo, “Towards decentralized auto-scaling policies for data
stream processing applications.” in ZEUS, 2018.

M. S. Aslanpour, M. Ghobaei-Arani, and A. Nadjaran Toosi, “Auto-
scaling web applications in clouds: A cost-aware approach,” Journal of
Network and Computer Applications, vol. 95, 2017.

VMware Inc. (2023) Micrometer application monitoring.
https://micrometer.io/.

T. Hoffeld, F. Metzger, and P. E. Heegaard, “Traffic modeling for
aggregated periodic iot data,” in 2018 21st Conference on Innovation
in Clouds, Internet and Networks and Workshops (ICIN), 2018.

F. Wamser, P. Tran-Gia, S. GeiBler, and T. Hofeld, Modeling of Traffic
Flows in Internet of Things Using Renewal Approximation. Cham:
Springer International Publishing, 2019.

P. E. Heegaard and K. S. Trivedi, “Network survivability modeling,”
Computer Networks, vol. 53, no. 8, 2009, performance Modeling of
Computer Networks: Special Issue in Memory of Dr. Gunter Bolch.

