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Abstract—Assessing the robustness of hypercall interface is 

essential to understand the dependability of virtualized 
infrastructures. However, the particularities in the domain raise 
particular challenges, as discussed in the present paper. 

Keywords—hypercall; robustness testing; virtualization;  

I. INTRODUCTION 
Virtualization technology made the Cloud possible, as it 

allows the creation of virtual instances of physical devices such 
as network, storage or processing units [1], [2]. A virtualized 
system is governed by a hypervisor and resources are shared 
amongst virtual machines (VMs), which are entitled to a 
contracted amount of each resource. While virtualization 
provides many benefits it also introduces some new challenges, 
including security, availability, and isolation [3]. 

Paravirtualization is an alternative to full virtualization that 
enables the optimizing the performance of VM components 
such as I/O devices. It is used in most of nowadays 
deployments (even if many times only partially) for instance to 
avoid the emulation of disk and network devices or interrupts 
and timers. When paravirtualization is used, the hypervisor 
provides a hypercall interface to the guest VMs [1]. A 
hypercall is a software trap from the fully or partially 
paravirtualized guest VM kernel to the hypervisor. In simple 
terms, a hypercall is for the hypervisor what a system call is to 
the operating system. As these hypercalls are used to execute 
sensitive operations, their abuse can lead to harmful effects. 
Thus, the hypercall interface must be secure and robust.  

Robustness testing has long been used to assess 
applications in multiple domains such as operating systems [4], 
microkernel-based systems [5] and web services [6]. It is an 
experimental approach with the goal of characterizing the 
behavior of a system in the presence of unexpected input 
conditions. We believe that a similar approach can be used to 
test the hypercall interface. However, as the environment 
changes, also new challenges arise that need proper adaptions 
from the assessment approaches. 

This paper introduces our preliminary work towards the 
assessment of the robustness of Xen’s hypercall interface [1] 
and the challenges that we need to overcome to conclude this 
work. The reasons for using Xen are manifold: it is open 
source, it is one of the most widely used solutions, and it is 
possible to build on top of existing tools such as hInjector [7].  

II. PREPARING THE ROBUSTNESS TESTS 
Before testing the hypercall interface we need to 

understand it, how to use its methods and what is the intended 
behavior of each one and to define a set of mutation rules for 
each type of parameter. 

A. Studying the hypercall interface 
The hypercall interface is intended to be used only by a 

guest kernel, thus the documentation on how to invoke those 
methods is reduced and in some cases inexistent. However, as 
Xen is open source, it was possible to examine its sources to 
collect information about the available hypercalls, their 
parameters and, when possible, the domain of each parameter. 
The difficulty was to deal with the complex data types (e.g. 
structs, unions) used as parameters for some of the hypercalls. 
The solution adopted was to also gather information from their 
members recursively, until reaching terminal members.  

The information about the input domains of each parameter 
is very important, as it allows generating more effective tests 
that are able to exercise the hypercall code. This information is 
available for only some of the hypercalls and depending on it 
we applied two different analyses.  

• Information available – easier to understand the 
parameters, but some analysis is necessary to learn the 
domain of each parameter and the expected results. 

• No information available – requires deep analysis at 
the source code level, as it is necessary to extract the 
maximum information available in the operation code. 

During our analysis, a pattern was found: most of the 
hypercalls receive a value which defines the operation to be 
performed, and then one or more parameters with operation-
specific arguments (typically a struct), i.e. type hypercall(int 
op, void* arg). The term operation is used to better define and 
distinguish them, and we perform the analysis of the parameter 
domains for each of these operations.  

A small group of hypercalls is not documented and also is 
not referenced in the Linux kernel. In order to get the 
information of parameters for these hypercalls it was necessary 
to analyze the assembler source files. After concluding our 
analysis of the 39 hypercalls listed a total of 285 operations 
were found, with an average of 13 parameters each. With about 
15 tests per parameter we estimate that the testing campaign 
will include more than 55 thousand tests (~ 285*13*15). 



B. Generating the tests 
To evaluate the robustness of the hypercalls, we need a 

predefined set of mutation rules for the parameters. The rules 
proposed are based on previous work [4]–[6] and the complete 
list can be found here [8]. As it is recommended we tried to 
define rules that focus difficult input validation aspects, which 
are typically the source of robustness problems, such as:  

• Null and empty values (e.g., null string, empty string);  
• Pointers for invalid memory locations; 
• Maximum and minimum valid values in the domain;   
• Values outside of the limit values of the domain; 
• Maximum and minimum valid values for the type;   
• Values that cause data type overflow; 

After the list of rules is defined, the process to generate the 
attacks is straightforward. As shown in Fig. 1, it includes 
several phases, where each phase focuses on generating 
malicious calls that target a given operation of the hypercall 
and includes a set of steps. Each step targets a specific 
parameter of the operation, and comprises several mutations. 

The main challenges here are on how to deal with 
complex data type and pointer parameters. In first case, the 
solution is to recursively consider as a parameter also its 
members. The second will require the allocation and filling of 
the correct areas of memory to assign to the pointer.   

III. ROBUSTNESS ASSESSMENT OF HYPERCALL INTERFACE  
During the assessment phase it is necessary to execute the 

robustness tests and detect the failures triggered.  

A. Executing the robustness tests 
As mentioned before, the robustness testing process builds 

on top of hInjector [7], which was designed with the objective 
of evaluating typical VMI-based IDSs. As these do not monitor 
states of hypervisor, hInjector includes a filter component that 
avoids the effects that hypercall test or attack may have on the 
state of a given attacked hypervisor. However, this is exactly 
what we want to test here, and thus it is necessary to adapt the 
tool to our needs by neutralizing the filter component. 
Additionally, it is necessary to extend the support of the tool 
for the complex data types mentioned above. 

In this context, each test generated previously consists of 
one configuration file. The process for executing the tests starts 
with the execution of the hypercall operation with regular 
inputs in order to understand the expected behavior. Then, each 
of the planned robustness tests generated, looking for faulty 
behaviors that represent robustness problems. However, these 
behaviors may be very hard to detect, as discussed next. 

B. Failure modes detection 
Without the detection of the failure modes it is not possible 

to uncover robustness problems. However, it is in this task that 
lies most of the challenges that will be necessary to overcome, 
also with the different failure modes needing to be handled in 
different ways. While we are still working on the scale to use 
in this specific domain, the CRASH scale is a good start to the 
discussion [4]: Catastrophic (hypervisor crashes or hangs), 
Restart (the test process hangs), Abort (the test terminates 
abnormally), Silent (the operation exits without an error code, 

but one should have been returned), Hindering (the operation 
return an error code not relevant to the situation). 

The first challenge is the detection of silent failures. The 
approach used in the past was depending on the comparison of 
N-versions of the system [4], a solution that is not available 
here as our experiments are limited to Xen, and even when we 
expand to other systems, the interfaces would not be 
comparable. Subsequently, it is important to understand if a 
failure is not caused by previous tests instead of the current. It 
still is important to uncover the problem, but it is harder to 
understand it and even worse to correct. 

Detecting hindering failures is a challenge that fell 
outside of the scope of other works [4], [6], but that may have 
an increased importance here since the activity of the 
requesting VM may be disturbed by the return of invalid values 
(e.g. a memory address) or code. The return can be of multiple 
data types, error codes and even use “out parameters”, making 
the task of automating the process much harder. 

Finally, it is necessary to define how to which tasks to 
perform between tests, mainly between tests that present one 
identifiable failure mode. It may be necessary to reboot the 
system or even to reinstall it, as in some cases the state of the 
system becomes corrupt and may affect the outcome of the 
remaining tests. The use of nested virtualization could be an 
elegant way to solve this problem, however it raises problems 
of representativeness that must be assessed properly before 
trying to draw conclusions. 
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Fig. 1. Robustness tests generating process. 


