
Challenges of
Assessing the Hypercall Interface Robustness

Diogo Carvalho, Nuno Antunes, Marco Vieira
CISUC, Department of Informatics Engineering

University of Coimbra
Portugal

dmrc@dei.uc.pt, nmsa@dei.uc.pt, mvieira@dei.uc.pt

Aleksandar Milenkoski, Samuel Kounev
University of Würzburg

Germany
aleksandar.milenkoski@uni-wuerzburg.de

samuel.kounev@uni-wuerzburg.de

Abstract—Assessing the robustness of hypercall interface is

essential to understand the dependability of virtualized
infrastructures. However, the particularities in the domain raise
particular challenges, as discussed in the present paper.

Keywords—hypercall; robustness testing; virtualization;

I. INTRODUCTION
Virtualization technology made the Cloud possible, as it

allows the creation of virtual instances of physical devices such
as network, storage or processing units [1], [2]. A virtualized
system is governed by a hypervisor and resources are shared
amongst virtual machines (VMs), which are entitled to a
contracted amount of each resource. While virtualization
provides many benefits it also introduces some new challenges,
including security, availability, and isolation [3].

Paravirtualization is an alternative to full virtualization that
enables the optimizing the performance of VM components
such as I/O devices. It is used in most of nowadays
deployments (even if many times only partially) for instance to
avoid the emulation of disk and network devices or interrupts
and timers. When paravirtualization is used, the hypervisor
provides a hypercall interface to the guest VMs [1]. A
hypercall is a software trap from the fully or partially
paravirtualized guest VM kernel to the hypervisor. In simple
terms, a hypercall is for the hypervisor what a system call is to
the operating system. As these hypercalls are used to execute
sensitive operations, their abuse can lead to harmful effects.
Thus, the hypercall interface must be secure and robust.

Robustness testing has long been used to assess
applications in multiple domains such as operating systems [4],
microkernel-based systems [5] and web services [6]. It is an
experimental approach with the goal of characterizing the
behavior of a system in the presence of unexpected input
conditions. We believe that a similar approach can be used to
test the hypercall interface. However, as the environment
changes, also new challenges arise that need proper adaptions
from the assessment approaches.

This paper introduces our preliminary work towards the
assessment of the robustness of Xen’s hypercall interface [1]
and the challenges that we need to overcome to conclude this
work. The reasons for using Xen are manifold: it is open
source, it is one of the most widely used solutions, and it is
possible to build on top of existing tools such as hInjector [7].

II. PREPARING THE ROBUSTNESS TESTS
Before testing the hypercall interface we need to

understand it, how to use its methods and what is the intended
behavior of each one and to define a set of mutation rules for
each type of parameter.

A. Studying the hypercall interface
The hypercall interface is intended to be used only by a

guest kernel, thus the documentation on how to invoke those
methods is reduced and in some cases inexistent. However, as
Xen is open source, it was possible to examine its sources to
collect information about the available hypercalls, their
parameters and, when possible, the domain of each parameter.
The difficulty was to deal with the complex data types (e.g.
structs, unions) used as parameters for some of the hypercalls.
The solution adopted was to also gather information from their
members recursively, until reaching terminal members.

The information about the input domains of each parameter
is very important, as it allows generating more effective tests
that are able to exercise the hypercall code. This information is
available for only some of the hypercalls and depending on it
we applied two different analyses.

• Information available – easier to understand the
parameters, but some analysis is necessary to learn the
domain of each parameter and the expected results.

• No information available – requires deep analysis at
the source code level, as it is necessary to extract the
maximum information available in the operation code.

During our analysis, a pattern was found: most of the
hypercalls receive a value which defines the operation to be
performed, and then one or more parameters with operation-
specific arguments (typically a struct), i.e. type hypercall(int
op, void* arg). The term operation is used to better define and
distinguish them, and we perform the analysis of the parameter
domains for each of these operations.

A small group of hypercalls is not documented and also is
not referenced in the Linux kernel. In order to get the
information of parameters for these hypercalls it was necessary
to analyze the assembler source files. After concluding our
analysis of the 39 hypercalls listed a total of 285 operations
were found, with an average of 13 parameters each. With about
15 tests per parameter we estimate that the testing campaign
will include more than 55 thousand tests (~ 285*13*15).

B. Generating the tests
To evaluate the robustness of the hypercalls, we need a

predefined set of mutation rules for the parameters. The rules
proposed are based on previous work [4]–[6] and the complete
list can be found here [8]. As it is recommended we tried to
define rules that focus difficult input validation aspects, which
are typically the source of robustness problems, such as:

• Null and empty values (e.g., null string, empty string);
• Pointers for invalid memory locations;
• Maximum and minimum valid values in the domain;
• Values outside of the limit values of the domain;
• Maximum and minimum valid values for the type;
• Values that cause data type overflow;

After the list of rules is defined, the process to generate the
attacks is straightforward. As shown in Fig. 1, it includes
several phases, where each phase focuses on generating
malicious calls that target a given operation of the hypercall
and includes a set of steps. Each step targets a specific
parameter of the operation, and comprises several mutations.

The main challenges here are on how to deal with
complex data type and pointer parameters. In first case, the
solution is to recursively consider as a parameter also its
members. The second will require the allocation and filling of
the correct areas of memory to assign to the pointer.

III. ROBUSTNESS ASSESSMENT OF HYPERCALL INTERFACE
During the assessment phase it is necessary to execute the

robustness tests and detect the failures triggered.

A. Executing the robustness tests
As mentioned before, the robustness testing process builds

on top of hInjector [7], which was designed with the objective
of evaluating typical VMI-based IDSs. As these do not monitor
states of hypervisor, hInjector includes a filter component that
avoids the effects that hypercall test or attack may have on the
state of a given attacked hypervisor. However, this is exactly
what we want to test here, and thus it is necessary to adapt the
tool to our needs by neutralizing the filter component.
Additionally, it is necessary to extend the support of the tool
for the complex data types mentioned above.

In this context, each test generated previously consists of
one configuration file. The process for executing the tests starts
with the execution of the hypercall operation with regular
inputs in order to understand the expected behavior. Then, each
of the planned robustness tests generated, looking for faulty
behaviors that represent robustness problems. However, these
behaviors may be very hard to detect, as discussed next.

B. Failure modes detection
Without the detection of the failure modes it is not possible

to uncover robustness problems. However, it is in this task that
lies most of the challenges that will be necessary to overcome,
also with the different failure modes needing to be handled in
different ways. While we are still working on the scale to use
in this specific domain, the CRASH scale is a good start to the
discussion [4]: Catastrophic (hypervisor crashes or hangs),
Restart (the test process hangs), Abort (the test terminates
abnormally), Silent (the operation exits without an error code,

but one should have been returned), Hindering (the operation
return an error code not relevant to the situation).

The first challenge is the detection of silent failures. The
approach used in the past was depending on the comparison of
N-versions of the system [4], a solution that is not available
here as our experiments are limited to Xen, and even when we
expand to other systems, the interfaces would not be
comparable. Subsequently, it is important to understand if a
failure is not caused by previous tests instead of the current. It
still is important to uncover the problem, but it is harder to
understand it and even worse to correct.

Detecting hindering failures is a challenge that fell
outside of the scope of other works [4], [6], but that may have
an increased importance here since the activity of the
requesting VM may be disturbed by the return of invalid values
(e.g. a memory address) or code. The return can be of multiple
data types, error codes and even use “out parameters”, making
the task of automating the process much harder.

Finally, it is necessary to define how to which tasks to
perform between tests, mainly between tests that present one
identifiable failure mode. It may be necessary to reboot the
system or even to reinstall it, as in some cases the state of the
system becomes corrupt and may affect the outcome of the
remaining tests. The use of nested virtualization could be an
elegant way to solve this problem, however it raises problems
of representativeness that must be assessed properly before
trying to draw conclusions.

REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
in Proceedings of the nineteenth ACM symposium on Operating systems
principles, Bolton Landing, NY, USA, 2003, pp. 164–177.

[2] M. Christodorescu, R. Sailer, D. L. Schales, D. Sgandurra, and D.
Zamboni, “Cloud Security is Not (Just) Virtualization Security: A Short
Paper,” in Proceedings of the 2009 ACM Workshop on Cloud Computing
Security, New York, NY, USA, 2009, pp. 97–102.

[3] D. Perez-Botero, J. Szefer, and R. B. Lee, “Characterizing Hypervisor
Vulnerabilities in Cloud Computing Servers,” in 2013 Int'l Workshop on
Security in Cloud Computing, New York, NY, USA, 2013, pp. 3–10.

 [4] P. Koopman and J. DeVale, “Comparing the robustness of POSIX
operating systems,” in Twenty-Ninth Annual International Symposium on
Fault-Tolerant Computing, 1999. Digest of Papers, 1999, pp. 30–37.

[5] J. Arlat, J.-C. Fabre, and M. Rodriguez, “Dependability of COTS
microkernel-based systems,” IEEE Trans. Comput., vol. 51, no. 2, pp.
138–163, Feb. 2002.

[6] M. Vieira, N. Laranjeiro, and H. Madeira, “Assessing Robustness of Web-
Services Infrastructures,” in 37th Annual IEEE/IFIP International Conf.
on Dependable Systems and Networks (DSN’07), 2007, pp. 131–136.

[7] A. Milenkoski, B. D. Payne, N. Antunes, M. Vieira, and S. Kounev,
“HInjector: Injecting Hypercall Attacks for Evaluating VMI-based
Intrusion Detection Systems”, poster, in 2013 Annual Computer Security
Applications Conference (ACSAC 2013), New Orleans, LA, USA, 2013.

[8] D. Carvalho, N. Antunes, and M. Vieira, “Hypercall Robustness Testing
Mutation Rules,” 2015. Available: http://eden.dei.uc.pt/~nmsa/dsn/hirt.zip

Operation*1 Operation*2 Operation*N...

Parameter*1 Parameter*2 Parameter*N...

Mutation*1 Mutation*2 Mutation*N...

Phase

Steps

Sets

Fig. 1. Robustness tests generating process.

