
Microservices: A Performance Tester’s Dream or Nightmare?
Simon Eismann

University of Würzburg
Würzburg, Germany

simon.eismann@uni-wuerzburg.de

Cor-Paul Bezemer
University of Alberta
Edmonton, Canada
bezemer@ualberta.ca

Weiyi Shang
Concordia University
Montreal, Quebec

shang@encs.concordia.ca

Dušan Okanović
University of Stuttgart
Stuttgart, Germany

okanovic@iste.uni-stuttgart.de

André van Hoorn
University of Stuttgart
Stuttgart, Germany

van.hoorn@iste.uni-stuttgart.de

ABSTRACT
In recent years, there has been a shift in software development
towards microservice-based architectures, which consist of small
services that focus on one particular functionality. Many companies
are migrating their applications to such architectures to reap the
benefits of microservices, such as increased flexibility, scalability
and a smaller granularity of the offered functionality by a service.

On the one hand, the benefits of microservices for functional
testing are often praised, as the focus on one functionality and their
smaller granularity allow for more targeted and more convenient
testing. On the other hand, using microservices has their conse-
quences (both positive and negative) on other types of testing, such
as performance testing. Performance testing is traditionally done
by establishing the baseline performance of a software version,
which is then used to compare the performance testing results of
later software versions. However, as we show in this paper, estab-
lishing such a baseline performance is challenging in microservice
applications.

In this paper, we discuss the benefits and challenges of microser-
vices from a performance tester’s point of view. Through a series of
experiments on the TeaStore application, we demonstrate how mi-
croservices affect the performance testing process, and we demon-
strate that it is not straightforward to achieve reliable performance
testing results for a microservice application.

KEYWORDS
Microservices, DevOps, Performance, Regression testing

ACM Reference Format:
Simon Eismann, Cor-Paul Bezemer, Weiyi Shang, Dušan Okanović, and An-
dré van Hoorn. 2020. Microservices: A Performance Tester’s Dream or Night-
mare?. In Proceedings of the 2020 ACM/SPEC International Conference on
Performance Engineering (ICPE ’20), April 20–24, 2020, Edmonton, AB, Canada.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3358960.3379124

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6991-6/20/04.
https://doi.org/10.1145/3358960.3379124

1 INTRODUCTION
Microservices [24, 32, 38] are a popular trend in software architec-
ture in recent years for building large-scale distributed systems.
Microservices employ architectural design principles leading to
explicit domain-based bounded contexts and loose coupling [40],
exploit modern cloud-based technologies including containeriza-
tion and self-healing [17], and are suitable for modern software
engineering paradigms such as DevOps [5] including agile devel-
opment methods and continuous delivery.

Similar to other software systems, product quality [23] plays
an important role for microservices and microservice-oriented ar-
chitectures. An important non-functional quality attribute is per-
formance, which describes a system’s properties with respect to
timeliness and resource usage, including aspects such as scalability
and elasticity [22]. Timeliness may seem to be achievable more
easily by cloud features such as auto-scaling. However, resource
usage becomes extremely relevant because inefficient architectures
and implementations lead to high costs as a part of pay-per-use
charging models for cloud resources.

The performance of a system can be assessed through several
performance engineering techniques, such as performance test-
ing [8, 25]. Performance testing is already considered challenging
in traditional systems [30]. Even worse, the architectural, technolog-
ical, and organizational changes that are induced by microservices
have an impact on performance engineering practices as well [21].
While some of these changes may facilitate performance testing,
others may pose considerable challenges.

In this paper, we discuss whether microservices are a perfor-
mance tester’s dream or nightmare. In particular, we run a series of
experiments on the TeaStore [51], a reference microservice applica-
tion, to demonstrate the challenges that come with performance
testing microservices. Our experiments address the following re-
search questions:

RQ1: How stable are the execution environments of mi-
croservices across repeated runs of the experiments?
Our experiments demonstrate that the execution environ-
ments of microservices are not stable across experiment runs,
even when the total number of provisioned instances of a
microservice is kept the same.

https://doi.org/10.1145/3358960.3379124
https://doi.org/10.1145/3358960.3379124

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Simon Eismann, Cor-Paul Bezemer, Weiyi Shang, Dušan Okanović, and André van Hoorn

RQ2: How stable are the performance testing results across
repeated runs of the experiments?Our experiments show
that although the CPU busy time may not be significantly
different between scenarios, there often exist statistically sig-
nificant differences in response time. Such differences may
have a direct negative impact on the user-perceived perfor-
mance, and make analyzing the performance test results of
microservices more challenging.

RQ3: Howwell canperformance regressions inmicroser-
vices be detected? It is possible to detect performance re-
gressions in microservices applications. However, one needs
to ensure that enough repetitions of the performance tests
are done to deal with the variance in the deployment of the
services and the environments in which they run.

Our results show that performance testing microservices is not
straightforward and comes with additional challenges compared to
performance testing ‘traditional’ software. Hence, future research
is necessary to investigate how to best tackle these additional chal-
lenges. We provide a peer-reviewed replication package [16] to
assist other researchers in the reproduction and extension of our
case study.

In the rest of this paper, first we discuss related work (Section 2),
the characteristics of microservices (Section 3) and the ideal con-
ditions for performance testing (Section 4). Section 5 discusses
the benefits of microservices for performance testing. Section 6
presents our experimental setup and results. Section 7 reflects on
our experiments and discusses the challenges of performance test-
ing microservices and promising future research directions. Sec-
tion 8 discusses the threats to the validity of our experiments. We
conclude the paper in Section 9.

2 RELATEDWORK
In this section, we discuss the prior research that is related to this
paper. We split the related work into works on performance testing
in cloud environments in general, works on testing of microservices,
and works in the field of performance regression testing.

2.1 Performance testing in cloud environments
The results of performance tests in the cloud have been studied
extensively over the past years [4, 27, 28, 31, 43, 48].

One of the first works in this area is from Leitner and Cito [31],
which lays the ground by assessing the performance variation and
predictability of public clouds, such as AmazonWeb Services (AWS).
Afterwards, Laaber et al. [28] study the use of these public cloud
environments to conduct performance microbenchmarking. Study
results show that the variability of microbenchmarking results
differs substantially between benchmarks and instance types from
the cloud providers. However, executing a test on the same instance
can still detect slowdowns with the help of statistical analysis. On
the other hand, Arif et al. [4] compare the performance testing
results from virtual and physical environments, where findings
show that the performance testing results may not be consistent
across different environments.

In order to address the variation and instability of cloud environ-
ments when conducting performance tests, follow-up research by
Scheuner and Leitner [43] presents a new execution methodology.

The approach combines micro- and application benchmarks and
is particularly designed for cloud benchmarking environments. In
addition, Scheuner and Leitner [27] examine the problem from a
different angle, i.e., the quality of performance microbenchmarks
and propose a quality metric that can be used to assess them. Costa
et al. [12] proposed a tool to further improve the quality of mi-
crobenchmarks by detecting bad practices in such benchmarks. By
acknowledging the variation and instability of cloud environments,
He et al. [20] design an approach that estimates a sufficient duration
of performance tests that are conducted in a cloud environment.

It can be noted that the focus of these works was not on the
performance testing of microservice-based applications. Although
they demonstrate promising results of using cloud environments for
performance testing, microservice-based architectures may have a
negative impact on the performance testing process due to variation
and instability of cloud environments.

2.2 Microservices
Due to the wide practical adoption of microservice architectures,
there exists a body of research discussing visions on the testing of
microservices. This research, however, often focuses on functional
tests, e.g., [38]. Nonetheless, performance is one of the major as-
pects of consideration when adopting microservices. Heinrich et
al. [21] argued that traditional performance modeling and monitor-
ing approaches in most cases cannot be reused for microservices.
Knoche [26] presented a simulation-based approach for transform-
ing monolithic applications into microservice-oriented applications
while preserving their performance. Aderaldo et al. [1] discussed
several reference applications for microservices, and their advan-
tages and disadvantages in terms of being used as a benchmark
application. Dragoni et al. [14] argued that network overhead will
be the major performance challenge for microservice-oriented ap-
plications. Jamshidi et al. [24] provided an overview of the evolution
of microservices, and described the ten technological ‘waves’ that
steered this evolution. To our knowledge, our paper is the first
to highlight challenges that arise in the context of microservices
performance testing.

2.3 Performance regression detection
A performance regression is an unintended change in the perfor-
mance behavior across software versions. Therefore detection of
performance regressions is an important task in performance en-
gineering. Performance regression testing can be conducted on
several levels — from a code-level microbenchmarking to a system-
level load testing. Regressions are detected by looking at (the evo-
lution of) performance metrics, from system-level metrics, e.g.,
resource utilization, over architectural metrics, e.g., calls between
components, to end-user metrics, e.g., response times [44, 54]. A
key challenge is to find a set of suitable performance metrics based
on which to reliably detect real regressions [44]. Several algorithms
can be used to detect regressions in the data, including simple sta-
tistical tests, time-series analysis, and machine learning [11, 19].
However, none of the existing research takes into consideration the
associated challenges of microservice architectures. To the best of
our knowledge, this paper is the first work that studies performance
regression detection in the context of microservices.

Microservices: A Performance Tester’s Dream or Nightmare? ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

3 TRAITS OF MICROSERVICES
While there is no precise definition of a microservice architecture,
there are particular traits that are common in such architectures
[24, 32, 38]. Below, we summarize the most important ones while
keeping performance testing in mind.

(T1) Self-containment. Each microservice is technically self-
contained, i.e., it has its own deployment unit, runs in its own
process context, and has its own data storage.

(T2) Loosely coupled, platform-independent interfaces.
Microservices expose their functionality only using well-defined,
platform-independent interfaces (e.g., REST). The interfaces are
loosely coupled, in particular, there are no components like client
libraries that would establish build-time dependencies between
different microservices.

(T3) Independent development, build, and deployment.
The strict technical isolation and self-containedness allow each
microservice to be built and deployed independently of other mi-
croservices. Usually, microservices are developed by different teams
in separate code repositories, and the services are deployed into
production per the team’s own decision. Therefore, microservices
are considered a premier architecture for DevOps [5].

(T4) Containers and Container Orchestration. The deploy-
ment units in microservice architectures are usually container im-
ages that are run on a container-based virtualization platform such
as Docker.1 These images contain the microservice itself, the re-
quired runtime libraries, and even parts of the underlying operating
system. In order to efficiently manage the potentially large number
of container instances in a microservice architecture, container
orchestration solutions such as Kubernetes2 have emerged. These
tools automatically deploy containers on a cluster of hosts, provide
auto-scaling and load balancing functionalities, and even provide
self-healing capabilities in case of node failure.

(T5) Cloud-native. Many well-known microservice installa-
tions (e.g., at Netflix and Amazon) are deployed in the cloud. Due
to the loose coupling and independent deployment, microservices
allow for high scalability, and the cloud provides the resources to
actually run the required instances.

4 REQUIREMENTS FOR PERFORMANCE
TESTING

The performance of an application is impacted by many factors. As
a result, setting up and conducting a performance test is challeng-
ing, as the tester needs to control as much as possible for each of
these impacting factors. Many existing performance testing tech-
niques assume that (most of) the impacting factors are controlled.
Therefore, the ideal performance test and the environment in which
it executes have the following requirements:3

(R1) A stable testing environment which is representative
of the production environment. Conducting a performance test
in the production environment may have a negative impact on the
users of the production environment. Hence, performance tests are
often conducted in test (or staging) environments. However, it is

1https://www.docker.com
2https://https://kubernetes.io
3Note that unfortunately, often these requirements are in conflict with reality.

challenging to predict the production performance from a perfor-
mance test on a smaller, less powerful testing environment. For
example, there is a discrepancy between performance test results
from a virtual and physical environment [4]. Hence, the testing en-
vironment should ideally be equal to the production environment.
In addition, a heterogeneous testing environment makes the anal-
ysis of performance testing results more challenging [18]. Hence,
ideally we can run tests in a homogeneous testing environment.

(R2) A representative operational profile (includingwork-
load characteristics and system state) for the performance
test. A performance test must execute a workload that is realis-
tic and representative of the actual usage of the application [25].
One possible way to create such a workload is using workload
characterization and extraction [9, 49]. This workload should be
preceded by the initialization of the application in a representative
state (e.g., initializing the database contents). It is important that
this initialization step (i.e., the ramp-up time) is not included when
analyzing the test results.

(R3) Access to all components of the system. Performance
is tested at several levels (e.g., at the unit level [47] and integration
level [30]). Hence, it is important that the complete application
(including all its components) is available to thoroughly test its
performance.

(R4) Easy access to stable performancemetrics. Performance
metrics (e.g., performance counters) should be easily accessible [33].
In addition, the metrics that are monitored and analyzed during
the test should yield the same measurements each time the test
is conducted under the same circumstances. If not, the tester can-
not decide whether the variance in measurements is because of
changes in the environment, or a performance degradation of the
application.

(R5) Infinite time. In many cases, a longer performance test
yields more information about an application. As a result, a perfor-
mance test may take hours or even days to complete.

5 A PERFORMANCE TESTER’S DREAM
Microservices have several characteristics that benefit performance
testing when compared to ‘traditional’ software. In this section, we
give an overview of the benefits of microservices for performance
testers, based on the previously discussed requirements and traits.

Benefit 1: Containerization. Microservices are typically de-
ployed inside lightweight (e.g., Docker) containers (trait T4). A
major benefit of such containers is the ease with which tests can
be deployed, executed, and reproduced. Because containers help
with setting up a consistent test environment, containers can be a
useful tool for performance testers.

Benefit 2: Granularity. Microservices are self-contained and
do not specify any build dependencies (trait T1). Therefore, by de-
sign every microservice has to encapsulate a well-defined set of
functionality. Additionally, dependencies to other microservices
are managed via loosely coupled, platform-independent interfaces,
which are usually implemented as REST APIs (trait T2). This pre-
vents a microservice from depending on implementation details of
other microservices.

https://www.docker.com
https://https://kubernetes.io

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Simon Eismann, Cor-Paul Bezemer, Weiyi Shang, Dušan Okanović, and André van Hoorn

In traditional systems it is often unclear what constitutes a
component for component-level testing. The clear encapsulation
and small size of microservices makes them an ideal abstraction
for component-level testing. As microservices access dependent
microservices using REST APIs, any dependencies can be easily
mocked using frameworks such as Wiremock.4 In theory, no inte-
gration tests are required as all interactions between microservices
can be mocked based on their API documentation.

Benefit 3: Easy access to metrics. In traditional architectures,
collecting data about software execution usually requires instru-
mentation of the software code or libraries. In microservice archi-
tectures, services can be developed using different platforms (trait
T3) and it is not always possible to develop one monitoring solution
to support this.

However, monitoring solutions for microservices are integrated
seamlessly, with very little configuration, and without any knowl-
edge of implementation technology. They take the advantage of the
loose coupling between microservices (trait T2) and work on the
API level. Tools are able to continuously discover microservices,
and scale with the system under test, taking the advantage of trait
T5. Loose coupling using APIs also allows for easier full stack moni-
toring, i.e., collecting data from various system levels, e.g., from the
supporting infrastructure, containers, and the application itself. If
the application is deployed to multiple cloud providers, monitoring
tools allow for collecting and aggregating the data from all of them.

We can conclude that microservice architectures provide more
support for fulfillment of requirements R3 (access to all compo-
nents) and R4 (easy access to metrics), in comparison to traditional
architectures.

Benefit 4: Integration with DevOps. Performance testing is
typically conducted in a late stage of the release cycle, i.e., after
the system is built and deployed in the field or in a dedicated per-
formance testing environment. The complexity and the cost of
performance testing makes it challenging to fit into a typical fast
release cycle of DevOps. The adoption of microservices brings the
opportunity of bridging the gap between performance testing and
DevOps. The smaller scope of a microservice itself significantly
reduces the complexity and cost of the performance testing (trait
T3). Hence, performance testing would not become the bottleneck
of a release pipeline. In addition, the simpler development history
of a microservice makes it easier for practitioners to identify the
introduction of a performance issue and fix it in a timely manner.

6 CASE STUDY
Despite the benefits that microservices have for performance test-
ing, there also exist characteristics that make performance test-
ing challenging. In this section, we demonstrate these challenges
through experiments on the TeaStore application. In particular, we
conduct two experiments. In the first experiment, we investigate
how stable the execution environments and performance measure-
ments of microservice-based applications are. In the second experi-
ment, we investigate howwell the performance measurements from
microservice-based applications can be used to detect performance
regressions.

4http://wiremock.org/

Figure 1: TeaStore Architecture (Source [51]).

6.1 Experimental setup
For our experiments, we deployed the TeaStore (version 1.3.0), a
reference microservice application on a Google Kubernetes Engine
(GKE 1.11.6-gke.2) cluster [51]. The cluster has two node pools: the
first node pool consists of two n1-standard-2 VMs (2 vCPUs, 7.5 GB
memory) and contains the Kubernetes control plane services. The
second cluster consists of 20 VMs with 1 vCPU and 6.5 GB memory
each, resulting in a total of 20 vCPUs and 130 GBmemory. As shown
in Figure 1, the TeaStore consists of five services and a service
registry. We do not consider the registry as part of the system
under test and therefore deploy it in the node pool containing the
Kubernetes control plane. We deploy eight instances of each of the
five services, resulting in a total of 40 service instances. Kubernetes
uses two parameters to control the resource usage of containers,
resource requests and resource limits. Resource requests are used
to guide scheduling decisions, for every node, the sum of resource
requests can not exceed the node capacity. For our case study, we
initially assign resource requests of 420m(illi) CPU (about half a
core) and 1 GB memory for each service instance. Resource limits
manage the actual resource consumption of service instances by
providing an upper limit for them. We assign resource limits of
2000m CPU (about 2 cores) and 3GB memory. This configuration
is in line with the best-practices recommended by Google [13]. As a
workload we use the browse profile of the TeaStore, in which users
login, browse categories and products, add items to their shopping
cart and finally logout. We measure for three different load-levels:
700 requests per second, 800 requests per second and 900 requests
per second. Every measurement run consists of 20 minutes warm-
up phase and five minutes of measurements. Based on this default
setup, we measure the performance of the TeaStore in the following
scenarios in the first experiment:

• Default This scenario uses the exact specification described
above and represents the starting point of our experimenta-
tion.

• Balanced During our experiments, we noticed that the ser-
vices differ in their CPU usage. Hence, for this scenario, we
enforce co-location of the WebUI service (the most CPU-
intensive service) with the Recommender service (the least
CPU-intensive service) by adjusting their resource requests
(WebUI: 620m CPU; Recommender: 220m CPU).

Microservices: A Performance Tester’s Dream or Nightmare? ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

Scenario #Nodes Cores/Node Memory/Node

Default 20 1 6.5 GB
Balanced 20 1 6.5 GB
LargeVMs 5 4 26 GB
Autoscaling 5 4 26 GB
Regression (baseline) 5 4 26 GB
Regression 5 4 26 GB

Table 1: Cluster size in the different scenarios.

• LargeVMs To investigate the influence of the node size, this
scenario replaces the 20 small VMs with five larger VMs with
4 vCPUs and 26 GB memory each. This configuration uses
20 vCPUs and 130 GB memory in total, which is the same
total amount as in the default scenario.

• Autoscaling Many microservice applications rely on auto-
scaling instead of static deployments. Hence, in this scenario,
we use the Kubernetes Horizontal Pod Autoscaler (HPA)
instead of a fixed number of service instances. The HPA for
every service is configured to target a CPU utilization of 0.8
and is allowed to use up to 8 pods.

In the second experiment, we investigate how well we can detect
performance regressions in the TeaStore. Therefore, in the second
experiment we injected a performance regression and compared
it to the measurements for the same configuration without the
performance regression. However, at this time GKE 1.11.6-gke.2
was no longer available on the Google Cloud Platform and from
initial testing it seemed that this version change was impacting the
application performance. Therefore, we also measured the baseline
scenario again with the new GKE version.

• RegressionBaseline Identical setup to the LargeVMs sce-
nario, but uses GKE version 1.12.8-gke.10 instead of GKE
1.11.6-gke.2.

• 10% Regression To investigate the impact of performance
regression of a service on the overall system performance,
we injected a performance regression in the form of an active
delay of 4 ms (≈ 10% of the base response time of the full
system) in the WebUI service.

• 30% Regression Identical setup to the 10% regression sce-
nario, but with a delay of 12 ms instead of 4 ms (≈ 30% of
the base response time of the full system instead of ≈ 10%).

Table 1 shows the cluster and node size for each of the experimental
scenarios. To produce stable and reproducible results, we repeated
every scenario ten times resulting in a total of 180 measurement
runs of 25 minutes each (6 scenarios * 3 load-levels * 10 repetitions).
Additionally, to avoid human error during the experiments, we fully
automate the cluster provisioning using Terraform, the deployment
using .yaml files and the load generation using the load driver that
was provided by von Kistowski et al. [50]. In order to assist other
researchers in the reproduction and extension of this case study,
we provide a peer-reviewed replication package [16] containing: (i)
the scripts to reproduce our measurements, (ii) the measurement
data obtained in this study and (iii) the code used to replicate the

70
0

80
0

90
0

70
0

80
0

90
0

70
0

80
0

90
0

70
0

80
0

90
0

Arrival rate [Req/s]

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
re

sp
on

se
ti

m
e

[s
]

Default Balanced LargeVMs Autoscaling

Figure 2: Mean response time for four scenarios and three
load-levels each (all distributions consist of ten elements,
one for each repetition of the scenario).

following analysis and figures. In the remainder of this section
we describe the motivation, approach and findings for each of the
research questions that we address through our experiments.

6.2 RQ1: How stable are the execution
environments of microservices across
repeated runs of the experiments?

6.2.1 Motivation: As discussed in Section 4, one of the most im-
portant requirements for performance testing is having a stable
testing environment. In this research question, we study whether
the environment in which microservices execute is typically stable.

6.2.2 Approach: First, we study how microservices are deployed
across virtual machines in different runs of the experiments in
which the number of instances of each microservice is fixed. Second,
we study the deployment of microservices across virtual machines
in the autoscaling scenario.

6.2.3 Findings: The non-deterministic behaviour of the au-
toscaler results in different numbers of provisionedmicroser-
vice instances when scaling the same load. Table 2 shows the
total number of instances of each microservice that were provi-
sioned during the runs of the autoscaling scenarios for 700, 800 and
900 requests per second. For all microservices (except the WebUI
microservice) the number of provisioned instances varied across
the runs of an experiment. In some cases, such as for the Auth mi-
croservice in the 700 requests per second experiment, the difference
in the number of instances was as large as 4 instances (three in-
stances in runs 8 and 10 versus seven in run 6). These differences in
the number of provisioned instances are also reflected by the large
variation in mean response time across the runs of the Autoscaling
experiments in Figure 2.

Even when fixing the number of provisioned instances of
a microservices, their deployment across VMs differs. Fig-
ure 3 shows the deployments from two consecutive runs of the
LargeVMs scenarios with 700 requests per second. Although the
total number of provisioned instances of a microservice is constant

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Simon Eismann, Cor-Paul Bezemer, Weiyi Shang, Dušan Okanović, and André van Hoorn

Load Service Experiment run
1 2 3 4 5 6 7 8 9 10

700

Auth 4 5 4 4 4 7 4 3 4 3
WebUI 8 8 8 8 8 8 8 8 8 8
Recom. 2 2 1 1 1 1 1 1 1 1
Persist. 8 8 7 6 7 5 6 6 6 6
Image 4 4 4 4 4 5 3 3 4 4

800

Auth 5 6 4 4 4 4 4 4 4 4
WebUI 8 8 8 8 8 8 8 8 8 8
Recom 1 3 1 1 1 2 1 1 1 1
Persist. 7 8 7 7 7 7 7 7 7 7
Image 4 5 4 5 4 4 3 4 4 4

900

Auth 5 5 5 5 5 5 4 5 5 3
WebUI 8 8 8 8 8 8 8 8 8 8
Recom. 2 2 2 2 2 2 2 2 2 2
Persist. 8 8 8 8 8 7 7 8 8 7
Image 5 5 5 5 5 5 5 4 5 4

Table 2: Number of provisioned service instances after
twenty minutes of warmup across ten experiment repeti-
tions in the Autoscaling scenario.

across the runs (i.e., all microservices have eight instances), their
deployment differs. We observe that the VM2, VM3, and VM4 vir-
tual machines host a different set of microservices across the two
runs.

The execution environments of microservices are not stable,
even when the total number of provisioned instances is kept
the same. Hence, it is difficult to ensure that a microservice
always executes under the same circumstances.

6.3 RQ2: How stable are the performance
testing results across repeated runs of the
experiments?

6.3.1 Motivation: The findings of RQ1 illustrate the possible differ-
ent deployments in microservices, which may be transparent and
can bring uncertainty to the stakeholders of the systems that are
deployed on top. However, although they are different, the deploy-
ments do not necessarily cause actual differences in performance.
Hence, the differences in deployments could have a minimal im-
pact on the stakeholders. In this research question, we study the
stability of the performance measurements that were made during
our experiments across different experimental runs.

6.3.2 Approach: We compare the distributions of the measured
response times to measure the differences in user-perceived perfor-
mance across all experimental scenarios and workloads. To decide
whether the differences between two distributions are significant,
we perform a Mann-Whitney U test [36] between every pair of
scenarios for a particular workload. For example, we test whether
the difference between the performance measurements for the De-
fault and Balanced scenarios is significant when the workload is

VM1

A A

I I

P P

R W

VM2

A A

I I

P R

W W

VM3

A A

I P

R R

W W

VM4

A I

I P

P R

R W

VM5

A I

P P

R R

W W

VM1

A A

I I

P P

R W

VM2

A A

I I

P R

R W

VM3

A A

I P

P R

W W

VM4

A I

I P

R R

W W

VM5

A I

P P

R R

W W

(a) Deployment during experiment run 4/10

VM1

A A

I I

P P

R W

VM2

A A

I I

P R

W W

VM3

A A

I P

R R

W W

VM4

A I

I P

P R

R W

VM5

A I

P P

R R

W W

VM1

A A

I I

P P

R W

VM2

A A

I I

P R

R W

VM3

A A

I P

P R

W W

VM4

A I

I P

R R

W W

VM5

A I

P P

R R

W W

(b) Deployment during experiment run 5/10

Figure 3: Deployment from two repetitions of LargeVMs sce-
nario with 700 requests/second. The differences in deploy-
ment are indicated by thick red borders (A = authentication
service, I = ImageProvider service, P = Persistence service, R
= Recommender service, W = WebUI service).

700 requests per second. We chose the Mann-Whitney U test since
it does not have requirements on the distribution of the data. The
null hypothesis of the Mann-Whitney U test is that the two input
distributions are identical. If the test computes a p-value that is
smaller than 0.05, we consider the two input distributions to be
significantly different. Otherwise, the difference between the two
input distributions is not significant.

In addition, when two input distributions are found to be signif-
icantly different, we compute Cliff’s Delta d [34] to quantify the
difference. We used the following thresholds for interpreting d [41]:

Effect size =


neдliдible(N), if |d | ≤ 0.147.
small(S), if 0.147 < |d | ≤ 0.33.
medium(M), if 0.33 < |d | ≤ 0.474.
larдe(L), if 0.474 < |d | ≤ 1.

6.3.3 Findings: There exist statistically significant differences
between the performance testing results from different sce-
narios. Table 3 shows that all pairs of scenarios across our three
workloads have statistically significant differences. In particular,
all of the differences have medium or large effect sizes. We further
examined the performance testing results and found that, with a
higher workload, the performance, e.g., CPU usage and response
times, often has a larger variance (see Figure 2). Such larger vari-
ance illustrates the uncertainty in such execution environments of
microservices when the workload is high, which may require more
resources from the execution environment. Hence, under a higher
workload, performance test results of microservices become less
reliable, requiring even more repetitions to improve the test result
confidence.

Microservices: A Performance Tester’s Dream or Nightmare? ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

Table 3: Comparing response time and total CPU time be-
tween different scenarios under the same workload (all dis-
tributions consist of ten elements, one for each repetition of
the scenario).

Response time CPU
700/sec p-value Eff. size p-value Eff. size

Default Balanced 0.01 0.60 (L) 0.06 —
Balanced LargeVMs 0.04 0.46 (M) 0.15 —
Default LargeVMs 0.00 0.82 (L) 0.00 0.76 (L)

Response time CPU
800/sec p-value Eff. size p-value Eff. size

Default Balanced 0.00 0.76 (L) 0.15 —
Balanced LargeVMs 0.02 0.56 (L) 0.00 0.80 (L)
Default LargeVMs 0.00 1.00 (L) 0.00 0.98 (L)

Response time CPU
900/sec p-value Eff. size p-value Eff. size

Default Balanced 0.00 0.80 (L) 0.43 —
Balanced LargeVMs 0.02 0.56 (L) 0.00 0.98 (L)
Default LargeVMs 0.00 1.00 (L) 0.00 1.00 (L)

The total CPU busy time may not be statistically signif-
icantly different between scenarios. Although there exist sta-
tistically significantly different response times between scenarios,
the differences between CPU busy time do not necessarily have
to be. Table 3 and Figure 4 show that the differences in the CPU
busy time of the Default and Balanced scenarios are never (in our
experiments) significant, regardless of the workload. Hence, our
observed different response times may not be fully due to the lack
of computational resources, but rather due to the deployment of
the microservices and the environment in which they execute.

Autoscaling is optimized for utilization, leading to higher
response times on the system. We found that, by enabling au-
toscaling, the number of engaged nodes is low. In particular, we
find that in all our runs, all of the services except for the WebUI
do not provision all eight allowed service instances. For example,
Table 2 shows that the Recommender service sometimes only provi-
sions one service instance out of the total eight instances that are
available. This autoscaling strategy is optimized for utilization. In
particular, we find that the total CPU busy time in the autoscaling
scenario is not statistically different from other scenarios, while the
response time of the system is considerably higher (see Figure 2).
On the one hand, this strategy eases the management and lowers
the cost of the users of the cloud services while it does not consider
the impact on the end users, leading to sub-optimal performance.

Although the CPU busy time may not be significantly dif-
ferent between scenarios, there often exist statistically sig-
nificant differences in response time. Such differences may
have a direct negative impact on the user-perceived perfor-
mance, and makes the analysis of performance test results of
microservices more challenging.

70
0

80
0

90
0

70
0

80
0

90
0

70
0

80
0

90
0

70
0

80
0

90
0

Arrival rate [Req/s]

45

50

55

60

65

70

C
P

U
bu

sy
ti

m
e

[m
]

Default Balanced LargeVMs Autoscaling

Figure 4: CPU busy time for four scenarios and three load-
levels each (N=10).

6.4 RQ3: How well can performance
regressions in microservices be detected?

6.4.1 Motivation: A common use case of performance testing is
to detect performance regression, i.e., unintended changes of a
software system’s performance-related behavior between two or
more versions [2, 6, 18]. Typical symptoms for performance re-
gressions include increased response times and resource usage,
or decreased throughput. The root causes of regressions can be
many-fold. Examples include the introduction of software perfor-
mance anti-patterns, such as chatty services, software bottlenecks
and memory leaks. Typical metrics for evaluating the quality of
regression techniques include false/true positive/negative rates, as
well as precision and recall. In this research question, we study to
what degree the regression detection quality is impacted by the
underlying variance in the infrastructure and performance testing
results that was demonstrated in the previous research questions.

6.4.2 Approach: To determine if performance regressions can be
detected with a single execution of a performance test, we com-
pared the response time distributions of single measurement runs.
Algorithm 1 demonstrates how we defined the ‘golden standard’
for the runs that are selected for comparison. In summary, we did a
pairwise comparison of all possible pairs of runs of the Regression-
Baseline, and the 10% Regression and 30% Regression scenarios at
the same load level.

First, each baseline measurement is paired with every other
baseline measurement at the same load level and labeled as False,
which indicates that there was no regression. Next, each baseline
measurement is compared to every measurement of the selected
regression scenario at the same load level and labeled as True, which
indicates that there was a performance regression. We then employ
three regression detection approaches to investigate how well they
can identify regressions using only data from single experiment
runs.

We applied three tests for comparing distributions to investi-
gate whether the performance regression could be detected. We
used the Wilcoxon signed rank [52], the two-sampled Kolmogorov-
Smirnov [46] and the Anderson-Darling [3] tests to compare the

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Simon Eismann, Cor-Paul Bezemer, Weiyi Shang, Dušan Okanović, and André van Hoorn

Algorithm 1 Defining the golden standard for deciding whether
one of the two experiment runs is from a scenario in which a
regression occurred.

1: function getIsRegressionPairs(reдrBaseline , reдr)
2: isPairReдression = []
3: for load in [700, 800, 900] do
4: for i = 1; i ≤ 10; i++ do
5: for j = 1; j ≤ 10; j++ do
6: if i < j then
7: isPairReдression.append(
8: [reдrBaseline[load ,i],
9: reдrBaseline[load , j],
10: False])
11: end if
12: isPairReдression.append(
13: [reдrBaseline[load ,i],
14: reдr [load ,j],
15: True])
16: end for
17: end for
18: end for
19:
20: return isPairReдression
21: end function

distributions. With these statistical tests, two distributions are con-
sidered different if the calculated test statistic exceeds a certain
threshold. To analyse the impact of different threshold values on
the regression detection accuracy, we calculate a Receiver Operat-
ing Curve (ROC) curve based on the test statistics. Figure 6 shows
the ROC curve.

Next, we investigated if the performance regression could be
accurately detected if we collect the data from ten experiment runs
rather than a single one. We compared the ten measurement runs of
the RegressionBaseline scenario to the ten measurement runs of the
10% and 30% regression scenarios. We applied the same test as in
RQ2 (the Mann-Whitney U test) for comparing the distributions to
investigate whether the performance regression could be detected.
We assume that we can only detect the performance regression if the
distributions of the responses times before and after injecting the
regression are considered significantly different. Table 4 shows the
results of the performance regression analysis for ten experiment
runs.

6.4.3 Findings: The results for the non-regression scenarios
also apply to the regression scenario.The results of RQ1 showed
that the deployments across VMs differ for the LargeVMs scenario.
The results for the Regression scenario show the same effect. Fig-
ure 5 shows the response times for the Regression scenario. It can
be observed that, according to the findings in RQ2, the response
times —and their variance— increase with increasing workloads.

Using only a single experiment run results in flaky per-
formance tests. Figure 6 shows the ROC curve of the detection
accuracy of the three tests that we use for regression detection.
As shown by Figure 6, the area under the ROC curve (AUC) is be-
tween 0.86 and 0.90 for the 10% Regression scenario and between

70
0

80
0

90
0

70
0

80
0

90
0

70
0

80
0

90
0

Arrival rate [Req/s]

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
re

sp
on

se
ti

m
e

[s
]

Baseline 10 30

Figure 5: Mean response time for the regression baseline,
10% regression and 30% regression scenarios at three load-
levels each (N=10).

Table 4: Comparing the distributions of the response time
and total CPU time between different scenarios with regres-
sion between the LargeVMs and 10% Regression scenario (all
distributions consist of ten elements, one for each repetition
of the scenario—hereafter identified as N=10).

Load [Req/s]
Response time CPU Utilization

p-value Eff. size p-value Eff. size

700 0.00 1.00 (L) 0.00 1.00 (L)
800 0.00 1.00 (L) 0.00 1.00 (L)
900 0.00 1.00 (L) 0.00 1.00 (L)

0.96 and 0.98 for the 30% Regression scenario. While these AUCs
are fairly high (a perfect regression detection would have an AUC
of 1), the regression detection mechanisms suffer from flakiness. In
particular, even the best-performing regression detection approach
has a false-positive rate of 0.2 for the relatively small regression of
10%, meaning that the outcome of the performance test is wrong
approximately one out of five times even for these 30 minute long
tests. Test flakiness is a serious problem for regression testing, as
the non-deterministic output of the tests reduces the applicability of
such tests in automated testing processes, such as those necessary
for continuous integration [35]. Table 4 shows that the regressions
can be detected reliably when increasing the number of test runs
to ten. However, this corresponds to 5h of measurements. The re-
quired number of test runs is system-dependent and may require
to be empirically defined (which is costly for performance tests).

It is possible to detect performance regressions in microser-
vices applications. However, one needs to ensure that enough
repetitions of the performance tests are done to deal with the
variance in the deployment of the services and the environ-
ments in which they run.

Microservices: A Performance Tester’s Dream or Nightmare? ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

10

10

10

30

30

30

Figure 6: ROC curve showing the detection accuracy for the
10% and 30% regression.

7 SOLVING/ADDRESSING THE
PERFORMANCE TESTER’S NIGHTMARE

Based on the results presented in Section 6, we discuss challenges
that exist in the performance testing of microservice-based applica-
tions in Section 7.1 and propose how to address the challenges in
Section 7.2.

7.1 Nightmares
Nightmare 1: Stability of the environment: Although it is one
of the most important requirements for successful performance
testing (R1), it is very difficult to ensure that a microservice always
executes under the same circumstances. Our analysis (RQ1) shows
that the number of provisioned services, as well as their deploy-
ment over the virtual machines, can differ between experiment runs.
Hence, the execution environment of microservices cannot be expected
to be stable, even with a constant number of provisioned instances.
Such instability makes it very difficult to decide whether perfor-
mance issues stem from the underlying execution environment or
the application itself.

Cloud providers may also make changes in their infrastructure,
both hardware and software, causing the instability of the environ-
ment, as we encountered in our experiment. Namely, the Kubernetes
was updated from the version GKE 1.11.6-gke.2 in the first experi-
ments, to version 1.12.8-gke.10 for regression experiments, which
was beyond our control. Beside software updates, there might be
changes in the hardware. This can later cause deploying virtual
machines on different hardware between experiments.

Nightmare 2: Reproducibility and repeatability of the ex-
periments. The repeated experiment runs may not result in the same
performance measurements when testing microservice-based appli-
cations. Causes for this, as shown previously (see Nightmare 1)
can come from the unstable environment, but also from microser-
vices themselves. Microservice architectures are inherently dy-
namic and contain dynamic elements, e.g., scaling mechanisms,
load balancers, and circuit breakers. Scaling mechanisms take care
that there are always enough instances to serve the incoming work-
load. When a component crash occurs, orchestration frameworks

simply start a new microservice instance, while the traffic is di-
rected to currently running instances. Thanks to these mechanisms,
microservice-based applications can survive such incidents and be
resilient but leaves traditional performance testing techniques chal-
lenges to cope with. Although statistical analysis can be leveraged
to ease addressing such challenges, our results from RQ2 highlight
the challenges when facing a rather small magnitude of regression
(see Figure 6).

Nightmare 3: Detecting small changes. The variation in test
results presents an even bigger issue when performing regression
testing and trying to detect small changes. Figure 2 shows that with
a higher load, i.e., 900 req/s arrival rate, the variation of mean
response time becomes much larger than being under a lower load.
Such high variation makes it necessary to execute the same test
a larger number of repetitions to achieve a successful regression
detection with statistical significance. However, the requirement
of a larger number of repetitions would require more resources
and may pose an additional delay in detecting the regression in
practice.

7.2 Research directions
Direction 1: Variation reduction in executing performance
tests. As explained in Section 7.1, there may exist a large variation
in the execution environment and performance of microservice-
based applications. Hence, it is important to reduce this variation
as much as possible. A straightforward approach is to start many
instances of a microservice and take aggregate performance mea-
surements across these instances (e.g., using the median). Other
possibilities include running performance tests in a more controlled
environment or randomizing test order. Future studies should inves-
tigate how well such approaches function for microservice-based
applications. In addition, future studies are necessary to investi-
gate how successful existing approaches for mitigating the effect
of changing/unstable environments on performance tests, such as
those by Foo et al. [18], can be applied to microservices.

Direction 2: Studying the stability of (new) performance
metrics. As we show in Section 7.1, it is difficult to achieve repeat-
able performance test results with microservice-based applications,
as the application’s environment and deployment configuration
may be ever-changing and the results could be considerably differ-
ent due to a plethora of factors. Therefore, future research should
(1) investigate the applicability of analyzing traditional performance
metrics during performance testing in a microservice-oriented en-
vironment (e.g., in terms of their stability), and (2) search for new
metrics that can be used to assess the performance of such an envi-
ronment. For example, Kubernetes is often used in microservice-
based applications and offers access to several microservice and
container-level metrics [42]. Such container-level metrics could
be less susceptible to variation than response-time based metrics.
Future research should investigate whether suchmetrics can be ben-
eficial for better analyzing performance test results of microservice-
based applications.

Direction 3: Creating a benchmark environment formicro-
service-oriented performance engineering research. One of
the main challenges in evaluating software performance engineer-
ing research is to deploy a testing environment and application and

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Simon Eismann, Cor-Paul Bezemer, Weiyi Shang, Dušan Okanović, and André van Hoorn

to test it using a representative workload. For traditional perfor-
mance engineering research, several benchmark applications exist,
e.g., RUBiS [10] and the DaCapo [7] benchmarks.

To ease the evaluation of performance engineering approaches
and to allow comparison between these approaches, a benchmark
environment that takes into account the properties of microservice-
based applications is crucial [45]. Microservice-oriented applica-
tions, e.g., the Sock Shop5 or Tea Store6 applications, can be consid-
ered as a starting point for building such benchmark applications,
together with the CASPA platform [15], which can provide work-
load and monitoring.

8 THREATS TO VALIDITY
In this section, we discuss the construct, external and internal
threats to the validity of our study [53]. Construct validity considers
howwell the measurements relate to the research question, external
validity considers the generalizability of the results and internal
validity considers the causality between the experiment settings
and the outcomes, i.e., how well the experimental conditions are
controlled.

8.1 Construct
In our experiments, we used limited sets of configurations of the
TeaStore (Default, Balanced, LargeVMs, Autoscaling), load levels
(700, 800, and 900 requests per second), types and intensities of
injected regressions (active delay with 10% and 30% of the base
response time) and the studied performance metrics (response time
and CPU usage). This may have an impact on the observations
regarding the research questions. Selecting every possible combina-
tion of configurations is infeasible. We have selected representative
configurations that provide a good coverage of the overall system
behavior and performance. Regarding the metrics, we have selected
those that are commonly used in load test (regression) experiments.
Future studies should investigate further how our findings apply
to other configurations, load levels, regressions and performance
metrics.

8.2 External
For our experiments, we have used a single system under test—
namely the TeaStore [51]— and a single cloud environment—namely
GKE. The reason for conducting the experiments was to illustrate
the challenges that users experience when conducting performance
tests for microservice-based applications in the cloud. We chose the
TeaStore as it is one of the few available reference microservice ap-
plications for performance testing [51], and GKE because it is one of
the popular engines for deploying microservices. We are convinced
that the overall conclusions can be transferred to other systems and
platforms, but the quantitative results will certainly not be transfer-
able. Our peer-reviewed replication package [16] allows to conduct
follow-up experiments by us and other researchers in the future.
Future studies should investigate whether our findings apply to
other microservice-based applications and cloud environments.

5https://microservices-demo.github.io/
6https://github.com/DescartesResearch/TeaStore

8.3 Internal
Performance experiments in the cloud always impose a high de-
gree of uncertainty due to the performance variability of cloud
resources. This performance variability has been discussed in a
number of existing studies [29, 37]. To mitigate this threat, we fol-
lowed recommended practices for conducting and reporting cloud
experiments [39]. In addition, the uncertainty in cloud performance
is a major reason for the challenges and nightmares that are re-
ported in this paper.

9 CONCLUSION AND RESEARCH VISION
Microservices are a popular trend in software development for
building scalable, large-scale software systems. While some of the
characteristics of microservices make the lives of performance
testers easier, others turn their (performance testing) lives into
a nightmare.

In this paper we laid out the most important benefits and chal-
lenges that arise when performance testing microservices. Through
several experiments on the TeaStore, a reference microservice appli-
cation, we demonstrated the challenges that comewith performance
testing microservices.

The most important findings of our paper are:

• It is difficult to ensure that a microservice always executes
under the same circumstances. Even when the total number
of provisioned instances is kept constant, the execution en-
vironments of microservices can be different across repeated
runs of a task (Section 6.2).

• The analysis of performance test results of microservices is
challenging, since the user-perceived performance may be
worse while this is not necessarily shown by all performance
metrics (Section 6.3).

• It is possible to detect performance regressions in microser-
vices, however, one needs to ensure that enough repetitions
of the performance tests are done (Section 6.4).

In summary, we show that performance testing of microservice-
based applications is challenging, and requires additional care when
setting up test environments or conducting tests in comparison to
‘traditional’ software applications. This paper motivates the need
for several research directions (in Section 7.2). In particular, future
studies should investigate how to reduce the variation in perfor-
mance test execution, and propose new, more stable performance
metrics that can be used reliably in microservice-based applications.

ACKNOWLEDGMENTS
This research was partly funded by the German Federal Ministry
of Education and Research (grant no. 01IS17010, ContinuITy) and
the European Union’s Horizon 2020 research and innovation pro-
gramme (grant no. 825040, RADON), and supported by the Google
Cloud Platform research credits program. The work was conducted
by the SPEC RG DevOps Performance Working Group.7 In addition,
we would like to thank Holger Knoche for his feedback on early
versions of this paper.

7https://research.spec.org/devopswg

https://microservices-demo.github.io/
https://github.com/DescartesResearch/TeaStore
https://research.spec.org/devopswg

Microservices: A Performance Tester’s Dream or Nightmare? ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

REFERENCES
[1] Carlos M. Aderaldo, Nabor C. Mendonça, Claus Pahl, and Pooyan Jamshidi.

2017. Benchmark requirements for Microservices Architecture Research. In
Proc. 1st IEEE/ACM International Workshop on Establishing the Community-Wide
Infrastructure for Architecture-Based Software Engineering, (ECASE@ICSE ’17).
IEEE, 8–13.

[2] Tarek M. Ahmed, Cor-Paul Bezemer, Tse-Hsun Chen, Ahmed E. Hassan, and
Weiyi Shang. 2016. Studying the Effectiveness of Application Performance
Management (APM) Tools for Detecting Performance Regressions for Web Ap-
plications: An Experience Report. In International Conference on Mining Software
Repositories (MSR). ACM, 1–12.

[3] T. W. Anderson and D. A. Darling. 1952. Asymptotic Theory of Certain ’Goodness
of Fit’ Criteria Based on Stochastic Processes. Ann. Math. Statist. 23, 2 (06 1952),
193–212.

[4] Muhammad Moiz Arif, Weiyi Shang, and Emad Shihab. 2018. Empirical study on
the discrepancy between performance testing results from virtual and physical
environments. Empirical Software Engineering 23, 3 (2018), 1490–1518.

[5] Len Bass, Ingo Weber, and Liming Zhu. 2015. DevOps: A Software Architect’s
Perspective. Addison-Wesley.

[6] Cor-Paul Bezemer, Elric Milon, Andy Zaidman, and Johan Pouwelse. 2014. Detect-
ing and Analyzing I/O Performance Regressions. Journal of Software: Evolution
and Process (JSEP) 26, 12 (2014), 1193–1212.

[7] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Bench-
marking Development and Analysis. SIGPLAN Not. 41, 10 (2006), 169–190.

[8] André B. Bondi. 2014. Foundations of Software and System Performance Engineer-
ing: Process, Performance Modeling, Requirements, Testing, Scalability, and Practice.
Addison-Wesley Professional.

[9] Maria Carla Calzarossa, Luisa Massari, and Daniele Tessera. 2016. Workload
Characterization: A Survey Revisited. Comput. Surveys 48, 3 (2016), 1–43.

[10] Emmanuel Cecchet, Julie Marguerite, and Willy Zwaenepoel. 2002. Performance
and Scalability of EJB Applications. SIGPLAN Not. 37, 11 (2002), 246–261.

[11] Tse-Hsun Chen, Mark D. Syer, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan,
Mohamed Nasser, and Parminder Flora. 2017. Analytics-driven Load Testing:
An Industrial Experience Report on Load Testing of Large-scale Systems. In
Proceedings of the 39th International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP ’17). IEEE Press, Piscataway, NJ, USA,
243–252.

[12] D. E. Damasceno Costa, C. Bezemer, P. Leitner, and A. Andrzejak. 2019. What’s
WrongWithMy Benchmark Results? Studying Bad Practices in JMH Benchmarks.
IEEE Transactions on Software Engineering (2019), 1–14.

[13] Sandeep Dinesh. 2018. Kubernetes best practices: Resource requests and
limits. https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-
resource-requests-and-limits.

[14] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. 2017. Microservices: yester-
day, today, and tomorrow. In Present and Ulterior Software Engineering. Springer,
Cham, 195–216.

[15] Thomas F. Düllmann, Robert Heinrich, André van Hoorn, Teerat Pitakrat, Jürgen
Walter, and Felix Willnecker. 2017. CASPA: A Platform for Comparability of
Architecture-Based Software Performance Engineering Approaches. In Proc. IEEE
International Conference on Software Architecture (ICSA 2017) Workshops. IEEE,
294–297.

[16] Simon Eismann, Cor-Paul Bezemer, Weiyi Shang, Dušan Okanović, and André
van Hoorn. 2019. Microservices: A Performance Tester’s Dream or Nightmare? -
Replication package. https://doi.org/10.5281/zenodo.3582707.

[17] Christian Esposito, Aniello Castiglione, and Kim-Kwang Raymond Choo. 2016.
Challenges in Delivering Software in the Cloud as Microservices. IEEE Cloud
Computing 3, 5 (2016), 10–14.

[18] King Chun Foo, Zhen Ming (Jack) Jiang, Bram Adams, Ahmed E. Hassan, Ying
Zou, and Parminder Flora. 2015. An Industrial Case Study on the Automated
Detection of Performance Regressions in Heterogeneous Environments. In Proc.
of the 37th International Conference on Software Engineering (ICSE ’15). IEEE,
159–168.

[19] R. Gao, Z. M. Jiang, C. Barna, and M. Litoiu. 2016. A Framework to Evaluate
the Effectiveness of Different Load Testing Analysis Techniques. In 2016 IEEE
International Conference on Software Testing, Verification and Validation (ICST).
22–32.

[20] Sen He, Glenna Manns, John Saunders, Wei Wang, Lori Pollock, and Mary Lou
Soffa. 2019. A Statistics-based Performance Testing Methodology for Cloud
Applications. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2019). ACM, New York, NY, USA, 188–199.

[21] Robert Heinrich, André van Hoorn, Holger Knoche, Fei Li, Lucy Ellen Lwakatare,
Claus Pahl, Stefan Schulte, and Johannes Wettinger. 2017. Performance Engineer-
ing for Microservices: Research Challenges and Directions. In Companion 8th
ACM/SPEC on International Conference on Performance Engineering (ICPE 2017).
ACM, 223–226.

[22] Nikolas Roman Herbst, Samuel Kounev, and Ralf H. Reussner. 2013. Elasticity
in Cloud Computing: What It Is, and What It Is Not. In Proc. 10th International
Conference on Autonomic Computing (ICAC’13). 23–27.

[23] International Organization for Standardization (ISO). 2005. ISO/IEC 25000:2005,
Software Engineering - Software Product Quality Requirements and Evaluation
(SQuaRE).

[24] Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonça, James Lewis, and Stefan Tilkov.
2018. Microservices: The Journey So Far and Challenges Ahead. IEEE Software
35, 3 (2018), 24–35.

[25] Zhen Ming Jiang and Ahmed E. Hassan. 2015. A Survey on Load Testing of
Large-Scale Software Systems. IEEE Transactions on Software Engineering 41, 11
(2015), 1091–1118.

[26] Holger Knoche. 2016. Sustaining Runtime Performance While Incrementally
Modernizing Transactional Monolithic Software Towards Microservices. In Proc.
7th ACM/SPEC on International Conference on Performance Engineering (ICPE ’16).
ACM, 121–124.

[27] Christoph Laaber and Philipp Leitner. 2018. An Evaluation of Open-Source
Software Microbenchmark Suites for Continuous Performance Assessment. In
Proc. Proc. 15th International Conference on Mining Software Repositories (MSR
’18). IEEE.

[28] Christoph Laaber, Joel Scheuner, and Philipp Leitner. 2019. Software Microbench-
marking in the Cloud. How Bad is It Really? Empirical Softw. Engg. 24, 4 (Aug.
2019), 2469–2508.

[29] Christoph Laaber, Joel Scheuner, and Philipp Leitner. 2019. Software microbench-
marking in the cloud. How bad is it really? Empirical Software Engineering 24, 4
(2019), 2469–2508.

[30] Philipp Leitner and Cor-Paul Bezemer. 2017. An Exploratory Study of the State
of Practice of Performance Testing in Java-Based Open Source Projects. In Proc.
8th ACM/SPEC on International Conference on Performance Engineering (ICPE ’17).
ACM, 373–384.

[31] Philipp Leitner and Jürgen Cito. 2016. Patterns in the Chaos – A Study of
Performance Variation and Predictability in Public IaaS Clouds. ACM Trans.
Internet Technol. 16, 3, Article 15 (2016), 1–23 pages.

[32] James Lewis and Martin Fowler. 2014. Microservices. Retrieved June 3, 2018
from https://martinfowler.com/articles/microservices.html

[33] David J. Lilja. 2005. Measuring Computer Performance: A Practitioner’s Guide.
Cambridge University Press.

[34] Jeffrey D. Long, Du Feng, and Norman Cliff. 2003. Ordinal Analysis of Behavioral
Data. John Wiley & Sons, Inc.

[35] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
Empirical Analysis of Flaky Tests. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE). ACM,
643–653.

[36] H. B. Mann and D. R. Whitney. 1947. On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. Ann. Math. Statist. 18, 1 (03
1947), 50–60.

[37] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez, Carlos Maltzahn, Ryan
Stutsman, and Robert Ricci. 2018. Taming performance variability. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
18). 409–425.

[38] Sam Newman. 2015. Building Microservices (1st ed.). O’Reilly Media, Inc., Se-
bastopol, California, USA.

[39] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. Von Kistowski, A. Ali-eldin,
C. Abad, J. N. Amaral, P. TÅŕma, and A. Iosup. 2019. Methodological Principles
for Reproducible Performance Evaluation in Cloud Computing. IEEE Transactions
on Software Engineering (2019), 1–1.

[40] Florian Rademacher, Jonas Sorgalla, and Sabine Sachweh. 2018. Challenges of
Domain-Driven Microservice Design: AModel-Driven Perspective. IEEE Software
35, 3 (2018), 36–43.

[41] Jeanine Romano, Jeffrey D Kromrey, Jesse Coraggio, Jeff Skowronek, and Linda
Devine. 2006. Exploring methods for evaluating group differences on the NSSE
and other surveys: Are the t-test and Cohen’s d indices the most appropriate
choices. In Annual meeting of the Southern Association for Institutional Research.

[42] Jean-Mathieu Saponaro. 2016. Monitoring Kubernetes performance metrics.
Retrieved June 6, 2018 from https://www.datadoghq.com/blog/monitoring-
kubernetes-performance-metrics/

[43] Joel Scheuner and Philipp Leitner. 2018. A Cloud Benchmark Suite Combining
Micro and Applications Benchmarks. In Companion 2018 ACM/SPEC International
Conference on Performance Engineering (ICPE ’18). 161–166.

[44] Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, and Parminder Flora. 2015.
Automated Detection of Performance Regressions Using Regression Models on

https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-resource-requests-and-limits
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-resource-requests-and-limits
https://doi.org/10.5281/zenodo.3582707
https://martinfowler.com/articles/microservices.html
https://www.datadoghq.com/blog/monitoring-kubernetes-performance-metrics/
https://www.datadoghq.com/blog/monitoring-kubernetes-performance-metrics/

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Simon Eismann, Cor-Paul Bezemer, Weiyi Shang, Dušan Okanović, and André van Hoorn

Clustered Performance Counters. In Proceedings of the 6th ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE ’15). ACM, New York, NY,
USA, 15–26.

[45] S. Elliot Sim, Steve Easterbrook, and Richard C. Holt. 2003. Using benchmarking
to advance research: a challenge to software engineering. In Proceedings of the
25th International Conference on Software Engineering (ICSE). 74–83.

[46] Nikolai V Smirnov. 1939. Estimate of deviation between empirical distribution
functions in two independent samples. Bulletin Moscow University 2, 2 (1939),
3–16.

[47] Petr Stefan, Vojtech Horky, Lubomir Bulej, and Petr Tuma. 2017. Unit Testing
Performance in Java Projects: Are We There Yet?. In Proc. of the 8th ACM/SPEC on
International Conference on Performance Engineering (ICPE ’17). ACM, 401–412.

[48] Alexandru Uta and Harry Obaseki. 2018. A Performance Study of Big Data
Workloads in Cloud Datacenters with Network Variability. In Companion 2018
ACM/SPEC International Conference on Performance Engineering (ICPE ’18). 113–
118.

[49] Christian Vögele, André van Hoorn, Eike Schulz, Wilhelm Hasselbring, and
Helmut Krcmar. 2018. WESSBAS: Extraction of Probabilistic Workload Specifica-
tions for Load Testing and Performance Prediction—A Model-Driven Approach

for Session-Based Application Systems. Softw. and Syst. Modeling 17, 2 (2018),
443–477.

[50] Jóakim von Kistowski, Maximilian Deffner, and Samuel Kounev. 2018. Run-time
Prediction of Power Consumption for Component Deployments. In Proceedings
of the 15th IEEE International Conference on Autonomic Computing (ICAC 2018).

[51] Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer, Johannes
Grohmann, and Samuel Kounev. 2018. TeaStore: A Micro-Service Reference
Application for Benchmarking, Modeling and Resource Management Research.
In Proceedings of the 26th IEEE International Symposium on the Modelling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS ’18).

[52] Frank Wilcoxon. 1945. Individual comparisons by ranking methods. Biometrics
bulletin 1, 6 (1945), 80–83.

[53] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, and Björn Regnell.
2012. Experimentation in Software Engineering. Springer.

[54] Pengcheng Xiong, Calton Pu, Xiaoyun Zhu, and Rean Griffith. 2013. vPerfGuard:
An Automated Model-driven Framework for Application Performance Diagnosis
in Consolidated Cloud Environments. In Proceedings of the 4th ACM/SPEC Inter-
national Conference on Performance Engineering (ICPE ’13). ACM, New York, NY,
USA, 271–282.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Performance testing in cloud environments
	2.2 Microservices
	2.3 Performance regression detection

	3 Traits of Microservices
	4 Requirements for Performance Testing
	5 A Performance Tester's Dream
	6 Case study
	6.1 Experimental setup
	6.2 RQ1: How stable are the execution environments of microservices across repeated runs of the experiments?
	6.3 RQ2: How stable are the performance testing results across repeated runs of the experiments?
	6.4 RQ3: How well can performance regressions in microservices be detected?

	7 Solving/Addressing the Performance Tester's Nightmare
	7.1 Nightmares
	7.2 Research directions

	8 Threats to Validity
	8.1 Construct
	8.2 External
	8.3 Internal

	9 Conclusion and Research Vision
	Acknowledgments
	References

