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ABSTRACT
In the last decades, especially intensified by the pandemic situa-
tion in which many people stay at home and order goods online,
the need for efficient logistics systems has increased significantly.
Hence, the performance of optimization techniques for logistic pro-
cesses are becoming more and more important. These techniques
often require estimates about distances to customers and facilities
where operators have to choose between exact results or short com-
putation times. In this vision paper, we propose an approach for
Flexible and Adaptive Distance Estimation (FADE). The central idea
is to abstract map knowledge into a less complex graph to trade
off between computation time and result accuracy. We propose
to further apply concepts from self-aware computing in order to
support the dynamic adaptation to individual goals.

CCS CONCEPTS
• Theory of computation→ Facility location and clustering;
•Applied computing→Transportation; •Computingmethod-
ologies → Modeling methodologies.
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1 INTRODUCTION
In recent decades, the demand for road freight transport has in-
creased significantly around the world. For example, in the last two
decades, the demand in Germany has increased from 350 to about
500 billion tonne-kilometers [16]. Developments such as just-in-
time production and e-commerce will further push these numbers
up in coming years. Especially in times of Covid-19, e-commerce

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’22, April 09–13, 2022, Beijing, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

has experienced a strong upswing; for example, in the UK, the share
of e-commerce of the total retail sales has increased five-fold [1, 2].

To cope with such a transport volume, efficient and optimal lo-
gistics services are gaining in importance. An example of a problem
whose solution is of crucial importance for efficient logistics is the
Facility Location Problem (FLP), which addresses the optimal loca-
tion of depots to service all customers [7]. This problem can only
be optimized by iteratively assessing new solutions, which requires
the calculation of distances between locations. The distance can
either be estimated using distance functions, for example, using
the Manhattan distance [22] or the ℓ𝑝 -norm [22], or by calculating
the actual distance using shortest path algorithms like Dijkstra’s
algorithm [8] operating on a road network [18]. Distance functions
provide very fast estimates, e.g., in O(1) using Manhattan distance,
with possibly high deviation from the actual distance due to detours
around obstacles like rivers or lakes. Exact distance measures, on
the other hand, offer accurate results but demand high computa-
tion times, e.g., in O(𝐸 log𝑉 ) for Dijkstra’s algorithm [8]. Given
that the solution quality of optimization algorithms depends on
the accuracy of distance estimates, operators aim at methods with
high accuracy. However, this results in reduced performance of the
optimization algorithm since “existing methods are too expensive
to use for solving large-scale real problems” [13, p.217].

To address this conflict, we propose a Flexible and Adaptive
Distance Estimation (FADE) technique that aims at providing flex-
ibility in trading off between the computation time and distance
estimation quality. We construct a graph of an abstracted map and
consider the passability of map sectors. We dynamically fade out
details of the road network to reduce the complexity, that is the
number of nodes, of the resulting graph and achieve a performance
gain by trading off accuracy for efficiency. Afterwards, we envision
the integration of concepts from self-aware computing [17], such
as the LRA-M loop, to dynamically adapt the accuracy of the esti-
mation to the current road network and user goals. FADE can be
used not only for the mentioned FLP but also for various logistics
problems as well as in general for a more efficient and at the same
time more accurate estimation of distances. In summary, this paper
makes the following contributions:

• Definition of the exemplary Facility Location Problem (FLP).
• Design of a Flexible and Adaptive Distance Estimation ap-
proach (FADE) and application of self-awareness concepts.

• Prototypical evaluation of the trade-off potential.

In the following, Section 2 discusses related work and Section 3
presents our example problem. Section 4 proposes FADE, Section 5
summarizes a prototypical evaluation, and Section 6 discusses chal-
lenges. Finally, Section 7 concludes the paper.
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2 RELATEDWORK
Several functions have been used in the literature to estimate the
distance between two points in a plane such as the Manhattan dis-
tance [22], the Euclidean distance [6], and the ℓ𝑝 -norm also known
as the Minkowski distance [22]. More sophisticated approaches
include the Multi-Layer-Perceptron (MLP) [4] that is able to distin-
guish between different regions. Since these approaches focus on
Cartesian coordinates, the Haversine formula allows to calculate the
distance between two points on a sphere [19, 20, 24]. Existing func-
tions for distance estimation do not consider obstacles explicitly,
such as rivers, lakes, and mountains, which limits the applicability
in real-world optimization problems.

Other approaches explicitly consider obstacles and calculate dis-
tances using visibility graphs [3, 5]. In visbility graphs, only nodes
that can see each other, meaning there is no obstacle in between,
are connected by an edge. While the estimated distances using
this approach might be more accurate compared to state-of-the-art
distance functions, their application in optimization problems such
as FLP is infeasible. This is due to a constantly changing graph
resulting from new depot locations which comes with a visibility
check to all other nodes. In contrast, we propose to preprocess the
graph in order to reduces its size and, hence, omit the need for
modifications during the optimization process.

3 EXAMPLE PROBLEM DOMAIN
An example domain, where distance estimation could be applied is
the facility location problem (FLP) [7, 23]. FLP addresses the issue
of placing depots as effectively as possible so that a number of
customers can be served. Customer locations are given and depots
should be placed accordingly. There are several variations of this
problem including the integration of existing depots, capacities for
the depots, or time constraints that have to be met when serving
customers, to name a few examples. Since FLP is known to beNP-
complete, solving the problem optimally is usually not feasible,
especially if the problem instances are large [23].

Since the problem is hard to solve exactly, optimization algo-
rithms are usually used to find an approximation of the optimal
solution. Nature-inspired algorithms like Genetic Algorithms [14],
Particle Swarm Optimization [15], NSGA-II [9], or Ant Colony
Optimization Algorithms [10] are suitable to achieve this. These al-
gorithms apply concepts of exploration and exploitation and assess
a large variety of solutions while searching for the best possible
solution. A solution in the context of FLP consists of the locations
of the depots that should be placed. In some cases, this can also
incorporate further properties of the facilities like their size. The
assessment of possible solutions means that the distance between
customers and depots has to be calculated many times, significantly
increasing the computation time when using shortest path algo-
rithms like Dijkstra’s algorithm operating in O(𝐸 log𝑉 ) [8], based
on actual road networks. For example, the road network of Ger-
many consists of 11.5 million nodes [21]. It is also not feasible to
save and reuse previously calculated distances, as the depots are
moved in each solution and iteration. Even a small movement of a
depot could lead to significantly worse results, as the previously
used road might no longer be accessible from the new location and
a new route planning needs to be triggered.

As an alternative, simple functions like the Euclidean distance or
the Manhattan distance can be applied. However, those functions
disregard the existence of obstacles like rivers or lakes and can only
provide rough estimates. Estimates often highly deviate from the
actual distances and thus jeopardize the quality of the solutions of
the aforementioned optimization techniques. Even in countries with
highly developed road networks, there are still obstacles that make
it hard to use such a simplified function. In the case of obstacles
like rivers or lakes, the actual distance can increase massively when
compared to the estimations, if the next bridge is far away or one
has to find a way around an obstacle.

4 FLEXIBLE DISTANCE ESTIMATION
This section presents the idea of flexible and adaptive distance esti-
mation. We present the general idea in Section 4.1 and then discuss
the application of self-aware computing concepts in Section 4.2.

4.1 General Idea
Existing approaches mentioned in Chapter 2 either focus on solv-
ing the distance computation exactly or make use of mathematical
formulas that try to approximate the distance. This results in ei-
ther high computation times or strongly simplified estimates. The
general idea is to find a trade-off between the accuracy and the
computation time when calculating distances between two points
in a road network. Note that the presented approach is only mean-
ingful for estimating distances and not intended for actual road
network-based route planning.

For this purpose, we aim to construct a simplified graph that
captures (1) areas that are passable with high likelihood and (2)
areas with obstacles that are generally not passable. This simplified
graph is designed to be less complex compared to a road network
graph and, hence, should speed up the computation time while
maintaining a given level of accuracy. We identified that obstacles
like rivers or lakes strongly influence the actual distance as bridges
are required to cross them or one has to find a way around them.
Thus, in the first instance, the approach focuses on this problem. It
is important to note that the approach can and should be extended
to also consider other types of obstacles if the use case requires it.
Figure 1 illustrates our proposed approach to distance estimation.

In the first step, we create an abstract map that solely contains
obstacles, such as rivers or lakes, and ways through them, for ex-
ample, bridges, if they exist. This abstract version can be created
directly from available information about the road network and
polygons that resemble the obstacles or by extracting knowledge
from existing map images. Other information like the exact location
of roads, or positions and size of buildings are no longer of interest,
as we assume those areas as passable.

In the second step, we place a grid above this rendered abstract
map. Then, we analyze every field within this grid and decide
whether a vehicle is able to drive through this field (indicated by a
white field) or if it is impassable (indicated by a black field). The
classification of the fields can be achieved by different methods
such as rules, image processing, or neural networks, depending on
the complexity of the abstracted map. The resulting black-white
grid map can then be used for the construction of an undirected
graph, where a node represents a field of the abstracted map. In
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Figure 1: Steps of Flexible Distance Estimation: (1) maps or other data is used to build an abstract map, (2) a grid is used to
determine the elements and connections of the passability graph, and (3) distance is calculated based on the passability graph.

case the field is white and there are also neighbors colored white,
we create the node and assign edges to all available neighbors
as vehicles are able to drive there. If the field is marked black,
the corresponding node has no edges assigned. By applying this
technique, we reduce the number of nodes in the graph and, thus,
speed up the computation time. The resulting graph can then be
optimized to enhance the speed of the route calculation within it,
for example, by the application of Contraction Hierarchies [11].
The first two steps are considered as a preprocessing phase.

In the third and last step, we calculate the distance between
locations. To do so, one selects a start and target location. These
locations are mapped to the graph, meaning that we search for the
closest nodes that reflect the coordinates of the start and target point
best. Afterward, well-known algorithms for calculating the shortest
paths in graphs can be applied to obtain a result. Such algorithms
include Dijkstra [8], A* [12], and Contraction Hierarchies [11].

The proposed procedure is capable of taking obstacles into ac-
count and should generally be more precise than the regular line
distance. In the simplest case, where all fields within the grid are of
the same size, the distance can be estimated by the number of edges
that need to be traversed multiplied by a constant factor. To further
refine the estimation, one could also calculate the distance between
the point where a field was entered and the point where it was
exited. This can be achieved by weighing edges that are vertical or
horizontal differently than diagonal edges.

The presented approach can easily be extended during the pre-
processing phase. Instead of only considering areas that are classi-
fied as obstacles or passable, one could also define other regions.
This could be used to define different edge weights according to
the detected region type. As an example, areas containing steep
mountains are more likely to have serpentines that are longer than
straight streets. The same principle can be applied to further cases,
like cities or rural areas without highways. Mapping such behavior
can be achieved by refining the classification in the second step,
which would then result in different edge weights in the graph.

4.2 LRA-M Loop Adaptation
The proposed approach for estimating distances under the con-
sideration of obstacles works with a grid in which every field has
the same size. This is disadvantageous when considering regions
with smaller obstacles that would get dismissed in too large fields.
However, using a higher resolution allowing the consideration of

Figure 2: LRA-M Loop [17].

smaller obstacles increases the size of the graph, and therefore slows
down the required computational time. To tackle this problem, one
could either find a resolution that fits both needs or the resolution
could be dynamically changed depending on the properties of the
region that is represented by a field. In areas that do not contain
obstacles of interest, fields could be merged so that the resulting
graph comprises fewer nodes and edges. When merging fields, the
edge weights of the resulting graph have to represent that merging.
The simple procedure of counting the amount of edges that need
to be traversed is no longer feasible in this case.

Adaptive resolutions of the graph can be achieved by integrating
concepts from self-aware computing, in particular, the LRA-M loop
described by Kounev et al. [17]. We map several tasks to the compo-
nents of the LRA-M loop displayed in Figure 2. The entire approach
is considered as the self. This means that not only the preprocess-
ing phase but also the distance estimation is part of it. Goals can
be specified by the user to define the prioritization of accuracy vs.
computational time. TheModel component keeps track of the graph
that is used for the distance calculations and is regularly updated
during the Learning phase. The Reasoning component calculates
distances using the current model. Then, the accuracy, as well as the
required computation time, are used to check if the model suits the
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Table 1: Results of the prototypical evaluation analyzing distance [m] and computation time [ms] in 30 repetitions.

Method Distance [m] Node Identification [ms] Distance Calculation [ms] Combined [ms]

mean std mean std mean std

Haversine 4090 - - <1 - <1 -
Manhattan 4890 - - <1 - <1 -

OSM (SQL) 5146 200.567 35.145 505.633 14.771 738.2 23.057
FADE 4455 <1 - 2.233 0.183 2.333 0.3198

user-specified goals. If this is not the case, the Learning component
will update the model accordingly and learn which resolution fits
best to the current area of the map as well as the given goals. This
allows for faster adaptations in future executions of the approach.

During the learning process in the LRA-M loop, different opera-
tions can be applied to the current model. For one, we identified
a zoom-in operation that increases the resolution of an area. This
results in more nodes and connections in the graph which also
increases the accuracy but slows down the required runtime. The
zoom-out operation inverts the zoom-in operation and reduces the
resolution but accelerates the time to result. It is important that
an operation is invertible to ensure that the model can always be
adjusted to the specified goals.

5 PROTOTYPICAL EVALUATION
To analyze the feasibility of FADE, we prototypical implemented
the general idea in Python using the network analysis package
NetworkX1. This includes a manual extraction of an abstracted
map using OpenStreetMap (OSM)2. Then, the prototype places a
grid on the abstracted map and analyzes passability properties of
the fields. Finally, the prototype receives geographic start and target
coordinates, identifies the related nodes in the passability graph
and executes the Dijkstra implementation of NetworkX.

In the preliminary evaluation, we extracted an abstracted map
from the area around theGerman cityWürzburg of around 6162 km2.
The original routable graph of OSM for cars contains 190,061 nodes
and 211,795 edges with about 2,000 bridges and 2,000 water areas.
For placing the grid, we defined a total of 178 rows and 341 columns
which refers to a height of about 440 m and a width of about 230 m.
The resulting graph contains 58,627 nodes and 229,213 edges which
means a node reduction of about 70 % compared to the routable
graph of OSM. For the evaluation, we compare the estimated dis-
tance in meters as well as the computation time in milliseconds
for node identification, distance calculation, and both processes
combined. Further, we compare the distance estimation to the state-
of-the-art Haversine and Manhattan distance functions. We present
the results of our evaluation in Table 1 which shows that Haver-
sine distance function deviates most in terms of estimated distance
compared to the ground truth calculated using pgRouting3 on OSM,
followed by FADE and the Manhattan distance. The time measure-
ments show that the distance functions can be computed very fast
and that OSM requires 200 ms, 505 ms, and 740 ms for identifying

1https://networkx.org
2https://www.openstreetmap.de
3https://pgrouting.org

the nodes, calculating the distance, and computing both processes
combined, respectively. FADE, even if in a very early prototypical
state, highlights the trade-off potential as the distance estimation
is better compared to the Haversine function while keeping the
computation time low with zero ms for node identification, two ms
for distance calculation, and two ms for the combined process.

6 DISCUSSION AND OUTLOOK
The presented approach comes with challenges that need to be
solved during the implementation. First of all, different types of
bridges need to be considered as somemight not be built for vehicles
but pedestrians or other use cases. Depending on the size of the
rendered abstracted map, bridges might be too small and do not
show up when applying the grid. This could result in areas being
unreachable as no bridge leads in or out of the region. After the
graph construction, the start and target locations need to bemapped
to the graph which could result in one or both of them being within
an obstacle. Finally, bridges might be passable in one direction only
which needs to be considered when constructing the graph.

While the presented prototypical evaluation highlights the po-
tential of FADE, a full-scale evaluation needs to be conducted to
analyze the quality of the solutions with regards to the computa-
tion time in a statistically significant manner. Hence, the trade-off
needs to be assessed by analyzing speed-up and quality metrics.
Besides OSM, other distance services could be considered to further
strengthen the expressive power of the results. Finally, different
resolutions for the map will yield different performance results of
FADE. This could be related to the current region of the planning
horizon which would directly lead to the selection of different grid
sizes based on the region by applying self-aware concepts.

7 CONCLUSION
The performance of optimization techniques especially applied in
logistic processes became more and more important due to increas-
ing transport volumes in the last years. One significant performance
factor for these techniques is the exact computation and estimation
of distances. In this vision paper, we propose FADE—a Flexible and
Adaptive Distance Estimation—which abstracts a map to reduce
the complexity of the road network graph and allow one to trade
off computation time vs. result accuracy. The integration of con-
cepts from self-aware computing allows for dynamic adaptation of
given computation time and accuracy requirements. Our proposed
technique can not only be applied in the proposed facility location
problem but also in various logistic and general problems requiring
distance information.
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