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Abstract-Prudent capacity planning to meet their clients 
future computational needs is one of the major issues cloud 
computing providers face today. By offering resource reservations 
in advance, providers gain insight into the projected demand of 
their customers and can act accordingly. However, customers 
need to be given an incentive, e.g. discounts granted, to commit 
early to a provider and to honestly, i.e. truthfully, reserve their 
predicted future resource requirements. Customers may reserve 
capacity deviating from their truly predicted demand, in order 
to exploit the mechanism for their own benefit, thereby causing 
futile costs for the provider. 
In this paper we prove, using a game theoretic approach, that 
i) truthful reservation is the best, i.e. dominant, strategy for 
customers if they are capable to make precise forecasts of 
their demands and that ii) deviations from truthtelling can be 
profitable for customers if their demand forecasts are uncertain. 

I. INTRODUCTION 

Cloud computing grew immensely in recent years [4, 8]. 
One of the challenges Cloud Providers (CPs) face today 
are the hardly predictable computational demands of their 
Cloud Consumers (CCs). Therefore, choosing the appropriate 
capacity expansion policy to meet consumers' expectations is 
a major issue for all providers. In order to get a more precise 
understanding of their clients' needs, CPs can offer capacity 
reservation contracts [4, 8]. The benefits of such contracts 
are manifold. The providers gain insight into the potential 
computational requirements of the near future and can adjust 
computing capacity accordingly. The customers can rely on 
the reserved computation capacity to be available. 

The reservation mechanism should balance the interests of 
CCs and CPs. On the one hand, reservation fees need to be 
expensive enough to avoid exploitation by the consumers. An 
over-reservation may let the CP increase capacity in false con
fidence that it will actually be consumed and generate revenue. 
On the other hand, the CCs need to be given incentives to 
commit to a CP and reserve capacity in advance, for instance 
by deducting reservation fees from the total consumption costs 
of the client. Moreover, CPs may grant additional discounts on 
reserved capacity, which however enables further exploitation 
possibilities for the clients. 

Ideally, all parties trust each other to be honest and truthful. 
The CCs require precise and untampered performance data 
from their CP to derive accurate estimates of their compu
tational demands. They also rely on the provider to scale 
capacity as needed to fully meet all reservations and not to 

overbook resources. The providers, on the other hand, have 
to face substantial investments to increase their resources 
based on the customers' reservation. They therefore require 
truthful resource reservations to cover those expenses. Clients 
should not overstate their true demands and speculate that an 
abundance of resources will lead to deteriorating prices later. 

We consider resource reservation as a game between CP and 
Cc. Both parties seek to play a strategy in that game, which 
maximizes their respective utility, that is maximal performed 
computations for minimal costs. Choosing the amount of 
capacity to reserve, given a demand forecast, constitutes the 
strategic decision of the Cc. In a truthful mechanism, CCs 
draw maximal utility from the induced game by reserving their 
truly predicted demand. This furthermore avoids futile costs 
for the CP and hence benefits all parties involved. We therefore 
pose the research question: 

Is there a truthful mechanism for advance resource reser

vation in cloud computing, i. e. where reserving the truly 

predicted demand is the dominant (best) strategy for the client? 

We approach this question from both the CPs' and the CCs' 
side. First, we examine current research in the field of capacity 
reservation contracts [13] and deliberate its applicability to 
the cloud computing market. Second, we review literature on 
procurement strategies involving long term contracts [10] and 
scrutinize its suitability for cloud computing. We then design 
a truthful mechanisms for capacity reservation. 

The contributions of this paper are: 
i) review of literature on capacity reservation contracts as 

well as long-term procurement strategies and application 
of those works to cloud computing, 

ii) extension of Inderfurth and Kelle's work [10] to de
ductible reservation costs as considered in [13], 

iii) proof of truthful reservation behavior with exact demand 
forecasting capability, 

iv) proof of profitable deviation from truth-telling in case of 
stochastic forecasting. 

The rest of this paper is organized as follows. Section II 
gives a brief overview of relevant game-theoretic background. 
Sections III and IV approach capacity reservation from the 
CP's and the CC's side, respectively. We then proof the 
existence of a dominant truthful strategy in deterministic 
forecasting models and its nonexistence in stochastic ones 
in Section V. The paper is concluded in Section VI with a 
sUlmnary of our findings and an outlook on future work. 
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II. GAME-THEORETIC BACKGROUND 

This section provides basic game-theoretic definitions and 
theorems we make use of in the following sections. 

In general we consider a game of n players i E I, each 
possessing a strategy set �i. All players choose one strategy 
ai to play in the game. We denote a = (al, ... , an) E 
� = �l X ... X �n the strategy configuration chosen by 
the players. When we examine the options for one player i, 
we often assume that the part of the strategy configuration not 

depending on i, namely (al, ... ai-I, ai+l,··· an) =: a-i, 
remains unchanged. Therefore we conveniently denote a strat
egy configuration a as (a -i, ai). We similarly apply the ·-i 
operator to all vectors and sets we encounter. The goal of every 
player is to maximize the utility ui(a-i,ai) they draw from 
the game. 

DEFINITION 1 (DOMINANT STRATEGY [2]) A strategy ai E 
�i is a dominant strategy for player i iff for all other strategies 

ai E �i \ {an and for all a-i E �-i 

ui(a-i, an 2: ui(a-i, ai) 

with at least one equality being strict. 

Playing the dominant strategy is always a prudent choice. 
As we assume all players to be rational, deviating from ai 
is not an option. Unfortunately dominant strategies must not 
always exist, we therefore have to resort to the following 
definition of a stable strategy configuration, whose existence is 
guaranteed if mixed strategies are allowed. A mixed strategy Si 
is a probability distribution over the finite set of pure strategies 
�i, i.e. Si = (81' ... ' 81�il) with LI::;k::;l�il 8k = 1. Hence, 
Ui(S-i, Si) gives the expected utility. 

DEFINITION 2 (NASH EQUILIBRIUM [2]) A strategy config

uration a* is a Nash equilibrium iff for all players i for all 

their strategies ai E �i \ {an 

A dominant strategy yields optimal utility regardless of 
the strategy choice of the other players. A Nash equilibrium 
strategy yields only optimal utility if all other players continue 
to play their equilibrium strategy, i.e. player i cannot increase 
their utility by being the sole player to deviate from a*. 

The objective of our work is to design a truthful mechanism 

for reserving resources in cloud computing. We therefore 
define both termini technici. 

DEFINITION 3 (MECHANISM [19]) Given a set of alterna

tives A and for each player i E I, III = n, a valuation 

function Vi : A -+ lR. A mechanism is a social choice function 

f : JRn -+ A and a vector of payment functions PI, ... ,Pn, 
where player i pays Pi : JRn -+ lR. 

The strategy set �i of each player is therefore JR, the 
valuation they report to the mechanism. Specifically, their 
valuation vi(a) for all alternatives a E A is in �i. A widely 
used mechanism is an auction. The set of alternatives A equals 
I; x E A denotes that player x E I won the auctioned item. 

For all i in I, Vi (i) equals the player's valuation of the good 
and Vi(j) is 0, Vj E 1\ {i}. Each player i reports a bid bi to 
the mechanism. The social choice function f = argmaxiEI bi 
allocates the item to the player with the highest bid, say wEI. 
For all i E I \ {w}, Pi = 0, whereas the payment of w is 
determined by some previously announced rule, for instance 
Pw = bw or Pw = maXiEI\{w} bi, i.e. the second highest bid 
in a Vickrey auction. The players' utility is determined by 
Ui = vi(f(b)) - Pi· 

DEFINITION 4 (TRUTHFULNESS [19]) A mechanism 

(f, PI, ... ,Pn) is truthful or incentive compatible iff Vi E I 
and Va E A there exists no Xi E JR such that 

Vi (f(Xi, V-i(a))) - Pi(Xi, V-i(a)) 
> Vi(f(Vi(a), V-i(a))) - Pi (Vi (a), V-i(a)). 

Truthfulness gives each player an incentive to provide their 
true valuation Vi (a) rather than a lied one Xi to the mecha
nism, since truth-telling yields the highest possible utility. For 
instance, a second price auction is an incentive compatible 
mechanism [19]. 

A mechanism could be an arbitrary complex procedure, 
however the following result proves that we can restrict our
selves to examine direct mechanisms. In a direct mechanism 
each player secretly submits their valuation Vi in a single shot 
game, as opposed to some scheme requiring repeated actions 
by the players. 

THEOREM 1 (REVELATION PRINCIPLE [19, 9]) If there is an 

arbitrary mechanism that implements f in dominant strategies, 

then there exists an equivalent direct and truthful mechanism 

for f. The payments obtained in the truthful scheme are 

identical to those of the original scheme at equilibrium. 

The concepts introduced in Definitions 2 - 4 and Theorem 1 

form the basis for our search of a truthful resource reservation 
scheme. In order to follow the discussion of the paper by Li 
et al. [13] in Section III, we need to present the definition of 
a particular game studied in game theory. 

DEFINITION 5 (STACKELBERG GAME [2, 21]) A Stackelberg 

game is a sequential game with one leader and one or more 

follower(s). The leader must know ex ante that the follower 

observes the leader's actions and has no means to commit to 

an action before the leader's move. Consequently the leader, 

assuming rationality on the follower'S side, can anticipate 

the best response of the follower to the leader's action. By 

backward induction the leader calculates their best action 

based on that knowledge. 

When both players play their best response to the other 
players' actions, a Nash equilibrium is induced in the Stack
elberg game. The follower may threaten to deviate from the 
equilibrium strategy. However, this would not only hurt the 
leader but the follower as well. Hence, deviation is irrational 
and any threat by the follower can be deemed non-credible by 
the leader. 
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III. CLOUD PROVIDER VIEW 

In this section we examine choices to be made by the CP. 
Two major issues to be addressed by every CP are pricing 
and expansion policies. Before we study the work of Li 
et al. [13] on sharing the risk of capacity expansion between 
provider and customer through costly reservations, we will first 
briefly turn to the question whether the CP achieves optimal 
profits by providing plentiful resources or by keeping capacity 
intentionally scarce. 

This issue is addressed by Harris et al. [9] who examine 
different pricing schemes for situations of abundant and scarce 
resources on the provider's side. They come to the conclusion 
that if demand exceeds the (exogenously) given capacity the 
provider achieves optimal profits by offering a priority pricing 
scheme, which entitles customers who are willing to pay more 
for the same good with a higher probability of being serviced. 
They furthermore show, that the same expected (optimal) 
profit can be achieved by conducting a modified Vickrey 
auction for the good. This positive result gives credence to 
the already widely used auctions in cloud computing [14]. 

If the (exogenously) given capacity meets or exceeds the 
expected demand, all customers will choose the lowest offered 
price. Consequently, Harris et al. [9] show, that the provider 
achieves indeed optimal expected profit by offering a single 
price identical with the lowest priority price in the scarce 
resource scenario. On the same note, Menache et al. [17] 

show that a single price suffices to induce a socially optimal 
resource allocation in cloud computing. Harris et al. [9] then 
turn to the question whether it is profitable to keep resources 
intentionally scarce if capacity can be chosen endogenously. 
They proof the contrary as the gain in expected income from 
the priority pricing scheme is outweighed by the loss due to 
unmet demand. For details of the proofs please refer to their 
paper [9]. 

Even given the optimality of offering plentiful capacity, a 
CP might be reluctant to proactively expand their capacity 
considering uncertainty in the actual demand on the cloud 
computing market. Since a capacity deficit would not merely 
diminish the provider's revenue but also the CCs' utility, 
sharing the financial risk of capacity expansion between the 
parties seems appropriate. Li et al. [13] propose the usage of 
deductible reservation contracts to share the risk. The clients 
reserve a certain amount of capacity upfront, paying some 
reservation price per unit. This payment is fully deductible 
when they utilize the resources after demand realization. 
Unused reserved resources however, are not refundable. The 
authors further propose that the provider announces an excess 

capacity level prior to the reservations that is provided in 
addition to the reserved amount. Li et al. [13] derive optimal 
strategies for both parties that depend on the relation of 
reservation price, unit price and the clients' valuation for the 
performed computations. 

A. The Model 

Li et al. [13] consider one seller S and one buyer B 
in a single period setting. The seller's decision variable is 

the amount of excess capacity E they are willing to offer 
regardless of the amount reserved by the client. The buyer on 
the other hand faces a stochastic demand D, adhering to some 
probability density function f D. Considering the uncertain 
demand, B has to commit to a reservation amount R. The 
exact sequence of events is as follows: 

1) S announces an excess capacity level E. The initial 
capacity is assumed to be zero. 

2) Based on E and f D, the buyer reserves R units of 
capacity, paying a fee of r . R. 

3) The seller expands the capacity level to C = R + E, 
incurring marginal cost c. 

4) The demand D is realized and min(D, C) units are 
procured at a price of p per unit. The buyer has a valuation 
v for each consumed unit; unmet demand will be lost. 

5) The amount of r·min(D, R) is deducted from the buyer's 
purchasing cost by S. In case of excessive reservation, 
r . max( R - D, 0) is kept by the seller. 

6) Unused capacity is salvaged by S with a salvaging value 
of s per unit. 

Li et al. [13] model the decision process as Stackelberg game, 
see Definition 5. The seller, as the leader, can anticipate the 
decision making process of the buyer, the follower in the game. 
Hence, S can optimize their announced excess capacity level 
E, knowing that B will choose the best response to E. By 
limiting the model to a single period setting, Li et al. [13] 

avoid the issue of repeated games, where deviating from the 
equilibrium strategy might be profitable. The authors propose 
the reasonable assumption that v > p > c > s. They assume 
the reservation price r to be exogenously given, with r < p. 

Discussion: The model is apt for cloud computing mar
kets. The exact computational needs are certainly hard to pre
dict by the CCs, therefore modeling a stochastic demand is ap
propriate. Harris et al. [9] showed that providing more capacity 
than demand, C > D, cannot be optimal. However, they were 
considering a deterministic demand. By supplying an excess 
capacity, the CP shares the risk of demand uncertainty with the 
consumers, who otherwise would have to bear it themselves. If 
demand realizes below expectation the CP suffers from unused 
excess capacity and the customers from over-reservation. If 
CPs are not willing to cOlmnit to excess capacity, customers 
would be reluctant to reserve capacity upfront but rather resort 
to spot market procurement, i.e. buying computing power just 
in time. Salvaging can be applied twofold in cloud computing, 
either by a) selling the unnecessary hardware or b) offering 
the available capacity on the spot market. In both cases the 
assumption p > c > s is appropriate: a) The hardware was just 
purchased by the provider at a rate of c per unit. Even though 
the hardware was not used to provide computational power to 
the clients, it has to be considered used, as it was installed 
in the CP's data center. Used equipment will generally be 
sold with a discount, thus c > s. We exclude the case of 
a scarce hardware market. b) Offering unused capacity on the 
spot market would suggest s = p > c. But for resources to be 
available for the spot market, the actual demand D has to be 
smaller than the projected demand D + E. Hence there is a 
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surplus of resources at price p and S has to lower prices in 
order to generate more demand. The assumption that prices 
have to be lowered below marginal cost is a limitation of the 
model of Li et al. [13]. 0 
B. Optimal Strategies 

In this section we derive optimal strategies in the aforemen
tioned reservation game for both parties. Firstly, we formalize 
the decision problem of the client and derive its optimal 
solution. Suppose the seller announced excess capacity level 
E. The client is seeking the optimal reservation amount R, 
such that the total capacity C = E + R maximizes their utility. 

client'� utility effective reservation costs 
IIB = ma.x{E((v -p) . mineD, C)'-�. R + r· mineD, R)']} R?O 

= ma.x{(v - p). (C - E[C - D]) - r· E[R- D]} R?O 

= W20 { (v-P). (c- foC(C-X)fV(X)dX) 
-r . foR 

(R -x)fv(x)dx } . 

(1 ) 

(2) 

LEMMA 1 ( [  13]) Given an excess capacity level E, there 

exists a unique solution R to the buyer's decision problem 

lIB given by 

Pr[D::;R] 
,.-'"'-... 

,. FD(R) =(v-p)·(l-FD(R+E)) . 

Li et al. [13] emphasize that the optimal reservation amount 
R is monotonically decreasing in E. The more excess capacity 
the seller is willing to offer, the more risk of uncertain demand 
they have to bear. The authors proof both claims by inspecting 
the first and second order derivatives of (2) and Lemma 1 [13]. 

Using the implicit function R(E) given by Lemma 1, the 
decision problem of the seller can now be formalized in order 
to derive the optimal amount of available capacity C = E + 
R(E). 

revenue salv:,ging 
� ,  , 

lIs = max{ E[p· mineD, G) + s· max(O, G - D) E?O 
gain from !eservation expansion costs 

+ �,--. R
-A (

-
E

-
) 

-
-

-
,-'. mine D, R(  E) )' - -:.c ]} 

(3) 

opt. revenue loss due to overcapacity gain from reservation 
�, , �  

= max{(p - C) . G -(p - s) . E[G - D] + r· E[R(E) - D]} E?O 

= max {(p - C) . G -(p - s). {C (G - x)fv(x)dx E?O J 0 

+r · lR(E) 
(R (E) - x)fv(x)dx } . (4) 

Henceforth, Li et al. [13] assume f D to be the uniform 
distribution on the interval [0, >'] to derive explicit expressions 
in the further analysis. They admit that this constitutes a 
simplification of reality but claim that it is sufficient to 
gain insight into the main features of capacity reservation 

contracts and that similar expressions can be derived for other 
distributions. 

With the uniformity assumption the implicit function R(E) 
resolves to 

,. FD(R) = (v -p) . (1 -FD(R + E) ) 

,. �=(v-p) . (l _ R: E) 
R= 

(v-p)(>.-E)
. 

(5) 
v-p+, 

With the uniformity assumption and limiting E to [0, >'J, the 
decision problem (4) can be simplified to 

{ C2 R2 } 
lIs = max (p-c)·C-(p-s)·-+,·- . (6) 0::; E::; A 2>' 2>' 

Discussion: Offering more excess capacity as there could 
possibly be demand is certainly no prudent choice; the upper 
bound>. is therefore valid in this model. Limiting E to values 
� ° in fact contradicts the common practice of overbooking 

in the current cloud computing market [7]. Nevertheless, as 
Harris et al. [9] proved, this practice yields inferior expected 
profits and can thus be safely excluded from an optimal 
strategy. 0 

In order to simplify the further discussion, we introduce the 
following parameters [13]: 

v 
a1=--2v -s 

v-p 
81=-p-s 

c-s 
a2=--2v -s 

v-p+c-s 
82 = --=----

p-c 

Observing that lIs is convex for ° � p � al v and, E [0, p] 
as well as for p > alP and , E [0,81 (v -p) ] and concave 
otherwise [13, Lemma 2], leads to the following theorem for 
the optimal reservation and excess capacity amounts: 

THEOREM 2 (OPTIMAL RESERVATION AND EXCESS CA

PACITY AMOUNTS [13]) 

A) If ° � P � (a1 + (2)v then E = ° and R = >. . ;�;�r· 
B) If P > (al + (2)v then 

and 

A {o 
E = 

>.. (p-c)[r-1/2(v-p)] 
(p-s)[r-I/,(v-p)] 

R - v-p+r A {>.. (v-p) 
- >.. (v-p)·(c-s) 

r·(p-s)_(v-p)2 

, E [0, 82(v -p) ] 
, E [82 (v -p),p] 

, E [0, 82(v -p) ] 
, E [82 (v -p),p] 

For an elaborated proof of the theorem refer to [13]. We 
will merely discuss the underlying intuition. If the price p of 
the good does not exceed a (al + (2)v portion of the buyer's 
valuation, the penalty due to lost utility for the buyer in case of 
capacity shortages outweighs the risk of reserving too much. 
Therefore the seller can be certain that the reserved capacity 
suffices to meet projected demand; most likely even with some 
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safety margin. Thus, offering an excess capacity level E > 0 
is redundant. The same strategy for the seller applies if the 
purchase price p exceeds (O!l + O!)v but the reservation price r 
is below (v - P )82, In this case the capacity shortage penalty 
for the buyer is not as severe as in the former mentioned 
setting, but the reservation price is sufficiently low in order 
for the client to be willing to undergo more financial risk to 
ensure ample resources. Only if the reservation price exceeds 
(v - P )82, the seller may anticipate the buyer's reluctance to 
reserve plentiful capacity and engage in a proactive expansion 
policy with E > O. 
C. Choosing the Optimal Reservation Price 

Hitherto the discussion assumed an exogenously given 
reservation price r. We will now examine the effects of the 
reservation price on the parties' optimal strategies as to give 
some insight into the seller's decision problem of choosing the 
optimal reservation price [13]. 

Firstly, we consider the case of p < (O!l + 0!2)V. Following 
Theorem 2, E = 0; it can be easily seen that limr---+o R(r) = ,\ 
and R(r) is decreasing in r. Li et al. [l3] introduce a further 
parameter 

v - p + 2c - 28 
83 = ----=-----

V + P - 2c 

If the unit price p is below 83 (v -p) then the seller's expected 
profit IIs(r) is increasing for all r E [O,pj. For a unit price 
exceeding the threshold the optimal reservation price is 

(7) 

Secondly, we examine purchasing prices exceeding (O!l + 
0!2)V. When r is chosen to be below 82(v - p), E equals 0 
and the same argument as above holds, including the optimal 
reservation price of (7). I However, if r exceeds 82 (v - p) 
the buyer's reservation is still decreasing in r but the seller's 
excess capacity E increases at a higher rate in r. Hence, E + R 
increases in r as S has to ensure sufficient levels of capacity to 
meet future demand. Nevertheless, this reduces their expected 
profit, since the seller shares more risk of the uncertainty in 
the demand distribution. This makes an appealing case against 

high reservation prices. 
Discussion: The results of [13] are very promising for 

developing a truthful resource reservation scheme in cloud 
computing. Given the assumptions of the paper, it would be 
optimal for a cloud provider to choose a reservation price of 
83 (v - p) (7), thus rendering the excess capacity level E = 0 
optimal. Hence, all risk of uncertain future demand is borne 
by the client. However, choosing R according to Theorem 2 
yields optimal expected profit for the client as well, therefore 
it would be prudent to act according to the strategy set forth 
in Section III-B. 

We will now dissect the assumptions of the paper by Li 
et al. [13]. The basic decision problems lIB and lIs are 
stated for general demand distributions by Li et al. [13], 
yet their detailed analysis presumes a uniform distribution 

'Note that fh < fh. 

in some interval [0, '\j. The authors' claim, that a similar 
analysis can be performed for other distributions as well, needs 
to be verified for probability distributions more suited for 
demand modeling, e.g. Gaussian, Poisson, Gamma or Pareto 
distribution [1, 6, 10]. 

A more fundamental problem arises from the assumption 
of a Stackelberg game. It presumes complete visibility by 
the CP into the consumer's decision making process. More 
specifically, the provider requires the customer's valuation v 
to calculate 8 {l,2,3} , 0!{l,2} and corresponding thresholds for 
p and r. This visibility is generally not given and customers 
might be reluctant to share this information [12, 20], especially 
if one CP serves clients competing in the same real-world 
market. Therefore reporting a valuation to the CP constitutes 
the strategic decision that all clients are facing. Given that 
for a reported valuation v values for p, T, E and R may be 
optimally derived, it remains to be examined whether reporting 
the truthful valuation to the CP is the dominant strategy. 
Reporting an inferior valuation Vi < v for instance, could lead 
to more excess capacity E on the seller's side, thus shifting 
risk away from the buyer. We will revisit this issue in Section 
V .  

Even if reporting the true valuation, from a game-theoretic 
viewpoint, is the dominant strategy, a CC might choose not to 
report it to the mechanism, because they don't want to reveal 
the value to the CP [12, 20]. However, this can be avoided 
by utilizing Secure Computation (SC) [18]. SC allows two or 
more parties to jointly compute a function y = f(xcc, xcp) 
on their combined inputs, while assuring that each party 
only learns the result y but not the input of the other party. 
Therefore the optimal parameters of the expansion strategy can 
be computed with privacy of the inputs protected by SC and 
correctness of the provided values guaranteed by the dominant 
strategy. 0 

I V. CLOUD CONSUMER VIEW 

We now turn to decisions to be made by the Cc. In 
general, two options present itself to a company to obtain 
resources: long term contracts and short term spot market 
procurement. Inderfurth and Kelle [10] prove that the mixture 
of both promises great cost savings potential compared with 
single sourced approaches. As computing power can be readily 
acquired from a CP by the clients [4], they might be reluctant 
to engage in a long term commitment. However, long term 
contracts promise guaranteed resources and stable prices, 
whereas spot market prices are rather volatile [16]. Inderfurth 
and Kelle [10] consider capacity reservation contracts as real 

options. The buyer acquires the right to purchase a certain 
quantity of goods for a specified price in the future but is not 
required to exercise this right. The mixed strategy proposed 
by the authors allows the client to leverage low spot market 
price, while still benefiting from the security provided by the 
reservation contract. 
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A. The Model 

A buyer B wishes to combine long term capacity reser
vation contracts and spot market procurement to reduce their 
total purchasing costs. Inderfurth and Kelle [10] examine a 
combined capacity reservation - base stock policy. The buyer 
sets a long term capacity reservation level of R units. In each 
period this reservation incurs r· R reservation costs and entitles 
B to purchase up to R units at price Pc per unit. The client is 
further characterized by an inventory holding cost h per unit, 
an inventory level It at the beginning of each period and a 
valuation of the good v per unit.2 Furthermore, B experiences 
a stochastic demand V, adhering to some probability density 
function iv, and stochastic spot market prices P with density 
function ip. In each period t, the spot market price P is 
realized, denoted as Ps,t. B then needs to decide how many 
goods are to be ordered from the long term source 0 c ::; R 
and how many are to be acquired on the spot market Os. 
Thereafter the demand V is realized, denoted by Dt, and the 
total period costs are computed. Since Inderfurth and Kelle 
[10] consider a base stock policy, a base stock level 8 has 
to be determined, up to which stock is replenished in every 
period. The authors consider a backorder situation, therefore 
total order quantity of period t, Oc,t + Os,t, equals demand of 
period t - 1 Dt-1 . 

Discussion: At first glance, the model of Inderfurth and 
Kelle [10] does not seem to be particularly appropriate for the 
cloud computing market. Nevertheless, studying their results 
still reveals some insight into mixed procurement strategies 
that can be adopted by CCs. The authors assume a storable 
good which does not apply to computing resources. However, 
as we will see in the next section, the optimal reservation level 
is independent of the storability of the good. Furthermore, even 
though computing power is not backorderable, the results of 
Inderfurth and Kelle [10] may still apply as they rely on the 
expectation and variability of demand and spot market price 
which are equal in all periods.3 0 

B. The Mixed Procurement Strategy 

The strategy proposed by Inderfurth and Kelle [10] is 
straightforward. If the observed spot market price Ps,t is below 
the contracted price Pc solely the spot market is used for 
procurement. When Ps,t > Pc up to R units are purchased 
from the long term supplier and if further goods are required 
to replenish up to level 8 the spot market is used. 

{o 
Oct= , mineS - It, R) 

o _ {s - It if ps,t < pc 
s,t - max(S - It - R,O) if Ps,t 2: Pc. 

2For Inderfurth and Kelle [l0], v constitutes the shortage cost per unit. We 
presume that the penalty for one unit of lost good equals the utility from one 
unit of consumed good, therefore justifying the assumption of shortage cost 
and valuation being identical. 

3V and P are assumed to be independent and identically distributed (i.i.d.). 

The total amount purchased in period t equals the demand 
Dt-1 in the backorder situation. Prior to realization of demand 
it can therefore be considered a random variable; the spot 
market price likewise. To derive the expected purchase costs 
we consider Ps,t < Pc and Ps,t � Pc separately. In order to 
ease the proof of the subsequent Corollary 1, we introduce the 
parameter (!c, denoting the tipping point between spot market 
and long term source procurement. For now, (!c = Pc. 
Ps,t < (!c: 

o 
< � 

Pt (R) = Pc· E[Oc,t IPs,t < Qc] 
E[DJ 

+ E[PIPs,t < Qc] . E� IPs,t < Qc] 112e 100 
= 0 xfp(x)dx· 0 XfD(X)dx. 

E[DIDt.SRJ+RPr[D,>RJ 

P?·(R) = Pc· Era:; IPs,t 2: Qc] + E[PIPs,t 2: Qc] 
E[D-RID, �RJ 

� 
. E[Os,t IPs,t 2: Qc] 

= Pc(l - Fp(Qc)) . (lR 
XfD(X)dx + R(l - FD(R))) 

+ 
100 

xfp(x)dx . roo (x - R)fD(X)dx. 
Qc J R 

The expected purchasing costs Pt (R ) = Pt< (R) + pl (R) 
therefore merely depend on R. The expected inventory holding 
and shortage costs solely depend on 8 and are given by 

E[S-VID,::;S] E[V-sIDt.>S] , S 
A'-__ -." , A , 

Lt(8) = h· 1 (8 - x)iv(x)dx +v· !SOO (x - 8)iv(x)dx. 

Thus, the total costs of period t are 

(8) 

As the effects of the policy parameters R and 8 are separated, 
optimal parameters Rand S can be obtained by setting the 
respective partial derivative of TCt(R, 8) to zero, yielding the 
following theorem, proved in [10, Appendix A]. 

THEOREM 3 (OPTIMAL PARAMETERS FOR MIXED PRO

CUREMENT [10]) Optimal reservation level R and base stock 

level S for the combined capacity reservation - base stock 

policy in a backorder situation are given by 

and 

A -1 ( V ) 8 = Fv v + h 
. 
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Fi/ is the inverse of the cumulative distribution function of 

the demand and the conditional expected gain 0, denoting the 

expected profit of having fixed price Pc when Ps,t > f2c, with 

f2c = Pc, is given by 

0= E[P - PclPs,t > f2c] = 100 (x - Pc)fp(x)dx. (]e 
Discussion: The optimal reservation amount R depends 

only on the distribution of the demand, the reservation price 
and the expected advantage of the fixed price over the spot 
market price. It can hence also be applied if the storability 
of the considered good is not given, as in the case of cloud 
computing. Obviously, the optimal storage level f:; can be 
disregarded in that case. There are two approaches to address 
the non-storability of the good formally: 
h = 0: The inventory holding cost of a non-storable good 

could be considered zero. Thus, v�h = 1 and f:; equals 
infxEIR {Fv = I}, either the upper bound of the projected 
demand or infinity. 

h --+ 00: As inventory holding costs approach infinity, the 
term v�h --+ O. Consequently, f:; is zero. 

The second approach is more suitable for our needs. The 
experienced demand is met by the buyer "on credit", resulting 
in negative stock, which is then replenished in the next period. 
Keeping in mind that the result by Inderfurth and Kelle [10] 
depends on the expectation of demand, this nearly yields the 
just in time procurement required in cloud computing. 

Additionally observe that the authors assume non-deductible 
reservation costs in their model. In the following, we extend 
the model by introducing deductible reservation costs, as 
considered in Section III, and derive the optimal reservation 
amount in that scenario. Let Pc = p� + I. With deductible 
reservation costs I, it is beneficial for the buyer to turn to the 
spot market instead of the long term source for procurement 
iff Ps,t + 1 < p�. Therefore let the tipping point f2c = p� - 1 = 
Pc - 2,. Furthermore, assume that orders in excess of R units 
are served at the spot market price Ps,t and not Pc, even if 
fulfilled by the long term supplier. With these assumptions we 
modify (8) to 

TC;(R, S) = Pt(R) + Lt(S) {'R if ps,t < {}c 
+ 

I ' E[R - DIDt s: R] if ps,t � (}e 
= . . .  + r RFP({}e) 

+ r(l - Fp({}c)) ' lR
(R - x)fv(x)dx. 

(9) 

COROLLARY 1 (OPTIMAL PARAMETERS FOR M IXED P RO

CUREMENT W I TH DEDUCTIBLE RESERVAT ION COSTS) If 

reservation costs can be deducted from the payment owed to 

the long term supplier the optimal reservation amount is given 

by 

with f2c = Pc - 2r. The optimal base stock level f:; and 

conditional expected gain 0 remain as given by Theorem 3. 

Proof By taking the partial derivative of TC� (R, S) with 
respect to R we obtain 

BTC'(R S) ( (= ) �R ' = (1 - Fv(R))' Pe(l - FP({}e)) - Jilc 
xfp(x)dx 

+ rFp({}c) + r(l - Fp({}c))Fv(R). 

S . oTC;(RS) d . .  ld ettmg oR ' to zero an rearrangmg Yle s 

JIl= xfp(x)dx - Pe(1 - Jollc fp(x)dx) - rFP({}e) 
Fv(R) = J= 

C • 

Ilc xfp(x)dx - Pe(l - Jollc fp(x)dx) + r(l - FP({}e)) 

Observing that 

(= xfp(x)dx - Pe(l _ille fp(x)dx) } flc 0 

= (= xfp(x)dx - pc (= fp(x)dx ) (}c ) (}c 
equals 0 and taking the inverse F; 1 ( - ) proves the corollary. 

• 
Fp (f2c) can be considered the probability of net reservation 

costs, i.e. ordering fewer products from the long term source 
than reserved, while still having to pay reservation fees for 
them. If reservation costs are not deductible these fees always 
have to be paid, thus Fp(f2c) can be set to 1 and Corollary 1 
equals Theorem 3. 

Given these two considerations, studying the further results 
of Inderfurth and Kelle [10] seems justified, as the gained 
insight can be adapted to cloud computing markets with little 
effort. 0 
C. Single Sourced Approaches 

Inderfurth and Kelle [10] now compare the mixed procure
ment strategy to strategies comprising only one source of 
purchasing. Firstly, they examine a purely spot market-based 
procurement strategy. The total expected purchasing costs are 
given by 

Pspot = E[P] . E[V]. 

The inventory and shortage costs remain the same, thus the 
optimal base stock level f:; is still given by Theorem 3. The 
cost difference C Dspot therefore depends only on purchasing 
costs 

CDspot(R, s) = Pspot - (P(R, S) +rR). (10) 

Again, the authors assume non-deductible reservation prices, 
but the following observations still apply if (10) is modified 
similar to (9) in order to represent deductible reservation 
costs. The advantage of combined sourcing over spot market 
procurement increases with spot market price variability and 
decreases with demand variability, reservation price and fixed 
price. Inderfurth and Kelle [10] further note that even in a su

perior spot market price situation, i.e. E[P] < P(R, S) +rR, 
combined sourcing is beneficial if the spot market price 
variability !!.E. is sufficiently high to yield 1 < 0, consequently 

A fJ,p 
R > 0 in Theorem 3. The authors conduct extensive numerical 
analysis to substantiate their observations [10, Table 2,3]. 
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Analyzing strategies based purely on long-term contracts 
proves more difficult. The stock of the buyer cannot always 
be replenished up to level S, namely if Dt > R. Therefore, 
base stock level S and capacity reservation level R depend 
on each other and simple closed form formulae cannot be 
found. Inderfurth and Kelle [10, Appendix C] provide a steady
state distribution of the expected inventory level and derive 
respective costs from it. However, their main observations 
again rely on numerical analysis [10, Table 4]. First they note 
that optimal reservation and base stock levels are slightly lower 
for combined sourcing strategies than for long-term-based 
sourcing. This effect increases with higher demand and spot 
market price variability thus leveraging the flexibility provided 
by the spot market option of combined sourcing. In general 
the advantage of combined sourcing increases with higher 
spot market price variability and decreases with reservation 
and fixed price. The effect of demand variability depends on 
the shape of the distribution and cannot be cast into a simple 
observation. In general, the combined sourcing strategy proves 
to be a prudent choice even in the case of a inferior spot market 

situation, i.e. E[P] > P(R, S) + r R, due to the prevention of 
stock shortages and profits from occasional low spot market 
prices. 

Discussion: The deliberations of Inderfurth and Kelle 
[10] provide compelling arguments for CCs to engage in long 
term reservation contracts. The positive effects of cost savings 
and guaranteed availability of resources should diminish the 
reluctance to commit to one CPo This is especially true if 
we lift the assumption of plentiful resources on the spot 
market. The authors note furthermore that capacity reservation 
contracts can be applied for the procurement of utilities such 
as electricity [11, 22]. As cloud computing aims at providing 
computing as utility [4], the arguments are hence very appro
priate. Prior game-theoretic works on the field of utility pricing 
is less applicable to cloud computing. For instance Littlechild 
[15] considers fixed charges for telephone networks and as
sumes the problem to be a cooperative game. The players share 
the total costs of providing telephone services among each 
other proportionate to the benefit they draw from having access 
to the network. CCs competing for computational resources 
in the cloud computing market are oftentimes competitors in 
other markets as well, thus rendering the cooperative game 
assumption dubious. 0 

V. RESERVAT ION MECHANISMS 

As seen in the previous section, reserving capacity in 
advance yields benefits over sole spot market procurement. 
Hitherto, we considered an exogenously determined demand, 
described by some probability distribution. We will now study 
the case when demand is determined endogenously by some 
forecasting method. The CC require precise information about 
their current resource consumption in order to predict future 
computational demands. We assume that this information is 
provided by the CP accurately and truthfully. We consider 
perfect and stochastic forecasting abilities of the CC and 
examine reservation strategies in both cases. 

A. The Model 

We consider one CP P offering computing services to one 
buyer B. P offers spot market computing services for some 
price p per unit of computation. The customer however may 
reserve a specified quantity of computation r, being charged 
some price (cr' p) . r for the reservation, which entitles B to 
perform up to r units of computation for a discounted price 
(Cd' p) per unit. The buyer has a computational demand of 
dt units in period t. We furthermore assume Cr + Cd < 1. 
Therefore, given reservation r and actual consumption St = 

min(dt, Ct), B has to pay 

The utility of the consumer is defined as 

Factor ex determines the value of the computation to the 
consumer, we may safely assume ex � P otherwise not 

performing the computations would always yield more utility. 
The total amount of computational resources offered by the CP 
in a given period is denoted by Ct. If the available resources 
are insufficient to meet all computational needs opportunity 
costs arise in form of lost utility. 

The utility of the provider is defined as 

To provide the offered capacity, ",(Ct monetary units are re
quired. Again, we may safely assume "'( :s; p otherwise it would 
advantageous for the CP to not provide any computing power. 
Furthermore, the opportunity costs for not providing enough 
computational power are given implicitly again, following an 
analog argument as in the buyer's case. 

Discussion: Restricting the model to only one provider 
and consumer is a strong but common [10, 13] assumption of 
the model. However, assuming that both parties are endowed 
with an optimal strategy, there is no reason for any number 
of clients (or providers) to deviate from it. Hence, a group of 
CCs all acting according to the same strategy can be seen as 
one homogeneous client in strategic considerations. 0 

B. Perfect Forecasting 

The CPs desire to learn the true computational needs of their 
clients in advance, i.e. r = dt, for accurate capacity planning. 
They thus wish to set p, Cr and Cd in a manner promoting truth
telling as dominant strategy for all clients. We first present a 
result under strong (unrealistic) assumptions: 

LEMMA 2 Given the ability of perfect demand forecasting, 

i.e. dt = pred(dt-d, reserving the true computational need 

in advance, r = pred(dt_I), is the dominant strategy for all 

fixed p and Cr + Cd :s; 1. 
Proof We firstly consider the payment of the buyer in 

the case of always sufficient resources, i.e. even if r < dt 
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the actual consumption St = dt. B is not worse off reserving 
r = dt instead of using the spot market 

<1 
� 

p(dt, dt) = (Cr + Cd) pdt "'5. pdt = p(O, dt). (11) 

Reserving more capacity than anticipated, r = dt + 0, yields 
a payment of 

reserving less capacity, r = dt - 0 results in a payment of 

>0 
� 

= (cr + cd)pdt + po (1 - (cr + Cd)) ? p(dt, dt). 
'-v-" 

::;1 
(13) 

Due to (12) being strict, reserving r = dt is the dominant 
strategy of B. We now consider the capacity offered by the 
provider. Knowing that r = dt = pred(dt-d is the dominant 
strategy of B, P will offer Ct = r units of capacity, as this 
yields optimal earnings (refer to Harris et al. [9]). Hence, if 
r = dt -0 the buyer faces opportunity costs of (ex -p)o > O. 
Thus, the benefit in (11) and (13) is strict when considering 
opportunity costs. • 

Note that Cr + Cd = 1 constitutes the case of deductible 
reservation costs as studied in previous sections. 

Discussion: Considering the multitude of CPs in the 
market, a shortage of resources on the spot market appears un
likely. Hence, if no discount for advanced resource reservation 
is granted, i.e. Cr + Cd = 1, the CC are indifferent to reserving 
resources or spot market procurement in (11). Considering the 
general reluctance to early commitment, B would probably 
chose not to reserve any resources in advance. However, 
currently migration between different cloud providers is often 
cumbersome [23]. Thus, if the capacity of the CP of choice 
is exhausted there are no more usable resources on the spot 
market. Therefore, the CC have a strong interest in a plentiful 
capacity level of their CPo 0 

C. Stochastic Forecasting 

We now consider a demand forecast Vt described by some 
probability density function fV,t. Given the precise measure
ment of resource consumption dt-1 in period t -1, prediction 
function pred(dt-d conditions the general demand distribu
tion!v on Vt-1 = dt-1 yielding fV,t = !v(xIVt-1 = dt-d· 

We will demonstrate that untruthful behavior of the CC can 
be beneficial for them by exaggerating their predicted demand. 
For the following lemma we assume a rational CP, thus Ct = 

r, as well as fV,t being an unbiased estimator, i.e. E[Vtldtl = 

dt. 

LEMMA 3 Given a stochastic demand prediction Vb adhering 

to probability density function fV,t = pred(dt-d, the buyer 

can beneficially deviate from truth-telling, r = E[Vtl, by 

exaggerating their resource requirements, i.e. r = E[Vtl + o. 

Proof We proof the benefit of deviating from truth
telling, r = D = E[Vt], by analyzing the expected expen
ditures for reserving an extra 0 units of capacity and possible 
savings obtained from it. Depending on the realization of Vt, 
three cases need to be distinguished: 

i) if Vt < D reserving D + 0 yields no benefit but incurs 
extra costs of crpo; 

ii) on the contrary, if Vt > D + 0 the full benefit of 
exaggerating the expected demand by 0 is experienced, 
leading to cost savings of (1 - (cr + Cd) ) PO; 

iii) if Vt is in [D, D + ol extra expenditures and cost savings 
break even at 

( ) ( / -
) / - Cr 

crpo = 1 -Cd P Vt - D ===} Vt = D + -- 0. 1-Cd 

For deviating from r = D to be beneficial, the expected 
savings must outweigh the expected additional expenditures 

CrPO' Pr[Vt ::; D] + E[crpo -(1 - Cd)p(Vt - D)ID ::; Vt ::; V;] 
< 

E[(l - Cd)p(Vt - D) - crPolV; ::; Vt ::; D + 0] 
+(1 -(Cr + Cd))pO' Pr[Vt :::: D + 0]. 

Algebraic manipulations reveal that if 

E[Vt-DID::;v,::;D+8l 
A , , 

[
D+8 

(1 - Cd) } f (x - D)fv,tdx 
o < _ 

D 
_ (14) - Cr FV,t(D) -(1 - (cr + Cd)) (1 - FV,t(D + 0) )  

'-v-" ' , 
Pr[V,::;Dl Pr[Vt:2:D+8l 

it is beneficial to reserve r E[Vtl + 0 units of capacity 
instead of truthfully reserving E[Vtl units. • 

As can be seen from (14), a higher discount granted by the 
CP on resources reserved in advance, Cr + Cd « 1, allows for 
higher profitable deviations from the truly expected demand. 
Consequently, the CP incurs higher costs for providing the 
reserved, but partially unused, capacity which diminishes their 
utility. Nevertheless, the CP can promote truthful behavior, by 
requiring a larger portion of the price at reservation time, i.e. 
higher Cr values. 

When (14) is applied to a demand uniformly distributed in 
[0,),], as studied in section III-B, the condition for 0 simplifies 
to 

Discussion: Lelmna 3 demonstrates that designing a 
resource reservation scheme promoting truthful behavior on 
the clients' side becomes more challenging when using models 
closer to reality. Even though demand forecasting has been 
extensively studied by many researchers, using manifold set
tings, models and techniques [e.g. 3, 5], in practice, peifect 

forecasting is not possible. 0 
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VI. CONCL US ION 

Designing a capacity reservation mechanism in cloud com
puting that entails truthfulness of the clients is a complex 
task. Customers need to be compelled to reserve resources 
in advance, e.g. by granting discounts, while simultaneously 
being hindered from exploiting the system to their advantage. 

In the first part of our paper we showed that it is indeed 
beneficial for customers and providers alike to participate in 
reservation mechanisms. To that end, we examined economic 
literature and applied it to the cloud computing market. We 
established that cloud providers achieve optimal expected 
earnings by providing sufficient capacity to meet future de
mand, instead of keeping resources scarce to artificially create 
higher prices [9]. Even confronted with this, a CP might 
still be reluctant to expand capacity as required, as demand 
uncertainty could render costly investments futile. Through ca
pacity reservation contracts with deductible reservation costs, 
CP and CC share the risks of capacity expansion, with the 
higher portion of the risk being borne by the party which also 
profits the most from abundant resources [13]. Nevertheless, 
the cloud computing clients might be reluctant to commit early 
to a CP and rather procure their computing power on the spot 
market, leaving the providers with the entire expansion risk. 
However, a diverse strategy, utilizing long-term contracts as 
well as spot market procurement, proves to be beneficial to 
the clients [ iO]. Long-term purchasing, with fixed prices and 
guaranteed capacity, is augmented by short-term spot market 
procurement, exploiting low prices as they occur. 

In the second part of our paper, we examined how clients 
might exploit a resource reservation mechanism. Firstly, we 
considered capacity reservation under perfect deterministic 
demand forecasting. Lemma 2 establishes truthful resource 
reservation as dominant strategy in that case. Secondly, we 
treated uncertain stochastic demand forecasting. In that case, 
the client can profitably deviate from truth-telling by exagger
ating their predicted demand, as shown in Lenuna 3. Our result 
provides a basic intuition for the CPs on how their pricing 
model affects truthful behavior. Furthermore, we extended the 
work of Inderfurth and Kelle [ iO], who consider a scenario 
with non-deductible reservation costs and provide a closed
form formula for the optimal capacity reservation amount in 
that model. Corollary 1 gives a closed-form formula for that 
quantity in a deductible reservation costs model. 

As part of our future work, we will examine how a client can 
influence the expansion policy [13] of their CP by providing 
untrue valuations in order to bear less risk of the costly 
capacity expansion. We furthermore strive to derive closed
form formulae for all of the CP's parameters, so that they 
are enabled to set forth a pricing and reservation scheme with 
truth-telling as dominant strategy. 

Further aspects that we will consider are: i) effects of unused 
capacity on future price development, ii) resource reservation 
as repeated game including punishments for deviating from 
the (truthful) equilibrium strategy, iii) malicious CPs, including 
overbooking of resources and providing tampered resource uti
lization data, therefore affecting the CC's demand forecasting. 
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