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ABSTRACT
In the Tor anonymity network, the distribution of topology infor-
mation relies on the correct behavior of five out of the nine trusted
directory authority servers. This centralization is concerning since a
powerful adversary might compromise these servers and conceal in-
formation about honest nodes, leading to the full de-anonymization
of all Tor users. Our work aims at distributing the work of these
trusted authorities, such increasing resilience against attacks on
core infrastructure components of the Tor network. In particular,
we leverage several emerging technologies, such as blockchains,
smart contracts, and trusted execution environments to design and
prototype a system called SmarTor. This system replaces the direc-
tory authorities with a smart contract and a distributed network
of untrusted entities responsible for bandwidth measurements. We
prototyped SmarTor using Ethereum smart contracts and Intel SGX
secure hardware. In our evaluation, we show that SmarTor produces
significantly more reliable and precise measurements compared to
the current measurement system. Overall, our solution improves
the decentralization of the Tor network, reduces trust assumptions
and increases resilience against powerful adversaries like law en-
forcement and intelligence services.

CCS CONCEPTS
• Security and privacy→ Pseudonymity, anonymity and un-
traceability; Privacy-preserving protocols; Denial-of-service attacks;
• Networks→ Network privacy and anonymity;
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1 INTRODUCTION
In a time of continually increasing state surveillance, privacy tech-
nologies are more important than ever before. The Tor project
offers one privacy solution for anonymous Internet access. In Tor,
the so-called Directory Authorities (DAs) distribute topology infor-
mation necessary to build anonymity preserving paths (circuits).
These DAs collect topology information of the Tor network (vote)
and follow a consensus protocol to agree on an aggregated version
(consensus) of this data, which is then published by every DA. In
this process, numerical data is aggregated using the (lower) median
value. Because of this rule of the majority and as there are only nine
DAs, compromising five of them is sufficient to influence topology
information arbitrarily. An attacker can abuse this weakness to con-
ceal information about honest network nodes (relays) forwarding
information in circuits. This attack leads to entirely compromised
circuits that offer no privacy guarantees.

With SmarTor, we aim to improve the resilience of the Tor net-
work against attacks on DAs. While attacks targeting DAs might
require great technical and financial investment, the potential gain
of a successful attack – complete de-anonymization of all of its
users – is enormous. The former intelligence community officer
and whistleblower Edward Snowden has leaked information that
Tor is indeed a high-priority target for the NSA [35]. Further-
more, the FBI has admitted to being behind several attacks on
TOR servers [26, 31].

To prevent such attacks, our idea is to distribute trust among
more entities. We want to achieve this using a Smart Contract (SC).
SCs are computer programs stored on blockchains which enable
the conditional processing of data in the underlying blockchain.
Their code is distributively executed in a secure and verifiable
manner without a centralized instance (cf. Section 2). To tamper
with information stored in the blockchain, one would have to get
more than 50% of the computational power underlying it, which,
e.g., for Ethereum [45], would require the power output of a nuclear
power plant. Furthermore, due to the peer-to-peer data distribution
of blockchains, it is much harder to launch a Denial-of-Service
(DoS) attack on such a system. As such, it is possible to store access
information of relay nodes (RNs) with the use of a SCwhich ensures
that only the owner of the data may change or delete it.

However, replacing DAs with SCs is not straightforward since
the topology information also includes bandwidth measurements of
the RNs. Five out of the nine DAs also take the role of a Bandwidth
Authority (BA) which measure the bandwidth and vote on the
measured value. This measurement process is necessary as the
probability of a RN being chosen in a circuit is proportional to its
bandwidth. With no actual measurements, an attacker could lie
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about the bandwidth of his RNs 1 , in return being assigned more
trafficwhich facilitate de-anonymization attacks [19]. However, SCs
cannot perform bandwidth measurements as they lack synchronous
communication and their notion of time is limited to seconds or
even minutes.

To tackle this problem, we replace the BAs with a distributed
set of untrusted Bandwidth Measurers (BMs). These BMs execute
a measurement script and send the results to the SC which will
aggregate them. The measurement script is protected by a Trusted
Execution Environment (TEE) and redundancy and a reputation
score are introduced to spot and exclude any misbehaving BMs.
Since the current measurement script called speedracer does not
produce precise and reliable results (cf. Appendix B), we design and
evaluate a different measurement approach for SmarTor.
Contributions Our contributions can be summarized as follows:

• We propose to utilize smart contracts in order to eliminate
DAs. This approach increases resilience against strong ad-
versaries, like law enforcement and intelligence agencies
aiming to compromise the entire network, since now they
would have to take control over 50% of the computing power
of the underlying blockchain, instead of a few servers.

• We designed an improved mechanism to measure the band-
width of Tor relays, which does not rely on trusted par-
ties like BAs, but instead leverages a distributed network of
untrusted entities. While untrusted, these entities leverage
security extensions of modern processors to obtain trust-
worthy measurements performed on untrusted platforms.
To account for possible compromise of secure hardware, we
introduce a reputation system which can detect malicious
reports and enables exclusion of compromised entities from
further measurements.

• We implemented a measurement method which, especially
for slow relays, is far more reliable and precise than the cur-
rent process. Different from related work, it does not rely
on the publication of additional metadata. We evaluated this
script with eleven RNs and show that, despite TEE limita-
tions, our results were seven times closer to the advertised
value and scattering only half as much as in the current
measurement method.

Outline The rest of the paper is structured as follows: In Section 2,
we briefly give an overview of the used technologies and related
work. In Section 3, we specify our system and adversary model. In
Section 4 we explain the design of SmarTor in detail. Section 5 con-
tains a security analysis. In Section 6 we present a proof-of-concept
implementation of this system which we evaluate in Section 7. In
Section 8 we conclude and provide and outline of our future work.

2 BACKGROUND
In this section, we provide brief descriptions of bandwidth mea-
surements in Tor, Trusted Execution Environments, blockchains,
and Smart Contracts.

1Note that, since there have never been more than five BAs, compromising three of
them is sufficient to change the amount of traffic an attacker can attract arbitrarily. As
of 2018-06-15, there are only four BAs, making it possible to set the bandwidth and
measured bandwidth to zero if controlling at least two of them.

2.1 Tor Bandwidth Measurements
At the beginning of Tor, DAs would merely trust the bandwidth
values reported by the relays as long it is below a specific, publicly
known value. However, this approach was vulnerable to attacks
based on false reports [3]. The TorFlow project [30] introduced Band-
width Authorities (BAs) which measure and then vote on the actual
bandwidth of the relays. The measurement script called speedracer
divides the network into slices of relays with similar bandwidth
and then repeatedly fetches a large file over a two-hop circuit cre-
ated of relays in this slice. The ratio of average stream capacity
of a particular relay to the rest of the slice is then used to adjust
the self-reported bandwidth. While this approach is still active in
Tor, it has shortcomings. The measurement over two hop circuits
produces an influence on the measurement result from similarly
sized relays put in the same slice. Furthermore, due to the relay life
cycle [14], the time a RN registered with theDAs also influences the
measurement result. We present a short analysis of measurement
results published in the current consensus in Appendix B.

2.2 Trusted Execution Environments
Trusted Execution Environments (TEEs) protect execution of security-
critical application code against an attacker with full control over a
system. They enable program execution in isolation from the rest
of the system and are equipped with a hardware protected secret
enabling Attestation and Sealing.

Sealing describes the process of storing data to persistent storage
in a way that allows only the protected program to reaccess this
data. This is done by deriving a sealing key from the hardware
protected secret which is unique for each protected program. At-
testation is used to verify that the program indeed is running in
a genuine environment. For this, the TEE creates attestation data
which describes its state (like loaded program code) and may also
include custom data like keys created by the protected program.
This data is then signed using an attestation key derived from the
hardware secret, enabling verification of this data with the associ-
ated public key. This signature can be linkable enabling entities to
detect if two signatures were produced by the same TEE without
revealing further identity information.

While those environments can be instantiated using various
hardware platforms like TrustZone [1] for ARM processors or Sanc-
tum [11] for RISC-V platforms, we (without loss of generality) in-
stantiated our system using Intel SGX which we will describe in
more detail in Appendix A.

2.3 Blockchain and Smart Contracts
A blockchain [28] is a decentralized data structure which stores
information in an unchangeable and network-wide agreed sequence.
Information is divided into blocks consisting of data records and
headers chained together as each header includes the hash of the
previous block header, preventing changes in blocks. Data can
be accessed by users who own wallets in the form of addresses
represented by the hash of a public key. While data can be accessed
for free, inserting data using transactions (signed by the wallet key)
usually results in a transaction fee.

Miners verify transactions and include them in new blocks. They
follow a peer-to-peer based consensus protocol to reach agreement
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Figure 1: SmarTor System Model

on a single history of data records. Most consensus protocols rely
on Proof-of-Work (PoW) algorithms which force them to solve a
hard but easily verifiable cryptographic puzzle like partial hash
inversion. To achieve consensus, the longest chain is considered
as valid and every miner works on the longest chain available.
This way, different versions of the blockchain (forks) are eventually
resolved over time.

Smart Contracts (SCs) are programs stored on a blockchain. They
can be called to perform an action by sending a transaction to their
address. Executing code is computationally expensive as it has to be
done by everyone verifying the corresponding block. Hence, many
systems require a fee for the execution of SC code. For instance,
Ethereum [45] defines a notion of gas which is to be paid with
cryptocurrency and needs to be spent in order for the contract to
be executed. Limitations of SCs include the lack of more complex
data structures or floating point operations even in high-level SC
languages, such as Solidity. They furthermore cannot engage in
synchronous communication and have no real notion of time apart
from the timestamp in the block header whose resolution is limited
to seconds or even minutes.

3 SYSTEM AND ADVERSARY MODEL
In this section we first introduce our systemmodel, and then specify
our trust assumptions and attacker capabilities.
System Model Our system model is depicted in Figure 1. It in-
cludes the following components of Tor’s infrastructure: Relay
Nodes (RNs), Tor-hidden web services (TWS), and Tor Clients (TCs).
In SmarTor, the functionality of Directory (DAs) and Bandwidth
Authorities (BAs) is distributed between two types of entities: The
Smart Contract (SC) and Bandwidth Measurers (BMs). The SC
is a computing program stored on a blockchain, while BMs are
managed by volunteers, e.g., by individuals that already operate
Tor’s relays, by blockchain validators, or by any other users. We as-
sume that BM’s platforms are equipped with a hardware-supported
Trusted Execution Environment (TEE) where programs can execute
security-sensitive operations (e.g., encryption, signing) in isolation
from the rest of the system. We will write BM-TEE for the trusted
execution environment of a BM.

Inherited Assumptions Trust assumptions about RNs, TWSes,
and TCs are inherited from the current Tor system – TCs and
TWSes are considered as trusted, while some (but not the majority)
of the RNs can be malicious. Like the current Tor browser, the code
executed by TCs, SCs or TEEs is developed by a trusted entity and
can be viewed and accessed by anybody, once it is published. As
usual, there is no trust in the SC, but we assume that no attacker
can perform a 50%-attack on the underlying blockchain.
BM Assumptions We moreover make the following assumptions
about BMs. The host platform of the BM (BM-Host) is untrusted.
However, we trust the vendor of the TEE to ship appropriate secure
hardware and support it with Public Key Infrastructure (PKI). Once
commissioned, some of the BM-TEEs can be compromised, i.e.,
their hardware secret can get leaked. However, we assume that the
number of compromised BM-TEEs is limited.

Note that hardware attacks against secure hardware are techni-
cally involved and costly. Associated attacks cost up to 1, 000, 000$
when dealing with tamper-resistant devices like smartcards [38].
While successful hardware attacks against Intel SGX and associ-
ated costs have not been reported so far, several recent research
papers (e.g., [7, 9, 17, 22, 27, 37, 43]) have shown the feasibility of
side channel attacks against Intel SGX enclaves. These attacks are
less costly than compromising hardware, yet technically involved
and often target specific applications not hardened against them.
However, it is still necessary to consider that a certain fraction of
TEEs might be compromised.

Even for a potent, state-like attacker, it is not feasible to com-
promise the secure hardware PKI or the underlying blockchain.
First of all, these attacks would compromise all solutions based on
this technology, destroying core business models. As an example,
the NSA might be hesitant to destroy the business model of the
American company Intel by compromising Intel SGX’s PKI. Fur-
thermore, if one technology solution is compromised, SmarTor can
be migrated to another system. Note that the described attacks
are far more difficult than compromising three BAs not protected
by secure hardware which is sufficient to compromise the current
system. For an attacker with such capabilities, it is easier to write
an exploit directly targeting TC software, forcing it to reveal its
identity.
Adversary Goals and Capabilities Our adversary aims to in-
fluence information about Tor’s networking infrastructure with
the goal to, e.g., launch denial of service attacks or facilitate de-
anonymization of users. In particular, the adversary may introduce
’ghost’ relay nodes, which do not physically exist but are listed as
available nodes in the network topology information. Furthermore,
the adversary may try to increase chances of malicious RN of being
selected for forwarding by setting up his own BMs and reporting
high bandwidth for RNs he controls and bad bandwidth or status
’unavailable’ for any other RN. While operating his own BM, the
adversary has full control over BM-Host and may manipulate any
inputs and outputs coming to/from BM-TEE. For instance, he may
try to delay networking packets to artificially decrease measured
throughput, replay measurement results from previous measure-
ment rounds, or try to manipulate reports produced by BM-TEE.
The adversary may also compromise the BM-TEE on his platform
but is limited in the number of BMs he fully controls.
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Figure 2: SmarTor Functionality

4 DESIGN
The high-level idea of SmarTor is to realize the functionality of
Directory Authorities (DAs) in a Smart Contract (SC) in order to
further distribute trust into core infrastructure components and
change the underlying trust assumptions.
Challenges Functionality that can be implemented in smart con-
tracts is limited. In particular, it is impossible to realize the function-
ality of the Bandwidth Authorities (BAs) verifying the advertised
bandwidth since it would require synchronous communication over
the network, precise timer, and the ability to protect cryptographic
keys by the contract. Additionally, one needs to account for the fact
that SC-based computations are quite costly. Hence it is a necessity
to make them as simple as possible.
General Approach Our approach to solve these challenges is to
outsource functionality of BAs to (untrusted) third parties, which
we call Bandwidth Measurers (BMs). BMs perform measurements
in measurement rounds orchestrated by the SC and report them
to it for aggregation. Since we assume that BMs are untrusted, we
introduce redundancy in the system and perform statistical analysis
of reports provided by many BMs in order to detect misbehavior.
This analysis allows the SC to maintain a reputation value for every
BM and exclude misbehaving BMs. We furthermore introduce se-
cure hardware which significantly raises the bar for attacks against
BMs. This approach allows us to reduce redundancy and simplify
computations.
SystemOverviewWedepict the high-level overview of our system
in Figure 2, which illustrates involved entities and their interaction
in the following use cases: (1) RN registration, (2) BM registration,
(3) join measurement round, (4) bandwidth measurement, (5) report
measurements, (6) result aggregation, (7) malfunction detection,
and (8) topology information distribution. Below we describe each
of the use cases in details. The choice of the system parameters is
discussed in Section 6.

4.1 Entity Communication
As mentioned in Section 3, BM-Host is untrusted. Yet, BM-TEE
lacks network access, and such can not interact with other entities
(like the SC) on its own. Because of this, all communication of

BM-TEE with the outside world must be mediated by BM-Host. We
discuss the resulting security implications in Section 5.2.
Communication Keys Every entity has a set of keys available.
Their notation and usage are shown in Figure 3. Note that Tor session
keys are temporary and that BM-Host has no access to keys held
by BM-TEE.
Message Forwarding Transactions from BM to the SC are created
by BM-TEE and signed by its wallet key secw . BM-Host forwards
these transactions to the miners which then include them into the
blockchain. Similarly, BM-Host provides the current version of the
blockchain to BM-TEE which will verify it. Messages between BM
and RN are encrypted and authenticated with a session key secs .
BM-Host forwards any incoming messages to BM-TEE and any
outgoing messages to the specified RN.

4.2 Relay Registration
The goal of RN registration is to inform SC that a new RN wishes
to join the network and to provide its contact information to Tor
users. In order to do so, a new RN sends a registration transac-
tion τRN signed by its wallet key to the SC. This transaction in-
cludes, like in the current system, RN’s access_information like
ip, tor_identity_key, and exit_policy. Upon reception, the SC
saves this data in the list of RNs, enabling Tor users to use this
relay in circuits. It further ensures that only transactions signed by
the same wallet key may change this information later on.

4.3 Bandwidth Measurer Registration
Before being able to participate in measuring rounds, a BM has to
register itself with the SC, as shown in Figure 4. The registering
BM (BMnew ) issues the registration transaction τBM and sends it to
the SC (step 1). In step 2, one of the already registered BMs verifies
the attestation data of BMnew to ensure that its platform has a
genuine TEE. Step 2 will be repeated by every registered BM, which
then submits its vote on trustworthiness τvote of BMnew to the
SC (step 3) which will verify and count those votes (step 4). If the
majority of registered BMs voted in favor of BMnew , the SC adds
it to the list of all registered BMs (step 5).
Registration Before registration, BM-TEE of BMnew creates its
wallet key and seals it to persistent storage. Afterwards, it cre-
ates τBM including BMnew ’s tor_identity_key and linkable (cf.
Section 2.2) attestation_data including pubw .
Verification Process This attestation data is used to verify that
secw was indeed created within a genuine TEE and that no other
wallet key (representing a BM) was created from this TEE. Since
this verification is computationally expensive, the SC only verifies
the initial group of BMs (bootstrapping phase). Afterwards (pro-
duction phase), this process is outsourced to the already registered
BMs. Every BM-TEE should periodically query the blockchain for
attestation data of a new BM and verify it. Afterwards, it will create
τvote including verification_result and last_blockhash (the
hash of the last block read by BM-TEE) to ensure freshness.
Voting andAdding The SCwill save this result if τvote was signed
by a registered BM and last_blockhash is recent enough. The SC
furthermore calculates the distance between the blocks containing
τBM and τvote . If this exceeds a pre-defined limit distvote , the vote
counting process is triggered. If the majority of the received votes
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Key name Notation Cryptosystem Hold by Usage
Wallet key (secw ,pubw ) EC(secp256r1) BM-TEEs, RNs Sign transactions to SC
Tor identity key (sect ,pubt ) RSA2048 BM-TEEs, RNs Key exchange to create secc
Tor session key (secc ) AES128-GCM BM-TEEs, RNs Protect Tor session communication
Sealing key (secs ) AES256-GCM BM-TEEs Encrypt data to persistent storage
Attestation key (seca ,puba ) EPID BM-TEEs Sign attestation data

Figure 3: Available entity keys with their notation, usage, and cryptosystem in our implementation.

Figure 4: Overview over a successful registration process.

Figure 5: Overview over a successful measurement round.

were in favor of the new BM, it is added to the list of registered
BMs, enabling it to participate in measurement rounds. Additional
votes after this process are discarded.

4.4 Join Measurement Process
The measurement process as shown in Figure 5 is done in rounds
orchestrated by the SC. Each BM has to actively join a measurement
group which starts as soon as enough BMs are available. The SC
creates different groups for BMs of different bandwidth and assign
suitable RNs to it. Measurement results are reported to the SC,

which will then aggregate them to a new consensus value for each
RN.
Joining Measurement Rounds In order to join a measurement
round, BM-TEE creates a joining transaction τjoin signed by its
wallet key. This transaction includes rnd, ctr, and bwmax where
rnd is a random number, ctr is the amount of joining transactions
created by this BM and bwmax is the maximum bandwidth this BM
can measure.
Joining Verification After receiving the transaction, the SC ver-
ifies whether this BM may participate in measuring rounds and
whether ctr monotonically increased by one compared to the pre-
vious transaction. The last step is essential to prevent possible
attempts to brute-force a specific rnd value. If the verification suc-
ceeds, the SC randomly 2 puts it in one of the pending measurement
groups.
Relay Assignment After n people joined an open measurement
group, the SC randomly assigns r relays to it. For this, the SC
randomly picks up a RN out of the list and adds it to the group if
this does not violate group properties. As such, every BM must be
able to measure this RN. The last measured bandwidth (bw) of this
RN must be lower than bwsize which is the lowest bwmax value
of BM’s in this group. If the RN was not measured before or the
last measurement failed, bw is not set. In this situation, the RN is
added to the group unless there is already a limited amount u of
such RNs. This process is repeated until the group is full.

4.5 Bandwidth Measurements
After joining a group, a BM should query the state of the blockchain
and wait for information about the assigned relays. Once they are
available, it will start the measuring process. During the measure-
ment process, the BM repeatedly fetches a file over custom circuits
and produces a result transaction τr es which can be forwarded to
the SC.
Building Measurement Circuits Different from the current ap-
proach, measurement circuits in SmarTor consist of three RNs. The
RN to be measured is the middle node, and two faster RNs are used
as entry and exit. Since the RN to be measured offers the lowest
bandwidth, the bandwidth of the whole circuit is equivalent to the
bandwidth of this RN.
Choosing Entry and Exit Nodes BM-TEE randomly picks entry
and Exit RNs. 3. As bandwidth may vary, the entry and exit should
have far more bandwidth than the RN to be measured. If no such
relays are available, as it is the case for the fastest RNs, BM-TEE
randomly chooses a RN out of the fastest RNs available.

2We will discuss the problem of getting randomness in SCs in Section 6.1.
3Note that BM-TEE has access to real randomness from hardware (cf. Section 6.2).
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Measurement Process BM-TEE decides the order in which RNs
are measured at random. After circuit creation, the BMwill connect
over Tor to one server out of a predefined list. It then repeatedly
fetches a file over this circuit; the average bandwidth provided by
the stream during this process is the measurement result.
Honeypot Measurements At random points during the measure-
ment process, BM-TEE also measures h RNs of similar bandwidth
as the other RNs. These measurements act as honeypots to detect
problems with the connection and message forwarding of BM-Host
(cf. Section 6.2). BM-TEE stops the measurement process if the mea-
sured bandwidth of these honeypot RNs does not align with the
last measured value.

4.6 Reporting and Aggregating Results
After successfully collecting all measurements, BM-TEE creates a
result transaction τr es . BM-Host should forward this transaction to
the SC which verifies these votes and appoints the newly assigned
bandwidth values.
Result Transaction The result transaction τr es contains the mea-
surement results of all measured relays. This transaction (like every
other) is atomic implying that either every result or none can be
transmitted to the SC. Further information in this transaction in-
cludes a counter describing the number of times BM-TEE has run
the measurement script, and the blockhash of the latest block in
the blockchain read during that process.
Result Verification After receiving τr es , the SC verifies that the
BMmay report results for this group and blockhash is a block after
the block the group was started. It further validates that counter
monotonically increased by one to ensure that BM-Host can not
influence the bandwidth by starting the measurement process mul-
tiple times. If no further results are missing or the distance between
the current block and the initiation of the group exceeds a pre-
defined limit distr es , the SC will aggregate the results.
Result Aggregation If more than half of the assignedBMs failed to
report results, the results of the measurement round are discarded.
Otherwise, like in the current aggregation method, each measured
RN is appointed the (lower) median value of its measurement results
as the new bandwidth consensus value.

4.7 Malfunction Detection
We assumed (cf. Section 3) that a certain fraction of TEEs can
be compromised. As a countermeasure, we want to exclude the
measurement results of misbehaving BMs in aggregation and force
them to undergo registration again. During aggregation, the SC
calculates a reputation score rBM for each BM which is used as a
measure for trustworthiness. The lower the reputation score, the
higher the chance for a BM to be excluded from the list of registered
BMs.
Reputation SystemAfter aggregation, everyBM of the group gets
an Activity Point (AP) for participating in this measurement round.
It further gets an additional Reputation Point (RP) if its reported
measurement is aligned to the consensus value. The ratio of RP
to AP can be seen as an indicator of how similar a BM behaves
compared to the other BMs and is used as rBM.
BM Exclusion After reporting a bandwidth result the SC has a
probability of excluding the BM out of the group of registered BMs.

0 20 40 60 80 100
0

0.5

1

Figure 6: Probability of exclusion (y-Axis) after participat-
ing inmultiple measurement rounds (x-Axis) for rBM =
25%, rBM = 50%, rBM = 75%, and rBM = 95%

Parameter Notation Proposed Value
BMs per group n 9
RNs per group r 15
max. new RNs per group u 2
Honeypots per round h 2
Voting timeout distvote 256
Reporting timeout distr es 256

Figure 7: Used parameter and proposed values.

This is done by randomly picking 4 a number rnd ∈ [0, 999] ⊂ Z.
The BM is excluded if rnd ≤ f (rBM), where f : [0, 1] ⊂ R →

[0, 1000] ⊂ N is a monotonic function used to smooth the probabil-
ity curve for exclusion. Note that the value range of f implies that
any BM has a 0.1% chance of exclusion regardless of its reputation
score. This ensures every BM has to undergo re-validation from the
others at some point. If the TEE is known to be compromised, its
keys are revoked, such preventing rejoining during the verification
step at registration.
Function ChoiceWe propose to use f (rBM) := ⌊(1−rBM)2 · 1000⌋
as exclusion function. Probabilities for exclusion after multiple
measurement rounds are shown in Figure 6. While a BM with a
reputation score of 50% has a 90% probability of exclusion after 8
rounds, an honest BM (rBM = 95%) only has a 26% chance of exclu-
sion after 100 rounds. Note that this function can be implemented
using basic operations and rBM = 100% is unlikely as bandwidth
differs over time.

5 SECURITY ANALYSIS
The main security goal of our solution is to hinder attacker’s ability
to artificially inflate their bandwidth without providing the pro-
portional amount of resources. In the following section, we will
discuss potential attack scenarios and their influence on SmarTor.
We specify the system parameter introduced in Section 4 in Figure 7.

5.1 Group Compromise
As BMs get randomly allocated to a certain group, there is a nonzero
probability gc ∈ [0, 1] ⊂ R that an attacker controlling many BMs
gets assigned enough of them into the same group to represent
the majority in this group. We will call such a group compromised
and denote p ∈ [0, 1] ⊂ R for the percentage of entities under
the attacker’s control. As each BM has the same probability to be
chosen for a certain group, gc follows a binomial distribution with
gc =

∑i=n
⌈i=n/2⌉

(n
i
)
piqj , q := 1 − p, and j := n − i . Since gc < p, the

4See Section 6.1 for Randomness in SCs.
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n 9 9 9 29 9 49 99
p in % 5 10 25 25 40 40 40
gc in % 0.00 0.09 4.89 0.18 26.66 7.76 2.19
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Figure 8: Probability gc (y-Axis) in regard of p and n (x-Axis).

majority of the groups are not compromised as long as an attacker
does not control the majority of entities.

In Table 8, we show the probabilities to compromise a certain
group for different p and n. For instance, for p = 10% and n = 9, the
attack success probability is 0.09%, which is small. Even an attacker
with p = 40% only has a 26.66% chance to overtake a group if using
n = 9. However, this would mean that an attacker would need to
compromise 120 = 40% · 300 systems if assuming that, like in the
current system, there are around 6000 RNs and only 5% of them
participate as a BM.
Consequences Compromise of a group is unlikely as gc is gener-
ally low for most attackers and is further reduced if raising either n
or the amount of BMs. It furthermore is more difficult to compro-
mise a group than compromising three BAs. The possible influence
of an attacker who compromised a group depends on whether he
controls BM-Host or also compromised BM-TEE.

5.2 Attacks from a malicious Host
Here we discuss attack scenarios where an attacker can compromise
hosts of BMs he controls, but not their BM-TEEs. Since BM-Hosts
mediate communication between BM-TEEs and the SC, they can
delay or drop forwarded packets and transaction.
Delaying Packets duringMeasurements BM-Host can monitor
the bandwidth usage of the system and identify measurements.
Hence, an attacker might choose to delay forwarded packages, thus
reducing the measured bandwidth. However, since BM-TEE decides
the order of measurements and every BM in a group has a similar
bandwidth, an attacker does not know which BM is measured right
now. It might still be beneficial for an attacker to delay packets
during the whole measurement process, for instance, if he does
not control any of the assigned RNs. However, BM-TEE can detect
this attack by observing the discrepancy between expected and
measured bandwidth for honeypot RNs (cf. Section 4.7). In this case,
it will not create the result transaction.

If using the parameters n = 9, r = 15, h = 2 and randomly delaying
the measurements of one RN in each measurement, an attacker
has only an 11.92% chance of being captured by honeypot measure-
ments. Still, this does not influence the consensus unless he did so
on at least five BMs in the measurement group. Even then, he has
to delay the same RN at least five times to influence the consensus.
Choosing a RN to delay randomly, this has the small probability of
0.01%. If he fails to influence the consensus, his attack attempt leads
to a decrease in the reputation value of all BMs involved in the

manipulation. Raising either n, r , h, or the amount of BMs further
lowers the success probability of such an attack.
Dropping Reports An attacker controlling BM-Host might have
no access to or decide to drop the result transaction τr es instead of
forwarding it to the SC. In this case, itsBM is assigned no reputation
pointss, decreasing its reputation score. This eventually leads to the
SC excluding it from the group of registered BMs. As the attacker
did not compromise BM-TEE in this scenario, the BM may rejoin
again after a certain amount of time. Yet, this does not reset its
reputation score. Similar behavior leads to a further decrease in
its reputation score until SC eventually excludes BM after every
measurement. Given the fact that an attacker has to pay for gas for
re-joining, following this attack strategy may impose significant
costs.

If the attacker is also able to compromise the current group, he
can prevent the building of new consensus values as this is only
done if the majority of BMs reported a result 5. However, in order to
launch a DoS attack and prevent a RN from being measured (again),
an attacker would have to compromise every group containing this
RN which is even less likely 6 to happen consistently.

5.3 Attacks from compromised TEEs
While compromising secure hardware is costly and requires non-
trivial skills, a motivated attacker might be tempted to exercise
this attack vector, if the attack revenue outweighs invested efforts.
Hence, we elaborate on scenarios where an attacker compromises
BM-TEEs, and discuss security implications.
Compromising a few BM-TEEs In a first scenario, an attacker
has some BM-TEEs under his control, but he did not compromise
the group. Such a BM can report arbitrary measurements and, for
example, assign high bandwidth to attacker-controlled RNs and
low bandwidth otherwise. This attack, however, is detected dur-
ing the aggregation process, since the SC excludes outlier values
during consensus aggregation. Furthermore, such attempts reduce
the reputation score of the attacker-controlled BM leading to ex-
clusion of the BM from the group of registered BMs, forcing it to
undergo the re-joining process. As before, even if compromised TEE
attestation keys are (not yet) revoked, re-registering imposes an
additional financial burden on the attacker. As long as an attacker
cannot compromise a group, the SC ignores all measurement data
of compromised BMs and decreases their reputation score.
Compromising many BM-TEEs In our second scenario, an at-
tacker has compromised enough BM-TEEs to compromise a mea-
surement group. For such groups, the attacker can influence the
assigned bandwidth value of all RNs. Furthermore, his reputation
scores are increased, while reputation scores of the honest BMs are
decreased. Hence, there is a strong necessity that this scenario is
as unlikely as possible. However, this attack is far more sophisti-
cated than compromising the majority (right now: three) of BAs
in the current system. Furthermore, its influence is limited, as non-
compromised groups still produce valid measurement results and
increase the reputation score of honest BMs. Lastly, under our as-
sumptions, the majority of groups is never compromised as one

5This prevents an attacker from influencing the consensus by being the only reporting
entity if launching a network DoS attack against other BMs.
6The probability to compromise i groups is дc i .
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can expect gc · groupcount compromised groups and gc < p < 0.5.
Hence, we consider SmarTor to be a significant improvement over
the current system.

5.4 Attacks on the SC
Information Flooding An attacker might try to perform a DoS
attack on SmarTor by registering ghost relays which do not exist.
Since the bandwidth value is set to 0 before the first measurement
takes place, such an attack would not affect Tor users. Further-
more, an attacker will have to pay gas for adding each RN to the
blockchain, which imposes enormous costs. At the same time, an
increased amount of RN data stored in the blockchain will increase
execution cost of the SC, since the SC needs to create more random
numbers until it finds enough "old" RNs to put into a group. One
solution to prevent such an attack is to keep relays whose last mea-
surement was not successful (or existing) in a separate list and add
them to the list of verified RNs after a valid measurement. In this
case, a constant amount of RNs from the unmeasured list is added
to each group, ensuring that every newly registered RN is measured
at some point. A deposit for registration, which is only paid back
upon successful registration, can be introduced to prevent a similar
attack against the BM registration system.
Relay Selection The SC only adds RNs with suitable bwsize to a
group. In order to limit the amount of RNs the SC can choose, a
BM could report unreasonable low bwmax. Introducing a bandwidth
threshold for BMs prevents such an attack.

6 IMPLEMENTATION
Our prototype consists of three major components: (i) Smart Con-
tract, (ii) the measurement script that runs within Intel SGX, and
(iii) the host of the BM, leading to a total of 4483 Lines of Code
(LoC). For compatibility reasons, communication keys are instanti-
ated using the underlying cryptosystem of the currently deployed
systems.
Parameter choices Figure 7 shows an overview of the parameters
in SmarTor. We propose the example values from Section 5 as they
offer reasonable security and a further increase in n or r would
also increase the system cost. The choice for the timeouts is driven
by the fact that the function blockhash of the Solidity API is only
able to resolve the blockhash of the last 256 blocks. We furthermore
interpret a measurement as valid if the result is within ±30% of the
expected value.

6.1 Smart Contract
Our proof of concept implementation of the SC was developed
using Ethereum platform and consists of 353 LoC in the Solidity
0.4.20 language.
Implementation It saves information associated with BMs, mea-
surement groups, and RNs. We present a full systemmodel showing
the stored information, used structures, and possible interaction
in Appendix C. All variables which are not explicitly set with a
parameter of a specific transaction default to 0. To the variables
mentioned in Section 4, the SC saves a state variable for each BM.
The current state of a BM limits the allowed interaction with the
SC, so that, e.g., a BM which did not register may not vote on new

Figure 9: BM states and transition events.

BMs. The states and transition events are shown in Figure 9 and
explained in more Detail in Appendix C.
SC Attestation As of right now, SGX’s attestation data has to be
verified by the Intel Attestation Service (IAS, cf. Appendix A). While
this design choice ensures that verification and revocation checks
are handled correctly, it also requires a synchronous communication
channel not available inside the SC. As a workaround, we suggest
that the nine current DAs take the role of the initial BM group, as
they are already trusted in the current system. Note that trust into
this initial group is limited to the bootstrapping phase as more BMs
join and verify attestation data.
LimitationsWhile Smart Contracts languages are Turing-complete
in theory, there are several simple operations which require com-
plex workarounds in practice. This is also true for Solidity which, to
the best of our knowledge, is the most potent SC language. Due to
the gas limit for SC execution, the possible scope of workarounds
is restricted as this limit cannot be raised arbitrarily 7. In practice,
the following functionality should be introduced to Solidity before
implementing a full version of SmarTor: (1) Fixed-point numbers
and computations, (2) Iteration over key/value sets of maps, (3)
Delete maps, (4) Return block number for block hash, (5) Pseudo-
Random Number Generators (PRNGs). Due to these limitations, our
Proof-of-Concept implementation only provides full functionality
for one measurement group. However, this is sufficient to estimate
the gas cost of such a system.
Randomness SCs have no native access to randomness. How to
create randomness in SCs is an orthogonal problem, which is ex-
plored separately [24, 25] and not specific to our application. It is
possible to use pseudo-randomness (e.g., from the block headers)
but that mechanism must be hardened against a possible influence
of the miners [6]. In our implementation, the SC selects RNs for a
measurement group by using real hardware randomness provided
by BM-TEEs during joining of the group. The SC aggregates it at
the start of the group by hashing the concatenated random values.
This hash value then seeds a PRNG 8. Since this randomness is only
available once a group started, this approach cannot be used to
assign BMs to groups, and other approaches have to be explored if
extending the implementation to multiple groups.

7This prevents a DoS attack on miners where a SC function takes longer to execute
than it takes other miners to create a new block.
8As there is no implementation of a PRNG in Solidity yet, we use sha3(prev_rnd )
mod max as approximation to create a random number rnd ∈ [0,max − 1] ⊂ N.
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6.2 Bandwidth Measurement Script
We implemented bandwidth measurement script as an Intel SGX
enclave. Our implementation is written in C++ using the Intel SGX
SDK 1.9 and consists of 3018 LoC. The resulting library offers ECalls
to trigger functionality for registration (create_wallet), joining
measurement rounds (join_group), reporting measurement results
(measure_bandwidth), and expiring oneself (expire). Every ECall
results in a raw transaction signed by the wallet key created during
create_wallet. As shown in Figure 3, IntelSGX and Ethereum use
different curves. Some cryptographic functionality was rewritten 9

using the mbedtls library for SGX [34] and the Portable C++ Hash-
ing Library [8]. This signed transaction is saved to a file from where
BM-Host can forward it to the SC. For example, create_wallet
results in the registering transaction τBM which in our implemen-
tation can also be used to request re-joining. If an ECall fails (e.g.,
when trying to expire before creating a wallet), the enclave will
throw an exception, terminating without producing a transaction.

We developed our system using pre-release mode which, con-
trary to release mode, uses unsigned enclaves and such cannot
produce attestation statements. In practice, the distributor of the
program code (i.e., the Tor Foundation) would have to sign every
published enclave before deployment with an enclave signing key
requested from Intel.

We use the function sgx_read_rand to create truly random
numbers (e.g., for key creation), sgx_create_monotonic_counter
for transaction counters, and sgx_get_trusted_time as the time
source. While the resolution of this time source is limited to sec-
onds, we were still able to achieve precise measurement results (cf.
Section 7.1).

6.3 Bandwidth Measurement Host
We used usual Tor and Geth clients for Windows for the host to sup-
port communication with Tor and Ethereum networks, respectively.
Our host implementation consists of 1112 LoC which is responsible
for forwarding transactions to the SC, starting the enclave, and
fulfilling requested OCalls.

The OCalls necessary for networking are implemented using
the winsock2 system library for Windows. An additional script
is checking whether the enclave saved any new transaction to
a folder. If so, it forwards it to the Ethereum network using the
sendRawTransaction function of EthereumJS [33].

Furthermore, a Tor Client should offer its Socks 5 proxy [23],
used to forward messages to another relay, on port 9050, and a
control port on 9051. BM-TEE uses the control port to create cir-
cuits and perform reconfiguration necessary for the measurement
process. In particular, circuits are not created automatically, but
rather by control commands from the enclave. Note, that gener-
ally, communication to Tor and the Tor keys need to be protected
by Intel SGX as well. This can be achieved by using a secure Tor
implementation like SGX-Tor [21] 10.

9While we were grateful that we were offered to reuse code from the TownCrier
project [47], we opted not use it as their license is incompatible with open source
projects like Tor.
10While we are using the most recent version of Intel SGX SDK (1.9), SGX-Tor is
implemented for an older, incompatible, version (1.6). This is a temporary limitation
until a newer version of SGX-Tor becomes available.

7 EVALUATION
In this section, we provide the results of our system evaluation. We
evaluate our bandwidth measurements with regards to precision
and reliability, and compare it to TorFlow [30, 32], the solution
currently used by Tor. Furthermore, we evaluate our smart contract
with respect to the gas cost necessary for its execution.

7.1 Measurement script
In order to obtain measurement results similar to ones from real-
world deployment, we ran our measurement script using Intel SGX
hardware and measure the bandwidth of real Tor RNs that are not
under our control. We used a Lenovo T470s with an Intel i7-7500U
processor (with SGX) running a 64-bit Windows 10 Education as
an operating system. The evaluation was taking place on 14 full
days between 2018-05-18 and 2018-05-31 11.
MethodologyWe built measurement circuits by placing the RN to
be measured in the middle of the circuit and choosing entry and exit
RNs randomly from predefined lists we built 12. If a measurement
circuit was not build within 15s, we re-tried it up to 3 times with
different entry and exit RNs. Measurements were repeated every 30
minutes. A single measurement was scheduled to repeatedly fetch
a pre-defined file until at least 25s have passed to ensure the time
resolution of SGX would not influence the measurement result. As
our endpoint only had an upload of up to 2MiB/s, we chose eleven
RNs 13 with a bandwidth of less than 1MB/s 14 for measurements
to ensure that unreliability of the endpoint would not influence the
measurements.
Comparison Sets We compare the results of the SmarTor mea-
surement script (which we denote as SMS) with the BA bandwidth
votes for the same RN in the same period 15. As described in Ap-
pendix B, measurement values from the DA votes are commonly
reused without a new measurement. Hence, we will compare our
measurements to two sets of data: DA• and DA+, where DA+ is the
set that ignores repeated values, and DA• includes them (though,
we identified that both sets behave quite similar).
Statistical Approach To estimate precision, we use the relative
difference between the median value of the measurements for one
RN (medRN) and the advertised value of thisRN (advRN) as precision
error pe := |advRN−medRN |

advRN
. For reliability, we used the relative

interquartile range of this RN as scattering error se := IQRRN
advRN

.
Example In Figure 10, we depicted statistical information about the
measurement results of the RN “greedygertie”. This relay advertises
a bandwidth of 100KiB/s (99.7KB/s). Our measurements had a
lower precision error pe = 3.74% than DA+ (pe = 70.4%). We
furthermore have a lower scattering error (se = 5.12%) than DA+
(se = 13.31%).

11Unless denoted otherwise, all point of times are given in ISO-8601 for UTC.
12In particular, we have chosen “0x3d004”, “0x3d005”, “Lule”, “BlockHouse2”, “Rude-
boy”, “CatRelay” as potential entries, and “xanadurregio”, “DigiGesTor1e1”, “ins0”,
“noiseexit03d”, “CalyxInstitute15”, “IPredator” as potential exits.
13We chose the following RNs (bandwidth in KiB/s): “seele” (100), “greedygertie”
(100), “gnarzkorf2” (100), “kwail” (100), “tiger” (250), “helga” (400), “Ograoum” (900),
“KAMIKAZE” (1000), “kolben” (1000), “panic” (1000), “lkjhgfdsa” (1000).
14As of 2018-06-15, 40% of RNs advertise a bandwidth value in this range. The median
advertised bandwidth value is 1.8MB/s, the upper quartile has between 7.2 and 9.7MB/s.
15These votes are archived at https://collector.torproject.org/archive/.

https://collector.torproject.org/archive/
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set n min n0.25 med avg n0.75 max
SMS 975 12 91 94 91.1 96 99
DA+ 95 15 25 29 30.8 38 47

20 40 60 80 100

DA+

SMS

Figure 10:Measurement results for “greedygertie” (97.7KB/s)
as table and boxplot in KB/s. Outlier points are not shown.

Method RN set med(pe) sum(pe) med(se) sum(se)

SMS RNs+ 4.77% 107.25% 5.12% 68.30%
DA+ RNs+ 36.51% 283.67% 14.34% 141.57$
SMS RNs• 44.60% 769.38% 19.97% 624.76%
DA+ RNs• 54.62% 552.20% 35.53% 403.39%

Figure 11: Precision and scattering of the measurements.

action gas / 1000 US-$ (ETH) US-$ (ETC)
SC Deployment 3851 5.777 0.173
RN Registration 112 0.168 0.005
BM Registration 930 1.395 0.042
BM joining 101 0.152 0.005
BM voting 88 0.132 0.004
RN assignment 375 0.562 0.017
BM reporting 255 0.383 0.011
group aggregation 426 0.639 0.019
BM expiring 28 0.042 0.001

Figure 12: System cost for SC events in gas and US-Dollar.

Outlier RNs From the eleven RNs we measured, five did not pro-
duce expected results, i.e., neither DA+ nor SMS produced a value
within ±30% of advRN. Interestingly, we underestimate the band-
width values while the current measurement method overestimates
them. This effect probably is a consequence of the ability to tem-
porarily burst the current bandwidth of a Tor RN. This ability has
a higher influence on the current measurement script as their mea-
surement duration is shorter. We write RNs• for the set of all RNs
and exclude the outliers in RN+.
Results Figure 11 shows the sum and median of precision and
scattering errors. The median se for SMS is only half as big as the
one for RN+, while RN+ has a seven times higher precision error.
The grouping process of the current speedracer measurement script
prevents that RNs get assigned a bandwidth value which is too far
from the advertised value. This leads to a higher precision and
lower scattering for outlier RNs inDA+. We list the detailled results
of all RNs (also for the set DA•) in Appendix D.
Summary We successfully measured eleven RNs over a period of
two weeks. Five of these RNs did not produce expected values with
either method. For the other RNs, our measurements were seven
times as precise and two times as reliable as the current method.

7.2 Smart Contract
We evaluated our SC with regards to the gas needed to call certain
functions. As shown in Figure 12, deploying the SC and registering
as a BM are the most expensive actions. However, deployment only
has to be done once and registering/re-joining are not executed
frequently. The high gas cost of the BM registration is caused by
the attestation data which needs to be saved. For Intel SGX, this
data takes up at least 1116 bytes.

To estimate the real world cost of our system, we assumed a
gas price of 3 gwei and an exchange rate of 500$ for one Ether
(ETH), respectively 15$ for one Ether on the Ethereum Classic
(ETC) network 16. Due to the much higher value of ETH, it might be
preferable to deploy the system on the latter one. This is reasonable
as an attacker still would need to create more than 3TH/s in order
to gain 30% of the underlying hashing power necessary to perform
some mining attacks [16, 29]. Assuming a power consumption of
6W for 1MH/s, this would still require 18MW, equivalent to the
production of a small nuclear power plant.

With these considerations, a full measurement round 17 would
cost 0.18$ for 15 relays. If like in the current system (cf. Appendix B),
every relay is measured around 60 times a week, this would result
in a system cost of less than 3$ per relay and month.

8 RELATEDWORK
In this section, we overview works related to bandwidth balancing
in Tor, discuss proposals to leverage Intel SGX for improved security,
and review papers that investigated Tor and blockchain integration.
Bandwidth balancing in Tor The shortcomings of the currently
used speedracer measurement system in Tor lead to the EigenSpeed
project [39, 40], which was improved in the PeerFlow project [18].
PeerFlow assumes that a certain fraction of RNs is trusted. However,
this limits scalability as a bigger network requires more trusted RNs
and additional trust assumptions hinder the initial design goals of
Tor. Different from PeerFlow, SmarTor does not collect meta-data
about real traffic in Tor. Furthermore, our trust assumptions are
reduced significantly: Neither software of BMs, nor users that
operate them, nor the SC is trusted in SmarTor.
SGX-supported applications Intel SGX has received much atten-
tion recently and was leveraged to enhance security and privacy
of platform architectures, systems, and applications. However, ap-
plications must be ported to SGX. Frameworks to run unchanged
binaries are presented by [4] for Windows and [42] for Linux. Other
frameworks aim to improve security in distributed and cloud com-
puting [12, 15, 36, 46].

The most relevant to our work is the SGX-Tor project [21] that
leverages Intel SGX for hardening Tor’s client software. Generally,
Tor’s adversary model assumes that the client’s software is trusted.
Otherwise, the client could send the host’s IP address or crypto-
graphic keys to an attacker. SGX-Tor eliminates these attack vec-
tors by excluding the client’s software from the trust assumptions.
While generally, SGX-Tor aims to solve an orthogonal problem, it
can complement our system in order to enhance the security of Tor
clients. Furthermore, we similarly use Intel SGX to eliminate trust
in software running by BMs.

16These assumption are based on the data published at bitinfocharts.com.
17Consisting of 9 BMs joining, RN assignment, 9 BMs reporting, and aggregation.

bitinfocharts.com
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Tor and blockchains Synergy between Tor and blockchains was
investigated in several previous works. In particular, Biryukov and
Pustogarov [5] propose to use a proof-of-work based blockchain
for incentivizing Tor RNs. In their system, they introduce priority
tickets, which can be obtained by Tor clients if they solve a Proof-
of-Work (PoW) cryptographic puzzles published by Tor RNs.

The Onion Name System (ONS) [44] proposes a DNS service for
Tor, which makes addresses of hidden services more memorable. It
relies on a randomly selected subset of RNs to host a DNS system. To
mitigate against malicious domain registration attacks, such as land-
rushing and flooding, ONS introduces a PoW based lottery system,
which enforces some cost for the registration of a new domain
name. While ONS uses PoW blockchain to mitigate various denial-
of-service attacks, we utilize blockchains as a means to decentralize
trust and reduce trust assumptions.

9 CONCLUSION AND FUTUREWORK
In this paper, we presented SmarTor, an approach to increase the
resilience of the Tor anonymity network against attacks on core
infrastructure components and targeting manipulation of topology
information. SmarTor shifts trust from Directory and Bandwith Au-
thorities operated by a small number of individuals to a blockchain,
which is much harder to compromise, since its security is backed up
by a computing power of millions of miners around the globe. Fur-
thermore, SmarTor relies on modern secure hardware technology,
honeypot measurements, and a reputation system to protect the
bandwidth measurement process from manipulation. We provided
a proof-of-concept implementation and showed that our solution
produces more reliable and valid bandwidth measurements than the
current system. In SmarTor, we assume that bandwidth measurers
are operated by volunteers who, similarly to Tor relays, are not
getting any rewards for their service. However, since interactions
with the smart contract impose costs for gas, we plan to investigate
additional incentive mechanisms for bandwidth measurers in our
future work.
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A INTEL SGX DETAILS
Intel Software Guard Extensions (SGX) [10] are a special set of
processor instructions which enable execution of security-critical
application code on platforms controlled by untrusted parties. In
particular, SGX was designed to ensure confidentiality of processed
data and integrity of execution without the need to trust in the
owner of the hardware or processes (including the OS) running on
it. Systems enabling this security features are more generally called
Trusted Execution Environments (TEEs).
Enclaves SGX enables process execution of programs in a protected
and encrypted memory space known as an enclave. SGX assumes
the CPU itself to be the only trustworthy hardware component of
the system, i.e., enclave data is handled in plain-text only inside the
CPU. SGX enabled processors are equipped with a set of hardware-
protected keys. These are generated by a trusted Platform Service
Enclave (PSE, provided by Intel) from a platform-specific secret
provided by hardware and cannot be accessed by a usual enclave.
The vast majority of secrets are unknown as it is assumed that it is
very expensive to get knowledge of it. Intel also provides revocation
information for platforms which are known to be compromised.
Attestation [2] enables enclaves to prove to a verifier that they
are running inside a genuine SGX hardware. At startup time of the
enclave, a hash of its initial state (measurement) is saved to storage
protected by the PSE. An enclave may request a report from the
PSE containing the measurement, further attributes of the enclave
and custom data like a public key generated by the enclave (user
key). A trusted quoting enclave, also provided by Intel, can verify
whether this report indeed belongs to an enclave hosted on this
platform. If it does, it will sign this report with an attestation key
given from the PSE using EPID group signatures [20] resulting in a
quote of the enclave. Making these quotes linkable to the hardware
is possible. Linkable quotes enable knowledge of whether different
quotes were signed on the same platform without revealing the
identity of the hardware. Such a quote can be sent to other services
enabling remote attestation. The quote can then be verified with an

EPID public key certificate or by contacting the Intel Attestation
Service (IAS). Since Intel decided to encrypt the signature of the
quote [41] with a key known only to Intel, only the latter option is
available at the moment.
Sealing describes the process of encrypting data to persistent stor-
age with a key that can only be recovered by one entity. The PSW
provides the sealing key used for this which can be based on the
enclave identity or the signing identity. If using the enclave identity,
only instances of that specific enclave can recover that key while
access from enclaves with other measurements (including different
versions of the same software) is prevented. If using the signing
identity, the data can be accessed by every program created and
signed by a single authority. This enables data transfer between
multiple enclave programs of the same software vendor.
OCalls enable enclaves to access or write data from/to the outside
world. They are used for writing (signed) results of computations to
the user or performing (encrypted and authenticated) communica-
tion with other entities. Since the OS is untrusted, functions leading
to a system interrupt can only by called during an OCall. Because
of this, many functions (like the system time) and most of the usual
C++ libraries like Boost are not available inside enclaves. However,
some of the functionality is provided by the secure hardware. This
most importantly includes a trusted source of time, resolving to
seconds, and a trusted counter for verifying freshness against replay
attacks with sealed data.
ECalls enable the calling of function inside enclaves. Theymark the
allowed entry points for code execution. Once called, the enclave
will execute commands until terminating the requested execution
either by reaching the end of the source code or the host shutting
down the enclave. OCalls and ECalls mark the interface of the
enclave to the rest of the system. They are defined using the Enclave
Definition Language (EDL).

B TOR SPEEDRACER MEASUREMENTS
In this section, we give an overview of the topology distribution
process used by the DAs. Furthermore, we briefly analyze results
of the measurement script as published in the measured bandwidth
values in the votes of the BAs, look at the amount and quality of
measurements, and discuss the measurement method. Every date
format is given in the ISO 8601 standard and referring to the “valid-
after” tag of the underlying vote or consensus. All measurement
results are given in KB/s.
AuthoritiesMost of the analysis is based on the period between
2018-05-18 and 2018-06-01. During this time, nine DAs named
“bastet”, “dannenberg”, “dizum”, “faravahar”, “gabelmoo”, “long-
claw”, “maatuska”, “moria1”, and “tor26” were active. Four of those
(bastet, faravahar, maatuska, moria1) were also participating as BAs.
An additional Bridge Authority named “Serge” offers information
about further RNs not listed in the public consensus which can
be used if governments try to block access to Tor by restricting
communication to Tor nodes listed in the consensus. Additional
information and a short history of the DAs is presented in [13].
Frequency The consensus consistently lists the majority of RNs.
From the 5975 different RNs included in the 1263 BA votes 18 be-
tween 2018-05-18 and 2018-06-01, 4776 RNs (79.9%) were included

18Note that one vote from the BA moria1 was not published.
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Figure 13: Bandwidth Votes for the RN “Karai” in KB/s (y-
axis) by the BAs bastet, faravahar, maatuska,
and moria1 over time (x-axis).

set n min n0.25 med avg n0.75 max
DA+ 1048 3160 5270 5860 6072.1 6890 9590
DA• 1259 3160 5110 5820 6028.2 6880 9590
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·104

DA•
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Figure 14: DA vote sets for “Karai” (1000KB/s) in KB/s.

in more than 1200 votes. Since two measurements are unlikely to
result in the same value, one can assume that voting for the same
measured bandwidth more than once in a row is equivalent to this
relay not being measured again. Measurement results indeed are
commonly reused in the votes as 4087 (68.4%) of the RNs had less
than 126 changes of the measured bandwidth value during this
period.
Quality Example The speedracer measurement results are far-
flung even for frequently measured relays. Figure 13 shows the
bandwidth votes for the relay “Karai” which received the highest
amount (1048) of different bandwidth votes in the given period. As
shown in Figure 14, this RN was assigned far more bandwidth than
it advertised.
Quality Numbers Bandwidth votes of different BAs do not nec-
essarily fit to each other. Given the five ordered bandwidth votes
m1 ≤ m2 ≤ ... ≤ m5 of a relay, we define the bandwidth scattering
value bs := m4−m2

m3
. The average (0.50) and median (0.41) scattering

value in the in the 2017-11-01 22:00:00 19 votes show that the band-
width votes regularly differ between 50%-150% from the assigned
consensus value.
Analysis Due to the measurement over two hop circuits, the mea-
surements are depended on similarly sized relays put in the same
group. Two consecutive measurements from the same BA, most of
the time, result in a similar value. Sudden changes in the order of
magnitudes during the measurement most likely are caused by the
relay being put into another group during the slicing of the network.
This process most likely also is responsible for the fact that different
BAs produced results in a different order of magnitude. Since there
is a relay life cycle [14], the time the relay registered to theDAs also
19We chose this point of time as there only are four active BAs in the other evaluation
period. General behavior did not change since then as indicated in the example before.

influences the measurement result. Because of this, measurements
do not necessarily reflect the actual amount of bandwidth a Tor
client can expect from a particular relay.
Conclusion Most relays are measured infrequently, and the mea-
surement results are far-flung. Among other variables, the slicing
of the network seems to be the most significant influence on this
behavior.

C SMART CONTRACT IMPLEMENTATION
We show the full system model of the SC including stored informa-
tion, implemented structures, and possible interaction in Figure 26.
The current state of a BM, depicted in Figure 9 limits the interac-
tion it can have with the SC and is changed by certain events. We
describe the possible states in more detail below.
UNKOWN addresses do not belong to an entity yet. In order to
save storage, the SC looks up the state of an address and assume it
to be UNKOWN if no entry is present. UNKOWN addresses may
query the state of the SC and can register themselves as RN or BM,
but cannot interact with the SC in any other way.
REGISTERED BMs are the active group of BMs who may join in
measuring rounds, send reports or vote for a new measurer to join.
Addresses are only added to the list of REGISTERED measurer if a
genuine enclave created the private key used to sign the registering
transaction. The SC rejects any request to join ameasurement group
or vote on accepting a new BM or if the address is not REGISTERED.
KNOWN In order to get the status REGISTERED, a BM first gets
the status KNOWN after it sends the registering transaction τBM
to the SC. During this time, the REGISTERED BMs may vote for
this entity. The SC adds the BM to the REGISTERED group if it
passed verification while rejecting any votes for BMs who are not
KNOWN.
UNTRUSTED If a BM fails to pass verification, it gains the status
UNTRUSTED. The SC does not remove it from the blockchain
in order to save its quote and prevent rejoining of its BM-TEE
with another address. After a certain amount of time, this entry is
deleted, giving the BM-TEE the ability to register again. This also
saves storage if registered addresses are not associated with a TEE.
EXPIRED If the BM does not manage to report valid bandwidth
until the group timed out, it keeps the status MEASURING. How-
ever, since the group timed out, it neither can report measurements
nor join a new measurement group. In this situation, it can expire
itself. If EXPIRED, a BM may request re-joining. In this case, the
SC resets its status to KNOWN. If the SC decides to kick a relay
out, it sets the BM to EXPIRED rather than UNKOWN in order to
keep the information associated with this BM, i.e., the reputation
score.

D MEASUREMENT DATA
In this section, we depict the measurement results for all RNs we
measured. Figures 15 to 20 show the measurement results of the set
RN+. Figures 21 to 25 show the results of the RNs which did not
produce an expected value with either script. In these sets, the RNs
are ordered by advertised bandwidth as first and name as second
sorting criteria.
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set n min n0.25 med avg n0.75 max
SMS 976 32 90 93 90.4 94 99
DA+ 103 16 25 29 29.5 34 43
DA• 1147 16 25 29 29.4 34 43

20 40 60 80 100
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SMS

Figure 15: Results for “gnarzkorf2” (97.7) in KB/s.

set n min n0.25 med avg n0.75 max
SMS 975 12 91 94 91.1 96 99
DA+ 95 15 25 29 30.8 38 47
DA• 1259 15.0 25.0 27.0 29.8 34.0 47.0

20 40 60 80 100
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Figure 16: Results for “greedygertie” (97.7) in KB/s.

set n min n0.25 med avg n0.75 max
SMS 977 31 89 91 89.0 94 99
DA+ 88 11 22 29 28.6 36 43
DA• 1255 11 23 27 27.8 33 43
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Figure 17: Results for “seele” (97.7) in KB/s.

set n min n0.25 med avg n0.75 max
SMS 588 30 193 233 208.1 241 251
DA+ 53 106 137 154 160.0 177 229
DA• 1254 106 141 163 165.2 201 229

50 100 150 200 250

DA+

SMS

Figure 18: Results for “tiger” (244.1) in KB/s.

set n min n0.25 med avg n0.75 max
SMS 979 19 261 350 314.3 377 406
DA+ 82 81 348 428 443.5 527 775
DA• 1263 81 348 428 428.7 488 775

0 200 400 600 800
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Figure 19: Results for “helga” (390.6) in KB/s.

set n min n0.25 med avg n0.75 max
SMS 977 17 188 225 204.8 233 317
DA+ 92 353 611 716 812.0 958 1690
DA• 1263 353 596 684 774.4 912 1690
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Figure 20: Results for “KAMIKAZE” (976.6) in KB/s.

set n min n0.25 med avg n0.75 max
SMS 978 23 270 785 783.7 877 2165
DA+ 87 17 175 214 226.9 293 473
DA• 1243 17 155 220 228.7 306 473
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Figure 21: Results for “kwail” (142.4) in KB/s.

set n min n0.25 med avg n0.75 max
SMS 978 53 225 362 415.3 604 911
DA+ 75 576 1250 1420 1389.6 1590 1900
DA• 1255 576 1220 1430 1392.3 1600 1900
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Figure 22: Results for “Ograoum” (878.9) in KB/s.
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set n min n0.25 med avg n0.75 max
SMS 977 31 376 541 550.9 719 1006
DA+ 86 176 1330 1680 1640.3 1960 2710
DA• 1263 176 1340 1700 1639.3 1940 2710
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Figure 23: Results for “kolben” (976.6) in KB/s.

set n min n0.25 med avg n0.75 max
SMS 973 18 241 362 332.2 436 605
DA+ 88 334 1140 1270 1423.5 1440 8210
DA• 1263 334 1100 1230 1424.1 1380 8210
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Figure 24: Results for “lkjhgfdsa” (976.6) in KB/s.

set n min n0.25 med avg n0.75 max
SMS 978 29 406 541 554.6 719 981
DA+ 68 621 1320 1510 1505.8 1760 2400
DA• 1263 621 1210 1560 1500.3 1750 2400

0 500 1,000 1,500 2,000 2,500
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Figure 25: Results for “panic” (976.6) in KB/s.

Figure 26: System overview of the SC implementation.
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