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Online Workload Forecasting
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Abstract This chapter gives a summary of state-of-the-art approaches from differ-
ent research fields that can be applied to continuously forecast future developments
of time series data streams. More specifically, the input time series data contains
continuously monitored metrics that quantify the amount of incoming workload-
units to a self-aware system. It is the goal of this chapter to identify and present
approaches for online workload forecasting that are required for a self-aware sys-
tem to act proactively - in terms of problem prevention and optimization - inferred
from likely changes in their usage. The research fields covered are machine learning
and time series analysis. We describe explicit limitations and advantages for each
forecasting method.
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522 Herbst et al.

18.1 Introduction

The purpose of online workload forecasting, as discussed here, is to predict the fu-
ture workload of a computing system. Forecasting the future workload is central
in the context of self-aware systems as defined in Chapter 1. The quality of such
forecasts will, along with the future state of the computing system itself, have a
profound effect on the quality of the services provided to users by the computing
system. Online workload forecasting is similar to other forecasting problems in re-
lated areas of technology, science, and business. These related problems can inspire
and inform our forecasting objectives, which center on workloads in data centers,
including private and public clouds.

Online workload forecasting plays a crucial role in monitoring and managing the
resources in data centers, an environment where self-aware computing can provide
significant value. Specifically, as the workload offered to a data center increases or
decreases, data center resources can be scaled accordingly. An important consider-
ation is to carefully balance resource consumption, on the one hand, and response
time, on the other hand. With the increasing ubiquity of cloud computing, smart
phones, wearable computing enabled by clouds, PaaS, SaaS, virtual machines, and
related technologies, online workload forecasting clearly has a key role to play.

Different stakeholders clearly have different goals and concerns when it comes
to data center resource management. Three main types of stakeholders, along with
their goals and concerns, should be considered. End users focus on the availability,
performance, and utility of their applications and their supporting cloud services. A
data center owner is typically concerned about cost, associated with both buying
equipment and running the data center (energy cost, for example, can be very high).
One component of cost optimization is to carefully perform re-balancing of services
in cloud data centers [60]. The app owner is in the middle and purchases resources
from the data center owner for hosting one or more applications that provide ser-
vices to the end users. An app owner tends to focus on supporting and pleasing a
potentially broad range of users while not incurring too much cost with the data
center owner. Workload forecasting can play a key role in helping to meet the goals
of each of these three stakeholder groups.

In the presence of seasonal (or cyclic) patterns or long-lasting trends, forecasting
results still need to be accurate and reliable. Intuitively, there are several complica-
tions making forecasting difficult, including: abrupt events, randomness, seasonal
variation, and trend changes. Seasonal or cyclic behavior includes the diurnal cycle,
which is a pattern that repeats every 24 hours around the world, impacting how com-
puters, mobile devices, the Internet, and the Web are used. For example, the traffic
or load of social networking Web sites often shows a clear diurnal pattern [13, 47].
In addition, there may be weekly cycles, due to the fact that people’s behavior on
weekdays is typically quite different from their behavior on weekends. Both daily
and weekly seasonality patterns, as well as other types of cyclic load variations, can
have a dramatic impact on data center load. Obvious examples of this include holi-
days and other events that occur on an annual or multi-annual cycle. In addition to
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18 Online Workload Forecasting 523

these temporal patterns, there are strong empirical indications that humans follow
clear spatial and social patterns [13].

That being said, there are issues beyond cyclic behavior, namely trends, abrupt
events, and randomness. As examples of trends, we can consider the steady in-
creases in various prices, for example stock market prices or housing prices. Exam-
ples of abrupt events include, for example, crashes in stock markets, strong earth-
quakes, rain in arid climates, and reaction to headline news on the Web [44, 55].
Finally, there is probabilistic, random, statistical or stochastic behavior.

In the following Section 18.2, we discuss preprocessing actions that are relevant
for forecast methods in general. In Section 18.3 and Section 18.4, we describe fore-
cast methods from the machine learning and the time series analysis domain that are
applicable in the context of workloads mentioning explicit advantages and limita-
tions of each. Section 18.5 presents the state-of-the-art of applying forecast methods
in the IT workload domain.

18.2 Process of Modeling and Data Preprocessing

Online workload data is typically represented in the form of a time series (w0,w1, . . .),
i.e., a sequence of scalar or vector values wi ordered by timestamps indicating the
sampling times. The forecasting of future values in this time series is performed as
an evaluation of a so-called forecasting function f (or model). Such function uti-
lizes as its input raw and/or preprocessed data known at the instant of the forecast
computation. Such data can include historical workload data, system-related mea-
surements, external data or signals, as well as past forecast values.

For example, the load of a public web server can be expressed as its CPU utiliza-
tion over the last minute, i.e., the portion of time the server was busy. A correspond-
ing forecast function f might use as input: the load values of the last hour of this
and other servers in a cluster (historical workload data), currently available RAM
and number of users on this server (application-related measurements), time-of-day
and day-of-week (external data), and error of the forecast values in the last hour.

More formally, a time series forecasting function f can be expressed as follows:

yt = f (xt ,xt−1, . . . ,xt−L,yt−1,yt−2, . . . ,yt−L), (18.1)

where yt is the current prediction, yt−1, . . . ,yt−L are past predictions, and xt and
xt−1, . . . ,xt−L denote the vectors of current and past observations, respectively [58].
The observations include raw and/or preprocessed workload data and other types
of data listed above. The parameter L specifies how much historical information is
used as model input. In general, using all available data (i.e., setting L close to t)
is hardly feasible as this would greatly increase model dimensionality, leading to
spurious and probably inaccurate results due to over-fitting.

The forecasting functions (or models) are typically either models based on ma-
chine learning (Section 18.3) or autoregressive models including hybrid models
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524 Herbst et al.

(Section 18.4). As a prerequisite for forecasting we may need to prepare data as
well as to train (fit) the model for a particular application scenario. We explain in
detail the data preparation process in the remainder of this section. Model fitting de-
pends strongly on the type of the predictive function and is discussed in Section 18.3
and Section 18.4.

18.2.1 Overview of Modeling Steps

Projects in time series forecasting typically consist of two phases: the modeling
phase and the deployment phase. The purpose of the modeling phase is to under-
stand the data at hand, to engineer features, and to train a predictive model, or a set
of those. In the deployment phase, a production environment, these models are used
for computing forecasts.

18.2.1.1 Modeling Phase

This is typically an exploratory process with multiple iterations. The key steps of
modeling are the following:

• Extraction and transformation of raw data into relational format. Examples in-
clude parsing of log data with format conversion and import into spreadsheets,
into an SQL database, or into a distributed file system like HDFS. In several
cases, corrective measures are needed prior to import to handle mal-formatted
input lines or values, or to eliminate illegal characters.
• Cleaning of relational data by removing outliers and handling missing values is

the next step. In many cases more extensive preprocessing steps such as median
filtering and normalization take place.
• Feature engineering is a more advanced form of data preprocessing. It can

be understood as creation of derived time series, which expose and represent
forecasting-relevant information in a form accessible to the modeling algo-
rithms. An example is to extract time until host load exceeds, e.g., 50% for
more than one minute, and use the corresponding time series as additional in-
put for the modeling algorithm. Even sophisticated modeling approaches, such
as support vector machines (see Section 18.3), could hardly derive this infor-
mation from the raw data. Another popular and automatic approach to feature
engineering is dimensionality reduction, which can create new attributes (e.g.,
in case of principal component analysis (PCA) [25]) and remove irrelevant ones
in a single step. Feature engineering is typically an essential but complex com-
ponent of the modeling phase, known to be decisive for the overall success. We
discuss this in detail in Section 18.2.2.
• Computation of a prediction target is needed when forecasting some derived

signal instead of “raw” data. For example, for regression, we might want to
forecast a difference from the current value one hour in advance instead of ab-
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18 Online Workload Forecasting 525

solute host load. In case of classification, target values must be quantified to
represent them by symbolic elements from a fixed set of values, e.g., value in-
tervals [7].
• Preprocessed data is then split into training, validation, and testing sets. The

first two data sets are used in the subsequent model fitting step, while test data
is necessary for evaluating model accuracy.
• Model fitting on the training data is the actual core of the modeling phase. In

machine learning, typically a collection of algorithms such as decision trees,
SVMs, and others (Section 18.3) are investigated. For autoregressive meth-
ods (Section 18.4), model coefficients are fitted by, e.g., least-squares-methods
[25]. This step can be computationally demanding but can be easily automated
by leveraging available libraries such as WEKA [68], Matlab toolboxes, and
Python libraries (e.g., Scipy learn).
• Trained models are validated using test data sets (i.e., “out-of-sample” data not

used in the fitting step). For time series data, the cross-validation approach [68]
frequently used for evaluation is not suitable and can lead to overoptimistic re-
sults. Instead, so-called walk-forward testing known from the financial industry
can be used [38]. Multiple types of evaluation metrics are commonly used to
estimate the forecasting error, for example, mean squared error or mean ab-
solute error. In case of classification, the confusion matrix or F1-score [25] is
commonly used.

As noted above, obtaining an accurate model typically requires several iterations,
where the steps from feature engineering until validation are repeated. A lot of man-
ual effort is spent for programming extraction and optimization of features, while
other steps can more easily be automated.

18.2.1.2 Deployment phase

In this phase, the trained prediction functions are used for performing predictions
in a production setting. It is typically dominated by a software engineering effort
during which an automated prediction pipeline is created. The pipeline is used to
process data streams or data batches for scenarios where the availability of forecast
result is not time constrained. Several aspects need to be considered here:

• Robust functions for efficient computation of derived features need to be imple-
mented. Such functions must be able to handle corrupt data and missing values
(if the model cannot handle them) to ensure that the data forecasting subsystem
does not break down for non–standard inputs.
• Another essential issue - especially for long-term forecasting - is correction of

a so-called concept drift. Concept drift refers to the modeled process changing
after some time, and the prediction function becoming less accurate [51]. The
corrective measure includes monitoring the accuracy of the forecasting function
online, and retraining it if an error exceeds a critical threshold [6]. In more se-
vere cases it may be necessary to repeat the feature engineering step, especially

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



526 Herbst et al.

if the currently used features do not capture the essential information anymore,
or new raw data types became available.

18.2.2 Feature Engineering

Feature engineering is the (partially manual) process of considering the raw data
and identifying suitable derived values that become components of the vectors xi
serving as input for the forecasting function in Equation (18.1).

In the case of time series, designing and implementing features is particularly
challenging since data can contain useful sequence information, e.g., event patterns
or periodical fluctuations. In most scenarios, it is recommended to include data (or
derived values) from the “past” relative to the time of sampling, in addition to in-
formation sampled at a given time instant. Typically, manual feature engineering
(possibly supported by automated methods such as feature selection) is needed to
both specify the amount of historical data (value of L in Equation (18.1)) and to
identify significant historical data values.

Below, we give examples of typical features in the context of time series. How-
ever, a multitude of other approaches to preprocessing time series data exist. As
an interesting example, Symbolic Aggregate approXimation (SAX) [39] converts
time series values into a sequence of symbols from a finite set (essentially, the val-
ues are quantized according to their distance to the series mean value). This allows
using more advanced methods for feature generation like identification of frequent
patterns in the temporal behavior.

18.2.2.1 Aggregated values

A simple yet effective approach is to compute aggregates for each of the compo-
nents of the observation vector xi. Such aggregates can include simple or exponen-
tial moving averages, maximum or minimum values in a (sliding) time window, me-
dians over such a time window, and combinations thereof [51]. To capture different
time scales, multiple features with different time window sizes (or other parame-
ters) can be used. Since the number of candidate features can be large, typically
feature selection [68] is also used to identify most informative raw data and derived
features.

18.2.2.2 Exposing periodic patterns

Features exposing periodic patterns in temporal data are particularly relevant when
hosts are subjected to recurrent demand fluctuations, e.g., due to periodic patterns
in user behavior. It may be essential to consider multiple time scales. For example,
a load of a host in a Web server cluster is likely to depend on the load for the last
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18 Online Workload Forecasting 527

few minutes, the time of the day (business hours versus night hours), and day of the
week.

Moreover, for an online retailer like Amazon, considering week of the calender
year might also be of value (e.g., Cyber Monday or Black Friday sales peak). Fea-
tures exposing periodical patterns over multiple time scales can be implemented in
several ways. A straightforward approach is to subsample past data by using only
vectors xt−k,xt−2k,xt−3k, . . ., where k is the targeted cycle period. This can be done
for different values of k, e.g., 24 hours, one week, one month, and so on.

A more sophisticated option is to use calendar methods [57]. Here one computes
load averages over the same hour of a day or week, over the same day of a month,
etc. In the former case one could obtain 24 feature “groups” (each group with all
components of the observation vector xi), one per each hourly slot in a day, and in
the latter case 7 feature groups, one per day of the week.

If periodic patterns in data exist, features can be used to represent them directly
and thus greatly facilitate the learning of an accurate model. In contrast, using con-
secutive raw historical values over a prolonged historical period is unlikely to exploit
periodical patterns in data, and only increases the risk of overfitting.

18.2.2.3 Downsampling with feature selection

A more automated method of feature generation for time series is to select vec-
tors of past observations (and even components of these vectors). This can be done
using standard feature selection approaches like forward search with a wrapper
method [68]. For example, forward search has been used in conjunction with model-
based evaluation in [58]. Given a set of already selected k feature groups derived
from xt−i(1),xt−i(2), . . . ,xt−i(k), a next feature group derived from xt−i(k+1) is added
only if a candidate feature set xt−i(1),xt−i(2), . . . ,xt−i(k),xt−i(k+1) gives rise to a more
accurate model (fitted on the training data and evaluated on the validation data set).
To identify an optimal value of index offset i(k+1), all values between i(k+1) and
L can be evaluated, which might be computationally costly.

18.3 Predictive Models Based On Machine Learning

18.3.1 Bayesian Networks

A Bayesian network (BN) is a directed acyclic graph whose vertices are ran-
dom variables and the directed edges denote the dependency relationship among
the random variables. Bayesian networks are well suited for systems where we
need to make predictions under uncertainty [49]. Formally, a BN is defined as
B = (G,P), where G is a directed acyclic graph and P is the set of probability dis-
tributions associated with G′s nodes. The graph is denoted by G = (X,E) where
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528 Herbst et al.

X = {X1,X2, . . . ,Xn} is the node set and E is the edge set. If there is an edge from
Xi to X j, then (Xi,X j) ∈ E and we denote Xi as the parent of X j. pa(X j) denotes the
set of all parents of X j. The key property of BNs is the conditional independence
of the variables from any of their non-descendants, given the value of their parent
variables, i.e., given the value of pa(X j), X j is conditionally independent of all its
non-descendants. A BN factorizes a joint distribution Pr(X) as shown below:

P(X) =
n

∏
j=1

(P(X j | pa(X j)) (18.2)

For example, a set of random variables can be used to predict network traffic. Let us
consider a Bayesian network model with the following random variables: resources
assigned (R), workload (W), cloud service level (C), user experience (U) and energy
consumed (E). Using probability theory, we can compactly represent the relation-
ship among these random variables: P(W ), P(R), P(C|W,R), P(U |C) and P(E|R).

Modeling phase: Let E ⊂ X be the variables under observation (we call them evi-
dence variables) and let e denote their observed values (evidence). For the purpose
of cloud performance prediction, a BN can be learned from data. Two of the many
dimensions to consider are: (i), whether the BN’s graph structure is known or not
and (ii) whether the data is complete or not. For learning, if the data is complete,
maximum likelihood estimation can be used. For incomplete data, the expectation
maximization algorithm (EM) [16] can be used. EM is found to be computation-
ally expensive for difficult BNs. An age-layered approach (ALEM) [48], has been
developed to speed up EM. ALEM has been extended to the MapReduce frame-
work [56]. The ALEM strategy was found to achieve gains in parameter quality and
runtime. After BN learning, the different types of queries as mentioned above can
be answered using the inference algorithm.

Deployment Phase: For online load forecasting, a Bayesian network can help
to solve different probabilistic queries. The process of solving the probabilistic
queries is called inference. The inference algorithms assume that the nodes in
E are clamped to values e. Computation of most probable explanation (MPE)
amounts to finding a most likely assignment (y) to all of the non-evidence variables
R = X−E, or MPE(R). Computation of marginals amounts to inferring the most
likely value (MLV) over one query variable Q ∈ R. Computation of the maximum a
posteriori probability (MAP) generalizes MPE computation and finds a most prob-
able instantiation over some variables Q ⊆ R, MAP(Q,e). Different BN inference
algorithms [41], can be used to perform the above computations.

Example: Di et al., have used a Bayesian model to predict the host load in a cloud
system [18]. Their model predicts the mean load over a long-term time interval, as
well as the mean load in consecutive future time intervals. The experiments are
based on a Google trace with over 10K hosts and millions of jobs. The results
suggest that this Bayesian method improves the load prediction accuracy by 5.6-
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18 Online Workload Forecasting 529

50% compared to other state-of-the-art methods based on moving averages, auto-
regression, and noise filters.

Limitations:

• There is no universally accepted method for constructing a BN from data.
• It takes some effort to design a BN by hand.
• For large and complex BNs, posterior probabilities can be expensive to com-

pute.

Advantages:

• The graphical structure of BNs is very intuitive and easy to understand for peo-
ple who are not familiar with the domain.
• BNs provide a theoretical framework for handling missing data. Missing data

is marginalized out by summing or integrating over all the possibilities of the
missing values.
• BNs can handle both discrete and continuous variables in the same model.
• BNs provide a theoretical framework for handling expert knowledge using prior

probabilities.

18.3.2 Neural Networks

Neural networks (NNs), often referred to as artificial neural networks (ANNs), are
inspired by the way the human brain learns and processes information. ANNs con-
sist of a large number of neurons interconnected in layers. The first layer consists
of input neurons where input data is fed into the neural network. The input neurons
send the data to the next layer, which consists of hidden neurons. The activity of the
hidden neurons is determined by the input data, the weights in the interconnections
between the input neurons and the hidden neurons and the activation functions. The
output layer consists of output neurons whose behavior is determined by the hidden
neurons and weights in the interconnections between the hidden neuron and the out-
put neuron. The complexity of learning in a neural network depends on the number
of layers, the interconnection patterns between different layers, the learning process
for updating the weights, and the activation function that converts input to output.
A single-layer neural network or perceptron consists of a single layer of output neu-
rons. The inputs are fed directly to the output neurons through a series of weights.
A multi-layer perceptron (or a deep neural network) consists of many hidden layers
of neurons, with each layer fully connected to the next one.

Modeling phase: In order to train an ANN in a supervised manner to perform a
task, we must adjust the weights of each interconnection in such a way that the error
between the desired output and the actual ANN output is minimized. Backpropa-
gation is the most widely used algorithm for determining the error derivative of the
weights ( dW

dt = 0). ANN learning algorithms fall into two broad categories: heuristic
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techniques (variable learning rate back propagation, resilient back propagation) and
numerical optimization techniques (conjugate gradient [33], quasi-Newton [17]).

In a supervised learning setting, input data along with its desired output data
(x,y) is fed to the network. The task of the network is to find a mapping function
f : X → Y . For workload forecasting, the network can be trained at fixed intervals
depending on the nature of the load variation (i.e., batch learning, e.g. hourly, sea-
sonally or annually). In an unsupervised setting, the task of the learning algorithm
is to update a sequence of functions f1, f2, . . . , ft in such a way that the predic-
tion (xt+1,yt+1) depends on the previous function ft and the current data (xt ,yt).
Large memory is needed if the current prediction depends on all previous functions
f1, f2, . . . , ft and data (x1,y1),(x2,y2), . . . ,(xt ,yt). For online workload prediction,
adaptive neural networks can be used, i.e., learning and operating at the same time.

Deployment Phase: After training, the learnt ANN model is used for prediction.
The test data is given as inputs to the input neurons. The learned weights are used to
predict values at the output neurons. For online workload forecasting, we first train
the ANN for a limited time of historical workload data. The trained ANN is then
used to forecast the future workload.

Example: An ANN based framework (PRACTISE), has been proposed for online
prediction of compute loads such as CPU utilization, memory utilization, disk us-
age and network bandwidth [71]. PRACTISE uses an online updating module that
monitors the prediction errors periodically. If the errors suddenly surge, then the
neural network model is retrained. Experiments were done using traces from IBM
data centers. PRACTISE is able to efficiently capture the peak loads in terms of their
intensities and timing, in contrast to classic time series models.

Limitations:

• Neural networks are difficult to design. One must determine suitable number of
nodes, hidden layers and activation functions.
• The output values do not come with a confidence measure.
• Neural networks are a “black box”. During training, there is no easy way to

ensure how the domain specific information is being used.
• Training typically requires significant computational resources.
• Neural network models can be prone to over-fitting.

Advantages:

• Neural networks can implicitly detect non-linear patterns in the training data.
• The static, non-linear function used by neural networks provide a method to fit

the parameters of a particular function to a given set of data.
• A wide variety of ANN architectures and activation functions can be used to fit

a given set of data.
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18.3.3 Decision Trees

A decision tree [53] is a tree structured directed graph, where the goal is to predict
the leaf nodes based on several attributes. If the target leaf node is continuous, then
the decision tree is called a regression tree. If the target leaf node takes categorical
values, then the decision tree is called a classification tree.

Modeling phase: For example, consider the data vector (x,y)= (x1,x2,x3, . . . ,xk,y).
Here, the target is y and it depends on the values of the attributes (x1,x2,x3, . . . ,xk).
Each interior node in the decision tree corresponds to an attribute Xi with value xi.
The edges emanating from node Xi are labeled with possible values of the attribute.
Each leaf represents value of the target given the values of the attribute as we tra-
verse the path from the root to the leaf node. A decision tree can be constructed by
recursively partitioning the training data into subsets based on the attributes. The
first step is to choose the attribute that best splits the given training data. The mea-
sure of goodness of split (score) is based on the impurity of child nodes. The best
attribute to split on is the one that produces smaller impurity and thus more skewed
label distribution at the child nodes. Examples of goodness of split measures include
information gain and Gini index.

Deployment Phase: After constructing the decision tree, it can be used for predic-
tion. Consider a test data vector (x,y) = (x1,x2,x3, . . . ,xk,y). Our goal is to predict
the target y. The test data X is classified by passing it through the tree starting at the
root node. The test at each internal node along the path is applied to the attributes
of Xi to determine the next arc along which X should go down. The label at the leaf
node at which X ends up is output as its classification.

During online learning, it is preferable to update the existing decision tree as new
training instances arrive without needing to build a new decision tree. Utgoff pro-
posed an incremental decision tree (ID5R) [65]. The ID5R algorithm updates the
tree at each node based on the “best” split according to the new training instance.
This leads to efficient re-structuring of the subtrees without the need to re-iterate
through the past training examples.

Example: Decision trees are used for both long term (yearly) [23] and short term
(every 15 minutes) [52] forecasting. Ding [23] uses decision trees for long term
forecasting of energy consumption. The attributes consist of 14 key factors that
contribute to energy consumption including primary, secondary, and tertiary GDP,
residential energy consumption, industry output, financial revenue and economic
index. Ding’s improved decision tree method outperforms traditional forecasting
methods such as linear regression and exponential curves.
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Limitations:

• Over-fitting the training data can happen if the training data is small or noisy.
Post-pruning is often performed to avoid over-fitting.
• The accuracy of the model depends on the high order interactions of the input

variables.
• Finding an optimal decision tree is an NP-complete problem [35]. Many de-

cision tree algorithms employ a heuristic based approach (such as information
gain) to guide the search in the hypothesis space. Each split depends on the pre-
vious splits, so an error in a higher split is propagated down towards the leaves.

Advantages:

• The decision tree can clarify the relationship between the factors influencing
the forecast and possible forecasting.
• The decision tree extracts the decision rules from the dataset, which are stored

in a knowledge base and used for forecasting.
• A large variety of extensions to the basic algorithm have been developed. These

include algorithms to handle missing data, real valued attributes, post pruning
methods, and incremental learning.

18.3.4 Support Vector Machines

The Support Vector Machine (SVM) is a supervised algorithm where the goal is
to predict the value of a target given the values of the attributes. It can be applied
to both real-valued and categorical data that are linearly or non-linearly separable.
SVM is a robust classification and regression technique. SVM works by finding the
optimal separating hyperplane that maximizes the margin of the attributes. A hyper-
plane can be defined by an intercept term b and a normal vector w perpendicular
to the hyperplane. A hyperplane can be written as the set of points x (also called
support vectors) satisfying the equation wT x =−b.

Modeling phase: Consider a dataset D = {(xi,yi)}, where each xi is a point and
yi is the class label. For example, in a 2-class classification problem, the class labels
are yi =+1 or yi =−1. Our goal is to learn a mapping function: yi = f (xi,{w,b}).
The linear SVM classifier can be written as yi = sign(wTxi +b). A value of +1 in-
dicates one class and−1 indicates the other class. The maximum margin is given by

2√
wwT

. We want to maximize this margin, which is equivalent to minimizing wTw
2 ,

subject to the constraints (wTxi+b)>= 1 if yi = 1 and (wTxi+b)<= 1 if yi =−1.
Now we have a quadratic optimization problem and we need to solve for w and b.

In real world, training data can be non-linear. For non-linear SVMs, we map
data to a rich feature space and construct hyperplanes in that space. Formally, we
pre-process the data: x← Φ(x). Then, we learn the classifier: f (x) = wΦ(x)+ b.
But the dimensionality of Φ(x) can be large, making it computationally difficult to
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solve for w and b. So we use kernel functions K < xi,x j >. The kernel functions
and parameters have to be carefully chosen as this would influence the performance
of the SVM model. The resulting high dimensional space from the kernel functions
can make the data linearly separable, even though it was not linearly separable in
the original attribute space.

Deployment Phase: After training the model, it is used to predict the labels of
the test data. During online prediction, as one receives new data (x), the model uses
the learnt weights to predict the label. Online training can happen either in batch
for a set of test cases or per test case based on the results of the prediction. Several
online SVM algorithms have been developed [9, 43].

Example: Support Vector Machines (SVM) have been applied for measurements
of CPU utilization, memory utilization, disk space usage, communication latency
and bandwidth [50]. SVN-based forecasts are found to be more accurate and out-
perform the existing methods based on metrics like mean absolute error and mean
square error among others. Hu et al., [34] have explored different machine learning
models for multi-step-ahead prediction of grid resources. Their experiments indicate
that Epsilon-Support Vector Regression and Nu-Support Vector Regression achieve
better performance than Back Propagation Neural Network, Radial Basis Function
Neural Network, and Generalized Regression Neural Network.

Limitations:

• Difficult determination of the regularization parameters, kernel parameters and
choice of kernel.
• Sensitive to skewed distributions.
• Computationally expensive training process.

Advantages:

• Both simple (few dimensions) and complex (many dimensions) classification
models can be learned.
• Model is robust to small training datasets.
• SVM employs sophisticated mathematical methods to avoid over-fitting.

18.4 Predictive Models based on Time Series Analysis

18.4.1 ARIMA Models

Auto-regressive integrated moving average (ARIMA) models were originally pro-
posed by Box and Jenkins [10], and they are commonly used to fit linearly depen-
dent time series data and forecast their future values. ARIMA models have been
successfully applied in many fields such as financial and economic forecasting [54].
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In addition, some researchers have applied these models to forecast future values of
QoS attributes [2, 3, 12, 28] or for estimating system reliability [4].

The time series {zt} is said to be generated by an auto-regressive integrated mov-
ing average (ARIMA) model of orders p, d, and q, denoted by ARIMA(p,d,q), if it
satisfies:

Φp(B)yt =Θq(B)εt (18.3)

where yt is a stationary time series (of the original non-stationary time series {zt})
computed by using d differences as yt = (1− B)dzt and Bdzt = zt−d . In addi-
tion, {εt} is a sequence of independent normal errors with zero mean and vari-
ance σ2. The auto-regressive polynomial is Φp(B)=

(
1−φ1B−φ2B2−·· ·−φpBp

)
with order p and Θq(B) =

(
1+θ1B+θ2B2 + · · ·+θqBq

)
is the moving average

polynomial with order q. The auto-regressive and moving average coefficients are
Φ = (φ1,φ2, · · · ,φp)

T and Θ = (θ1,θ2, · · · ,θq)
T , respectively. The model (18.3) can

be rewritten as

yt =
p

∑
i=1

φiyt−i +
q

∑
i=1

θiεt−i + εt (18.4)

where yt−i for i = 1, ..., p are the past stationary observations, εt is the current error,
and εt−i for i = 1, ..., q are the past errors.

To forecast one-step-ahead, we shift from t to t +1:

yt+1 =
p

∑
i=1

φiyt+1−i +
q

∑
i=1

θiεt+1−i + εt+1 (18.5)

and similarly we can forecast multi-step-ahead values.
If the original time series {zt} is stationary, then there are no differences used and

{zt} is said to be generated by an auto-regressive moving average (ARMA) model
of orders p and q and denoted by ARMA(p,q). In addition, most of the existing
nonlinear time series models are normal extensions for ARIMA models including
SETARMA models [61], introduced in Subsection 18.4.3.

Limitations:

• ARIMA models are generally used as black-box models. Insights are limited to
the values of p, q, and d.
• Model selection and identification of ARIMA parameters is time-consuming.

Advantages:

• ARIMA defines a family of models that can be (automatically) selected and
parametrized to provide accurate forecasts.
• ARIMA is usable as a black-box model.
• ARIMA is fast when used for prediction once model and parameters are se-

lected.
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18.4.2 GARCH Models

The auto-regressive conditional heteroscedastic (ARCH) models were introduced
by Engle [24] to model high volatility by describing the dynamic changes in time-
varying variance as a deterministic function of past errors. These models have be-
come widely accepted for financial time series with volatility clustering and turn out
to be an important tool in the field of financial forecasting [45] but also have been
applied to software systems [2].

Engle formally defined the ARCH model for a conditional variance σ2
t of the

dependent variable yt as:

σ
2
t = α0 +α1ε

2
t−1 + · · ·+αmε

2
t−m, (18.6)

where εt = yt−∑
p
i=1 φiyt−i−∑

q
i=1 θiεt−i, and m and αi for i= 0, ..., m are the ARCH

model order and coefficients, respectively.
A generalization of the ARCH model (GARCH) where additional dependencies

are permitted on lags of the conditional variance was introduced by Bollerslev [8].
In the GARCH model the conditional variance is more general than in the ARCH
model and can be written as follows:

σ
2
t = α0 +

r

∑
i=1

αiε
2
t−i +

m

∑
j=0

β jσ
2
t− j (18.7)

with these constraints

α0>0, αi ≥ 0, β j ≥ 0, and
r

∑
i=1

αi +
m

∑
j=0

β j < 1. (18.8)

Limitations:

• Inherits all ARIMA limitations (Section 18.4.1).
• Model selection and construction are more expensive compared to ARIMA

models.

Advantages:

• Inherits all ARIMA advantages (Section 18.4.1).
• Can be used on time-series with high volatility.

18.4.3 SETARMA Models

Self exciting threshold auto-regressive moving average (SETARMA) models were
first introduced by Tong and Lim [61] and further studied by Tong [62], Lim [46],
and Cook and Broemeling [14]. Tong [62] reports that threshold effects can arise in
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many scientific fields and the SETARMA models are able to characterize this be-
cause of their attractive features such as limit cycles. Consequently, the SETARMA
models have been found useful in many real life applications including economics,
population biology, hydrology, and software [3, 63].

The SETARMA model is a generalization of the ARMA model in the nonlinear
domain, and its main idea is to start with a linear ARMA model and then allow the
parameters to vary according to the past values of the time series data. In order to
explain the idea, let l disjoint intervals be defined as R j = [r j−1,r j) for j = 1,2, . . . , l,
and let an integer dp be known as the delay parameter. For the time series {yt}, each
interval R j defines a “regime”, in the sense that, the time series value yt is said to
follow the regime j if yt−dp ∈ R j. Accordingly, a SETARMA model is defined as a
piecewise linear structure that follows a linear ARMA model in each j alternative
regime, for j = 1,2, . . . , l, and switches among the different regimes based on the
threshold values determined by the past values of the time series data.

A SETARMA model of order (l; p1, p2, · · · , pl ;q1,q2, · · · ,ql) or SETARMA
(l; p1, p2, · · · , pl ;q1,q2, · · · ,ql) can be written as follows:

yt = µ
( j)+

p j

∑
i=1

φ
( j)
i yt−i +

q j

∑
s=0

θ
( j)
s εt−s + ε

( j)
t i f r j−1 ≤ yt−dp < r j (18.9)

where φ
( j)
i and θ

( j)
s (i = 1,2, · · · , p j;s = 1,2, · · · ,q j; j = 1,2, · · · , l) are model pa-

rameters, and
{

ε
( j)
t

}
( j = 1,2, · · · , l) are a sequence of independent normal errors

with mean zero and variance σ2
j . The ordered constants−∞= r0 < r1 < · · ·< rl =∞

are known as the thresholds.
When q j equals zero (for j = 1, 2, · · · , l), the SETARMA model is re-

duced to the self exciting threshold autoregressive model which is denoted by
SETAR(l; p1, p2, · · · , pl). Similarly, the self exciting threshold moving average model,
SETMA(l;q1,q2, · · · ,ql), is a special case of SETARMA when p j equals zero (for
j = 1, 2, · · · , l). If the autoregressive orders and moving average orders are the
same for all regimes and equal to p and q, respectively, the SETARMA model (18.9)
takes the form:

yt = µ
( j)+

p

∑
i=1

φ
( j)
i yt−i +

q

∑
s=0

θ
( j)
s εt−s + ε

( j)
t i f r j−1 ≤ yt−dp < r j, (18.10)

which is SETARMA(l, p,q) where p and q are repeated l times. Similarly to bi-
linear models and exponential auto-regressive models, it is easy to show that the
ARMA(p,q) model is a special case of the SETARMA model (18.10) when l equals
one, which implies that the SETARMA models are natural extensions of the ARMA
models.
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Limitations:

• Inherits all ARIMA limitations (Section 18.4.1).
• Model selection and construction are more expensive compared to ARIMA

models.

Advantages:

• Inherits all ARIMA advantages (Section 18.4.1).
• Can be used on non-linear time-series.

18.4.4 Cubic Smoothing Splines

Cubic smoothing splines (CS) can be fitted to univariate time series data to obtain
a linear forecast function that estimates a trend [37]. The smoothing parameters are
estimated using a likelihood approach enabling the construction of confidence in-
tervals. This method is an instance of the ARIMA((p,d,q) = (0,2,2)) model as
described above with a restricted parameter set that does not impair the forecast ac-
curacy. This method is suitable for trends extrapolation, but seasonal patterns are
not captured. In steep parts of a time series, the method overestimates the trend -
accordingly the method should only carefully be applied to time series data with
bursts, high noise ratio, or strong seasonal patterns. It has been observed that the
computation time rises for more data points without an observable improvement in
forecast accuracy.

Limitations:

• In presence of bursts or dominating seasonal patterns, the method is likely to
overestimate the impact of an extrapolated trend.
• Forecast accuracy may not increase with more historical data.

Advantages:

• Simple model that is easy to understand.
• Gives good trend estimates in many cases.
• Only needs a few historical values and has a low computational overhead.

18.4.5 Extended Exponential Smoothing

Extended exponential smoothing (ETS) is based on the state space approach and can
explicitly model a trend, a season and a trend component in individual exponential
smoothing equations that are combined in the final forecast [36]. The component
combination can either be modeled as additive or multiplicative. In addition, damp-
ing the influence of one of these components is possible. The forecasting process
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starts in the first step by selecting an optimized model instance, before the param-
eters of the individual exponential smoothing equations are estimated. Having the
model and the parameters adapted to the time series data, point forecasts and confi-
dence intervals are computed. This method is able to detect and capture sinus-like
seasonal patterns that are contained at least three times in the time series data. In the
presence of more complex seasonal patterns, the ETS often fails to model those and
returns quicker with a worse forecast accuracy compared to other methods.

Limitations:

• Positive time series values are required.
• May fail to model complex and overlapping seasonal patterns.
• User needs to decide if a seasonal pattern and trend component should be mod-

eled as additive or multiplicative.

Advantages:

• Established approach with various implementations available.
• Reasonable model complexity and computational overhead.

18.4.6 tBATS Innovation State Space Modeling Framework

The tBATS innovation state space modeling framework [15] extends the ETS state
space model. The goal of tBATS is the better handling of more complex seasonal
effects by making use of a trigonometric representation of seasonal components
based on a Fourier transformations, by incorporation of Box-Cox transformations
and use of ARMA error correction. tBATS relies on a method that reduces the com-
putational burden of the maximum likelihood estimation. We observed examples
of higher forecast accuracy compared to the ETS method while computation time
stayed in the same ranges.

Limitations:

• Positive time series values required.

Advantages:

• Improved capability to handle complex seasonality compared to the classical
ETS approach (Section 18.4.5).

18.4.7 Model Selection and Conclusion

Before constructing a forecasting model, the given time series data should be
checked for fulfillment of the various model assumptions. For example, a time series
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for an ARIMA model should satisfy the following assumptions: serial dependency,
normality, and stationarity. Consequently, before using any model, statistical tests
are needed to check for these assumptions. If they are not satisfied, a suitable trans-
formation is required to align the data with the assumptions. Traditional statistical
tests include: the runs test for serial dependency, the Kolmogorov-Smirnov (K-S)
test for normality, and the KPSS test for stationarity [26]. For achieving normality
and stationarity in the variance, Box-Cox transformations [10] can be used, and dif-
ferences of non-stationary time series can be used to produce stationary series in
the mean. To determine if GARCH model should be used, the time series has to be
checked for volatility and for dynamic changes in time-varying variance as a deter-
ministic function of past errors. The common statistical test for volatility is the En-
gle test [24]. The selection of a SETARMA model is recommended for a nonlinear
time series, which can be tested with the Hansen test [31]. The Cubic Smoothing
Splines are basically an ARIMA((p,d,q) = (0,2,2)) model, and thus, this model
can be used whenever the ARIMA assumptions are satisfied. For the Extended Ex-
ponential Smoothing approach the same model assumptions as for ARIMA need to
be satisfied. The tBATS approach includes a Box-Cox transformation and accord-
ingly can cope with non-normality. Besides the required assumption checking, rules
based on common statistical measures like seasonality, normality, linearity, kurtosis
and skewness can also be derived for model selection or ranking. A detailed ap-
proach for rule derivation and a set of general rules for a subset of methods is given
in [67]. In practice, different forecast approaches are applied concurrently and ei-
ther the result that is more likely to be accurate or a weighted combination of the
different results is used. This technique is also known as ensemble forecasting or
boosting. An example can be found in [32].

18.5 Applications of Workload Forecasting

In this section, we discuss applications of workload forecasting. Further applica-
tions and a broader view on workload characterization can be found in a recent
survey [11]. It is worth noting that methodology as well as applications strongly
resembling workload forecasting can be found in the domain of managing electric-
ity supply [42]. Short term forecast (hours to one day ahead) of demand on electric
power are of particular interest to power suppliers [42].

18.5.1 Load Forecasting for Data Centers, Grids and Cloud
Environments

Load forecasting is used in this domain in a variety of ways including system and
performance scaling, optimization of resource utilization and its sharing, estimation
of the runtime of tasks, and others. For a more recent overview see [59], a survey

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



540 Herbst et al.

focusing on job runtime prediction, but also discussing applications and methods
related to workload prediction in computational grids.

The Network Weather Service (NWS) [69] is one of the first and most widely
known systems for load forecasting in Grid environments. It uses an ensemble of
simple prediction methods and selects the one that performed best in the recent time
frame. It can forecast usage of CPU, network, and memory of a single server on a
short time frame.

Peter A. Dinda has contributed a series of early works in this domain [20], [21].
He typically uses simple autoregressive models (e.g., AR) since in his evaluation
they compare favorably, e.g., to BM and LAST models. He evaluates two applica-
tions of host load forecasting: estimation of running times of jobs [20] and real-time
scheduling for interactive applications where new jobs are assigned to resources
with minimum expected load [22]. The results of the evaluation show the clear ben-
efits of using a prediction-based strategy. In [21], also a forecasting method based
on wavelet analysis is introduced.

In [1], the authors use a combination of seasonal load variation modeling and
Markov model-based meta-predictors for CPU and network load forecasting within
a wide range of time horizons: from several minutes to more than a week. The moti-
vating applications are grid scheduling and support for infrastructure maintenance.

The approach in [73] also targets the prediction of running times of grid tasks.
The application scenario is CPU load prediction. The forecasting technique is a
combination of polynomial fitting (essentially, a variant of autoregressive methods)
and detection of similar patterns; the latter method helps to exploit periodicity in the
signal.

In [70], forecasting the future load of a grid system is achieved by combining an
autoregressive model (AR) enhanced by confidence interval estimations with two
filtering techniques: Savitzky-Golay smoothing filter and Kalman filter. The poten-
tial application of this approach is forecasting task run-time and guiding scheduling
strategies.

Workload analysis, performance modeling, and capacity planning in the context
of data centers are considered in [27]. In [40], a model is proposed to capture groups
of VMs that behave in frequent and repeatable patterns. The targeted application
domains are capacity management and VM placement in a data center. Other works
targeting such scenarios and environments include [30] and [29].

The authors of [19] propose an approach to predict host load in a Google cluster
with 10,000+ hosts. The method includes an exponentially segmented pattern model
and a Bayes method exploiting a feature engineering and selection process.

Another approach of workload management in the context of video streaming is
presented in [72], where the characteristics of workload burstiness are captured. In
this way, they can model workload spikes caused by demand for a few very popular
video clips.
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18.5.2 Forecasting for Web-based Systems

Optimizing the performance, resource usage, quality-of-service (QoS) and costs of
complex multi-tier applications is another domain where host load prediction plays
an essential role.

In [64], an analytical model of a multi-tier Internet application based on a net-
work of queues was introduced, where the queues represent different tiers of the ap-
plication. This model can accurately predict response times even in complex work-
load scenarios, including caching.

The issue of predicting future resource loads under constraints in Internet-based
systems is addressed in [5]. The authors propose a two-step approach that first ob-
tains a representative view of the load trend from measured raw data, and then ap-
plies a load prediction algorithm upon this data. The envisioned application scenar-
ios are load balancing and load sharing, overload and admission control, and job
dispatching and redirection.

In [66], the topic of allocating servers to each of the websites in a data center with
shared resources is considered. The constraints here are maintaining the QoS levels
in different classes, and optimizing server usage while maintaining cost-efficiency.
The proposed solution is based on a web server load prediction schema based on a
hierarchical framework with multiple time scales.

18.6 Conclusion and Open Challenges

The ability to forecast external behavior that impacts a self-aware system (e.g.,
amount of arriving work) becomes a crucial feature for a self-aware system if it
should not only react to changes in its environment, but also prepare for likely
changes to maintain or increase goal compliance. In this chapter, we presented an
overview of workload forecasting methods based on machine learning and time se-
ries analysis. We discussed the common methodological process and reviewed re-
lated work in the area of workload forecasting. We see this as a first step towards
enabling self-aware systems to become proactive.

Besides the general challenge to apply meaningful forecasting techniques in an
autonomic manner within self-aware systems, several open challenges exist in this
field. One open challenge is forecasting for highly dynamic applications. As an ex-
ample of a highly dynamic application, consider a cloud-based startup company
with a cloud-based smart phone app that all of a sudden becomes extremely popu-
lar. It is extremely hard to forecast the medium- to long-term growth and the cor-
responding computational load for such an app. In contrast, it is relatively easy to
forecast the short-term diurnal variation in demand, although this pattern will vary
depending on the nature of the app. For example, a location-based social network-
ing web site such as Brightkite or Gowalla often has higher traffic around dinner
and lunch [47], while the data center load of a travel-oriented app like Waze may
peak slightly before and after typical meal times.
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