
JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 1

Model-Based Self-Aware Performance and
Resource Management Using the

Descartes Modeling Language
Nikolaus Huber, Fabian Brosig, Simon Spinner, Samuel Kounev, Member, IEEE and Manuel Bähr

Abstract—Modern IT systems have increasingly distributed and dynamic architectures providing flexibility to adapt to changes in the
environment and thus enabling higher resource efficiency. However, these benefits come at the cost of higher system complexity
and dynamics. Thus, engineering systems that manage their end-to-end application performance and resource efficiency in an
autonomic manner is a challenge. In this article, we present a holistic model-based approach for self-aware performance and resource
management leveraging the Descartes Modeling Language (DML), an architecture-level modeling language for online performance
and resource management. We propose a novel online performance prediction process that dynamically tailors the model solving
depending on the requirements regarding accuracy and overhead. Using these prediction capabilities, we implement a generic model-
based control loop for proactive system adaptation. We evaluate our model-based approach in the context of two representative case
studies showing that with the proposed methods, significant resource efficiency gains can be achieved while maintaining performance
requirements. These results represent the first end-to-end validation of our approach, demonstrating its potential for self-aware
performance and resource management in the context of modern IT systems and infrastructures.

Index Terms—Autonomic, Self-Aware, Adaptation, Model-Based, Modeling Language, Performance, Efficiency

F

1 INTRODUCTION

MODERN software systems have increasingly
distributed architectures composed of loosely-

coupled services that are typically deployed on
virtualized infrastructures. Such system architectures
provide increased flexibility by abstracting from the
physical infrastructure and supporting a flexible
mapping of virtual to physical resources. This enables
the dynamic consolidation of system resources and
their sharing among multiple independent applications,
thus making it possible to significantly improve system
efficiency. However, these benefits come at the cost of
higher system complexity and dynamics, due to the
introduced gap between physical and virtual resource
allocations as well as the complex interactions between
the applications sharing the physical infrastructure. The
inability to predict the effects of such interactions and
the inherent semantic gap between application-level
metrics and resource allocations at the physical and
virtual layers significantly increase the complexity of
managing end-to-end application performance. Thus,

• N. Huber, F. Brosig, S. Spinner and S. Kounev are with the Chair
of Software Engineering, Department of Computer Science, University
of Würzburg, Würzburg, Germany. E-mail: {firstname.lastname}@uni-
wuerzburg.de

• M. Bähr is with Blue Yonder GmbH & Co. KG., Karlsruhe, Germany.
E-mail: manuel.baehr@blue-yonder.com

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) under
grant No. KO 3445/11-1 and grant No. KO 3445/15-1. Parts of this work
have been done during Fabian Brosig’s summer internship at Salesforce.com.
We acknowledge the many fruitful discussions with Jürgen Walter and Simon
Eismann from the Chair of Software Engineering, University of Würzburg.

many researchers in industry and academia are working
on techniques for designing self-adaptive systems
that automatically manage their performance, resource
efficiency, and other quality-of-service (QoS) properties
during operation.

State-of-the-art industrial approaches for automated
performance and resource management in virtualized
environments generally follow a trigger-based approach
when it comes to enforcing application-level service-
level agreements (SLAs) [1], [2], [3]. Custom triggers
can be configured that fire when a metric reaches a
certain threshold (e.g., high resource utilization or load
imbalance) and execute certain predefined reconfigura-
tion actions until a given stopping criterion is fulfilled.
The problem is that application-level metrics (such as
response time) normally exhibit a non-linear behavior
on system load and they typically depend on the be-
havior of multiple virtual machines (VMs) across several
application tiers. Generally, it is hard to predict how
changes in the application workloads (e.g., varying re-
quest arrival rates and/or transaction mix) propagate
through the layers and tiers of the system architecture
down to the physical resource layer. Therefore, it is hard
to determine general thresholds when triggers should
be fired given that such triggers are typically highly
dependent on the architecture of the hosted services and
their workloads.

To tackle the above-mentioned challenges, techniques
for online performance prediction are needed. Such tech-
niques should make it possible to continuously predict
at run-time: a) changes in the application workloads, b)

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 2

the effect of such changes on the system performance
and resource efficiency, and c) the impact of possible
adaptation actions at run-time. Recent approaches pro-
posed in the research community have applied different
types of models to provide such prediction capabilities.
Existing work in this area mainly uses coarse-grained
performance models that typically abstract systems and
applications at a high level, e.g., [4], [5], [6], [7], [8],
[9]. Such models do not explicitly model the software
architecture and execution environment to distinguish
performance-relevant behavior at the virtualization level
vs. at the level of applications hosted inside the running
virtual machines. The individual effects and complex
interactions between the application workloads and the
system components and layers are considered as static
and viewed as a black box in such models. This hinders
fine-grained performance predictions that are necessary
for efficient resource management, e.g., predicting the
effect on the response times of different services, if a
virtual machine in a given application tier is to be
replicated or migrated to another host, possibly with a
different configuration.

In the software performance engineering commu-
nity, a number of modeling approaches for building
architecture-level performance models of software sys-
tems have been proposed over the last decade [10].
Such models provide modeling constructs to capture the
performance-relevant behavior of a system’s software
architecture as well as some aspects of its execution
environment. However, they are designed for use at
system design-time in an offline setting. Therefore, they
typically assume a static system architecture and execu-
tion environment and are thus unsuitable for use as a
basis for system adaptation in an online setting.

In autonomic computing, software models play an
important role in managing the complexity of dynamic
and self-adaptive systems and supporting the adaptation
decisions in such environments [11], [12]. However, ap-
proaches that employ architectural models, such as [13],
[14], [15], usually focus only on adaptation at the appli-
cation level and do not include the system’s operational
environment within the scope of the considered adapta-
tion possibilities. Furthermore, adaptation decisions are
typically based on simple policies without the possibility
to predict the impact of possible adaptation actions at
run-time on the end-to-end system performance, and
feed this into the decision process.

In summary, we argue that sophisticated modeling
and prediction techniques are needed, specifically de-
signed for performance and resource management in on-
line scenarios. Such techniques should allow to capture
both static and dynamic system aspects including all
relevant influences of the system’s resource landscape,
its architecture, as well as its adaptation space, adap-
tation strategies and processes, in a generic, human-
understandable and reusable way. Moreover, we need
model-based system adaptation mechanisms that apply
such modeling and prediction techniques end-to-end, to

drive autonomic decision making at run-time [11].
In our previous work [16], [17], [18], we proposed

the Descartes Modeling Language (DML), an end-to-
end modeling formalism for online performance and
resource management specified by metamodels based on
OMG’s Meta-object Facility (MOF) [19]. This work has
been focused on finding suitable abstractions for describ-
ing the performance-relevant aspects of applications [18],
the influence of their resource environment [16] and
the processes for adapting the system according to the
high-level goals specified in SLAs [17]. However, the
existing work does not cover the question how these
models can be used to build an end-to-end control loop
for proactive performance and resource management. In
particular, sophisticated online prediction techniques for
evaluating the impact of changes in the workload or
system configuration on the application performance are
missing.

This article uses DML as a foundation and makes
the following contributions on top of it: i) an end-to-
end approach for self-aware performance and resource
management based on a holistic model-based adapta-
tion control loop exploiting the reflective capabilities of
DML, ii) a novel online performance prediction process
that dynamically tailors the model solving taking into
account the requested performance metrics as well as
goals in terms of accuracy and overhead, and iii) the first
real-world evaluation and validation of our approach in
the context two industrial case studies demonstrating the
benefits of model-based adaptation control loop and the
online performance prediction process. for performance
and resource management in modern dynamic IT sys-
tems, infrastructures and services.

We apply and evaluate our approach end-to-end in
the context of two different case studies conducted
in cooperation with industrial partners. The first case
study is based on a Customer Relationship Manage-
ment (CRM) application of a large Software-as-a-Service
(SaaS) provider. The results show that our novel online
performance prediction process provides the flexibility
to dynamically trade-off between prediction accuracy
and overhead enabling the system to efficiently reason
on its performance behavior under different conditions.
In the second case study, we apply our approach for
self-aware performance and resource management to
a software system of a leading provider of predictive
analytics and big data cloud services. The results show
the capabilities of our approach to trade-off different
performance requirements of multiple customers in a
heterogeneous system environment while maintaining
resource efficiency

The remainder of this article is structured as follows:
First, Section 2 lays the foundation with a coherent
presentation of the concepts of DML. In Section 3, we
present the concepts and realization of our model-based
adaptation approach. Section 4 describes the online
performance prediction process. Section 5 presents and
discusses the results of our case studies. Section 6 gives

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 3

Application Architecture Meta-Model

Adaptation Points Meta-Model

Adaptation Process Meta-Model

B

A
C

Degrees of Freedom

Resource Landscape Meta-Model

<<Container>>

Node1

<<Container>>

Node3

<<Container>>

Node2

Deployment

Meta-Model

Usage

Profile

Meta-

Model

TacticsStrategies Actions

<<InternalAction>>

ResourceDemandX

Instances of VMx

Instances of VMY

Instances of VMz

Number of vCPUs of VMx

Number of vCPUs of VMy

Number of vCPUs of VMz

Allocation of VMx

Fig. 1. Structure of the Descartes Modeling Language.

an overview of related approaches in the area of model-
based system reconfiguration and system adaptation,
before we conclude with Section 7.

2 THE DESCARTES MODELING LANGUAGE

We start by presenting an overview of the Descartes
Modeling Language (DML), which is the basis for our
approach. Technically, DML is comprised of several sub-
languages, each of them specified using OMG’s Meta
Object Facility (MOF) [19] and referred to as meta-model
in OMG’s terminology. We present DML’s structure,
followed by an introduction of its core concepts and
innovative aspects. The complete DML specification is
available as a technical report [20]. A realization of DML
in EMF Ecore1 is available from the DML website.2

DML has a modular structure designed to reflect the
major aspects relevant for modeling performance and
resource management of modern IT systems (Fig. 1). In
the following, we describe the purpose of each meta-
model.

Resource Landscape: The resource landscape meta-model
is used to describe the structure and the properties of
both the physical and the logical resources of the IT
system infrastructure. A common pattern reoccurring in
modern IT infrastructures is the nested containment of
system entities, e.g., data centers contain racks, racks
contain servers, servers typically contain a set of virtual
machines (VMs), servers and VMs run an operating
system (OS), which may contain a middleware layer, and
so on. DML provides constructs to model this hierarchy
of nested resources as well as their configuration, e.g.,
memory, bandwidth, and so on.

Application Architecture: The application architecture
of the adapted system is modeled after the principles of
component-based software systems. A software compo-
nent is defined as a unit of composition with explicitly

1. http://www.eclipse.org/modeling/emf/
2. http://descartes.tools/dml

defined provided and required interfaces [21]. For conve-
nience, we also use the term service to refer to a signature
of a software component’s interface.

To describe the performance behavior of a service
offered by a Component, the application architecture meta-
model supports multiple (possibly co-existing) behavior
abstractions at different levels of granularity. The be-
havior descriptions range from a BlackBoxBehavior ab-
straction (a probabilistic representation of the service
response time behavior), over a CoarseGrainedBehavior
abstraction (capturing the service behavior as observed
from the outside at the component boundaries, e.g.,
frequencies of external service calls and amount of con-
sumed resources), to a FineGrainedBehavior abstraction
(capturing the service’s internal control flow, covering
performance-relevant actions). The novelty of the sup-
port for multiple abstraction levels is that one can choose
the modeled abstraction level depending on the informa-
tion that monitoring tools can obtain at run-time, e.g., to
what extent component-internal information is available.
More importantly, the model is usable in different online
performance prediction scenarios with different goals
and constraints, ranging from quick performance bounds
analysis to detailed system simulation. Multiple different
abstraction levels may co-exist for the same service.
Thus, the appropriate abstraction level to use can be
selected at run-time on a case-by-case basis trading-
off between accuracy and speed of the performance
prediction. Currently, it is assumed that alternative ab-
straction levels are consistent with one another and only
defer in the granularity at which the system is modeled.
In future extensions, we plan to introduce consistency
checks between the abstraction levels.

Deployment: To capture the interactions of resource
landscape and application architecture, one must model
the connection between hardware and software. The
deployment meta-model associates instances of software
component types of the application architecture meta-
model with container instances of the resource landscape
meta-model.

Usage Profile: To model user interactions with the
system (i.e., the usage profile), DML provides a us-
age profile meta-model. A usage profile model contains
one or more usage scenarios, which can be seen as a
combination of UML use cases and UML activities. A
usage scenario describes the workload type (e.g., open
or closed workload), the workload intensity (e.g., request
arrival rates), and the user behavior, i.e., which services
are called and in what sequence.

Adaptation Points and Processes: The adaptation points
meta-model is an addition to the resource landscape
and application architecture meta-models to describe the
elements of the resource landscape and the application
architecture that can be adapted (i.e., reconfigured) at
run-time. Based on this, the adaptation process meta-model
allows to describe the way the system adapts to changes
in its environment. The meta-model consists of three
main elements used to describe the adaptation process

http://www.eclipse.org/modeling/emf/
http://descartes.tools/dml

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 4

at three different levels of abstraction.
Actions are the elements on the lowest level of the

adaptation process. They capture the execution of an
adaptation operation at the model-level. Examples for
such actions are to increase/decrease the processing
resources of a VM, to clone/remove a VM, to migrate
a software component, etc.

Tactics allow to describe more complex adaptations
by composing a set of actions to an AdaptationPlan. To
describe an adaptation plan, tactics can use control flow
elements like Branches and Loops. The purpose of a tactic
and its adaptation plan is to achieve an intermediate
goal, e.g., increasing the amount of allocated resources.
An example of a tactic adding resources could be “if pos-
sible, increase the processing resources of the VM, otherwise,
start another VM.”

Strategies are defined on the highest level of abstrac-
tion and they capture the logical aspects of the system
adaptation process. A strategy defines the Objective that
needs to be accomplished and conveys an idea for
achieving it. A strategy can be a complex, multi-layered
plan using one or more tactics for accomplishing the
objective. Which tactic is applied depends on the current
state of the system and on the predicted impact of
the tactic on the system performance. The advantage
here is that in contrast to the individual deterministic
adaptation actions of the tactics, the sequence of applied
tactics is not pre-defined. This enables the flexibility to
react with different tactics in unforeseen situations. For
example, a defensive strategy could be “add as few re-
sources as possible stepwise until response time violations are
resolved”, whereas an aggressive strategy would be “add
a large amount of resources in one step so that response time
violations are eliminated, ignoring resource inefficiencies.”

A more complete description of the individual parts
of DML can be found in [16], [17], [18]

3 THE DESCARTES APPROACH

In the 17th century, the French philosopher and mathe-
matician René Descartes described the bidirectional link
between the mind and the body as the dualism principle
(“the mind controls the body, but the body can also
influence the mind”), paraphrased by his famous words
“cogito, ergo sum”. With the approach we propose here,
we pursue our vision of self-aware computing systems
that have built-in online prediction and self-adaptation
capabilities to address the challenges of autonomic per-
formance and resource management [22]. The consensus
at the 2015 Dagstuhl Seminar 150413 was that self-aware
computing systems have two main properties [22], [23].
They
• learn models, capturing knowledge about themselves

and their environment (such as their structure, de-
sign, state, possible actions, and runtime behavior)
on an ongoing basis; and

3. http://www.dagstuhl.de/15041

• reason using the models (to predict, analyze, con-
sider, or plan), which enables them to act based
on their knowledge and reasoning (for example,
to explore, explain, report, suggest, self-adapt, or
impact their environment)

and do so in accordance with high-level goals, which can
change.

A major application domain for self-aware computing
is the runtime management of modern IT systems. In
this context, an IT system is considered self-aware [22],
[24], [25] if it possesses three properties or can acquire
them at runtime - ideally to an increasing degree:
• Self-reflective - is aware of its software architecture

and execution environment, the hardware infras-
tructure on which it runs, and its operational goals,
such as performance requirements.

• Self-predictive - can predict the effects of dynamic
changes, such as changing service workloads, and
of possible adaptation actions, such as adding or
removing resources.

• Self-adaptive - proactively adapts as the environment
evolves to ensure that it always meets its operational
goals.

The three properties in the above definition are ob-
viously not binary, and different systems may satisfy
them to a different degree. However, in order to speak
of “self-awareness”, all three properties must apply to
the considered system.

With our approach, we provide a novel, model-based
method to design and engineer self-aware systems from
the ground up. Such systems have built-in self-reflective
and self-predictive capabilities, encapsulated in the form
of online system architecture models. The latter are
assumed to capture the relevant influences (with re-
spect to the system’s operational goals) of the system’s
software architecture, its configuration, its usage profile,
and its execution environment (e.g., physical hardware,
virtualization, and middleware). The models are also
assumed to explicitly capture the system’s operational
goals and policies (e.g., QoS requirements, service level
agreements, efficiency targets) as well as the system’s
adaptation space, adaptation strategies and processes.
In the context of this article, where our focus is on
self-awareness with respect to performance and resource
management aspects, we use the Descartes Modeling
Language (DML) as a representation for the online
system architecture models. In analogy to Descartes’
dualism principle, the models are intended to serve as
a mind to the system (the body) with a bidirectional link
between the two.

3.1 Concept
The software engineering community and the autonomic
computing community both use the notion of a con-
trol loop (also called feedback loop) as an essential
generic concept to build (self-)adaptive systems [12],
[26]. In the software engineering community, the generic

http://www.dagstuhl.de/15041

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 5

concept of a feedback loop consists of four distinct
phases: Collect, Analyze, Decide, and Act [12]. These four
phases are based on the concept of a control loop used
by the autonomic computing community since 2003,
which specifies four similar phases MONITOR, ANALYZE,
PLAN, and EXECUTE, commonly referred to as MAPE-K
control loop [26]. An additional important element of the
MAPE-K control loop is the KNOWLEDGE (BASE) which
is shared by all other four parts and can be considered
as the mind of the system.

Our model-based adaptation approach is based on this
generic control loop concept and leverages DML’s online
performance prediction capabilities to implement adap-
tation processes at the model level. In the following, we
explain our refinements to each phase of MAPE-K and
describe how we integrate and leverage DML as a basis
for self-aware performance and resource management.

3.1.1 Monitor

The adaptation control loop starts by collecting mon-
itoring data from the managed system. This includes
mainly performance metrics like service response time,
throughput or resource utilization, that can be obtained
with monitoring frameworks. In addition to performance
metrics, it is important to collect further data from the
system environment. For example, in our approach we
require workload data in the ANALYZE phase to be able
to forecast changes in the workload intensity. Another
example is information relevant to the goals of the
adaptation, e.g., changed customer constraints like SLAs.
Such information is important to ensure that the adapted
system is aware of its operational goals.

3.1.2 Analyze

The general purpose of this phase is to analyze the
monitored data to detect and anticipate violations of the
system’s operational goals (e.g., SLA violations, ineffi-
cient resource usage). If a problem is detected, the system
state is analyzed to identify its causes (e.g., a resource
bottleneck) such that suitable adaptation strategies of the
subsequent PLAN phase can be triggered. This scenario
describes an example of reactive system adaptation. To
enable proactive system adaptation, we must be able
to anticipate performance problems before they have
actually occurred. In [27], we showed an approach that
uses workload classification and forecasting techniques
to predict changes in the workload intensity at run-
time. In the approach presented here, we apply the
predicted workload changes to the usage profile model
of the DML instance and use our online performance
prediction techniques to analyze the impact on metrics
like service response time or resource utilization. This
allows to detect emerging system bottlenecks or ineffi-
cient resource usage and proactively trigger the search
for a solution to the anticipated problem.

3.1.3 Plan

In the PLAN phase, we search for a feasible solution
to the problems identified in the ANALYZE phase. De-
pending on the specific adaptation options supported
by the system and the possible solutions to a detected
problem, the search process can become complex and
comprise several iterations. In general, one can imagine
any mechanism, from rule-based approaches (e.g., Ama-
zon AWS auto scaling) to complex algorithms (e.g., using
reinforcement learning [28]) and optimization heuristics
(e.g., hill-climbing, or evolutionary programming [29]),
that can be applied here. However, designing and im-
plementing such mechanisms is a major challenge that
is usually addressed using custom low-level solutions
tailored for the specific system. Our holistic model-based
approach addresses this issue by abstracting from techni-
cal and system-specific details and leveraging techniques
from model-driven software engineering to reduce the
complexity of this phase. With DML, it is possible to
specify the adaptation process at the model level, shifting
the complexity of system-specific and technical details to
the adaptation framework.

The system designer can focus on modeling the adap-
tation process using the adaptation possibilities provided
by the system (adaptation actions). The designer is not
required to have extensive experience with the low level
technical details of the underlying platforms and mecha-
nisms used to execute the adaptation actions themselves.
For example, the adaptation action of ”virtual machine
migration” is conceptually the same whether considered
in the context of a Xen- or VMware-based virtualization
platform. The adaptation process designer can work at
the model level and can easily apply an adaptation
process in the context of different underlying platforms
provided that they support the required adaptation ac-
tions. The abstraction of technical details, as well as the
resulting better separation of concerns, fosters the reuse
of adaptation logic in different contexts.

We realize the PLAN phase as two main steps that
are executed iteratively to find a suitable solution to a
predicted problem. In the first step (Adapt System Model),
we automatically generate a new system configuration
at the model level by applying the adaptation strategy
selected as part of the ANALYZE phase in order to
avoid the problem. A strategy might contain several
alternative tactics (e.g., add VM instance, or replicate
software component) to choose from. Each tactic has an
associated weight. To decide which tactic to apply next,
a strategy chooses the tactic that has the highest weight.
The weight of a tactic is determined using a weighting
function f : T×S → R, where T is the set of tactics and S
is the set of all possible system states. The idea is that any
existing and well-established optimization algorithms or
meta-heuristics (like tabu search or simulated annealing)
can be used here to determine the weights depending on
the current state of the system, possibly also considering
its previous states stored in a trace. In the second step

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 6

(Predict Adaptation Impact), after applying the tactic with
the highest weight at the model level, we analyze the
adapted model using our online performance prediction
techniques presented in Section 4. The prediction results
are compared with the previous metric values to analyze
the impact of the adaptation, e.g., by comparing response
time or resource efficiency metrics. If the applied adap-
tation was successful, i.e., the detected problem has been
solved, we can derive a concrete system adaptation plan
that is executed on the system in the following EXECUTE
phase. If the problem is not solved, the PLAN phase
continues executing, iteratively generating a different
system state while taking into account the determined
impact of previously executed adaptations.

This loop ends either when a solution to the detected
problem has been found or when a given time limit for
finding a solution has been reached. The realization of
this phase including the automatic modification of the
system model and the impact analysis using online per-
formance prediction techniques is implemented as part
of our adaptation framework presented in Section 3.2.

3.1.4 Execute

In this phase, we perform the actual adaptation on the
real system by replaying the adaptation actions that have
been successfully applied at the model level. To adapt
the system and bring it into the desired state, we execute
the actions of the concrete adaptation plan derived in the
PLAN phase using the interfaces provided by the real
system (e.g., virtualization platforms or middleware).
We note that actions in a tactic may be retried in case
of failures. If a tactic fails several times, it would be
deactivated in the adaptation model, and the PLAN
phase will be repeated in order to find a new solution
using alternative tactics.

3.1.5 Model Calibration and Refinement

To make effective adaptation decisions, it is important
that the online system architecture model provides up-
to-date and accurate information about the system [11].
Uncertainty in the knowledge about the system structure
and behavior, or in the runtime measurements, may
negatively impact the robustness of the overall approach.
Therefore, we have included an extra step in the overall
approach to continuously validate and refine the online
architecture model. All predictions will be compared to
actual measurements as soon as the real system reaches
the time corresponding to a predicted future state. The
additional control loop triggers a separate model refine-
ment step that calibrates the model such that it reflects
the real system behavior within an acceptable margin
of error (for more details on the refinement see [30,
Chapter 6.5]). By continuously refining and updating the
model, we realize the self-reflective and self-predictive
properties that are essential for predicting the effect
of dynamic changes in the environment and possible
adaptation actions.

3.2 Realization
To realize the control loop presented in Section 3.1,
we have implemented a framework for model-based
system adaptation. The framework takes as input a
DML instance as described in Section 2. The framework
interprets the adaptation process described as part of
the DML instance and applies the modeled changes
on the application architecture, resource landscape, and
deployment models. The output is an adapted model of
the system with a configuration that solves the problem
that triggered the adaptation process. In contrast to per-
formance models which can be extracted automatically,
the creation of adaptation processes requires the effort
of a system designer [17].

PLAN

ModelAdaptorPerformanceEvaluator

AdaptationController

ANALYZEEXECUTE

MONITOR

<<triggers>> <<triggers>><<triggers>>

KNOWLEDGE BASE

ModelRepository
PerformanceData

Repository

<<queries>> <<adapts>>

<<storesResults>>
<<analyses>>

<<triggers>>

<<triggers>>

<<updates>><<updates>>

<<queries>>

ModelAnalyzer

<<triggers>>

WCF

<<queries>>

<<uses>>

Fig. 2. Architectural overview of the implemented compo-
nents constituting our adaptation framework.

Figure 2 depicts the different software components
of our framework. The WCF component forecasts fu-
ture workload intensities based on the monitored work-
load data. We use the ModelAdaptor to apply the
forecasts to the usage profile model of the DML in-
stance stored in the ModelRepository. Next, we
query the ModelAnalyzer employing its online per-
formance prediction techniques to evaluate the impact
of the forecast workload changes on the system per-
formance. In case the changes have a negative im-
pact causing a performance problem, WCF triggers the
AdaptationController to start an adaptation pro-
cess.

The AdaptationController is the core
component of our framework. Once initialized, the
AdaptationController listens for events from
the ANALYZE phase, indicating current or forecast
future violations of the system’s operational goals (e.g.,
SLA violations or inefficient resource usage). When
a problem has been signaled through an event from
the ANALYZE phase, the AdaptationController

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 7

launches the adaptation process to find a model
configuration that resolves the identified issues. To
start this process, the AdaptationController
queries the ModelRepository for the strategy
that has been designed to be triggered upon
observation of the respective event. Next, it selects
the tactic with the currently highest weight from
the set of tactics assigned to the strategy. Then, the
AdaptationController passes the selected tactic to
the ModelAdaptor, which adapts the DML instance
in the ModelRepository according to the tactic’s
adaptation plan. The ModelAdaptor employs the
adapter classes generated by EMF and the EMF
reflection API to interpret the adaptation plan and
execute the defined adaptation actions. Furthermore,
the ModelAdaptor employs EMF’s Change Model API
to track the changes performed on the DML instance.
In this way, we can ensure the transaction semantics
of tactics (see Section 2) and roll back the model to its
previous state if the application of a tactic fails.

The ModelRepository provides access to the current
DML instance. It also uses the adapter classes generated
by EMF to query and inspect the model instances. The
ModelRepository also uses EMFs Change Model API
to maintain a model history by tracing all changes that
have been applied to the models. Thereby, we are able
to switch back to a previous model state or use the trace
to generate an adaptation plan that can be replayed on
the real system in the EXECUTE phase.

After the ModelAdaptor has applied the se-
lected tactic, the AdaptationController calls the
ModelAnalyzer to analyze the changed model in-
stance. Depending on the performed adaptations, the
ModelAnalyzer generates a performance query and
triggers the online performance prediction process de-
scribed in Section 4. The results of the model analysis
are stored in the PerformanceDataRepository.

The PerformanceDataRepository is implemented
as an instance of a meta-model specified in EMF Ecore.
It manages the performance-relevant metrics measured
in the system or predicted by the ModelAnalyzer.
After model analysis, the AdaptationController
decides if the detected problem has been solved
or if further adaptations of the model with differ-
ent tactics are required. If further adaptations are
necessary, the AdaptationController triggers the
PerformanceEvaluator to evaluate the impact of
the tactic. The PerformanceEvaluator queries the
PerformanceDataRepository for the affected met-
rics M of the model state s at the current and previous
time points i and i−1, respectively. The quantification of
the achieved impact of tactic t is based on user-defined
weighting functions. The user can specify a weight wm

for each metric m ∈M to define the relative importance
of the metric with respect to the overall adaptation goal.

For example, we can calculate the weight of a tactic as

wt =
∑
m∈M

wm · (vm,si − vm,si−1
)

with vm,si representing the value of metric m obtained
for model state si. The PerformanceEvaluator as-
signs this value wt as new weight to the executed
tactic. In the next iteration of the PLAN phase, the
AdaptationController chooses the tactic with the
highest weight. This iterative process continues until the
evaluation of the current model configuration reveals
that the problem detected in the ANALYZE phase has
been solved, or until the AdaptationController de-
cides to stop the process. If a valid solution was found,
the AdaptationController triggers the adaptation
of the real system. To adapt the system, we use the
changes recorded by the ModelAdaptor to generate an
adaptation plan, which we then execute on the system
using the adaptation interfaces it provides.

In collaboration with the ModelAdaptor, the
AdaptationController interprets and executes
the adaptation process specified with DML. Thus,
the implementation of these components defines the
semantics of the specified adaptation process model
instance. For example, when modeling the scale out
of a VM, there is a difference if the used adaptation
point refers to a Container or a ContainerTemplate. The
meaning of the former is to scale the instances of
the Container on the parent model element, whereas
new instances of a scaled ContainerTemplate can be
deployed on any model element referred to by the
template. If there are multiple possible targets for the
new container when scaling a ContainerTemplate, the
process must decide where to allocate the new instance
by using heuristics, e.g., picking a random target or
the least/most utilized first. This example shows the
inherent complexity of adaptation processes. By using
a model-based adaptation process, we cannot eliminate
this challenge. However, we reduce complexity by using
models to abstract from technical details and define
adaptation processes at the model level, thus shifting
some of the complexity into our adaptation framework.
Thereby, we ease the work of system developers and
administrators when designing and implementing
adaptation processes.

All components—with exception of the workload clas-
sification and forecasting component WCF—are imple-
mented in Java as OSGi components, using the Eclipse
Equinox OSGi infrastructure. For code generation and
editing of the model instances, we use the Eclipse Mod-
eling Framework (EMF). The WCF component is designed
as a stand-alone Java application that is independent
of the rest of the framework and is used in the ANA-
LYZE phase for workload forecasting. All components
are available as stand-alone Java applications or Eclipse
plug-ins4.

4. http://www.descartes.tools/

http://www.descartes.tools/

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 8

4 ONLINE PERFORMANCE PREDICTION

A central element of our model-based performance and
resource management approach is the use of online
system architecture models described with the Descartes
Modeling Language (DML) to predict the impact of
adaptation actions by adapting and analyzing the on-
line models on-the-fly. Since this analysis has to be
performed at run-time, where only limited time and
restricted monitoring data may be available, our ap-
proach supports tailored online performance prediction
techniques. In contrast to black-box approaches to online
performance prediction, such as [9], [31], the techniques
we propose allow us to vary and analyze the impact of
multiple degrees of freedom such as system configura-
tions, service compositions, and resource allocations. The
online performance prediction techniques we present in
the following are able to answer performance queries that
can be derived from questions such as: What perfor-
mance would a new service deployed on the infrastruc-
ture exhibit? How much resources should be allocated
to it? How should the workloads of the services be
partitioned among the available resources? If any service
experiences a load spike or a change of its workload,
how would this affect the system performance? Which
parts of the system architecture would require additional
resources? What would be the effect of migrating a
service or an application component? However, when
answering such queries, there is a trade-off between
prediction accuracy and time-to-result. There are situ-
ations where the prediction results need to be available
in a short period of time such that the system can be
adapted before SLAs are violated. Accurate, fine-grained
performance prediction comes at the cost of a higher
prediction overhead and longer time-to-result, whereas
coarse-grained performance predictions allow speeding
up the prediction process. The challenge is to balance
the trade-off between prediction accuracy and prediction
speed.

4.1 Performance Queries
The approach we present here allows to conduct per-
formance predictions on-the-fly where each prediction
is tailored to answering a given performance query. A
performance query describes which specific performance
metrics of which entities are of interest. For instance,
when triggering a performance prediction, the 90th per-
centile response time of a specific service or the utiliza-
tion of a specific resource such as the database server
may be of interest. Furthermore, a performance query
specifies a desired trade-off weight between prediction
accuracy and prediction speed. In situations where the
prediction speed is critical, the prediction process pro-
vides the option to speed up the prediction. However,
this comes at the cost of reduced prediction accuracy.
Note that it is not our intention to specify real-time
constraints for the prediction process but rather to pro-
vide a way to customize the process to the concrete

SELECT r.utilization, s.avgResponseTime
CONSTRAINED AS FAST
FOR RESOURCE ‘AppServerCPU1’ AS r,

SERVICE ‘newOrder’ AS s
USING dmlConnector@modelLocation;

Listing 1. Constrained Query

online scenario. Therefore, we use trade-off weights
ranked in an ordinal scale and defined as an ordered set
W = {wk : k = 1...K}. Weight wK has the semantics
of highest prediction accuracy compared to the other
w ∈W . Weight w1 has the semantics of fastest prediction
speed compared to the other w ∈W . A demanded trade-
off weight is given by a selected dw ∈ W . To sum
up, the prediction process is tailored to the required
performance metrics as well as to a given trade-off
weight between prediction accuracy and speed.

Our notion of a performance query, formalized in [32],
provides a declarative interface to performance pre-
diction techniques to simplify the process of using
architecture-level performance models for performance
analysis. The query language 5 provides a notation to ex-
press the required performance metrics for prediction as
well as the goals and constraints of a specific prediction
scenario. An illustrative example of such a performance
query is depicted in Listing 1. It queries for the average
response time of a ‘newOrder’ service as well as the
average utilization of an application server CPU, and
requests a ‘FastResponse’ prediction (equivalent to wK).

4.2 Tailored Prediction Process
Figure 3 provides an overview of the prediction process
showing the individual steps and their inputs and out-
puts. The prediction process is triggered by a perfor-
mance query referring to a DML instance specified in
the USING clause of the query.

The model composition step marks those parts of the
DML instance relevant for answering the query. These
markings are kept in a composition mark model which
serves as input for the next step. For instance, if a service
is described with multiple service behavior descriptions
such as a fine-grained behavior, a coarse-grained behav-
ior, and a black-box description, the model composi-
tion step chooses a behavior description that provides
adequate means to predict the requested performance
metrics considering the specified trade-off weight.

The next step traverses the DML instance starting
with the usage scenarios specified as part of the usage
profile model. First, it resolves the probabilistic char-
acterizations of the parameter dependencies. Parameter
dependencies in DML describe the performance-relevant
behavior of a service’s implementation depending on
input parameters passed directly or indirectly upon
service invocation (e.g., the resource demand of order

5. Implementation at http://www.descartes.tools/dql

http://www.descartes.tools/dql

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 9

Tailored Model Solving

Performance
Query Result

Tailored Model Composition

DML
Instance

Performance
Query

Composition
Mark Model

Solving Probabilistic
Parameter Dependencies

Callstack Model

Process Step

Input/Output

Legend:

Fig. 3. Overview of online prediction process.

requests in a web shop may depend on the number of
items in the shopping cart). A probabilistic description of
the distributions of such parameter dependencies is ex-
tracted from empirical monitoring data collected at run-
time. Second, it parameterizes (e.g., resource demands,
branching probabilities) the performance model on-the-
fly using the monitoring data stored in the KNOWLEDGE
(BASE). The output is a call graph together with the cor-
responding model parameter values, denoted as callstack
model. The call graph determines how the performance
model has to be traversed for the performance predic-
tion.

The next step is the tailored model solving, i.e., it pre-
dicts the requested metrics considering the given trade-
off weight. It uses existing model solving techniques
based on established stochastic modeling formalisms.
The model solving decides which concrete model solving
technique to apply. In addition, model solving tech-
niques also come with their own configuration options
and can also be tailored to the performance query.

4.3 Tailored Model Composition

As described in Section 2, DML supports up to three
different behavior descriptions behavior(s) of different
granularity for a service s, namely fine-grained (f),
coarse-grained (c), and black-box behavior (b) descrip-
tions, i.e, behavior(s) ⊆ {f, c, b}. This ambiguity is re-
solved by the tailored model composition step. In the
following, we describe how the selection of an appropri-
ate service behavior description is done. The selection is
stored in a mark model, formalized as function mark(s) :
s 7→ {f, c, b}, that maps a service to a service behavior
level. The performance query (dw,DM) is given as a set
of requested metrics DM and a trade-off specification

dw = wk ∈ W . The selection consists of three steps:
initialization, weighting, and truncation.

Initialization. Using the ordering f < c < b, for each
service, the service behavior marking is set to the most
detailed available service behavior. For each service s,
we set mark(s) = min(behavior(s)).

As helper function, for a service s we define

calledServices(s) := {s′|s′ is service triggered by s},

where the (transitively) called services are derived via
a depth first traversal of the marked service behaviors,
starting from the clientBehavior modeled as part of the
usage profile, navigating through the modeled service
calls. Based on calledServices(s), we also define

resources(s) :=
⋃

s′∈called-
Services(s)

{r|r is resource stressed by s′},

i.e, the set of passive and active resources that is stressed
when service s and its subsequent services are processed.

Weighting. Algorithm 1 determines the target service
behavior level for service s, depending on the perfor-
mance query (dw,DM). Mapping function dw = wk 7→
((k − 1) div dK/3e) maps dw = wk ∈ W to the levels
fine-grained (= 0), coarse-grained (= 1) and black-box
(= 2). If the target level is fine-grained, we can directly
proceed with the truncation step. If the target level is
coarse-grained, for all services where both fine-grained
and coarse-grained behavior descriptions are available,
the coarse-grained behavior is marked. If the target level
is black box, an available black-box behavior is marked
unless the service call path starting with s does not
contain a service for which a metric is requested in DM
and does not stress a resource for which a metric is
requested in DM.

Truncation. Service calls of the clientBehavior that do
not involve services or resources that affect a demanded
metric can be truncated in the performance prediction.
Such calls do not contribute to the result of the perfor-
mance query and can therefore be omitted. Let S be the
set of directly called services of the clientBehavior as it
is modeled in the usage profile model. We partition S in
two sets

S′ := {s ∈ S|∀s′ ∈ calledServices(s) :
¬∃dmi = (li,mi, ai) ∈ DM : s′ = li}

and SDM := S \ S′. Thus, S′ denotes the set of services
called by the clientBehavior whose call paths do not
include a requested metric and SDM denotes the set of
services called by the clientBehavior whose call paths
do include a demanded metric. Each s′ ∈ S′ where
expression

∀r′ ∈ resources(s′) : ¬∃dmi = (li,mi, ai) ∈ DM : r′ = li

∧ ∀sDM ∈ SDM : resources(s′) ∩ resources(sDM) = ∅

holds, can then be truncated since requested metrics are
not affected.

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 10

Algorithm 1: Model Composition: Weighting

1 Weighting(s : Service, (dw,DM) : Query)
2 begin
3 behaviorLevel← (k − 1) div dK/3e
4 if behaviorLevel = 0 then
5 return
6 else if behaviorLevel = 1 then
7 if {f, c} ⊆ behavior(s) then mark(s)← c
8 else
9 if b ∈ behavior(s) then

10 if ∀s′ ∈ calledServices(s) :
11 ¬∃dmi = (li,mi, ai) ∈ DM : s′ = li
12 and
13 ∀r′ ∈ resources(s) :
14 ¬∃dmi = (li,mi, ai) ∈ DM : r′ = li

then
15 mark(s)← b
16 end
17 else if {f, c} = behavior(s) then
18 mark(s)← c
19 end
20 end
21 end

4.4 Tailored Model Solving
The tailored model solving step gets the truncated per-
formance model and uses existing model solving tech-
niques based on established stochastic modeling for-
malisms to predict the requested performance metrics.
In the following, we first provide a brief overview of
the solving techniques, and then describe the tailoring
mechanism itself that derives parametrization of analysis
approaches, based on the query and its constraints.

4.4.1 Solving Techniques
As analytical solving techniques, we apply asymptotic
bounds analysis [33], and make use of the analytical
solver tool LQNS [34], [35]. As simulation technique, we
use the SimQPN simulation engine [36].

DML2BoundsAnalysis. A bounds analysis based on
Little’s Law and Utilization Law can quickly provide
asymptotic bounds for the average throughput and the
average response time, but this comes at the cost of
lower accuracy. However, the results can still be accu-
rate enough to make quick decisions when approximate
performance results are sufficient [33].

DML2LQNS. The LQNS solver implements sev-
eral analytical solving techniques such as Mean Value
Analysis (MVA) [33] and combines the advantages of
other existing analytical solvers, namely SRVN [37]
and MOL [38]. Given that LQNS is a solver for Lay-
ered Queueing Networks (LNQs), a transformation from
DML to LQN has to be provided. For details of the
transformation, we refer the reader to [39].

DML2SimQPN. As a combination of Queueing Net-
works and Colored Generalized Stochastic Petri Nets,

Queueing Petri Nets (QPNs) can model hardware con-
tention and scheduling strategies as well as software con-
tention, simultaneous resource possession, synchroniza-
tion, blocking, and asynchronous processing. SimQPN
is an established simulator for QPNs [36] that provides
fine-grained options to control what type and amount
of data is logged during the simulation run. For the
transformation from DML to QPNs, we refer the reader
to [40].

4.4.2 Tailoring

In this section, the focus is on tailoring the solving
techniques to the given performance query. On the one
hand, it is decided which of the available model solving
techniques is appropriate for the performance query.
On the other hand, each model solving technique itself
comes with its own configuration options and thus itself
can be tailored to the query.

Given a performance query (dw,DM), the target be-
haviorLevel is given by the mapping function dw = wi 7→
((i− 1) div dK/3e), that maps trade-off specification dw
to the levels fine-grained (= 0), coarse-grained (= 1)
or black-box (= 2). Figure 4 illustrates the tailoring
mechanism.
• Bounds analysis can be used to quickly derive

asymptotic bounds for average throughput and av-
erage response time of the clientBehavior, but comes
at the cost of potentially reduced prediction accu-
racy. Furthermore, in case of an open workload,
resource utilization can be predicted.

• LQNS is also limited to mean value predictions, and
may suffer from the assumption of exponentially
distributed service times and inter-arrival times, in
particular. While approximations of service times
are considered acceptable for mean-value analy-
sis (e.g., [31]), approximations of the inter-arrival
time distribution in case of an open workload may
easily lead to considerable prediction errors. Fur-
thermore, the support for analyzing blocking behav-
ior at passive resources is limited [39].

• SimQPN can provide the most detailed performance
predictions, e.g., predictions of response time distri-
butions.

While, e.g., the bounds analysis does not have ad-
ditional degrees-of-freedom, the transformation to QPN
and solving with SimQPN provides multiple configura-
tion options. These configuration options can be used
to further tailor the solution to a given query (dw,DM).
SimQPN provides fine-grained options to control what
type and amount of data is logged during the simulation
run. The more data is logged, the longer the simulation
run takes. Depending on the desired metrics, each place
in the resulting QPNs can be annotated with a so-called
stats-level, e.g., differentiating if only throughput statis-
tics are to be collected or also utilization measurements,
or even residence time statistics. For the details of the
stats-level settings, we refer to [30].

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 11

Bounds
Analysis

yes

no

yes

no

yes
yes

LQNS

no

yes

nono

yes

noSimQPN

yes

yes

Fig. 4. Tailored Model Solving

Furthermore, SimQPN’s simulation stopping crite-
ria are configured to reflect trade-off specification dw.
SimQPN uses non-overlapping batch means [41] for
estimating the variance of mean residence times, and
stops when a certain confidence level is reached. The
significance level and the desired width of the confidence
interval are configurable. The significance level is set to
α = 0.05%, the width of the confidence interval is set
relative to the mean value, i.e., as relative precision of the
estimate. We vary the relative precision depending on
the trade-off specification dw. The higher the precision,
the higher the prediction accuracy, but also the longer
the prediction run. For dw = w> (trade-off weight with
highest accuracy), the relative precision is set to 5%.
For dw = w⊥ (trade-off weight with fastest prediction
speed), the relative precision is set to 30%. In capacity
planning, prediction errors of up to 30% are considered
acceptable [31]. Accordingly, a trade-off specification
dw = wi ∈ W then maps to a relative precision of
((K − i) ∗ (30− 5)/K) + 5 percent.

The output of the model solving step is the prediction
of the requested metrics DM. The prediction itself is
thus tailored to the given performance query in order
to provide the requested metrics in accordance with the
given specification of how to trade-off between predic-
tion accuracy and time-to-result.

5 CASE STUDIES
In this section, we show the results of two industrial case
studies 6 that represent the first end-to-end evaluation of
the approach. In the first case study, we apply our online
performance prediction technique to the CRM system
of a leading Software-as-a-Service cloud provider. For
the second case study, we implemented our model-
based approach for self-aware performance and resource
management for the BlueYonder system, a cloud service
for preditictive analytics and big data analysis.

6. http://descartes.tools/dml/examples

5.1 Software-as-a-Service CRM System
The Customer Relationship Management (CRM) appli-
cation used in this case study is part of a component-
based large-scale multi-tenant platform, i.e., the platform
is shared among multiple customers (tenants). In this
context, we evaluate the suitability of our modeling
abstractions and the capabilities of our performance
prediction techniques. We investigate scenarios of the
core CRM application that consists of an application
tier and a database tier. As part of the evaluation, we
build an architecture-level performance model, conduct
predictions varying the workload intensity and service
input parameters, and compare the predictions with
measurements of the real system.

5.1.1 System Setup
We conducted experiments in a resource environment
as depicted in Figure 5. The two application server
instances as well as the database instance and the Storage
Area Network (SAN) were of the same type and config-
uration as the production system. The database server
has 48 CPU cores and runs an Oracle Database, the ap-
plication server instances each have 24 CPU cores where
Jetty7 is running as application server. The experimental
environment can be understood as a vertical slice of the
production environment, i.e., instead of ≈ 20 applica-
tion servers the experimental environment provides 2
application servers, and instead of eight database servers
the experimental environment provides one database
server. Given that the application tier is stateless and
the database tier is configured in a way that a tenant
is served always by the same database node, the exper-
iment setup can provide measurement results that are
representative for production environments. The CRM
system is deployed on the application servers and the
database server as in production. The database contains
the anonymized state from a production instance.

7. http://www.eclipse.org/jetty/

http://descartes.tools/dml/examples

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 12

 Switch

Oracle Database

Server

SAN

Load Driver

Result Machine

Experiment

Controller

Application Servers

Load
Balancer

Fig. 5. Resource Environment

5.1.2 Architecture-Level Performance Model.
Figure 6 depicts a high-level overview of the structure
of the architecture-level performance model describing
the CRM application. The system model shows a load
balancer that distributes incoming requests to one of the
two CRM instances that themselves need a database in-
stance. A CRM instance refers to a composite component
that in turn consists of component instances of, e.g., the
component providing the integration service. In this case
study we model the component services with coarse-
grained behavior descriptions. Given that the CRM ser-
vices highly depend on meta-data that describes the
tenants’ customizations, a fine-grained service control
flow is hard to model. For the model parameter estima-

System Model

Entry

Component

Component Repository Model

Load Balancer

CRM Core
Instance1

CRM Core
Instance2

Database

CRM Core

Component

UIGenerator

Component

Integration

Component

Task
Management

Component

Composite

Entry

Task
Management

UIGenerator

Integration

Fig. 6. Application Architecture Model

tion, we use monitoring statistics as they are captured
in the production system. Thus, we do not inject addi-
tional monitoring overhead compared to the production
system. The resource demands were estimated during
performance tests executed with a steady state time of
900 seconds and a warm-up time of 600 seconds. CPU
resource demands are approximated using response time
measurements that are obtained in a low load scenario,
i.e., in a scenario where both the application server CPU
and the database server CPU load is below 20%. For each
request, we measure the CPU time on the application

SELECT MEAN(app1.utilization, app2.utilization),
dbs.utilization

CONSTRAINED AS ACCURATE
FOR RESOURCE ‘ApplicationServer1’ AS app1,

RESOURCE ‘ApplicationServer2’ AS app2,
RESOURCE ‘DBServer’ AS dbs

USING connector@location

Listing 2. Query1: Utilization Query

servers, the CPU time on the database server, and the
I/O delay as observed at the database.

5.1.3 Results
In this case study, we investigate the prediction accu-
racy and time-to-result for different performance queries
using the online performance prediction approach in
Section 4. We issue various performance queries in the
context of business scenario ‘task management’. In an
open workload, a sales agent logs-in and manages sev-
eral activity lists. There are activity lists directly assigned
to the sales agent (MyActivities), lists assigned to the
sales agent’s team (MyTeamsOpenActivities and MyTeam-
sClosedActivities), and a list of all activities (AllActivities).
The load driver script of the task management workload
ensures that the usage profile is executed for different
sales agents.

We parameterize the architecture-level performance
model under low load conditions (≈ 20% CPU utiliza-
tion), and then conduct predictions for medium load
conditions (≈ 40%), high load conditions (≈ 60%), and
very high load conditions (≈ 80%), comparing the results
with steady-state measurements on the real system.

Query1. With the first performance query shown in
Listing 2, we ask for the utilization of the applica-
tion servers and database servers. Figure 7 shows the
measured and predicted server CPU utilization for the
different load levels. The utilization of the DB server
varies from 20% to 80%, the application tier is only little
utilized. The utilization predictions fit the measurements
very well.

TABLE 1
Efficiency of Performance Predictions for Query1

Time to result Load level
for Query1 low medium high very high
Analysis Time BA [ms] 11 11 11 11
Sim. Time SimQPN [ms] 396 449 461 482

Table 1 shows the analysis and simulation times of
the performance query for the different load scenarios.
Each prediction has been repeated 30 times to obtain an
average execution time for each prediction. The predic-
tion process selects bounds analysis as solving method.
For a comparison we also triggered the utilization pre-
dictions with SimQPN. We used Method of Welch [41]
to determine the warm-up period and the steady-state
run length for SimQPN. However, as shown in Table 1,

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 13

the time-to-result would have been significantly longer,
i.e., ≈400ms instead of 11ms. Note that we did not use
LQNS, since it does not support multi-server queues
with processor sharing as scheduling discipline [34].

workload

C
P

U
 U

til
iz

at
io

n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Utilization measurements and predictions

low medium high very high

Legend

App CPU Utilization, measured
App CPU Utilization, predicted
DB Utilization, measured
DB Utilization, predicted

Fig. 7. Measurements, Prediction Results and Prediction
Errors for Query1

●

●

●

●

0
5

10
15

20
25

30

workload

R
el

at
iv

e
R

es
p.

 T
im

e
P

re
di

ct
io

n
E

rr
or

 in
 %

low medium high very high

●

●

●

●

●

Legend

MyActivities
TeamsOpenActivities
TeamsClosedActivities
AllActivities

Fig. 8. Measurements and Prediction Results for Query2

Query2. The performance query shown in Listing 2
asks for the average response times of four task man-
agement services. The observed average response times
vary between 200 and 2000 milliseconds, with service
AllActivities having the slowest response time, and My-
Activities the fastest response time. In Figure 8, the
relative error of the average response time predictions
is shown. It shows that the relative error is below 20%
across all load levels. The error is computed relative to
the measurements, e.g., a measurement of 100ms and a
prediction of 90ms would result in a relative error of
10%. In the low load scenario, the prediction error is
zero since the model is calibrated and adjusted with the
measurements of this scenario.

TABLE 2
Efficiency of Performance Predictions for Query2

Time to result Load level
for Query2 low medium high very high
Sim. Time SimQPN [s] 5.9 6.7 7.6 8.4

Table 2 shows the simulation times of the performance

SELECT
myac.avgResponseTime, toac.avgResponseTime,
tcac.avgResponseTime, aac.avgResponseTime,
MEAN(app1.utilization, app2.utilization),
dbs.utilization

CONSTRAINED AS ACCURATE
FOR RESOURCE ‘ApplicationServer1’ AS app1,

RESOURCE ‘ApplicationServer2’ AS app2,
RESOURCE ‘DBServer’ AS dbs,
SERVICE ‘MyActivities’ AS myac,
SERVICE ‘TeamsOpenActivities’ AS toac,
SERVICE ‘TeamsClosedActivities’ AS tcac,
SERVICE ‘AllActivities’ AS aac

USING connector@location;

Listing 3. Query2: Average Response Time Query

SELECT
PERCENTILE(myac.responseTime)[percentile="90"],
PERCENTILE(toac.responseTime)[percentile="90"],
PERCENTILE(tcac.responseTime)[percentile="90"],
PERCENTILE(aac.responseTime)[percentile="90"],
MEAN(app1.utilization, app2.utilization),
dbs.utilization

CONSTRAINED AS ACCURATE
FOR RESOURCE ‘ApplicationServer1’ AS app1,

RESOURCE ‘ApplicationServer2’ AS app2,
RESOURCE ‘DBServer’ AS dbs,
SERVICE ‘MyActivities’ AS myac,
SERVICE ‘TeamsOpenActivities’ AS toac,
SERVICE ‘TeamsClosedActivities’ AS tcac,
SERVICE ‘AllActivities’ AS aac

USING connector@location;

Listing 4. Query3: Percentile Response Time Query

query for the different load scenarios. The prediction
process selects SimQPN as solving method. The sim-
ulation times are significantly longer than for the first
performance query, and grows with the load level.

Query3. With the third performance query shown in
Listing 2, we ask for the 90th percentile response times
of the four task management services. The predictions
of the percentiles fit the measurements with an error of
below 20% as depicted in Figure 9.

TABLE 3
Efficiency of Performance Predictions for Query3

Time to result Load level
for Query3 low medium high very high
Sim. Time SimQPN [s] 54.3 65.3 89.8 114.2

Table 3 shows the simulation times of the performance
query for the different load scenarios. The prediction
process selects SimQPN as solving method. The simula-
tion times are significantly longer than for the other two
performance queries, since the logging data collected
during the simulation includes samples of the response
time distributions.

5.1.4 Discussion
The SaaS provider case study demonstrates the predic-
tion capabilities of our approach in the context of a real-
life enterprise software system. The achieved accuracy

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 14

●
●

●

●

0
5

10
15

20
25

30

workload

R
el

at
iv

e
90

th
 P

er
ce

nt
ile

 R
T

 P
re

d.
 E

rr
or

 in
 %

low medium high very high

●
●

●

●

●

Legend

MyActivities
TeamsOpenActivities
TeamsClosedActivities
AllActivities

Fig. 9. Prediction Errors for Query3

for the database server and application server utilization
predictions is within 5% error. For the service response
times, the relative prediction error is within 20%. This
applies both to average service response times as well
as to the 90th percentile response times. Note that we
considered further scenarios beyond ‘task management’
(see [30]), however, in this article, the focus is on
prediction accuracy and time-to-result of performance
predictions. We showed that the tailored performance
prediction process successfully reduces the performance
overhead. While the predictions for Query1 are faster
than 1s, the time-to-result for Query2 is within 5-10s
while for Query3 the prediction lasts up to two minutes.

For SaaS providers, a reliable performance and re-
source management requires the ability to answer ques-
tions concerning capacity planning, admission control,
SLA management, and energy management. Perfor-
mance predictions help to answer such questions. Note
that in order to find a target system configuration at the
model level, typically not only one performance query
is issued but several performance queries assessing the
degrees-of-freedom of the system configuration. In this
context, differences in the time-to-result of performance
predictions can add up to several minutes, and thus
a tailoring of the performance prediction process is
necessary.

5.2 Blue Yonder

In this section, we present the results of a case study
conducted in cooperation with our industrial partner
Blue Yonder GmbH & Co. KG. Blue Yonder is a lead-
ing service provider in the field of predictive analytics
and big data. The company offers enterprise software
services that are based on forecasts of, e.g., sales, costs,
churn rates, etc. Blue Yonder employs machine learning
techniques to obtain accurate forecasts based on histori-
cal data provided by their customers. Usually supervised
machine learning can be applied, consisting of a training
step that is used to infer a mathematical model from the
available historical data. This model can then be used
to calculate forecasts based on a given input data set.
Training the model and calculating the forecasts requires

a considerable amount of computational resources de-
pending on the amount of customers, their input data,
and their service-level agreements (SLAs).

Given the high costs of leasing IT resources, Blue Yon-
der is interested in saving costs by dynamically adjusting
the amount of resources provided to its customers at
run-time without violating the customer’s service level
agreements (SLA).

5.2.1 Illustrating Example: DML Instance
Figure 10 depicts an example DML instance in a UML-
like notation. In the following sections, we will refer to
this figure to illustrate the most important concepts of
DML. This example is a simplified version of the DML
instance of the Blue Yonder software system that we use
later in our case study presented in Section 5.2. Note that
Figure 10 does not show the adaptation process, which
is presented later as part of the case study.

The center of Figure 10 shows the resource landscape
of the Blue Yonder system, consisting of a data center
with four servers. Distributed over these servers, we
see the software components, the services they provide,
and how these services are connected. The example
also shows three fine-grained behavior descriptions of
the services, parameterized with the respective resource
demands. Furthermore, Figure 10 also depicts the usage
profile of the system as well as the parts of the system
that can be adapted at run-time. A more detailed de-
scription of Blue Yonder’s system architecture and our
experiment environment follows in Section 5.2.

5.2.2 System Architecture
A typical Blue Yonder system consists of three main
software component types: the Gateway Server (GW), the
Prediction Server (PS), and a third party component,
the database (DB), see the example DML instance in
Figure 10. The GW is the communication endpoint to the
Blue Yonder system. Users can invoke a set of different
services via HTTP. In the considered sample project, the
available services are train, predict, and results.
As their names suggest, the train service initiates the
training step of the supervised learning algorithms, the
predict service initiates the calculation of the forecasts
based on the trained prediction model, and finally the
results service provides the results to the customer.
To train the prediction model, the train service accepts
historical data. The GW receives this data, parses it, and
generates a job, which is put into the GW’s queue and
scheduled for processing. Then, an active PS takes the
job from the queue, processes it (i.e., trains the pre-
diction model) and stores the results in the database.
After training, a user can invoke the predict service
to calculate a forecast based on the trained prediction
model. The user sends the data for which the forecast
should be made to the GW. The GW reads the data and
generates one or several jobs—depending on the size
of the data—which are scheduled for processing. These
jobs are again processed by one or several PS and the

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 15

<<DataCenter>>

BYDC

<<FineGrainedBehavior>>

IPredictionServer.predict()

<<ComputingInfrastructure>>

desc2

<<FineGrainedBehavior>>

IDatabase.write()

<<FineGrainedBehavior>>

IGateway.predict()

<<implements>>

<<ComputingInfrastructure>>

desc1

<<ComputingInfrastructure>>

desc4
Database

Gateway

Server

<<ComputingInfrastructure>>

desc3
Prediction

ServerA

Prediction

ServerB

IGateway

 train()

 predict()

 results()

IDatabase

 write()

 query()IPredictionServer

 train()

 predict()

<<ConfigurationSpecification>>

ResourceType="CPU"

ProcessingRate=2.7GHz

Cores=2

<ConfigurationSpecification>>

ResourceType="CPU"

ProcessingRate=2.7GHz

Cores=8

<<UsageProfile>>

UserPopulation=10

ThinkTime=0.0

Service="train"

RecordSize=500,000

<<BranchAction>>

doLoadBalancing

Probability: 0.5

<<ExternalCallAction>>

PredictionServerA.predict

Probability: 0.5

<<ExternalCallAction>>

PredictionServerB.predict

<<InternalAction>>

parsePredictionJobs

<<ParametricResourceDemand>>

ResourceType="CPU"

Unit="CpuCycles"

Specfication="(0.04015 + (2.628 * 10^(-8) * recordsize)) * 2700

* (recordsize / bucketsize)"

<<InternalAction>>

schedulePredictionJobs

<<ParametricResourceDemand>>

ResourceType="CPU"

Unit="CpuCycles"

Specfication="(0.5506 + (7.943 * 10^(-8)

* recordsize)) * 2700"

<<implements>>

<<ExternalCallAction>>

predict_write

<<InternalAction>>

verify_results

<<ParametricResourceDemand>>

ResourceType="CPU"

Unit="CpuCycles"

Specfication="(1.225 + (1.827 * 10^(-7) *

recordsize)) * 2700 * (recordsize / bucketsize)"

<<implements>>

<<ModelEntity

ConfigRange>>

minInstances=1

maxInstances=16

1 Gbit Ethernet

<<InternalAction>>

writeData

<<ParametricResourceDemand>>

ResourceType="CPU"

Unit="CpuCycles"

Specfication="recordsize"

Fig. 10. DML instance describing an exemplary deploy-
ment of the Blue Yonder system.

results are stored in the database for retrieval by the user
(results service). Technically, GW and PS are indepen-
dent operating system processes that can be started and
stopped on any machine in the resource landscape. The
database is a standard MySQL database. Each customer
has its own GW, PS, and DB instances, which are deployed
in Blue Yonder’s resource landscape. The number of
component instances and their distribution in the system
environment is called topology.

In our scenario, the resource landscape consists of
heterogeneous hardware, two low-budget dual-core ma-
chines (desc1 and desc2), and two high-end quad-core
machines with hyper-threading, i.e., eight logical cores
(desc3 and desc4). The example topology is depicted
in Figure 10.

The types of workload changes that occur in the sys-
tem environment are characterized by the service type
that is used (train, predict), the number of requests
(request arrival rate), the type of request processing
(sequential or parallel), and the size of the request
(the number of records per request, typically varying

between 10,000 and 500,000). To react on changes in
the environment (changes in the workloads of existing
customers or launching of new customer projects), ad-
ditional PS instances can be started on other machines.
Furthermore, PS instances can also be migrated between
machines at run-time. The challenge of this case study,
compared to the previous one, is that our approach is
now faced with a heterogeneous hardware environment
and with different performance requirements of multiple
concurrent customers. For example, upon a workload
change of a given customer, the adaptation process has
to decide whether to start/stop a prediction server on a
low-budget or a high-end machine, taking into account
the performance requirements and topology of other
customers.

TABLE 4
Measured and predicted average response times and
their relative errors for nine parallel predict requests

for varying mixed data record sizes with six PS instances
allocated on desc4.

Record Sizes Response Time [sec] Error
[in 1,000 records] measured predicted [in %]

50 & 100 194.50 175.26 -9.9
100 & 200 366.48 325.16 -11.3
150 & 300 545.05 485.65 -10.9
250 & 500 937.24 780.91 -16.7

5.2.3 Model Implementation
For this case study, we created a new DML instance
for Blue Yonder’s system. An overview of the resource
landscape model, the application architecture model,
the deployment model, and the usage profile model is
depicted in Figure 10.

We evaluated the prediction accuracy for different
workload mixes. Table 4 shows the absolute and relative
prediction error for the average response times and
Table 4 the absolute prediction errors for the CPU uti-
lization on different hardware nodes. The results showed
that the prediction error was below 20%.

The adaptation process we use in this case study
consists of the following strategies: FindDeployment,
ReduceDeployment, and ConsolidateDeployment.
The FindDeployment strategy launches new PS in-
stances until all customer SLAs are fulfilled. It contains
two different tactics starting the new PS instances on
low-budget machines and high-end machines, respec-
tively. ReduceDeployment removes unnecessary PS
instances from machines to save operating costs, e.g.,
if the workload of a customer has decreased. Finally,
ConsolidateDeployment migrates PS instances be-
tween machines with the goal to improve efficiency.
A schematic representation of the adaptation process
model is depicted in Figure 11.

5.2.4 Evaluation
Currently, Blue Yonder uses dedicated resources for each
customer to fulfill their respective SLAs. When acquiring

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 16

TABLE 5
Measured and predicted average CPU utilizations and their absolute errors for nine parallel predict requests for

varying mixed data record sizes with six PS instances allocated on desc4.

Record Sizes desc2 [%] desc3 [%] desc4 [%]
[in 1,000 records] meas. pred. err. meas. pred. err. meas. pred. err.

50 & 150 9.42 27.6 18.2 17.11 6.0 11.1 51.56 38.9 12.7
100 & 200 10.35 19.4 9.1 16.54 4.0 12.5 49.19 40.8 8.4
150 & 300 10.51 16.2 5.7 16.33 3.3 13.0 47.79 41.4 6.4
250 & 500 10.20 13.7 3.5 16.65 2.8 13.9 44.67 41.9 2.8

<<Strategy>>

FindDeployment

<<Objective>>

response_time < SLA

<<uses>>

<<Strategy>>

ReduceDeployment

<<Tactic>>

MigratePsInstance

weight=1.0

<<AdaptationPlan>>

<<Action>>

migratePsInstance

<<uses>>

<<uses>>

<<Tactic>>

IncreaseResources-LowBudget

weight=0.5

<<AdaptationPlan>>

<<Action>>

addPsInstance

LowBudgetMachine

<<Tactic>>

IncreaseResources-HighEnd

weight=1.0

<<AdaptationPlan>>

<<Action>>

addPsInstance

HighEndMachine

<<Tactic>>

DecreaseResources

weight=1.0

<<AdaptationPlan>>

<<Action>>

removePsInstance

LowBudgetMachine

<<Action>>

removePsInstance

HighEndMachine

50%

50%

<<Strategy>>

ConsolidateDeployment

<<uses>>

<<Objective>>

response_time < SLA

Fig. 11. Schematic representation of the adaptation
process model used in Scenario 1.

new customer projects, Blue Yonder normally has to
estimate how much resources are required to sustain the
workloads of the new customers and ensure adequate
performance. This estimation is based on the experience
of Blue Yonder and can range from few low-budget
desktop machines to hundreds of cores on high-end
servers, depending on the amount of data to be analyzed
and on the time available for the analysis. Generally a
worst-case estimation is made, i.e., the system capacity
is dimensioned to support the peak workload intensity.
Consequently, Blue Yonder is interested in increasing
their efficiency by dynamically sharing computing re-
sources among different customers. As Blue Yonder has
detailed information from their customers about when,
how many, and which type of requests are expected to
arrive, a self-adaptive approach that dynamically adapts
the amount of resources according to the actual customer
demand appears to be promising. In order to dynam-
ically share the compute resources between customers
while still ensuring certain request response times, we
created an implementation of the model-based approach
described in Section 3 for the Blue Yonder system.

5.2.4.1 Scenario 1: The goal of this scenario is to
evaluate the effectiveness of our approach in adapting
resource allocations to workload changes such that cus-
tomer SLAs are fulfilled while considering the heteroge-
neous nature of the hardware environment.

Our scenario starts with the default topology (one
GW on desc2, one PS on desc4, one DB on desc3)
and a customer that issues one predict request with
500,000 records. The system needs to ensure a maxi-
mum request response time of 3,600 seconds (one hour).
The default topology is sufficient to process this load
without SLA violations. However, when the customer
increases the number of requests to 50, the default
topology needs to be adapted in order to still pro-
vide a response time within one hour for all requests.
This event triggers the FindDeployment strategy with
the objective to find a system configuration that can
handle the load without SLA violations. Because the
IncreaseResources-HighEnd tactic initially has the
highest weight, the adaptation framework selects this
tactic to add resources to the system. By applying the
tactic, another PS instance is launched on the high-end
machine desc4, which improves the response time of
the system towards the strategy’s objective, but SLAs are
still violated. Thus, the adaptation framework continues
applying this tactic. However, after the 16th iteration, the
response time cannot be further improved. The reason is
a constraint by Blue Yonder to avoid significant perfor-
mance degradation. This constraint limits the number
of PS instances per machine to two times the available
(logical) cores. For example, for the high-end machines
where we have four cores with hyper-threading (which
is comparable to eight logical cores), 16 PS instances
can be executed in parallel with negligible resource
contention. However, if the algorithm tries to “overcom-
mit” the resources of a machine, i.e., deploys more PS
instances, the performance decreases significantly due
to resource contention. Given that after 16 iterations,
applying the tactic did not further improve the response
time of the system, the adaptation framework revokes
the application of this tactic and decreases its weight.
However, since the objective has not been achieved
yet, the adaptation process continues and applies the
IncreaseResources-LowBudget tactic in the next
iteration. This tactic adds another PS instance to the
low budget machine desc1, which further improves
the response time. The adaptation framework keeps
applying this tactic for three additional iterations un-

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 17

Request Size: 500000
 Request Type: predict, parallel

N
um

be
r

of
 P

re
di

ct
io

n
S

er
ve

rs

0
5

10
15

20

desc1
desc4
total

0
20

40
N

um
be

r
of

 R
eq

ue
st

sWorkload History

Fig. 12. Adaptation of the system environment to
changes in the workload of a customer.

til all SLA violations are resolved. In summary, our
modeled adaptation process suggests a deployment of
20 PS instances, four on desc1 and 16 on desc4. As
Figure 12 shows, this deployment is sufficient to handle
the increased load. This experiment shows that with our
approach we are able to model an adaptation process
that utilizes the available capacity, but does not exceed
it by overcommitting resources.

In the next step, we reduce the workload from 50
to 40 parallel requests, i.e, less resources should be
sufficient to maintain the SLA of one hour. Thus, the
ReduceDeployment strategy is triggered. The adapta-
tion framework applies the DecreaseResources tactic
to reduce the amount of active PS instances. This tactic is
repeated until SLAs start being violated, indicating that
the process has removed too many PS instances. At that
point, the application of the latest iteration of the tactic
is revoked, and the adaptation process ends. However,
the system configuration after applying this strategy may
be further optimized in case PS instances are distributed
over several machines that can be consolidated. To this
end, the ConsolidateDeployment strategy applies the
MigrateResources tactic, migrating the PS instances
from the low-budget machine to the high-end server. As
a result of our adaptation process, the four PS instances
running on the low-budget machine are released. Fig-
ure 12 shows that the reduced number of PS instances
fulfills the requirements.

5.2.4.2 Scenario 2: In this scenario, we show that
our approach is applicable in scenarios where changes
of the workload behavior of one customer affect the
performance experienced by other customers. The goal
is to show that our approach, compared to trigger-based
approaches, can trade-off different performance require-
ments of customers with different priorities. Therefore,
we have added two further strategies to our adaptation
process model depicted in Figure 13.

The initial Blue Yonder topology in this scenario com-
prises four PS instances that are deployed on desc1
(see Figure 15). Two of these PS instances belong to
customer A, which is a gold customer. The other two
PS instances belong to customer B and C, respectively,

<<Strategy>>

ResolveResource

BottleneckOfCustomerA

<<Objective>>

response_time_A < SLA

<<uses>>

<<Strategy>>

ResolveResource

BottleneckOfCustomerB

<<Objective>>

response_time_B < SLA

<<Tactic>>

IncreaseResourcesCustomerA

weight=1.0

<<AdaptationPlan>>

<<Action>>

increasePsInstance

<<Tactic>>

IncreaseResourcesCustomerB

weight=1.0

<<AdaptationPlan>>

<<Action>>

increasePsInstance

<<Tactic>>

MigrateResourcesCustomerA

weight=0.5

<<AdaptationPlan>>

<<Action>>

migratePsInstance

<<Tactic>>

MigrateResourcesCustomerB

weight=0.5

<<AdaptationPlan>>

<<Action>>

migratePsInstance

<<uses>>

<<uses>><<uses>>

Fig. 13. Schematic representation of the adaptation
process model used in Scenario 2.

R
es

po
ns

e
T

im
e

[s
ec

]

0
20

00
40

00
60

00
80

00

Topology c1 Topology c2 Topology c3 Topology c4

Customer A
Customer B
Customer C

Fig. 14. Response times of the different customers during
the adaptation process (SLAs are denoted by the dashed
lines).

which are silver customers. A gold customer is a cus-
tomer with higher priority, i.e., violating its SLAs causes
higher penalties. Furthermore, to minimize penalties
caused by major response time fluctuations, gold cus-
tomers have the additional constraint that PS instances
of such customers must not be executed on overcom-
mitted machines, i.e., machines already executing two
times more PS instances than there are logical cores (see
previous scenario).

In this scenario, we assume that we observe
an SLA violation for customer B due to a
workload increase (see Figure 14), triggering our
adaptation process. The process first applies the
IncreaseResourcesCustomerB tactic of the
ResolveResourceBottleneckOfCustomerB
strategy, because this tactic has the highest

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 18

PSA1

PSA2

PSB1

PSC1

PSA1

PSA2

PSB1

PSC1

PSB2

PSA1

PSA2

PSB1

PSC1

PSB2 PSA1

PSA2

PSB1

PSC1

PSB2

Topology c1 (initial) Topology c2

Topology c3 Topology c4

desc4
desc1

desc4
desc1

desc4
desc1

desc4
desc1

Fig. 15. Details of the different system configurations
explored as part of the adaptation process triggered by
a workload change of one customer affecting other cus-
tomers.

weight. Applying this tactic starts another PS
instance for customer B on desc1 (topology c2).
However, in the new topology, the SLAs of the
gold customer A are now violated due to mutual
performance influences. This SLA violation triggers
the ResolveResourceBottleneckOfCustomerA
strategy and the adaptation framework executes the
IncreaseResourcesCustomerA tactic. However,
this tactic cannot be applied because of the constraint
that PS instances of gold customers must not be
executed on overcommitted machines. As a result,
the tactic is revoked and its weight is reduced. In
the next iteration, the adaptation process applies the
MigrateResourcesCustomerA tactic to migrate a
PS instance of customer A to desc4. The migration
reduces response times, but still does not eliminate
the SLA violation of customer A. Nevertheless, the
tactic contributed towards the strategy’s objective, and
thus, the adaptation process continues by migrating the
second PS instance of customer A to desc4 (topology
c4). This resolves the problem and the adaptation
process completes.

This scenario shows that using our model-based ap-
proach, we are able to explicitly consider the mu-
tual performance influences between different customers
(adding a new PS instance for customer B affected
customer A) and model a process that is able to auto-
matically find a way to resolve SLA violations for both
customers. In the considered scenario, a conventional
trigger-based approach would simply add a PS instance.
The issue that adding this further instance leads to an
SLA violation for customer A would only be detected
after the system has been reconfigured. Of course, then
a new trigger would start further adaptations to address
this issue, however, penalty costs would arise due to the

SLA violations that will already have occurred.

5.2.5 Scenario 3
In this scenario, we show that the allocation found by
the modeled process provides a valid solution that uses
resources efficiently. Like in the previous experiments,
we use a workload of five parallel predict service
requests with 500,000 data records. Moreover, the SLA
with the customer states that the request has to be
processed within 800 seconds. For such a scenario, our
approach suggests to allocate five PS instances on desc4
to maintain the SLA. To evaluate the quality of this

of PredictionServers

1 2 3 4 5 6 7 8

5
15

25
35

45
55

65

C
P

U
 U

til
iz

at
io

n
[%

]●

●

●

●

●
●

● ●

50
0

10
00

20
00

30
00

R
es

po
ns

e
T

im
e

[s
ec

]
SLA

● measured
predicted

measured
predicted

Fig. 16. Comparison of predicted and measured metrics
for five parallel predict requests with a record size of
500,000. Prediction servers have been started on the
high-end machine desc4.

solution, we compare measured and predicted average
response time and CPU utilization for this scenario with
a varying amount of PS instances deployed on a high-
end machine (see Figure 16). As we can see, four PS
instances are not enough to meet our deadline of maxi-
mum 800 seconds, since four instances need 974 seconds
to process the given workload. This figure also shows
that further PS instances would speed-up the processing
of the requests, but would also lead to a higher resource
usage.

5.3 Summary
The presented case studies are examples of how to use
our approach to implement model-based performance
and resource management at the system architecture
level. The first case study based on a Software-as-a-
Service CRM cloud application shows that our online
performance prediction techniques exploiting the addi-
tional capabilities of DML models (e.g., multiple ab-
straction levels) is able to provide accurate predictions
for the resource utilization (within 5% error) as well
as mean and percentile response times (within 20%
error). At the same time it provides the flexibility to
automatically trade-off between prediction accuracy and
speed depending on a performance query.

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 19

In the second case study, we showed that DML can
be used in different scenarios to specify adaptation
processes that leverage architectural information for au-
tomated adaptation decisions, trading-off different per-
formance requirements of multiple users. In addition,
the case study demonstrates the advantages of our ap-
proach compared to reactive, trigger-based adaptation
approaches. The results showed that, for the considered
scenarios, both the reactive and the proactive adaptation
approach needed only approximately 45% of resources
of the static allocation approach. However, the proactive
approach could further reduce SLA violations up to 60%
in our scenario. Our experiments revealed that the adap-
tation overhead is dominated by the number of iterations
to find a suitable model configuration multiplied with
the time for performance model analysis. To minimize
the overhead, our online performance prediction tech-
nique automatically tailors the model analysis process
to the requirements of the online prediction scenario
while taking into account trade-offs between prediction
accuracy and time-to-result (see Section 4).

6 RELATED WORK

In recent years, many approaches for managing QoS
properties and resource efficiency in the area of auto-
nomic computing and software engineering have been
proposed in the literature. In this section, we discuss
two areas of related work: approaches for model-driven
engineering of self-adaptive software systems based on
different types of architectural models, and approaches
employing different types of performance models to
control and adapt systems such that performance re-
quirements are fulfilled.

6.1 Architecture-Based Model-Driven Engineering
of Self-Adaptive Software Systems
As surveyed in [42], many approaches exist for the
engineering of self-adaptive software. In this section, we
focus on model-driven approaches that employ different
types of architectural models to systematically engineer
self-adaptive systems.

From a high-level perspective, recent approaches sup-
porting the systematic engineering of self-adaptive sys-
tems are EUREMA [43], a model-driven approach to
build adaptation engines, FORMS [44], a formal refer-
ence model that can be used to describe the crucial
aspects of self-adaptive systems relevant for reasoning
about early design decisions, or DYNAMICO [45], a
reference model that supports the designers of self-
adaptive systems in deciding whether the monitoring
infrastructure, the system, or the adaptation objectives
must be adapted. With their reference models, these
approaches describe the properties of adaptive systems
at a higher level of abstraction. For example, we could
consider using EUREMA or FORMS as part of our
future work to specify our adaptation control loop or
to formally describe our self-adaptive system.

More specific approaches that use architectural mod-
els to build self-adaptive software are, e.g., [13], [14],
[15], [46], [47], [48], [49], [50]. Oreizy et al. present an
infrastructure for system evolution and system adap-
tation [13]. In their approach, the software system is
described as a dynamic architecture, characterized using
graphs of components and connectors, and architectural
changes are regarded as graph-rewrite operations. Gar-
lan et al. present a framework called Rainbow that uses
an architectural model together with existing architec-
tural analysis techniques to realize self-adaptation [14].
In addition, Cheng and Garlan provide Stitch, a language
to express repair strategies in a form that can be ana-
lyzed and automated by the Rainbow framework [51].
Another tool that provides a domain-specific modeling
language for modeling adaptive systems is Genie [46].
It allows to capture the dynamic aspects of compo-
nent frameworks like structural variability as well as
environment and context variability. To describe system
adaptation, Genie uses policies of the form of “on-
event-do-actions” applying architectural changes with
the goal to improve the current state of the system with
respect to given QoS properties. DiVA is an approach
for specifying dynamically adaptive software systems
based on software product lines [15]. The approach is
based on four meta-models providing means to model
the system’s architecture, environment, and variability,
as well as a reasoning model that can be used to de-
scribe how different features impact the system QoS.
To adapt and optimize component-based applications at
run-time, DiVA uses several formalisms such as event-
condition-action rules or goal-based optimization rules.
Another model-driven engineering approach for the dy-
namic adaptation of component-based applications is
MADAM [47]. It uses an application architecture model
based on UML for adaptation reasoning. However, this
approach is focused on applications in mobile computing
scenarios. Its successor, MUSIC, claims to tackle ubiqui-
tous computing environments [48]. Like our approach,
MUSIC also implements a MAPE-K control loop, em-
ploying a coarse-grained QoS-aware architecture model
as shared knowledge to realize the dynamic and auto-
matic adaptation of applications and services. MUSIC
uses utility functions to calculate at run-time the utility
of different application configurations. Another model-
centric approach is GRAF, a framework that uses graph-
based models that are interpreted at run-time to manage
system adaptation [49]. In this approach, the runtime
model is represented by a graph that describes the
adaptable software’s state and behavior, captured using
a subset of UML activity diagrams.

SASSY [50], [52], [53] is a model-driven framework
for optimizing the QoS of orchestration processes in
service-oriented applications at run-time. It supports
self-adaptation through automatic service provider se-
lection and architectural patterns (e.g., load-balancing, or
fail-over). In contrast to our approach, SASSY is based on
a coarse-grained application architecture model, expect-

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 20

ing the response time distribution of each service as an
input. This is a major assumption that is not required in
our approach given that DML provides and end-to-end
modeling framework supporting also the prediction of
service response times. Furthermore, SASSY is focussed
on adaptations in the application architecture; the re-
source landscape (OS, virtualization, middleware) is not
modeled explicitly and therefore adaptations at these
levels are not supported. Finally, the MAPE-K control
loop of SASSY adapts the system to changes in the
operating conditions in a reactive manner. The support
for proactive system adaptation based on load forecasts
is a major difference in our approach, which is also a
major aspect of self-aware systems in general.

In summary, all above-mentioned approaches focus on
improving one or more QoS properties of the adapted
system by reconfiguring the system at the application
level. However, for performance and particularly for
resource management, it is important that the resource
environment is considered explicitly as part of the adap-
tation process and the underlying system models. In our
approach, adaptation decisions explicitly consider the
predicted performance impact of the adaptation on the
current state of the system, whereas related approaches
do not provide sufficiently fine-grained models to enable
such detailed impact analysis. In the following section,
we discuss approaches trying to address this problem by
explicitly using performance models.

6.2 Model-based Performance and Resource Man-
agement in Dynamic Environments

Over the past decade, with the adoption of virtualiza-
tion and cloud computing, many approaches to online
performance and resource management in dynamic en-
vironments have been developed in the research com-
munity. Such approaches are typically based on control
theory feedback loops, machine learning techniques, or
stochastic performance models, such as layered queue-
ing networks or stochastic Petri nets. Approaches based
on feedback loops and control theory (e.g., [54], [55])
can normally guarantee system stability by capturing
the transient system behavior [55]. Machine learning
techniques capture the system behavior based on ob-
servations at run-time without the need for an a priori
analytical model of the system [56], [57]. Performance
models are typically used in the context of utility-based
optimization techniques. They are embedded within
optimization frameworks aiming at optimizing multi-
ple criteria such as different Quality-of-Service (QoS)
metrics [4], [58], [59]. However, existing work mostly
uses predictive performance models that do not capture
the software architecture and configuration explicitly
(e.g., [5], [6], [9], [31], [60], [61], [62], [63]). Such models
include queueing networks (e.g., [31]), layered queue-
ing networks (e.g., [6]), queueing Petri nets (e.g., [60]),
stochastic process algebras [61], statistical regression
(e.g., [62]), and Kriging models [9]. The models are

typically solved analytically, e.g., based on mean-value
analysis, as in [5], or by simulation where analytical
solution is not a viable option, as in [63]. In summary,
existing model-based techniques for online performance
and resource management typically abstract the system
as a “black-box” and do not explicitly model the software
architecture and execution environment distinguishing
performance-relevant behavior at the virtualization level
vs. at the level of applications hosted inside the running
VMs. However, explicitly considering dynamic changes
at these levels and being able to predict their effect
at run-time is indispensable for ensuring predictable
performance and enforcing SLAs. A survey on model-
based approaches to engineering of software systems
confirms the importance of considering the dynamic
aspects of modern IT systems and services as part of
architectural models [64]. However, its results also show
that currently, there are no performance modeling ap-
proaches that cover the explicit modeling of adaptation
strategies or processes at the architecture level.

7 CONCLUSION

7.1 Summary
In this article, we presented a coherent motivation,
design, implementation, and end-to-end evaluation of
an approach for self-aware performance and resource
management of modern dynamic IT systems and ser-
vices. The proposed approach is based on model-driven
algorithms and architectures and a generic adaptation
control loop that leverages the novel features of DML
to describe adaptive systems w.r.t. performance and
resource efficiency. The benefit of our approach com-
pared to the trigger-based and “black box” modeling
approaches is that it considers the individual effects and
complex interactions between application workload pro-
files and resources at the various levels of the execution
environment. Furthermore, our model-based approach
can be used to describe dynamic aspects like adaptation
possibilities and adaptation processes at the model-level
in a human-understandable, machine processable, and
reusable manner. We evaluated our approach in the con-
text of two different representative case studies. The first
case study shows that our online performance prediction
technique is able to predict the application performance
accurately (within 20% error), and at the same time pro-
vides the flexibility to trade-off between prediction accu-
racy and speed depending on the constraints of a given
prediction scenario. The second case study demonstrates
that our model-based approach, which leverages the
online performance prediction technique, can provide
significant efficiency gains of up to 50% without sacrific-
ing performance guarantees, and that it is able to trade-
off performance requirements of different customers in
heterogeneous hardware environments. Furthermore, we
showed how our approach enables proactive system
adaptation, reducing the amount of SLA violations by
60% compared to a trigger-based approach. The results

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 21

of these case studies show that with our holistic model-
based approach, one can apply model-driven techniques
end-to-end to realize autonomic performance-aware re-
source management at run-time. Thereby, our approach
serves as a proof-of-concept showing how techniques
from the field of software engineering and autonomic
computing can be combined to systematically design and
implement self-aware systems.

7.2 Future Work

As part of our future work, we plan to integrate our
meta-models for modeling storage and network in-
frastructure performance (currently under development)
into DML and then conduct further case studies focus-
ing on other resource types. Furthermore, we plan to
conduct additional case studies with the model-based
adaptation approach to investigate its applicability to a
broader range of workloads (e.g., bursty workloads) and
adaptations (e.g., short-term reconfigurations). In the
long run, we plan to extend DML to support other QoS
attributes (e.g., reliability, security) as part of adaptation
decisions considering also trade-offs between different
attributes.

REFERENCES

[1] Amazon Web Services, “Amazon Auto Scaling,” http://aws.
amazon.com/documentation/autoscaling/, 2010.

[2] Microsoft Developer Network (MSDN), “Autoscaling and
Windows Azure,” http://msdn.microsoft.com/en-us/library/
hh680945(v=pandp.50).aspx, 2012, last built: June 7, 2012.

[3] VMware, “Resource management with VMware DRS,” http://
www.vmware.com/pdf/vmware drs wp.pdf, 2006, latest revi-
sion: June 5, 2006.

[4] G. Jung, M. Hiltunen, K. Joshi, R. Schlichting, and C. Pu, “Mistral:
Dynamically managing power, performance, and adaptation cost
in cloud infrastructures,” in IEEE Int. Conf. on Distributed Comput-
ing Systems, 2010, pp. 62 –73.

[5] Q. Zhang, L. Cherkasova, and E. Smirni, “A Regression-Based
Analytic Model for Dynamic Resource Provisioning of Multi-Tier
Applications,” in Proc. of the 4th Int. Conf. on Autonomic Computing,
2007, p. 27.

[6] J. Li, J. Chinneck, M. Woodside, M. Litoiu, and G. Iszlai, “Per-
formance model driven QoS guarantees and optimization in
clouds,” in Proc. of the 2009 ICSE Workshop on Software Engineering
Challenges of Cloud Computing, ser. CLOUD ’09, 2009, pp. 15–22.

[7] M. Bennani and D. Menasce, “Resource allocation for autonomic
data centers using analytic performance models,” in Proc. of the
2nd Intl. Conf. on Autonomic Computing, 2005, pp. 229–240.

[8] I. Cunha, J. Almeida, V. Almeida, and M. Santos, “Self-adaptive
capacity management for multi-tier virtualized environments,” in
IFIP/IEEE Int. Symp. on Integrated Network Management, 2007, pp.
129–138.

[9] A. Gambi, G. Toffetti, C. Pautasso, and M. Pezze, “Kriging Con-
trollers for Cloud Applications,” IEEE Internet Computing, vol. 17,
no. 4, pp. 40–47, 2013.

[10] H. Koziolek, “Performance evaluation of component-based soft-
ware systems: A survey,” Performance Evaluation, vol. 67, no. 8,
pp. 634 – 658, 2010.

[11] G. Blair, N. Bencomo, and R. B. France, “Models@Run.time,”
Computer, vol. 42, no. 10, pp. 22–27, 2009.

[12] B. H. C. Cheng et al., “Software engineering for self-adaptive
systems: A research roadmap,” in Software Engineering for Self-
Adaptive Systems, ser. Lecture Notes in Computer Science, B. H. C.
Cheng, R. Lemos, H. Giese, P. Inverardi, and J. Magee, Eds.
Springer Berlin Heidelberg, 2009, vol. 5525, pp. 1–26.

[13] P. Oreizy, M. Gorlick, R. Taylor, D. Heimhigner, G. Johnson,
N. Medvidovic, A. Quilici, D. Rosenblum, and A. Wolf, “An
architecture-based approach to self-adaptive software,” Intelligent
Systems and their Applications, IEEE, vol. 14, no. 3, pp. 54–62, 1999.

[14] D. Garlan, B. Schmerl, and S.-W. Cheng, “Software architecture-
based self-adaptation,” in Autonomic Computing and Networking.
Springer US, 2009, pp. 31–55.

[15] B. Morin, O. Barais, J. Jezequel, F. Fleurey, and A. Solberg,
“Models@run.time to support dynamic adaptation,” Computer,
vol. 42, no. 10, pp. 44–51, 2009.

[16] N. Huber, F. Brosig, and S. Kounev, “Modeling Dynamic Virtu-
alized Resource Landscapes,” in ACM SIGSOFT Int. Conf. on the
Quality of Software Architectures (QoSA 2012), 2012, pp. 81–90.

[17] N. Huber, A. van Hoorn, A. Koziolek, F. Brosig, and S. Kounev,
“Modeling Run-Time Adaptation at the System Architecture Level
in Dynamic Service-Oriented Environments,” Service Oriented
Computing and Applications Journal (SOCA), vol. 8, no. 1, pp. 73–89,
2014.

[18] F. Brosig, N. Huber, and S. Kounev, “Architecture-Level Software
Performance Abstractions for Online Performance Prediction,”
Elsevier Science of Computer Programming Journal (SciCo), vol. 90,
Part B, pp. 71–92, 2014.

[19] OMG, “Meta Object Facility (MOF) Version 2.5,” 2015. [Online].
Available: http://www.omg.org/spec/MOF/2.5/

[20] S. Kounev, F. Brosig, and N. Huber, “The Descartes Modeling
Language,” Institut für Informatik, Universität Würzburg, Tech.
Rep., 2014. [Online]. Available: http://nbn-resolving.de/urn/
resolver.pl?urn:nbn:de:bvb:20-opus-104887

[21] S. Becker, H. Koziolek, and R. Reussner, “The Palladio compo-
nent model for model-driven performance prediction,” Journal of
Systems and Software, vol. 82, pp. 3–22, 2009.

[22] S. Kounev, N. Huber, F. Brosig, and X. Zhu, “A Model-Based Ap-
proach to Designing Self-Aware IT Systems and Infrastructures,”
IEEE Computer, vol. 49, no. 7, pp. 53–61, 2016.

[23] S. Kounev, X. Zhu, J. O. Kephart, and M. Kwiatkowska, Eds.,
Model-driven Algorithms and Architectures for Self-Aware Computing
Systems, ser. Dagstuhl Reports, Dagstuhl, Germany, 2015. [Online].
Available: http://drops.dagstuhl.de/opus/volltexte/2015/5038/

[24] S. Kounev, F. Brosig, N. Huber, and R. Reussner, “Towards self-
aware performance and resource management in modern service-
oriented systems,” in Proceedings of the 7th IEEE International
Conference on Services Computing (SCC 2010). IEEE Computer
Society, July 2010.

[25] S. Kounev, “Engineering of Self-Aware IT Systems and Services:
State-of-the-Art and Research Challenges,” in Proceedings of the 8th
European Performance Engineering Workshop (EPEW 2011), 2011.

[26] J. Kephart and D. Chess, “The Vision of Autonomic Computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[27] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn, “Self-Adaptive
Workload Classification and Forecasting for Proactive Resource
Provisioning,” Concurrency and Computation - Practice and Experi-
ence, John Wiley and Sons, Ltd., vol. 26, no. 12, pp. 2053–2078, 2014.

[28] P. Padala, A. Holler, L. Lu, X. Zhu, A. Parikh, and M. Yechuri,
“Scaling of cloud applications using machine learning,” VMware
Technical Journal, May 2014.

[29] A. Martens, H. Koziolek, S. Becker, and R. Reussner, “Auto-
matically improve software architecture models for performance,
reliability, and cost using evolutionary algorithms,” in Proc. of
the First Joint WOSP/SIPEW Int. Conf. on Performance Engineering,
2010, pp. 105–116.

[30] F. Brosig, “Architecture-level software performance models for
online performance prediction,” Ph.D. dissertation, Karlsruhe
Institute of Technology (KIT), 2014.

[31] D. A. Menasce and A. F. A. Virgilio, Scaling for E Business:
Technologies, Models, Performance, and Capacity Planning, 1st ed.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 2000.

[32] F. Gorsler, F. Brosig, and S. Kounev, “Performance Queries
for Architecture-Level Performance Models,” in Proc. of the 5th
ACM/SPEC Int. Conf. on Performance Engineering (ICPE 2014), 2014,
pp. 99–110.

[33] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queueing
Networks and Markov Chains: Modeling and Performance Evaluation
with Computer Science Applications. New York, NY, USA: Wiley-
Interscience, 1998.

[34] G. Franks, P. Maly, M. Woodside, D. C. Petriu, A. Hubbard,
and M. Mroz, “Layered Queueing Network Solver (LQNS) soft-

http://aws.amazon.com/documentation/autoscaling/
http://aws.amazon.com/documentation/autoscaling/
http://msdn.microsoft.com/en-us/library/hh680945(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/hh680945(v=pandp.50).aspx
http://www.vmware.com/pdf/vmware_drs_wp.pdf
http://www.vmware.com/pdf/vmware_drs_wp.pdf
http://www.omg.org/spec/MOF/2.5/
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-104887
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-104887
http://drops.dagstuhl.de/opus/volltexte/2015/5038/

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 22

ware package,” http://www.sce.carleton.ca/rads/lqns/, 2011,
last visit: 2014-03-20.

[35] G. Franks, T. Omari, C. M. Woodside, O. Das, and S. Derisavi, “En-
hanced modeling and solution of layered queueing networks,”
IEEE Trans. on Software Engineering, vol. 35, no. 2, pp. 148–161,
2009.

[36] S. Spinner, S. Kounev, and P. Meier, “Stochastic Modeling and
Analysis using QPME: Queueing Petri Net Modeling Environ-
ment v2.0,” in Int. Conf. on Application and Theory of Petri Nets and
Concurrency, vol. 7347, 2012, pp. 388–397.

[37] C. Woodside, J. Neilson, D. Petriu, and S. Majumdar, “The
stochastic rendezvous network model for performance of syn-
chronous client-server-like distributed software,” IEEE Trans. on
Computers, vol. 44, no. 1, pp. 20–34, Jan 1995.

[38] J. Rolia and K. Sevcik, “The method of layers,” IEEE Trans. on
Software Engineering, vol. 21, no. 8, pp. 689–700, Aug. 1995.

[39] H. Koziolek, “Parameter dependencies for reusable performance
specifications of software components,” Ph.D. dissertation, Uni-
versity of Oldenburg, March 2008.

[40] P. Meier, S. Kounev, and H. Koziolek, “Automated Transformation
of Palladio Component Models to Queueing Petri Nets,” in 19th
IEEE/ACM Intl. Symp. on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS 2011), 2011,
pp. 339–348.

[41] A. Law and W. Kelton, Simulation modeling and analysis, ser.
McGraw-Hill series in industrial engineering and management
science. McGraw-Hill, 2000.

[42] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape
and research challenges,” ACM Transactions Autonomous and Adap-
tive Systems, vol. 4, no. 2, 2009.

[43] T. Vogel and H. Giese, “Model-Driven Engineering of Self-
Adaptive Software with EUREMA,” ACM Transactions Au-
tonomous and Adaptive Systems, vol. 8, no. 4, pp. 18:1–18:33, 1 2014.

[44] D. Weyns, S. Malek, and J. Andersson, “FORMS: Unifying refer-
ence model for formal specification of distributed self-adaptive
systems,” ACM Transactions Autonomous and Adaptive Systems,
vol. 7, no. 1, p. 8, 2012.

[45] N. M. Villegas, G. Tamura, H. A. Müller, L. Duchien, and R. Casal-
las, “DYNAMICO: A Reference Model for Governing Control
Objectives and Context Relevance in Self-Adaptive Software Sys-
tems,” in Software Engineering for Self-Adaptive Systems II, ser.
LNCS, 2013, vol. 7475, pp. 265–293.

[46] N. Bencomo and G. Blair, “Using Architecture Models to Support
the Generation and Operation of Component-Based Adaptive
Systems,” in Software Engineering for Self-Adaptive Systems, ser.
LNCS. Springer Berlin Heidelberg, 2009, vol. 5525, pp. 183–200.

[47] K. Geihs, P. Barone, F. Eliassen, J. Floch, R. Fricke, E. Gjorven,
S. Hallsteinsen, G. Horn, M. U. Khan, A. Mamelli, G. A. Pa-
padopoulos, N. Paspallis, R. Reichle, and E. Stav, “A comprehen-
sive solution for application-level adaptation,” Software Practice &
Experience, vol. 39, pp. 385–422, 2009.

[48] S. Hallsteinsen, K. Geihs, N. Paspallis, F. Eliassen, G. Horn,
J. Lorenzo, A. Mamelli, and G. Papadopoulos, “A development
framework and methodology for self-adapting applications in
ubiquitous computing environments,” Journal of Systems and Soft-
ware, vol. 85, pp. 2840–2859, 2012.

[49] M. Amoui, M. Derakhshanmanesh, J. Ebert, and L. Tahvildari,
“Achieving dynamic adaptation via management and interpreta-
tion of runtime models,” Journal of Systems and Software, vol. 85,
pp. 2720–2737, 2012.

[50] D. Menasce, H. Gomaa, s. Malek, and J. Sousa, “Sassy: A
framework for self-architecting service-oriented systems,” IEEE
Software, vol. 28, no. 6, pp. 78–85, Nov 2011.

[51] S.-W. Cheng and D. Garlan, “Stitch: A language for architecture-
based self-adaptation,” Journal of Systems and Software, vol. 85,
no. 12, pp. 2860 – 2875, 2012.

[52] D. A. Menascé, J. P. Sousa, S. Malek, and H. Gomaa, “Qos
architectural patterns for self-architecting software systems,” in
Proceedings of the 7th International Conference on Autonomic Com-
puting, ICAC, 2010, pp. 195–204.

[53] D. A. Menascé, J. M. Ewing, H. Gomaa, S. Malek, and J. P.
Sousa, “A framework for utility-based service oriented design in
SASSY,” in Proceedings of the first joint WOSP/SIPEW International
Conference on Performance Engineering, 2010, pp. 27–36.

[54] T. F. Abdelzaher, K. G. Shin, and N. Bhatti, “Performance guaran-
tees for web server end-systems: A control-theoretical approach,”
IEEE Trans. on Par. and Distr. Syst., vol. 13, no. 1, pp. 80–96, 2002.

[55] J. Almeida, V. Almeida, D. Ardagna, I. Cunha, C. Francalanci,
and M. Trubian, “Joint admission control and resource allocation
in virtualized servers,” Jour. of Par. and Distr. Comp., vol. 70, no. 4,
pp. 344 – 362, 2010.

[56] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “A Hybrid
Reinforcement Learning Approach to Autonomic Resource Allo-
cation,” in IEEE Intl. Conf. on Autonomic Computing, 2006, pp. 65–
73.

[57] J. Kephart, H. Chan, R. Das, D. Levine, G. Tesauro, F. Rawson,
and C. Lefurgy, “Coordinating Multiple Autonomic Managers to
Achieve Specified Power-Performance Tradeoffs,” in Proc. of the
4th Intl. Conf. on Autonomic Computing , 2007, p. 24.

[58] A. Verma, P. Ahuja, and A. Neogi, “pMapper: power and migra-
tion cost aware application placement in virtualized systems,” in
Proceedings of the 9th ACM/IFIP/USENIX Int. Conf. on Middleware,
2008, pp. 243–264.

[59] H. Mi, H. Wang, G. Yin, Y. Zhou, D. Shi, and L. Yuan, “Online Self-
Reconfiguration with Performance Guarantee for Energy-Efficient
Large-Scale Cloud Computing Data Centers,” in IEEE Intl. Conf.
on Services Computing, 2010, pp. 514–521.

[60] S. Kounev, “Performance Modeling and Evaluation of Distributed
Component-Based Systems Using Queueing Petri Nets,” IEEE
Transactions on Software Engineering (TSE), vol. 32, no. 7, pp. 486–
502, 2006.

[61] S. Gilmore, V. Haenel, L. Kloul, and M. Maidl, “Choreographing
Security and Performance Analysis for Web Services,” in Formal
Techniques for Computer Systems and Business Processes, 2005, pp.
200–214.

[62] E. Eskenazi, A. Fioukov, and D. Hammer, “Performance Predic-
tion for Component Compositions,” in Proc. of the Intl. Symp. on
Component-Based Software Engineering, 2004, pp. 280–293.

[63] G. Jung, K. Joshi, M. A. Hiltunen, R. D. Schlichting, and C. Pu,
“Generating Adaptation Policies for Multi-tier Applications in
Consolidated Server Environments,” in Proc. of the 2008 Intl. Conf.
on Autonomic Computing, 2008, pp. 23–32.

[64] M. Becker, M. Luckey, and S. Becker, “Model-driven performance
engineering of self-adaptive systems: A survey,” in ACM SIG-
SOFT Int. Conf. on Quality of Software Architectures, 2012, pp. 117–
122.

Nikolaus Huber is a software architect at Car-
Garantie Versicherungs AG and an associate re-
searcher in the Chair of Software Engineering at
the University of Würzburg. He received a PhD
in computer science from the Karlsruhe Institute
of Technology (KIT). His research interests in-
clude autonomic and adaptive systems, software
architectures, and performance engineering of
software systems.

Fabian Brosig is a lead developer at Minodes
GmbH and an associate researcher in the Chair
of Software Engineering at the University of
Würzburg. He received a PhD in computer sci-
ence from the Karlsruhe Institute of Technology
(KIT). His research interests include run-time
performance and resource management, per-
formance modeling and analysis, software per-
formance engineering, virtualization and Cloud
Computing.

http://www.sce.carleton.ca/rads/lqns/

JOURNAL OF . . . , VOL. ?, NO. ?, MONTH 201? 23

Simon Spinner is a software engineer at IBM
and a PhD candidate at the Chair of Software
Engineering at the University of Würzburg. He
received a master’s degree in computer science
from the Karlsruhe Institute of Technology (KIT).
His research interests include run-time perfor-
mance and resource management, performance
model extraction, performance modeling and
analysis, virtualization and Cloud Computing.

Samuel Kounev is a professor and chair of soft-
ware engineering at the University of Würzburg.
His research is focussed on the engineer-
ing of dependable and efficient software sys-
tems, including software design, modeling and
architecture-based analysis; systems bench-
marking and experimental analysis; and auto-
nomic and self-aware computing. He received
a PhD in computer science from TU Darmstadt.
He is a member of ACM, IEEE, and the German
Computer Science Society.

Manuel Bähr Manuel Bähr is the Head of Plat-
form Development at Blue Yonder GmbH in
Germany. He received his PhD in theoretical
physics from the University of Karlsruhe in 2008.
His research interests include high performance
scalable architectures and self-adaptive systems
in the area of predictive analytics.

	Introduction
	The Descartes Modeling Language
	The Descartes Approach
	Concept
	Monitor
	Analyze
	Plan
	Execute
	Model Calibration and Refinement

	Realization

	Online Performance Prediction
	Performance Queries
	Tailored Prediction Process
	Tailored Model Composition
	Tailored Model Solving
	Solving Techniques
	Tailoring

	Case Studies
	Software-as-a-Service CRM System
	System Setup
	Architecture-Level Performance Model.
	Results
	Discussion

	Blue Yonder
	Illustrating Example: DML Instance
	System Architecture
	Model Implementation
	Evaluation
	Scenario 3

	Summary

	Related Work
	Architecture-Based Model-Driven Engineering of Self-Adaptive Software Systems
	Model-based Performance and Resource Management in Dynamic Environments

	Conclusion
	Summary
	Future Work

	References
	Biographies
	Nikolaus Huber
	Fabian Brosig
	Simon Spinner
	Samuel Kounev
	Manuel Bähr

