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Abstract Today, software systems are more and more exe-
cuted in dynamic, virtualized environments. These environ-
ments host diverse applications of different parties, sharing
the underlying resources. The goal of this resource shar-
ing is to utilize resources efficiently while ensuring that
quality-of-service requirements are continuously satisfied.
In such scenarios, complex adaptations to changes in the
system environment are still largely performed manually by
humans. Over the past decade, autonomic self-adaptation
techniques aiming to minimize human intervention have
become increasingly popular. However, given that adaptation
processes are usually highly system-specific, it is a challenge
to abstract from system details, enabling the reuse of adap-
tation strategies. In this paper, we present S/T/A, a modeling
language to describe system adaptation processes at the sys-
tem architecture level in a generic, human-understandable
and reusable way. We apply our approach to multiple differ-
ent realistic contexts (dynamic resource allocation, run-time
adaptation planning, etc.). The results show how a holistic
model-based approach can close the gap between complex
manual adaptations and their autonomous execution.
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1 Introduction

Today’s software systems are increasingly flexible and
dynamic provisioning aims to react quickly on changes in the
environment and to adapt the system configuration accord-
ingly, in order to maintain the required quality-of-service
(QoS). For example, the main reason for the increasing adop-
tion of cloud computing is that it promises significant cost
savings, by providing access to data center resources on
demand over the network, in an elastic and cost-efficient
manner. Industry’s most common approach for automatic
run-time adaptation of dynamic systems, such as in Ama-
zon EC2 or Windows Azure, is using rule-based adapta-
tion mechanisms. More complex adaptations like resource-
efficient server consolidation are still largely performed man-
ually. However, the increasing complexity of system adap-
tations and the rising frequency at which they are required
render human intervention prohibitive and increase the need
for automatic and autonomous approaches.

With the growth of autonomic computing and self-
adaptive system engineering, many novel approaches address
the challenge of building autonomic and self-adaptive sys-
tems with considerable success. However, such systems
nowadays do not separate the software design and imple-
mentation from the system adaptation logic; i.e., they are
typically based on highly system-specific adaptation tech-
niques hard-coded in the system’s implementation.

Hence, many researchers agree that a remaining major
challenge in engineering self-adaptive systems is the devel-
opment of novel modeling formalisms, allowing to describe
and perform self-adaptation and reconfiguration in a generic,

123



74 SOCA (2014) 8:73–89

human-understandable and reusable way [8]. To reduce the
amount of human intervention required in run-time system
adaptations, detailed models abstracting the system architec-
ture, its execution environment, and its configuration space,
as well as models describing the implemented adaptation
processes are needed [4].

Models at run-time are a promising approach for run-
time system adaptation [31], and self-adaptation approaches
based on architectural models have been proposed before,
e.g., [12,6,25]. However, such approaches concentrate on
modeling the system’s software architecture, and in general,
knowledge about adapting the architecture is still captured
within system-specific adaptation processes and not as part
of the software architecture models. For example, Cheng et
al. propose a language [5] with a programming language-like
notation to specify self-adaptation processes [12]. However,
the knowledge about the adaptation process is defined in a
strictly deterministic and application-specific manner limit-
ing flexibility.

In this paper, we present a domain-specific language called
S/T/A (strategies/tactics/actions) to describe run-time sys-
tem adaptation in component-based system architectures
based on architecture-level system QoS models. The latter
describes the QoS-relevant components of the system and
reflects the QoS properties of the system architecture that
must be taken into account when adapting the system at run-
time. Architecture-level system QoS models include as part
of them an adaptation space model that defines the space of
valid system configurations, i.e., the boundaries within which
run-time adaptations may be performed. We use the S/T/A
meta-model presented in this paper on top of architecture-
level system QoS models to describe system adaptation
processes at the architecture level, in a generic, human-
understandable, and reusable way. More specifically, we
present how strategies and tactics can be used to guide the sys-
tem adaptation process according to predefined objectives.

Our approach has several important benefits: First, it
distinguishes high-level adaptation objectives (strategies)
from low-level implementation details (adaptation tactics and
actions), explicitly separating platform adaptation operations
from system adaptation plans. We argue that separating these
concerns has the benefit that system designers can describe
their knowledge about system adaptation operations indepen-
dently of how these operations are used in specific adaptation
scenarios. Similarly, the knowledge of system administrators
about how to adapt the system is captured in an intuitive and
easy-to-use S/T/A model instance, as opposed to a system-
specific adaptation language or process hard-coded in the sys-
tem implementation. Second, given the fact that the knowl-
edge about system adaptations is described using a meta-
model with explicitly defined semantics, this knowledge is
machine-processable and can thus be easily maintained and
reused in common adaptation processes in dynamic systems

like cloud environments. Furthermore, S/T/A helps to for-
malize adaptation processes, making it possible to analyze
the adaptation scenarios for, e.g., QoS fulfillment or whether
the adaptation actions can be executed at all.

The contributions of this paper are as follows: (1) An
approach for separating system adaptation processes into
technical and logical aspects by using architecture-level sys-
tem QoS models to abstract technical aspects and our adap-
tation language to abstract logical aspects, (2) a general pur-
pose meta-model (S/T/A) for describing the logical aspects
of system adaptation processes in a generic way. The meta-
model can be used to model (self-) adaptation either as simple
workflows based on conditional expressions or as complex
heuristics considering uncertainty. It provides a set of intu-
itive and easy to use concepts that can be employed by sys-
tem architects and software developers to describe adaptation
processes as part of system architecture models. (3) A basic
concept for evaluating the effect of applied tactics based on
collected QoS metrics. This concept supports an arbitrary
amount of indeterminism to direct the adaptation process out
of a local optimum. (4) An example prototype that inter-
prets S/T/A model instances to adapt dynamic systems. It
applies meta-modeling techniques end-to-end, i.e., from the
system architecture up to the high-level system adaptation
plans. (5) An evaluation of our approach in three representa-
tive scenarios each using a different type of architecture-level
system QoS model. The evaluation shows how our adapta-
tion language can be used for dynamic resource allocation,
software architecture optimization and adaptation planning,
demonstrating its general applicability, flexibility and usabil-
ity at run-time. This paper extends our previous work [15]
by (1) introducing a QoS data repository model to store mea-
surement data obtained either as a result of model analy-
sis or through monitoring of the system, (2) additional for-
mal specifications of the semantics of the adaptation and a
new weighting function to guide the adaptation based on a
QoS data repository, (3) a description of the implementa-
tion of our prototypical framework to interpret S/T/A model
instances and (4) an additional evaluation scenario targeting
the weighting function concepts.

The rest of the paper is structured as follows: In Sect. 2, we
present our modeling approach and the proposed adaptation
language, illustrated with examples. In Sect. 3, we evaluate
our approach in different representative application scenar-
ios. Section 4 gives an overview of related work, and finally,
Sect. 5 concludes the paper and outlines our planned future
work.

2 Modeling system adaptation

In the context of dynamic system adaptation, we distinguish
between a technical view and a logical view to separate the
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Fig. 1 Interaction of the system, the system models and the S/T/A adaptation language

knowledge of the system architecture from its adaptation
processes. To further illustrate this idea, we distinguish two
roles with different responsibilities, the system designer and
the system administrator.

System designers design and implement the system; i.e.,
they have knowledge about the technical details of the sys-
tem. They can describe the exact architecture of the system,
what parts of the system can be adapted at run-time and by
which specific actions. For example, in a virtualized environ-
ment, the system designer can specify which virtual machines
(VMs) can be migrated or how many application server VMs
can be added/removed from an application server cluster. We
capture such information in architecture-level system QoS
models which we will explain in more detail in Sect. 2.1.

System administrators are responsible to keep the system
in the desired state; i.e., they design and implement the adap-
tation process that adapts the system when case problems
occur. This role must not necessarily be a person, and it can
be any instance responsible for controlling the system adap-
tation process, e.g., a rule-based engine. However, common
for this role or instance is that it has the knowledge about the
logical aspects of system adaptation processes. Such recon-
figuration logic can be expressed in the form of simple rules
or by complex heuristics or optimization algorithms usually
being system-specific. By separating technical from logical
aspects, the S/T/A reconfiguration language we present in
Sect. 2.3 can abstract such information and is independent of
system-specific details.

Figure 1 depicts the connection between the technical and
logical view of the system and the models that capture the
respective aspects. Section 2.1 explains the basic concepts
of the technical view and the architecture-level system QoS
model, which we use as foundation. Section 2.2 introduces
an example we use throughout this paper to illustrate the
concepts of the adaptation language meta-model presented
in Sect. 2.3. Finally, in Sect. 2.4, we present a prototypical

implementation of a framework that interprets S/T/A model
instances and uses meta-modeling techniques to apply sys-
tem adaptation.

2.1 Modeling system architecture and adaptation space

One important benefit of this approach and a major difference
to others is the explicit separation of the architecture-level
system QoS model into two separate sub-models, namely a
system architecture sub-model and an adaptation space sub-
model.

The system architecture sub-model reflects the system
from the architectural point of view. Within adaptation
processes, it can be used to analyze and evaluate QoS metrics
for different configurations of the system; i.e., the model is
typically used to predict the impact of possible system adap-
tations on the system’s QoS properties. Examples of suitable
architecture-level QoS models are the Palladio Component
Model (PCM) [2] and the Descartes Meta-Model (DMM) [3,
14,17] considered in this paper, or other component-based
performance models as surveyed in [19]. These models have
in common that they contain a detailed description of the
system architecture in a component-oriented fashion, para-
meterized to explicitly capture the influences of the compo-
nent execution context, e.g., the workload and the hardware
environment.

The adaptation space sub-model describes the degrees of
freedom of the system architecture in the context of the sys-
tem architecture sub-model, i.e., the points where the system
architecture can be adapted. Thereby, this sub-model reflects
the boundaries of the system’s configuration space; i.e., it
defines the possible valid states of the system architecture.

The adaptation points at the model level correspond
to adaptation operations executable on the real system at
run-time, e.g., adding virtual CPUs to VMs, migrating
VMs or software components, or load-balancing requests.
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Examples of such sub-models are the Degree-of-Freedom
Meta-Model [18] for PCM or the Adaptation Points Meta-
Model as an integral part of DMM [14]. Having explicit adap-
tation space sub-models is essential to decouple the knowl-
edge of the logical aspects of the system adaptation from
technical aspects. One can specify adaptation options based
on their knowledge of the system architecture and the adap-
tation actions they have implemented in a manner indepen-
dent of the high-level adaptation processes and adaptation
plans. Furthermore, by using an explicit adaptation space
sub-model, adaptation is forced to stay within the boundaries
specified by the model. The use of explicit adaptation space
sub-models is an important distinction of our approach from
other (self-)adaptive approaches based on architecture mod-
els [12,25]. Such approaches typically integrate the knowl-
edge about the adaptation options and hence, the possible
system states, in the operations and tactics, i.e., at the logical
level.

Finally, it is important to mention that architecture-level
system QoS models are capable of reflecting much more
details of the data center environment and software architec-
ture than classical system architecture models (e.g., as used
by Garlan et al. [12]). The main resulting benefit is that we
have more information about the system, thus being able to
make better adaptation decisions and having more flexibility
for adapting the model and the real system, respectively.

2.2 Running example: model-based dynamic resource
allocation

In our previous work [13], we presented an algorithm for
dynamic resource allocation in virtualized environments.
This algorithm is implemented in Java. It is highly system-
specific and therefore difficult to maintain and reuse. We use
this algorithm throughout this paper as a running example to
illustrate the concepts of our adaptation language in Sect. 2.3
and for the evaluation scenarios in Sect. 3.

The algorithm uses an architecture-level system QoS
model we already developed and successfully applied in [13]
for finding a system configuration that maintains given
Service-Level Agreements (SLA) while using as little reso-
urces as possible. The algorithm consists of two phases, a
PUSH and a PULL phase. The PUSH phase is triggered by
SLA violations observed in the real system. The PULL phase
is either triggered after the PUSH phase or by a scheduled
resource optimization event. In the first step of the PUSH
phase, the algorithm uses the system architecture sub-model
to estimate how much additional resources are needed to
maintain SLAs, based on the current system state. Then, it
increases the resources in the model up to this estimation.
These steps are repeated until the predicted QoS fulfills the
SLAs. Resources can be increased by either adding a virtual
CPU (vCPU) to a virtual machine (VM)—in case additional

Fig. 2 Hierarchy of adaptation steps

cores are available—or by starting additional VMs running
application servers and adding them to the application server
cluster. In the PULL phase, the algorithm uses the system
architecture sub-model to estimate how much resources can
be released without breaking SLAs. The amount of allocated
resources is reduced stepwise by removing vCPUs from VMs
and removing whole VMs from the application server clus-
ter when their number of allocated vCPUs reaches zero. At
each step, the system architecture sub-model is used to pre-
dict the effect of the system adaptation. If an SLA violation
is predicted, the previous adaptation step is undone and the
algorithm terminates. After the algorithm terminates success-
fully, the operations executed on the model are replayed on
the real system. A more detailed description of this algorithm
and its execution environment is given in [13].

2.3 S/T/A meta-model

Our S/T/A adaptation language consists of three major inter-
acting concepts: Strategy, Tactic and Action. Each concept
resides on a different level of abstraction of the adaptation
steps as depicted in Fig. 2. At the top level are the strate-
gies where each strategy aims to achieve a given high-level
objective. A strategy uses one or more tactics to achieve
its objective. Tactics execute actions, which implement the
actual adaptation operations on the system model or on the
real system, respectively. To evaluate the impact of applied
tactics, we use a QoS data repository to collect model analy-
sis results as well as monitoring data.

In this work, we use the terms strategy, tactic and action as
follows. A strategy captures the logical aspect of planning an
adaptation. A strategy defines the objective that needs to be
accomplished and conveys an idea for achieving it. A strategy
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Fig. 3 Adaptation language meta-model

can be a complex, multi-layered plan for accomplishing the
objective. However, which step is taken next will depend on
the current state of the system. Thus, in the beginning, the
sequence of applied tactics is unknown, allowing for flexibil-
ity to react in unforeseen situations. For example, a defensive
strategy in the PUSH phase of our running example could
be “add as few resources as possible stepwise until response
time violations are resolved”, whereas an aggressive strategy
would be “add a large amount of resources in one step so that
response time violations are eliminated, ignoring resource
efficiency”.

Tactics are the essential part of strategies. They are the
technical aspect that follows the planning. Tactics are the part
that actually execute the adaptation actions. Therefore, tactics
specifically refer to actions. In the strategy phase of a plan,
one thinks about how to act; i.e., one decides what tactics
can be employed to fulfill the strategy’s objective depending
on the current system state. However, in contrast to strate-
gies, tactics specify precisely which actions to take without
explicitly considering their effect which is done at the strat-
egy level. A possible tactic of adding resources in our running
example could be “if possible, add another vCPU to a VM,
otherwise, request another application server”. An impor-
tant property of tactics is their transaction-like semantic. We
define tactics as: (1) atomic, i.e., either the whole tactic with
all its contained actions is executed or the tactic must be
rolled back, (2) consistent, i.e., the model’s and the system’s
state must be consistent after applying a tactic, and (3) deter-
ministic, i.e., tactics have the same output if applied on the
same system state. This transaction-like behavior is impor-

tant because after applying a tactic at the model level, the
effect of the performed adaptation is evaluated by analyzing
the QoS model; i.e., several actions can be executed at once
without having to analyze the model after each action. This
can save costly model analysis time which is crucial at run-
time. Furthermore, applying tactics at the model level before
applying them to the real system has the advantage that we
can test their effect when applied as a whole without actu-
ally changing the system. Thereby, it is always possible to
go back to the model state before starting to apply the tactic
in case an error is detected, thus saving costly executions of
roll-back operations on the system. The presence of a model
to evaluate valid system states is also the reason why we
decided not to use pre- or post-conditions to enforce certain
restrictions.

The idea of distinguishing three abstraction levels is a valid
concept and can be found in other approaches, too [6,16,20].
However, these approaches do either not consider a full
model-based approach or have limited expressiveness (cf.
Sect. 4). In contrast to the existing approaches, we propose
a generic meta-model explicitly defining a set of modeling
abstractions to describe strategies, tactics and actions with the
flexibility to model the full spectrum of self-adaptive mech-
anisms. In the following, we describe the concepts of the
proposed meta-model as depicted in Fig. 3. The meta-model
and its implementation are available for download from our
Web site [26].

All model elements described in the following are con-
tained by the root element AdaptationProcess, repre-
senting a specific adaptation process.
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Fig. 4 Actions for the running
example

2.3.1 Action

Actions are the atomic elements on the lowest level of
the adaptation language’s hierarchy. They execute an adap-
tation operation on the model or the real system, respectively.
Actions can refer to Parameter entities specifying a set of
input and output parameters. A parameter is specified by its
name and type. Parameters can be used to customize the
action, e.g., to specify the source and target of a migration
action or use return values of executed actions as arguments
for subsequent actions.

Example Figure 4 shows the four actions we modeled in
our dynamic resource allocation algorithm. The actions
addVCPU and addAppServer can be used to increase
the resources used by the system, either by adding a
vCPU to a VM (addVCPU) or by adding a new VM
running an application server to the application server
cluster (addAppServer). Similarly, removeVCPU and
removeAppServer can be used to remove resources. Fig-
ure 4 depicts only the actions of our example. However,
one can also specify actions for other resources, e.g., main
memory (increaseMemory and decreaseMemory).
The type of actions that can be modeled depends on the
kind of adaptation points that are defined in the respective
architecture-level system QoS model. The described actions
do not implement the logic of the operation, and they are sim-
ply references to adaptation points defined in the respective
architecture-level system QoS model. On the model level,
actions are implemented by our prototypical framework dis-
cussed later in Sect. 2.4. On the system level, the virtualiza-

tion or middleware layer executes the respective operations
on the real system which could be triggered by our imple-
mentation, too.

2.3.2 Tactic

A Tactic specifies an AdaptationPlan with the pur-
pose to adapt the system in a specific direction, e.g., to
scale-up resources. The AdaptationPlan describes how
the tactic pursues this purpose, i.e., in which order it
applies actions to adapt the system. More specifically, each
AdaptationPlan contains a set of AbstractCon-
trolFlowElements. The order of these control flow ele-
ments is determined by their predecessor/successor relations.

Implementations of the AbstractControlFlow-
Element are Start and Stop as well as Loop and
Branch. The purpose of these control flow elements is to
describe the control flow of the adaptation plan. For exam-
ple, each Branch has an attribute condition which con-
tains a condition directly influencing the control flow, e.g.,
by evaluating monitoring data, the system/model state or
OCL expressions. Tactics can refer to Parameter entities
to specify input or output parameters. These parameters can
be evaluated to influence the control flow, e.g., by specifying
iteration counts. Actions are integrated into the control flow
by the ActionReference entity.

Example In Fig. 5, we show the three tactics specified for the
running example based on the previously presented actions.
These tactics are addResources, removeResources
andundoPreviousAction. The first two tactics are used

Fig. 5 Actions and tactics for
the running example
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Fig. 6 Strategies using tactics and assigning weights

to scale the system up or down, and the third tactic can be
applied to undo a previous action.

The adaptation plan of the tactic addResources imple-
ments a Loop action executed as many times as specified in
#iterations, which is an input parameter to this tactic.
With this parameter, one can specify how many resources
should be added by executing the tactic. The adaptation plan
in the Loop action implements two actions, addVCPU and
addAppServer. Which action is executed depends on the
current state of the architecture-level system QoS model. If
there is no possibility to add a vCPU, i.e., ∀s ∈ Servers :
s.capacity = maxCapacity (AllServersAtMaxCap), an
application server is added. Such constraints can be expressed
on the model level in OCL. The adaptation plan of the tactic
is an example for separating technical from logical details
because the tactic specifies that resources should be added,
but there is no need to specify how to implement this.

The adaptation plan of the tactic removeResources
either removes an application server VM if there is a server
running at minimum capacity, i.e., ∃s ∈ Servers : s.cap =
minCapacity (ServerAtMinCapExists), or removes
a vCPU from an application server VM, otherwise. The
undoPreviousAction tactic can be used in cases where
the previous adaptation step must be undone. More details
about the semantics of the tactics as part of adaptation strate-
gies will be given in Sect. 2.4.

2.3.3 Strategy

Any adaptation process has an overall goal consisting of
one or multiple different Objectives. The purpose of a
Strategy is to achieve an Objective. An Objective
refers to one or more MetricTypes and specifies the tar-
get range for this metric. All objectives are collected within
the OverallGoal. The OverallGoal has no explicitly
defined semantics, and it serves as a human-readable descrip-
tion of the overall goal of the adaptation process. The speci-
fication of an objective can be either simple predicates (e.g.,
avg. response time of Servicex < 250 ms) or more com-

plex goal policies or utility functions referring to multiple
metric types (e.g., resource usage vs. utilization). Note that
it is explicitly allowed to have multiple alternative strate-
gies with the same objective because strategies might differ
in their implementation. One could also use any other type
of description of the objectives that can be automatically
checked by analyzing the model or monitoring data from the
real system (e.g., using MAMBA [11]).

The execution of a strategy is triggered by a specific
Event that occurs during system operation, e.g., a peri-
odic event triggering resource efficiency strategies or an event
caused when anObjective is violated. Such events trigger
the execution of their parent strategy with the target to ensure
that the objective of the strategy is achieved. In our approach,
events can trigger only one strategy. We assume that events
occur sequentially. This avoids concurrency effects, i.e., mul-
tiple strategies operating at the same time but with conflicting
objectives. However, we do not exclude situations in which
different objectives must be considered. Such cases can be
handled by designing strategies with objectives expressed by
a utility function [16]. The respective strategy in such a situ-
ation would try to apply tactics such that the objective of the
utility function is achieved.

To achieve its objective, a strategy uses a set of Weigh-
tedTactics. A WeightedTactic is a decorator for a
Tactic. Weights are assigned according to the strategy’s
WeightingFunction, which is explained in Sect. 2.3.5.
The use of weighted tactics introduces a certain amount of
indeterminism at this abstraction level. Having this indeter-
minism at the strategy level provides flexibility to find new
solutions if a tactic turns out to be inappropriate for the cur-
rent system state.

Example Figure 6 depicts the two strategies of the algo-
rithm we described in our running example. These are the
PUSH strategy with the objective to improve response times
to maintain SLAs (90 % quantile of response time <500 ms)
and the PULL strategy with the objective to ensure effi-
cient resource usage (OverallUtilization >60 %). To specify
these objectives on the model level, the Objectives refer
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Fig. 7 The QoS data repository

to the respective MetricType from the QosDataRepos-
itory. The PUSH strategy uses only one tactic, namely
addResources, and is triggered by the SlaViolated
event. After the tactic has been successfully applied at the
model level, the architecture-level system QoS model is ana-
lyzed to predict the impact on the MetricType referred by
the objective. If the prediction results still reveal SLA viola-
tions, the strategy executes the tactic again until all SLA vio-
lations are resolved and the strategy has reached its objective.

The PULL strategy is triggered with the objective to
OptimizeResourceEfficiency. The trigger of the
related event could be either a predefined schedule or even
the PUSH phase. The PULL strategy refers to the tac-
tic removeResources to reduce the amount of used
resources. Again, after the execution of the tactic, the
model is analyzed to predict the effect of the tactic on
the system performance. If no SLA violation is detected,
the strategy can continue removing resources. In case an
SLA violation occurs, the last adaptation must be undone,
which is implemented by the undoPreviousAction
tactic. Which of these two tactics is chosen is deter-
mined based on the weights. In our example, the ini-
tial values are 1.0 for removeResources and 0.5 for
undoPreviousAction. The concepts of the weighting
function will be presented with more details in Sect. 2.3.5.

2.3.4 QoS data repository

The evaluation of the effect of an executed tactic needs to
quantify the impact of the actions applied by the tactic. This
impact can be determined by comparing QoS metrics (either
on the model or system level) before and after applying a tac-
tic. This information is stored in a QosDataRepository
(see Fig. 7). The repository contains a set of MetricTypes
M that can be monitored at the model and system level,
respectively. Examples for such metric types could be: m1

as the average response time of ServiceX , m2 as the 90 %
quantile of response time of ServiceY , or m3 as the average
utilization of Resourcen .

The repository also contains a history of Results.
A Result is a set of collected MetricValues at the
timestamp ts. A MetricValue specifies the actual
value v ∈ V of a MetricType m ∈ M observed at the
given time stamp ts ∈ T S. More formally, the set of values
V is defined as V ∈ [M × T S → R]. An example could be
v(m1, tsi ) = 0.5 s, specifying that the value v of metric type
m1 at time stamp tsi was 500 ms.

Information also stored in the QoS data repository is the
achieved Impact of a tactic. The impact is quantified by
calculating the delta of the results after and before the
application of a tactic for each MetricValue. More for-
mally, the impact on the metric types m ∈ M is specified
as

it (m) = v(m, tsi ) − v(m, tsi−1), (1)

where tsi and tsi−1 identify the result with the time stamp
after and before applying the tactic. For example, if
the metric value v(m, tsi ) of metric m at time stamp tsi was
500 ms and is 200 ms at time stamp tsi−1, the impact it (m) of
tactic t on metric m would be −300 ms, i.e., an improvement
of the response time metric.

Our intention was not to define a new meta-model for QoS
metrics and values. Thus, we kept this meta-model very basic
to adapt and reuse it in other scenarios. For example, this
meta-model can serve as a decorator model for the Software
Metrics Meta-Model (SMM), developed by the Architecture-
Driven Modernization Task Force of the OMG [24]. Thereby,
it is easier to reuse other existing tools based on SMM, e.g.,
the MAMBA Execution Engine or Query Language [11].
When decorating SMM, the classMetricTypewould refer
to theObservedMeasure of the SMM, aMetricValue
corresponds to the Measurement of the SMM, and
Result corresponds to Observation. In this way, it
would be possible to use data that have already been col-
lected and stored in a repository by measurement tools like
Kieker [29].

2.3.5 Weighting function

A strategy uses weights to determine which tactic to apply
next. A tactic’s weight is calculated directly after execut-
ing the tactic, so the strategy might choose a different tac-
tic in the next adaptation step. The weight (or value) of a
tactic depends on the achieved impact, i.e., if the metrics
of interest have been improved or degraded. This calcula-
tion of weights is realized by the WeightingFunction.
Formally, a weighting function can be specified as follows.
Assume

T = {t1, t2, . . . , tm} is the set of tactics and
S = {s1, s2, . . . , sn} is the set of all possible system states.

123



SOCA (2014) 8:73–89 81

Then, the weighting function can be specified as a mapping
W ∈ [T × S → R] that assigns a weight to the given tac-
tic t ∈ T , given the system state s ∈ S. The idea is that
any existing and well-established optimization algorithms or
meta-heuristics (like Tabu Search or Simulated Annealing)
can be used here to determine the weights depending on the
current state of the system, possibly also considering its pre-
vious states stored in a trace.

In our approach, we use a basic concept to spec-
ify weighting functions, which could be extended in the
future. Basically, aWeightingFunction consists of sev-
eral WeightedMetrics. A WeightedMetric assigns
a specific weight to the referenced MetricType. As
explained in the previous section, MetricTypes could
be, e.g., the response time of services or the utilization
of resources. To calculate the new weight for the applied
Tactic t , we take the achieved Impact of each metric
m ∈ Mt and multiply it with its assigned weight (Mt is the
set of all MetricTypes affected by t). More formally, the
new weight for a Tactic t is calculated as

w f (t) =
∑

m∈Mt

(wm ∗ it (m)), (2)

where wm is the weight assigned to MetricType m ∈ Mt ,
and it (m) is the impact of tactic t on metric m. In other words,
the weights of the set of metrics affected by the applied tactic
influence the weight assigned to the tactic. This way one can,
e.g., prioritize the impact on the response time over the impact
on the utilization.

The reasons why we use this basic concepts are that
it is machine-processable and that it directly relates to
our specification of Objectives. Objectives refer
to a MetricType, and the WeightingFunction can
specify the influence of this metric on the application of
tactics.

Example Imagine a situation in which we want to priori-
tize tactics that have a beneficial impact on important ser-
vices. Therefore, assume that we have two different ser-
vices, one of a gold customer (serviceg) and of a silver
customer (services). For each of these services, we observe
the metric types 90% quantile of the response time, named
r tg and r ts . To prioritize the impact on the response time of
the gold customer’s service over the one of the silver cus-
tomer, we set the weighted metrics to wmg = −2.0 and
wms = −1.0. Note that the weights are negative because
improving the response time results in a negative impact. To
assure that a tactic which is beneficial for the gold service
gets a higher weight, we can specify a weighting function
w f (t) := wmg ∗ it (r tg) + wms ∗ it (r ts) that assigns weights
depending on the impact on the response times of the gold
and silver customer, respectively.

Another example is the weighting function we specified
for thePULL strategy to assign new weights to the two tactics
removeResources and undoPreviousAction,

w fPU L L(t) :=
{

1, if r t < τ

0, else.

This step function assigns a weight of one to the given tac-
tic t as long as the response time r t is below the thresh-
old τ ; i.e., the SLA is not violated. Only if an SLA is vio-
lated, the weight of the given tactic is changed to zero. As
the undoPreviousAction has an initial weight of 0.5
and the removeResources an initial weight of 1.0, this
assures that the tacticremoveResourceswill be executed
until an SLA is violated. Then, in the next adaptation step, the
tactic undoPreviousActionwill be applied, because its
weight is greater than zero. A more detailed weighting func-
tion and its application are also shown in the evaluation in
Sect. 3.2.

2.4 Prototypical S/T/A framework

To evaluate the usability and benefits of our adaptation lan-
guage, we provide a framework with the purpose to interpret
S/T/A model instance and execute them on the model level,
or—if a suitable connector is implemented—on the real sys-
tem. This section provides a brief overview of our framework.
We use the running example to illustrate the execution of the
modeled adaptation process. The prototypical implementa-
tion, a description of how to install the framework, and our
example model can be found on the Web site [26].

In the setup phase, the framework reads the models
and their initial settings into memory. It establishes a con-
nection to the deployed system configuration and regis-
ters with the QoS data repository to retrieve information
about the real system and its QoS metrics. It also starts
an AdaptationController which waits for events to
perform system adaptation. When receiving an event, the
AdaptationController starts the system adaptation.
We distinguish the model adaptation phase and the system
adaptation phase.

The next phase is the model adaptation phase, and it starts
when the AdaptationController receives an event to
a certain objective and triggers the corresponding strategy.
For example, assume that a ScheduledOptimization
event occurs. The AdaptationController receives
this event and triggers the corresponding PULL strategy with
the objective to optimize resource efficiency (see Fig. 6). The
AdaptationController then selects one of its referred
tactics based on the current weights of the tactics (in the
initial case, this is removeResources) and executes the
tactic’s adaptation plan. According to the adaptation plan
of removeResources, the AdaptationController
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first checks the OCL constraint ServerAtMinCapExi-
sts. Assume that the expression evaluates to TRUE, and
hence, the AdaptationController executes the rem-
oveAppServer action. It looks up the action’s corre-
sponding adaptation point in the adaptation space sub-model
and uses this information to adapt the model accordingly.
For removeAppServer, this would contain a pointer
to the architecture model elements that can be changed
and constraints ensuring that the model is still valid after
adaptation (e.g., there must be at least one server left).
When all actions are executed, the execution of the tac-
tic is finished and the control flow returns to the strat-
egy to evaluate the impact of the tactic. For this evalua-
tion, the AdaptationController may use a simulator
or another analysis method that can predict the QoS met-
rics of the modified architecture-level system QoS model.
The AdaptationController then evaluates the results
using the weighting function to change the weights of the
tactics if necessary. In our example, if the current configura-
tion causes an SLA violation, the weighting function would
assign 0.0 to theremoveResources tactic. The next adap-
tation step would choose the undoPreviousAction tac-
tic with weight 0.5 because the previous tactic was not suc-
cessful. After evaluating the impact of the applied tactic and
assigning the new weight, the AdaptationController
checks whether the problem which caused the event has been
solved. To do this, the AdaptationController checks
whether the strategy’s objective that has been referred by
the event is fulfilled. If false, the phase starts over, execut-
ing the adaptation plan of the tactic that now has the highest
weight until the objective is fulfilled or the application of
tactics has no further impact. The output of this phase is an
adapted architecture-level system QoS model instance that
fulfills the modeled overall goal. Changes are, e.g., the num-
ber of servers or the amount of used resources.

In the system adaptation phase, we replay the model adap-
tation phase on the real system, however, without consider-
ing adaptation steps that have been discarded in the previ-
ous phase. For our experiments, we implemented a system
adaptation phase that can apply changes to the virtualized
environment of the actual system using the Xen API. This
must be extended or replaced if other adaptation actions or
different target platforms should be supported.

3 Evaluation

We evaluate our presented adaptation language in several
distinct representative scenarios to demonstrate that it pro-
vides a generic and flexible formalism for modeling system
adaptation based on different architecture-level system QoS
models. The first and third scenario (Sects. 3.1, 3.3) demon-
strate the generality and flexibility of our S/T/A adaptation

language by applying it in the context of dynamic resource
allocation and run-time capacity management with differ-
ent architecture-level system QoS models. The second sce-
nario (Sect. 3.2) demonstrates the applicability of a weight-
ing function to guide the adaptation process by changing to
different tactics. The third scenario (Sect. 3.3) demonstrates
that the S/T/A adaptation language can produce useful solu-
tions in a reasonable amount of time by evaluating its usabil-
ity in a framework for multi-objective software architecture
optimization. The fourth scenario (Sect. 3.4) gives an exam-
ple for decoupling the adaptation process by using S/T/A
model instances as adaptation plans. In the last Sect. 3.5,
we compare the concepts of our adaptation language with
other approaches and discuss the challenges of a technical
comparison of these approaches.

3.1 Dynamic resource allocation

In this scenario, we evaluate our approach using the SPEC-
jEnterprise20101 benchmark. We first briefly describe the
experimental setup the benchmark is deployed in and discuss
the applicability of our architecture-level system QoS model
before we apply the dynamic resource allocation process of
our running example, summarized in Sect. 2.2. The S/T/A
model instance of this adaptation process can be obtained
from our Web site [26].

As hardware environment for the experiments, we use
six blade servers from a cluster environment. Each server
is equipped with two Intel Xeon E5430 4-core CPUs run-
ning at 2.66 GHz and 32 GB of main memory. The machines
are connected by a 1 GBit LAN. On top of each machine,
we run Citrix XenServer 5.5 as the virtualization layer. The
SPECjEnterprise2010benchmark application is deployed in
a cluster of Oracle WebLogic Server (WLS) nodes. Each
WLS node runs in its own XenServer VM, initially equipped
with two virtual CPUs (vCPUs).

For the evaluation, we considered reconfiguration options
concerning the number of WLS cluster nodes and the vCPUs
the VMs are equipped with: WLS nodes are added to or
removed from the WLS cluster, and vCPUs are added to or
removed from a VM.

The benchmark application and the hardware environment
have been modeled with PCM [2] as architecture-level sys-
tem QoS model. We used SimuCom2 to analyze the model
and predict the impact of changes to the model. We then
replay the changes on the real system to check whether they

1 SPECjEnterprise2010 is a trademark of the Standard Performance
Evaluation Corp. (SPEC). The SPECjEnterprise2010 results or findings
in this publication have not been reviewed or accepted by SPEC; there-
fore, no comparison nor performance inference can be made against any
published SPEC result. The official Web site for SPECjEnterprise2010
is located at http://www.spec.org/jEnterprise2010.
2 http://www.palladio-simulator.org/.
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Fig. 8 The response times when changing workload from ×2 to ×4
(SLAs denoted by inverted triangle)

Fig. 9 Dynamic resource allocations using the modeled algorithm
from the running example

have the desired impact. As an example, Fig. 8 shows the
response time measurement for all five services of the bench-
mark for an increasing workload. The figure shows that sys-
tem configuration c1 is not able to handle the increased load
(4×) without SLA violations. Hence, our adaptation process
is triggered, resulting in a new system configuration c2, where
all SLAs are maintained.

Figure 9 shows the results of a series of such workload
changes and the resulting changes to the model. The chart
shows how the number of application servers and the allo-
cated vCPUs change in the real system as the workload
changes during system operation over a period of one week.
This demonstrates how we can apply the adaptation language
using an architecture-level system QoS model to dynami-
cally allocate resources at run-time in a virtualized system.
The advantage is that the hard-coded logic of the algorithm is
now encoded in a generic model which is intuitive for soft-
ware architects and can be easily maintained, modified or
reused. Since we abstract the actual changes applied to the
model and the real system as actions, the modeled dynamic
resource allocation algorithm can also be reused in a different
virtualized environment, e.g., based on a different virtualiza-
tion platform.

3.2 Guiding adaptation using a weighting function

The increase of resources explained in the previous section
can be achieved with the PUSH strategy, implementing two
different tactics. Tactic t1 is an aggressive but more costly tac-
tic, which adds more resources by starting new VMs, first. In
contrast, tactic t2 is more conservative, assigning additional
vCPUs to the existing VMs before starting additional VMs.

Table 1 Application of the example weighting function

Tactic t1 Tactic t2

mws m p mb mws m p mb

Before 762 221 217 762 221 217

After 376 119 79 564 174 148

Impact −386 −102 −138 −198 −47 −69

Weight −2.0 −2.0 −1.0 −2.0 −2.0 −1.0

Result 1,114 559

All metric values are in milliseconds

This section describes the implementation of a weight-
ing function to determine which tactic to apply next (see
Sect. 2.3.5). We will use simulation results of our model to
demonstrate the effect of our weighting function. Assume
we observe the metric types m ∈ {mws, m p, mb}, defined
as the 90 % quantile of the response time of the services
S = {W S, Purchase, Browse}. Services W S and Purchase
are the services of a gold customer, and Browse the service of
a silver customer. Therefore, we set the weights wm for each
service’s metric to {−2.0,−2.0,−1.0} (see Table 1). Note
that the weights for the response time metrics are negative
because the impact of a response time improvement is nega-
tive, too. This assures that the absolute value (wm ∗ it (m)) is
positive for positive changes in the affected metric values and
negative for undesired changes. The setting of the weights
also guarantees that a response time improvement of the gold
customer is more valuable compared to the silver customer.

Table 1 shows the measured metrics for a given system
configuration before (two VMs using two vCPUs each) and
after applying either the aggressive (one additional VM) or
conservative (one additional vCPU) tactic. The table also
shows the impact of the tactics as well as the calculated
weighting function result. The result indicates that tactic t1
achieves a higher result because it improved the response
times more significantly.

Now assume that the adaptation process in the initial
state and the weights assigned to (t1, t2) are (750, 1,000).
The aggressive tactic has a lower weight because it is more
costly to add new VMs. Hence, the adaptation strategy would
choose to execute t2. However, after applying t2, the new
weight of t2 is 559. In case the SLAs are still violated and
a further adaptation step is required, the PUSH strategy will
apply the more aggressive strategy t1 because it has a higher
weight.

This example shows how it is possible to design strategies
based on the same tactics but with different goals using dif-
ferent weights and weighting functions. If the system admin-
istrator’s goal is to maintain SLAs at all cost, they would
assign higher weights to the aggressive tactic and implement
a weighting function that prioritizes the application of this
tactic.
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Fig. 10 Pareto optimal candidates found by PerOpteryx (inverted tri-
angle) and candidates found when S/T/A is applied to guide the search
process (asterisk)

3.3 Simulating S/T/A adaptation

In this scenario, we integrate our approach into a frame-
work for improving software architectures by automat-
ically trading-off different design decisions, called Per-
Opteryx [21]. Thereby, we show that our approach can find a
suitable system configuration within a reasonable amount of
time. This scenario also shows that our adaptation language
can be applied to a different architecture-level system QoS
model (e.g., PCM [2]).

For a given architecture-level system QoS model, Per-
Opteryx searches the space of possible configurations for
candidates that fit given objectives. Therefore, PerOpteryx
starts from an initial system configuration modeled with
PCM and generates new candidates according to the adap-
tation space sub-model. These new candidates are evaluated
w.r.t. the given objectives, and a new iteration starts with half
of the best fitting candidates.

PerOpteryx is targeted at design-time optimization; i.e.,
there are no strict time constraints to evaluate a huge number
of candidates. Although PerOpteryx implements heuristics
encapsulating domain knowledge to reduce the number of
candidates that are evaluated, the PerOpteryx approach with
its implemented genetic algorithms is not designed for use at
run-time.

In this scenario, we implemented a strategy and a set
of tactics to focus the generation of candidates (i.e., sys-
tem configurations) within PerOpteryx to find a candidate
that fulfills the objective of the strategy as quickly as pos-
sible. For our experiments, we use the same models and
settings as in the Business Reporting System case study
used to evaluate PerOpteryx [21]. Figure 10 shows the out-
put after 100 iterations with a population of 60. It depicts
the set of Pareto optimal candidates (marked by �) when
trading-off response time (in seconds) versus cost (an abstract
unit used by PerOpteryx). We use this Pareto optimal set of

Fig. 11 Comparison of the PerOpteryx configuration search with
(open circle) and without S/T/A (inverted triangle)

candidates as the baseline for the following accuracy and
efficiency evaluation of our approach. In our scenario, we
assume that the response time of the initial candidate (8.4 s)
violates an SLA which must guarantee response times below
five seconds. This triggers our implemented strategy with
the objective to adapt the system such that the response
time is below five seconds. The strategy chooses a tac-
tic from the set of tactics T = {IncreaseResource,
LoopIncreaseResource, BalanceLoad}. Due to
space constraints, we omit a detailed depiction of the respec-
tive S/T/A model. The IncreaseResource tactic imple-
ments one action, increasing the CPU capacity of the server
with the highest utilization by 10 % w.r.t. its initial capacity.
LoopIncreaseResource implements the same action
but within a loop action repeating the increaseCPU action
as often as specified by the loops counter parameter.
BalanceLoad migrates a software component from the
server with the highest utilization to the server with the
lowest.

For the initial system state s0 ∈ S, we set the weights for
the three tactics to wt0 = (1.0, 0.0, 0.0). We then use the
PerOpteryx framework to execute our strategy. The strategy
chooses a tactic, executes it and evaluates the resulting candi-
date. The evaluation reassigns weights to the tactics accord-
ing to their effect. In this scenario, if IncreaseResource
has no effect (response time increase ≤5 %), we assign 1.0 to
LoopIncreaseResources. If there is still no effect, we
assign 1.0 to BalanceLoad. In case we detect an effect,
we reset the initial weights. We repeat applying a new tactic
according to the weights and evaluating the results until we
find a state that fulfills the objective of the strategy. The final
resulting candidate, i.e., system configuration, of this process
is depicted by a ∗ symbol in Fig. 10.

As we can see, the configuration found using the S/T/A
model is not globally optimal. However, it fulfills the given
target and was found within eight iterations. The standard
evolutionary search of PerOpteryx provides the first SLA-
fulfilling candidate after ten iterations (see Fig. 11). Thus,
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using S/T/A models can provide a quicker process to find
a close to optimal solution than a full-fledged optimiza-
tion approach. Of course, this comes at the cost that the
S/T/A solution might not be optimal. Furthermore, five
out of the eight iterations using an S/T/A model executed
the LoopIncreaseResource tactic which executes two
nested adaptation actions. This results in saving five (out
of thirteen) model evaluations that would have been neces-
sary without S/T/A, thereby saving costly analysis time. Note
that the absolute amount of saved time and the duration of
the evaluation depend on the input model and the employed
analysis technique.

We emphasize that the contribution of this paper is not a
new optimization algorithm. Instead, our goal in this scenario
is to focus system optimization such that a system configura-
tion that fulfills a given set of objectives is found as quickly
as possible. This system configuration must not necessarily
be globally optimal.

However, the evaluation results demonstrate that with the
knowledge about the system adaptation strategies modeled
using our adaptation language, it is possible to find suitable
candidates within a shorter amount of time reasonable for
run-time system adaptation.

3.4 S/T/A adaptation plans

This section demonstrates how we use the S/T/A approach
in the SLAstic framework for architecture-based online
capacity management [28,30]. SLAstic aims to increase
the resource efficiency of distributed component-based soft-
ware systems employing architectural run-time adaptations.
SLAstic also relies on architectural models describing a
system’s QoS-relevant aspects and adaptation capabilities.
SLAstic’s purpose is to determine required adaptations
proactively, in order to calculate and execute appropriate
adaptation plans. In this scenario, we show that our S/T/A lan-
guage can be used to specify and execute architectural adapta-
tion plans, in order to bring a real or simulated system from a
current to a desired configuration. This section presents some
of our results of a laboratory experiment, employing SLAstic
to control the capacity of a software system deployed to an
Eucalyptus-based IaaS cloud environment, which is compat-
ible with the Amazon Web Services (AWS) API.

The five S/T/A actions depicted in Fig. 12 correspond to
the set of architectural run-time adaptation operations cur-
rently supported by the SLAstic framework: allocate and
deallocate (typed) execution containers (i.e., physical or vir-
tual servers), as well as migrate, replicate and dereplicate, a
given software component to or, respectively, from a given
execution container. Input parameters refer to types from the
SLAstic meta-model. Note that these actions are the same
regardless of whether SLAstic is connected to an IaaS envi-

Fig. 12 Actions of the online capacity management scenario

ronment or, for example, to a simulator for run-time adapt-
able PCM instances [30]. In the cloud scenario, an adaptation
manager receives precalculated S/T/AAdaptationPlans
and executes them by interacting with the AWS API and
the allocated nodes according to the actions specified in
Fig. 12.

In our evaluation, we expose a Java-based application
(JPetStore 5.0) to a probabilistic workload with varying
intensity based on a 24 h workload profile obtained from
an industrial system. The profile was scaled to an experi-
ment duration of 24 min plus 2 min cooldown. In this setting,
we made the assumption that we have a good understand-
ing of the correlation between application-level workload
intensity—in this case, the number of requests to a software
component per minute—and the CPU utilization. For each
software component, we defined a rule set specifying the
number of component instances to be provided at certain
workload intensity levels, e.g., five instances in periods with
a workload intensity of 27,000 requests per minute. Devi-
ations between the number of component instances spec-
ified in the rule set and the number of instances actually
allocated trigger the adaptation planner to create an S/T/A
AdaptationPlan with the goal to achieve the requested
architectural configuration. This plan is then sent to the adap-
tation manager for execution.

We executed the experiment with and without adaptation
being enabled. In the latter scenario, a fix number of 6 nodes
was allocated throughout the entire experiment. Figure 13
shows the measured CPU utilization and the varying number
of allocated nodes with adaptation enabled. The number of
allocated nodes in this experiment varies between one and
six. Comparing the results of both settings, the average CPU
utilization increased with adaptation enabled, while (aver-
age) response times were very similar (5 ms measured at the
application’s entry points).

This scenario demonstrates the generic applicability of our
adaptation language. Furthermore, we show that it is possi-
ble to exchange precalculated adaptation plans between the
planning and executing parties to achieve a desired system
configuration in a cloud scenario.
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Average CPU utilization of allocated nodes
Number of allocated nodes

Fig. 13 Online capacity management executing S/T/A adaptation
plans

3.5 Discussion and comparison

Vogel and Giese presented an extensive list of functional
and nonfunctional requirements for adaptation languages and
frameworks [31]. This list of requirements was used to assess
two approaches, Stitch [5] and Story Diagrams [10]. We now
use the same list to assess our adaptation language S/T/A and
to compare it to Stitch and Story Diagrams (see Table 2). We
also discuss technical aspects of S/T/A, i.e., its efficiency,
accuracy, etc.

Concerning functional language requirements, S/T/A pro-
vides a way to specify the adaptation goal (LR-1), although
not fully operationalized yet. S/T/A is designed to support
all quality dimensions (LR-2) and provides the weights of
the tactics to specify adaptation preferences (LR-3). Our lan-
guage explicitly uses an architecture-level system QoS model
which corresponds to the concept of a reflective model (LR-
4). Adaptations are triggered by events (LR-5) and the eval-
uation conditions (LR-6) can be described using objectives.
Evaluation results (LR-7) are not directly supported, but they
can be stored in a separate QoS data repository. Similarly,
adaptation options (LR-8) can be specified but are part of the
adaptation space sub-model, not of our adaptation language
directly. Specifying adaptation conditions (LR-9) is not pos-
sible, but one can define different strategies which can be
applied under special conditions. Adaptation costs and ben-
efits (LR-10) can be expressed by user-defined weighting
functions that assign specific, cost- and benefit-considering
weights to the tactics. Persisting the decision history (LR-11)
is not part of S/T/A but is implemented in the prototypical
framework interpreting S/T/A instances.

Regarding the nonfunctional language requirements, with
its separation into strategies, transaction-like tactics and para-
meterized actions, S/T/A fulfills LR-13 and LR-14. However,
as it is limited to the three abstraction-level strategies, tac-

Table 2 Language requirements (LR) and framework requirements
(FR) comparison of Stitch and Story Diagrams [31], extended by S/T/A:
’–’ is no support, ’P’ is partial support, and ’F’ is full support

Req. S/T/A Stitch SD

Functional language requirements

LR-1 P – F

LR-2 F F F

LR-3 F F F

LR-4 F P F

LR-5 F P F

LR-6 F F F

LR-7 P – F

LR-8 P F F

LR-9 P F F

LR-10 P F F

LR-11 P P F

Nonfunctional language requirements

LR-12 P P F

LR-13 F – P

LR-14 F P F

LR-15 P – P

LR-16 P P P

LR-17 P P F

Framework requirements

FR-1 F P F

FR-2 P – P

FR-3 F – P

FR-4 F – F

FR-5 F – F

FR-6 F – F

tics, and actions, it supports LR-12 only partially. Similarly,
as S/T/A is specified using a meta-model and has no explicit
formal definition, LR-15 is only partly fulfilled. S/T/A is
partly reusable (LR-16) because it is independent of the
architecture-level system QoS model, but its instances are
coupled to concrete architecture-level QoS model instances
like DMM. Concerning the ease of use (LR-17), S/T/A
requires understanding of the concepts (e.g., control flow
diagrams), but no programming skills, etc.

Looking at the framework requirements, our prototype
supports consistency (FR-1), incrementality (FR-2) and
reversibility (FR-3) because it works on the model level
where consistency checks can be executed and changes can
be executed incrementally and reversed, if necessary. It con-
siders priorities (FR-4) by assigning weights to tactics and
covers different time scales (FR-5) if appropriate strategies
have been specified. It also supports a great amount of flex-
ibility because tactics (and their weights) can be exchanged
during execution.
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When comparing the fulfillments of functional and non-
functional requirements, our S/T/A approach is in between
Stitch, which is more focused on system administration tasks,
and the more general purpose-like Story Diagram language.
This comparison has been conducted from a conceptual point
of view and is based on the literature [5,10,31]. Comparing
technical aspects like accuracy and efficiency of these three
approaches remains a big challenge [4,8]. The main reasons
are that the approaches must provide tool support and that
they must be integrated into an existing self-adaptive sys-
tem, ideally a benchmark. Although Story Diagrams provide
graphical editors to model and validate adaptation models
and Stitch provides some tool support, the effort to adapt
these approaches to our scenario is huge. However, com-
paring the accuracy of our approach with the optimization
approach PerOpteryx as a baseline (see Sect. 3.3), we can
conclude that using S/T/A, it is possible to find a solution
within a reasonable amount of time. The accuracy of the solu-
tion depends on the accuracy of the architecture-level system
QoS model. If this model reflects the system state within a
given confidence level, the solutions of S/T/A maintain the
same accuracy. Regarding efficiency, the time consumed to
find a solution mainly depends on the amount of required
model analyses. Hence, if strategies and tactics are specified
in an efficient manner, solutions are also found efficiently.
Of course, one can speed up the analysis, e.g., by caching
previous analysis steps or by using quicker but less accurate
analysis techniques. However, optimizing our framework is
part of future work.

4 Related work

In this section, we discuss the abstraction level employed
by other approaches and compare our approach to related
languages for defining adaptation (control flow), and other
options to express the adaptation space of software architec-
ture models.

Architectural models provide common means to abstract
from the system details and analyze system properties. Such
models have been used for self-adaptive software before, e.g.,
in [12,25], however, existing approaches do not explicitly
capture the degrees of freedom of the system configuration
as part of the models. The three-level abstraction of adap-
tation processes can be found in other approaches too, e.g.,
by Kephart and Walsh [16] to specify policy types for auto-
nomic computing or especially by Cheng et al. [6], defining
an ontology of tactics, strategies and operations to describe
self-adaptation. However, to the best of our knowledge, none
of the existing approaches separates the specification of the
models at the three levels. By separating the knowledge about
the adaptation process and encapsulating it in different sub-

models, we can reuse this knowledge in other self-adaptive
systems.

In the field of software engineering, there exist various lan-
guages with different purposes to describe adaptation. Cheng
and Garlan introduce Stitch [5], a programming language-
like notation for using strategies and tactics. However, strate-
gies refer to tactics in a strictly deterministic, process-
oriented fashion. Therefore, the knowledge about system
adaptation specified with Stitch is still application-specific,
making it difficult to adapt in situations of uncertainty. Other
languages like Service Activity Schemas (SAS) [9] or the
Business Process Execution Language (BPEL) [23] are very
domain-specific and also describe adaptation processes with
predefined control flows for service-oriented systems. More-
over, because of their focus on modeling business processes,
these approaches are not able to model the full spectrum of
self-adaptive mechanisms from conditional expressions to
algorithms and heuristics. Yet Another Workflow Language
(YAWL) [27] is based on Petri nets and has been used by da
Silva and de Lemos [7] to coordinate the self-adaptation of
a software system. The authors execute architectural recon-
figuration using dynamic workflows to adapt to changing
requirements at run-time. The authors also consider strategies
and tactics corresponding to [6]. However, the focus of this
approach is to automatically generating workloads for self-
adaptation. Thus, it does not integrate a detailed architecture-
level system QoS model as this approach to evaluate the effect
of the adaptation process.

If constraining the specification of adaptation to the
model level (i.e., adaptation languages for adapting model
instances), well-known methods from the area of graph gram-
mars could be used to adapt models, too. For example,
Agrawal et al. [1] present an approach on how to define
model transformations based on UML. Another example for
a graph grammar language is previously presented Story Dia-
grams [10], which is also based on UML and Java. However,
these approaches remain on the model level, whereas our
approach should also execute real system adaptations. For a
more detailed discussion of the two most related approaches
(Stitch and Story Diagrams), we refer to Sect. 3.5.

For modeling the adaptation space of a software architec-
ture, we use PCM’s Degree-of-Freedom Meta-Model [18]
or the Adaptation Points Meta-Model, which is an integral
part of DMM [17], allowing to capture different types of
adaptation changes, e.g., to add vCPUs, to add servers and
to exchange software components, in a single model. In the
area of automated software architecture improvement, most
existing approaches use a fixed representation of the adap-
tation space and thus do not allow to freely model an adap-
tation space. Two notable exceptions are PETUT-MOO and
the Generic Design Space Exploration Framework (GDSE).
The PETUT-MOO approach [22] uses model transforma-
tions to describe changes in the configuration of software
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architectures. However, this idea has not been followed up
in later works of the authors, which focuses on architecture
optimization and does not describe the adaptation space in
detail.

5 Conclusions and future work

In this paper, we presented our novel S/T/A meta-model for
describing system adaptation in component-based system
architectures. Our approach is based on architecture-level
system QoS models, on the one hand, and the S/T/A model,
on the other hand, separating the knowledge about possible
adaptation steps from the actual adaptation plans. This sep-
aration allows to explicitly model adaptation processes in
an intuitive and at the same time machine-readable manner,
enabling the reuse of plans in different autonomic or self-
adaptive systems.

In an extensive evaluation, we applied our approach in
multiple distinctive and representative scenarios using differ-
ent architecture-level system QoS models. In this scenarios,
we demonstrated the use of the proposed adaptation language
to model dynamic resource allocation algorithms, online
capacity planning and design-time system optimization. We
showed how our S/T/A models interact with the underlying
system models and how they improve system adaptation by
focusing the search for suitable configurations and reducing
the number of costly evaluations. Finally, we showed how
S/T/A can be used as an intermediate language by adap-
tation planners or agents. Overall, our developed approach
showed how the gap between complex system adaptations
and self-adaptation at run-time can be closed.

Our future work aims into two directions. Conceptually,
we want to provide a more detailed formalization of our
adaptation language. Additionally, it would be valuable to
conduct empirical studies on the benefits of adaptation lan-
guages in general and of our language compared to other
approaches. On the technical level, we are working on graph-
ical and textual editors to ease modeling adaptation processes
with S/T/A. Finally, we intend to work on developing further
heuristics and optimization algorithms specifically tailored
for use in our S/T/A language.
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