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Abstract—The Power consumption of servers in data centers
depends greatly on the software running on each server and
how it interacts with the hardware. Different deployments of
distributed software components on heterogeneous servers can
lead to significant differences in power consumption, depending
on the server allocation and the current workload. As workloads
and load intensity change, components may be re-deployed or
exchanged in order to reduce the power consumption for the
current load profile. The decision on which component to place
on which server during run-time remains difficult as the power
consumption that would result from such a placement remains
unknown. Existing work on component deployment optimization
at run-time focuses on maximizing performance or considers
power in the context of static design time decisions.

In this paper, we introduce a model to predict the power con-
sumption of component placements at run-time based on the load
and power profile collected for a running distributed application
in a heterogeneous environment. In addition, we present a model
that enables the use of our approach without dedicated power
measurement devices, predicting power consumption based on
load intensity and performance counters. We show that we can
predict the power consumption of two different distributed web
applications with a mean absolute percentage error of 2.21% and
with an error of 1.04% when predicting a previously unobserved
load level.

I. INTRODUCTION

The energy efficiency of servers and data centers has
become an ever more important issue over the last decades. In
2010, the U.S. Environmental Protection Agency (U.S. EPA)
estimated that 3% of the entire energy consumption in the U.S.
is caused by data center power draw [1].

The power consumed by servers in data centers depends on
the specific software running on each server. Differences in
the software design, specific implementation, and the hardware
on which it runs can result in different power profiles [2]. As
a result, the deployment of distributed software components
on heterogeneous servers can lead to significant differences
in power consumption depending on which component is
deployed on which server. For each software component, the
power consumption may scale differently as the load increases.
Therefore, the most efficient component placement on the
servers under consideration may change over time.

As the load changes over time, components (or services)
may be re-deployed to different devices in order to reduce the
power consumption for the current load profile. They may also
be replaced by component implementations that provide better
efficiency for the current load level. In addition, components

or (micro-)services may be replicated across multiple devices.
The power consumption of such deployments is unknown in
advance, making informed management decisions difficult.

Existing approaches for prediction of non-functional prop-
erties of component deployment focus on performance. Ar-
chitectural models, such as [3] and [4] support the prediction
of performance characteristics at design time and run-time.
Models that consider power focus on a static deployment
context, using pre-defined system power models.

In this paper, we propose a modeling approach for pre-
dicting the power consumption of component placements at
run-time. The deployment model is designed to only require
basic information about the system, specifically about the
structure and deployment infrastructure, such that it can be
easily assembled without much modeling effort. The power
prediction model makes use of run-time monitoring data about
the observed power consumption under varying load levels.
It captures the individual components’ power profiles and
their interactions based on which it can predict the power
consumption of a new component placement configuration. We
also introduce a separate single server power model leveraging
measurements of an industry standard energy rating tool. This
single server power model eliminates the need for dedicated
power measurement devices at run-time that would otherwise
be required to use our general end-to-end prediction model.

The goal of this paper is to enable informed component
placement decisions that minimize the system power consump-
tion. Our modeling approach can be used to find the least
power consuming deployment option for a target throughput
level. It can also be used in conjuction with any existing
software performance model to optimize the energy efficiency
of distributed systems. Note that our modeling approach is
agnostic of the type of distributed architecture, i.e. if it is
a component or (micro-)service based architecture. However,
we use the term component throughout this paper to refer to
components or (micro-)services.

The major contributions of this paper are as follows:

1) We propose an end-to-end modeling approach for run-
time prediction of the power consumption of component
deployments in heterogeneous environments.

2) We present a deployment model that supports the use
of replicated components with alternate implementations
with the goal of enabling power predictions.



3) We present a separate single server power model that
eliminates the need for dedicated power measurement
devices for run-time power prediction.

We evaluate our models using two different web applica-
tions deployed in a heterogeneous environment with servers of
different CPU hardware architectures. We predict the power
consumption of different component placements, including
placements that make use of component replication and that
vary the component implementations. We show that we can
predict the power consumption of previously unobserved de-
ployments with a mean absolute percentage error of 2.21%.
In addition, we show that we can predict the power consump-
tion of a system at a previously unobserved load level and
component distribution with an error of 1.22%.

II. RELATED WORK

We survey related work in three areas: Architectural per-
formance models, system-level power prediction models, and
energy-aware power management.

Architectural performance models, such as [3] and [4],
model the software architecture and infrastructure of a
component-based system for performance prediction, requiring
detailed information on the system’s software architecture,
resource demands, and hardware infrastructure. They can be
used for design-time performance prediction [3] or run-time
prediction [4]. These models can be combined or extended
with power information on power consumption to enable
power prediction, as done for example in [5]. An example of
an architecture-level model for power prediction, based on fine
granular modeling of the software architecture and underlying
hardware infrastructure, can be found in [6].

System-level power prediction models predict the power
consumption of a single physical machine. These models can
utilize a variety of methods, such as interpolation [7], [8],
regression [9], [10], or others [11]. For the purpose of our
work, we distinguish between hardware-based power models
and workload-based power models. Hardware-based models,
such as [9], [10] and [11] are based on system-level data.
Workload-based models, such as [8] and [12], are trained for
specific workloads and use application-level parameters.

Our model goes beyond single system power prediction
models, predicting for multiple heterogeneous machines. How-
ever, it leverages established regression models as part of its
end-to-end modeling approach.

Energy-aware power management techniques may em-
ploy power models to predict the power consumption of the
system states that might result from management decisions.
The typical goal is to minimize power consumption within
certain Quality-of-Service (QoS) constraints [13], or to maxi-
mize overall efficiency [14], [15]. The impact of the power
management decisions is often estimated using established
basic power prediction methods. For example, [13] uses a
utilization-based linear power model, whereas [16] uses a
quadratic power model. Other works construct their own model
of the underlying systems, such as [17], which models a server
farm using stochastic Petri nets.

III. POWER PREDICTION MODEL

We introduce two separate power models, an end-to-end
model for predicting the power consumption of a workload
based on its deployment on physical or virtual machines and
based on the load intensity, and another model for predicting
the power consumption of a physical server based on per-
formance counters and standard benchmark results. The two
models can be combined, as the end-to-end model requires
the sum total power consumption of the physical machines
on which it runs. It uses this data for training. This required
information can be obtained using run-time measurements,
which requires power instrumentation. This instrumentation
can be omitted when using our server power prediction model.

A. Workload Deployment Power Prediction

The workload deployment power prediction model is de-
signed to predict the power consumption of an end-to-end
system for a specific component deployment at a specified
load.

The model input, training data, and expected output are
illustrated in Fig. 1. The power model requires the current
throughput and the current deployment as input. It is trained
using the power consumption of the entire system, which de-
pends on the deployment and throughput. The model predicts
the end-to-end system power consumption for a specified new
deployment.

In the following, we describe our modeling approach in
detail.

1) Prediction Method: Power prediction is a prediction
problem on a continuous scale and can thus be posed as
a regression problem. Consequently, both of our prediction
models are designed to pose and solve regression problem
statements. These problem statements can be solved by various
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Fig. 1. Workload deployment power prediction data flow with example
deployment.
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Fig. 2. Deployment meta-model.

regression and/or classification algorithms. In general, regres-
sion problems have the following form (Eq. 1):

Y ≈ f(X,β) (1)

where Y is the set of dependent variables (also called
response variables), X the set of independent variables (also
called regressor variables), and β the set of regression pa-
rameters to be trained. In this work, we use generic regressor
variables and regression parameters, allowing any type of
regression models to be used, as opposed to limiting ourselves
to a single model, such as e.g., linear regression. We use
Gradient Tree Boosting [18] as the primary method in this
paper, but other methods are supported.

2) Throughput as Input Variable: We consider throughput
on the level of the entire distributed application. At load levels
below saturation, throughput equals the load intensity. Once
the load intensity exceeds system capacity (the maximum
throughput), both the throughput and the power consumption
stop scaling and stabilize at a given level. When mapping
to regression model regressor variables, throughput can be
mapped to a single variable.

3) Deployment Model as Input Variable: The deployment
model describes which component (or service) is deployed
on which host. It supports component replication (multiple
instances of the same component) and multiple competing
component implementations. Fig. 2 shows the deployment
model’s meta-model.

The deployment model maps the components to the physical
hosts on which they are deployed. We refer to each mapping
of a component to a host as a deployment. Each component
may feature multiple deployments, as it may be replicated
across multiple hosts. For each host, the components within its
deployments must all be unique, however, if a component is
deployed multiple times on the same host, the replication pa-
rameter of the deployment may be used to indicate this. Each
component may have multiple component implementations.
Each implementation has exactly one (possibly replicated)
component that it implements. When deploying a component,

Algorithm 1: Mapping of the deployment model to re-
gressor variables.
Data: regressors: ordered list of regressors X ,
deploymentModel: instance of DeploymentModel;

Function createRegressors()
regressors.append(deploymentModel.hosts);
for host← deploymentModel.hosts do

for deployment← host.deployments do
regressors.append(deployment.replications);

if
|deployment.component.implementations| >
1 then

regressors.append(
mapImplementationToInteger(
deployment.implementation));

end
end

end
end

the concrete implementation used in the deployment must be
specified. We provide a no component implementation, which
is used to create valid models for regression algorithms that
require the specification of a mapping of each component to
each host, even though the component may not be deployed
on that host. Also note that hosts may be either physical or
virtual hosts, even if multiple virtual hosts are co-located on
the same physical machine. However, our model assumes that
virtual hosts are fixed to physical hosts to avoid having to
explicitly model mappings between the two. Consequently, a
VM migration would be modeled as a component changing
its deployment to a new virtual host.

When mapping a deployment model to regressor variables
X , every component must feature a deployment for each
host. It should use a no component implementation in case
it is not actually deployed on the specific host. We specify
regressor variables as shown in Algorithm 1. First, we create a
regressor for the total number of hosts. Then, for each host and
each deployment, we create a regressor with the replication
count of that deployment. We assign an integer value to each
component implementation in ascending order, starting from
0. This implementation tag is used for the final regressor for
the specific deployment and may be omitted if only a single
known implementation exists for the component in question.

4) System Power Response Variable for Training: Aggre-
gate power consumption of all physical hosts is collected
during run-time. Power can be collected using power mea-
surement devices or the single server power prediction model
in Section III-B.

5) System Power as Expected Output: The model predicts
system power for a given system throughput and deployment
model instance. The predicted power in Watts is the sum total
consumption of all physical hosts.
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Fig. 3. Example scenario for use of the workload deployment power
prediction model.

6) Applying the Model to a Running System: The power
prediction model is designed for use in a run-time system
where data on current deployments, throughput, and power
consumption is continuously being gathered. The model may
be retrained at each point in time with the most current
data sets. We envision the following application scenario (an
example scenario is illustrated in Fig. 3).

The load intensity of production server systems typically
varies over time. We train the model by observing the system
under varying load intensity. We log the throughput of the
system on a continuous basis (e.g., once per second). In
addition, we log the power consumption and information on
the current deployment. From these observations, we obtain a
new training vector. The model may be retrained at any point
in time and is expected to be retrained periodically. Once
trained, it may be used to predict power consumption of a
future configuration.

B. Single Server Power Prediction

The run-time power model described in the previous section
requires power consumption data for training. However, we
cannot assume that every physical server has a power analyzer
attached to it. Consequently, in this section, we propose a
server power prediction model that can be used to predict the
power of a single server. This model is designed to be used
as a substitute for separate power analyzers in case they are
not available.

The single server power model requires offline training in
order to fully characterize the power behavior of the servers in
question. For this, we use the SPEC Server Efficiency Rating
Tool (SERT), which is run on all server models as part of the
U.S. EPA Energy Star testing process [1]. SERT uses a total
of 13 different mini-workloads, called “worklets”, which are
executed at multiple load levels. Each of these worklets, except
for the idle worklet, are executed at multiple load levels. For
each of the load levels, SERT measures worklet throughput
and power consumption on a per second basis. We configure
our SERT runs to 25 load levels per worklet. We also modify
SERT to measure average CPU performance counters in
addition to throughput and system power consumption for each

load level. We train our model using those worklets within
SERT for which power consumption scales with throughput
and which are run at multiple throughput levels. Worklets
fitting these criteria are the seven CPU worklets and the hybrid
SSJ worklet [2].

Again, regression is used as prediction method. The CPU
performance counters are mapped to regressor variables, the
measured workload power is used as response variable.

We make use of the ability of modern CPUs to report their
own power consumption. We employ this feature for power
measurements, considering that CPU power consumption has
been shown to correlate significantly with full-system power
consumption [20]. In addition, we consider workload memory
characteristics. Unfortunately, the memory power consumption
performance counter is only available on very few platforms,
so we use memory bytes written counter instead. We expect it
to have a greater correlation to the memory power consump-
tion than the CPU counter for memory bytes read, as the latter
includes cache reads [21], which do not cause any memory
power draw.

IV. EVALUATION

We evaluate the applicability and accuracy of our prediction
models by testing their ability to predict power consumption
in a run-time scenario under varying load in a heterogeneous
environment. We run two common web applications in a
distributed environment consisting of two different servers
using CPUs of different architectures.

A. Methodology

The two test applications are deployed on two separate
physical servers from different generations and using different
processor architectures (see Table I), which are put under load
by a load generator running on a separate machine. The load
generator collects application level performance data and is
controlled by a dedicated experiment controller, which collects
power measurements using external measurement devices.

We use two common 2-tier, PHP-based, web applications
for testing. The advantage of using PHP-based web applica-
tions is that we can emulate the effect of different (functionally
identical) implementations by exchanging the web server (and
PHP module) on which the applications are run. We use the
Dell DVD Store 6.1.1.4 and RUBiS 2.3.2, each executed on
Apache HTTP Server 2.4.10, Lighttpd 1.4.35, or Nginx 1.6.2
and a MySQL database. We derive 15 different deployment

TABLE I
SYSTEM UNDER TEST SPECIFICATION INCLUDING POWER

CHARACTERISTICS AS MEASURED USING SERT.

SUT 1 SUT 2
Model HP ProLiant DL20 HP ProLiant DL160
CPU Intel Xeon E3-1230 v5, Intel Xeon E5-2640 v3,

4 cores at 3.4 GHz 8 cores a 2.6 GHz
Memory 2 x 8 GB 2 x 16 GB
Storage 1 x 460 GB 1 x 460 GB
Idle Power 27.1 W 36.4 W
Max Power 98.1 W 140.6 W



TABLE II
POWER CONSUMPTION OF THE MOST AND LEAST POWER CONSUMING

DEPLOYMENT CONFIGURATION AT FULL LOAD.

Deployment Config. SUT 1 SUT 2 Total
SUT 1: Apache; SUT 2: MySQL 81.56 W 54.45 W 136.01 W
Both SUTs: Lighttp + MySQL 45.83 W 59.27 W 105.1 W
Difference 35.73 W -4.82 W 30.91 W

options from the three different web tier implementations and
the database, with the two SUTs as deployment targets.

We create load with varying arrival rates over time using
the TeaStore’s HTTP load generator [22]. The load generally
increases over time and is intended to cover a range of
incoming arrival rates, depending on the conrete experiment.
The user-actions (requests) sent to the web applications follow
a cyclic pattern, which is based on a user profile that emulates
a user browsing the store(s), viewing random items, and
adding them to the shopping cart. We report Mean Absolute
Error (MAE), Median Absolute Error, and Mean Absolute
Percentage Error (MAPE) in Watts for our measurements.

B. Power Saving Potential

Table II shows the power consumption of the most and
least consuming deployment at maximum load. These two
deployments feature a power difference of 30.91 W (29.4%),
which offers a bound for model prediction errors, being the
maximum deviation of power consumption that can actually
occur in practice in our scenario.

C. Predicting Previously Unobserved Deployments

To evaluate the prediction accuracy for previously unob-
served deployments we train a varying number of deploy-
ments. Each of these deployments is trained using a linearly
increasing load profile over 300 seconds (resulting in 300
training vectors per deployment). We then evaluate the accu-
racy of the resulting power prediction model for a deployment
that is not in the set of training deployments.

Table III shows the power prediction errors using gradient
tree boost depending on the number of training deployments
as well as the number of different Web UI component imple-
mentations that occur in the set of training deployments. The
table shows that prediction accuracy generally increases sig-
nificantly with additional training deployments, with exception
of one outlier. The predictions for all training data sets, except

TABLE III
PREDICTION ERROR FOR PREVIOUSLY UNOBSERVED DEPLOYMENTS

DEPENDING ON # TRAINED DEPLOYMENTS AND # WEB UI COMPONENT
IMPLEMENTATIONS.

#Tr. #UI MAE MAPE MdAE Error
Dep. Interval
3 2 1.98 W 2.18% 1.54 W [-3.9 W, 4.3 W]
5 2 12.4 W 12.48% 10.47 W [-17.1 W, 1.2 W]
7 2 6.41 W 6.68% 5.89 W [-11.1 W, 3.8 W]
11 3 3.1 W 3.17% 2.51 W [-5.3 W, 4.2 W]
14 3 1.9 W 2.21% 1.62 W [-4.9 W, 3.2 W]

TABLE IV
PREDICTION ERROR FOR PREVIOUSLY UNOBSERVED THROUGHPUT

DEPENDING ON # TRAINED DEPLOYMENTS.

#Train. Observed Observed MAE MAPE
Depl. Depl. Thr.
3 Yes Yes 0.86 W 0.93%
3 Yes No 1.29 W 1.35%
14 No Yes 0.9 W 1.04%
14 No No 1.1 W 1.22%

for the one with five deployments, have an error of less than
10%, well below our upper bound of 29.4%.

RUBiS shows similar results, with a minimum MAE of 1.25
W, when prediction a previously unobserved deployment with
the other 14 deployments in the training set.

D. Power Prediction for Previously Unobserved Throughput

We investigate the prediction accuracy when prediction the
prediction of power consumption for a load intensity that has
not been observed in the training set. Again, we use 300
training vectors (load levels) per deployment. The training
vectors include power and throughput values for all load levels,
except the ranges between 3000 and 6000 requests per second
and 10000 and 13000 requests per second. When predicting
for the target deployments, we predict 35 power consumption
samples for throughputs in the omited ranges.

Table IV shows the errors of the prediction. Our regression-
based power extrapolates the power consumption for previ-
ously unobserved load intensity ranges with high accuracy.
The prediction for observed and unobserved throughput levels
differ by less than 0.4 Watts. In addition, the prediction error
for scenarios where both the throughput level and deployment
are unobserved is not significantly higher compared to scenar-
ios where only the deployment is unobserved. In our case, the
difference is only 0.2 Watts.

E. Combined Models Prediction Accuracy

The end-to-end scenario for applying our modeling ap-
proach includes using both the workload deployment power
prediction model and calibrated single server power models
for all SUTs. We evaluate the prediction error of the workload
deployment power prediction model when using the calibrated
single server power models to estimate the power consumption
of each SUT. Both SUTs are instrumented with performance
counter listeners, based on Intel PCM [23], to collect perfor-
mance counters at run-time. These performance counters are
used to estimate the current power draw of the SUT.

To evaluate the impact of the error added by using the single
server power prediction models, we choose a self-prediction
scenario for the workload deployment model. The deployment

TABLE V
ERROR OF USING BOTH MODELS VS. DEPLOYMENT ONLY.

System Power MAE MAPE
Measured 1.38 W 1.46%
Model 1.8 W 2.01%



model is trained with all of our 15 deployment options and we
evaluate its accuracy when predicting the power consumption
of one of the training models for various target throughput
levels. We compare the relative and absolute errors of the
power prediction when using both models together against
the power consumption measured by the dedicated power
measurement devices for the predicted deployment.

Table V shows the relative and absolute mean self-prediction
errors. The MAE when using power measurements of the
power analyzer is 1.38 Watts. When substituting the power an-
alyzer with the single server power model, the MAE increases
by 0.42 Watts to 1.8 Watts. Generally, we can conclude that
using both models together results in acceptably small errors
warranting their use in case of the unavailability of hardware
power analyzers.

V. CONCLUSIONS

This paper presents an approach for predicting the power
consumption of distributed applications at run-time The ap-
proach uses run-time monitoring data to train a deployment
and power model that allows the prediction of power consump-
tion for different deployment options and load levels in hetero-
geneous environments. It can predict the power consumption
of a previously unobserved deployment with an error of 2.21%.
It can also predict the power consumption of a previously
unobserved throughput level with an error of 1.22%.

The approach in this paper can be used in multiple contexts:
It can be used at run-time to find the least power consuming
deployment option for the current throughput of a distributed
applications, but it could also be used for energy efficiency
prediction when applied in conjunction with run-time perfor-
mance prediction models, such as DML [4].
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