
TeaStore: A Micro-Service Reference Application
for Benchmarking, Modeling and Resource

Management Research

Jóakim v. Kistowski, Simon Eismann, Norbert Schmitt, André Bauer, Johannes Grohmann, Samuel Kounev
University of Würzburg

{joakim.kistowski, simon.eismann, norbert.schmitt, andre.bauer, johannes.grohmann, samuel.kounev}@uni-wuerzburg.de

Abstract—Modern distributed applications offer complex per-
formance behavior and many degrees of freedom regarding
deployment and configuration. Researchers employ various meth-
ods of analysis, modeling, and management that leverage these
degrees of freedom to predict or improve non-functional proper-
ties of the software under consideration. In order to demonstrate
and evaluate their applicability in the real world, methods
resulting from such research areas require test and reference
applications that offer a range of different behaviors, as well as
the necessary degrees of freedom.

Existing production software is often inaccessible for re-
searchers or closed off to instrumentation. Existing testing
and benchmarking frameworks, on the other hand, are either
designed for specific testing scenarios, or they do not offer the
necessary degrees of freedom. Further, most test applications are
difficult to deploy and run, or are outdated.

In this paper, we introduce the TeaStore, a state-of-the-art
micro-service-based test and reference application. TeaStore of-
fers services with different performance characteristics and many
degrees of freedom regarding deployment and configuration to
be used as a benchmarking framework for researchers. The
TeaStore allows evaluating performance modeling and resource
management techniques; it also offers instrumented variants to
enable extensive run-time analysis. We demonstrate TeaStore’s
use in three contexts: performance modeling, cloud resource
management, and energy efficiency analysis. Our experiments
show that TeaStore can be used for evaluating novel approaches
in these contexts and also motivates further research in the areas
of performance modeling and resource management.

I. INTRODUCTION

Modern distributed component and/or service-based ap-

plications have complex performance characteristics, as the

constituent services feature different bottlenecks that may even

change over time, depending on the usage profile. However,

these applications also offer many degrees of freedom, which

are intended to help deal with these challenges. They can

be deployed in various ways and configured using different

settings and software stacks. These degrees of freedom can be

used at design-time, deployment-time, and at run-time for con-

tinuous system optimization. Current research employs many

methods of analysis, modeling, and optimization that utilize

these degrees of freedom at different points of the software

life-cycle to tackle the challenging performance behavior [1],

[2]. More general, the goal of such research is the improve-

ment of a running system’s non-functional properties and may

include dependability [3], [4], or energy efficiency [5], [6], [7].

Verifying, comparing, and evaluating the results of such

research is difficult. To enable practical evaluation, researchers

need a software application (1) that they can deploy as

reference and (2) that offers realistic degrees of freedom. The

reference application must also feature sufficient complexity

regarding performance behavior to warrant optimizing it in

the first place. Finding such an application and performing

the necessary experiments is often difficult. The software in

question should be open source, available for instrumentation,

and should produce results that enable analysis and compar-

ison of research findings, all while being indicative of how

the evaluated research would affect applications in production

use.

Real world distributed software is usually proprietary and

cannot be used for experimentation. It is often inaccessible and

lacks the potential for instrumentation. In addition, evaluations

conducted using such software are difficult to reproduce and

compare, as the software used remains inaccessible for other

researchers. Existing test and reference software, on the other

hand, is usually created for specific testing scenarios [9]. It is

often designed specifically for evaluating a single contribution,

which makes comparisons difficult. Other existing and broadly

used test software does not offer the necessary degrees of

freedom and is often manually adapted [10]. Some of the

most widely used test and reference applications, such as RU-

BiS [11] or Dell DVD Store [12], are outdated and therefore

not representative of modern real world applications. Newer

distributed reference applications, such as Sock Shop [13], are

built for maximum scalability and consistent performance and

do not pose the performance challenges that current research

aims at.

In this paper, we introduce TeaStore12, a micro-services-

based test and reference application that can be used as a

benchmarking framework by researchers. It is designed to

provide multiple degrees of freedom that researchers can

vary when evaluating their work. TeaStore consists of five

different services, each featuring unique performance charac-

teristics and bottlenecks. Due to these varying performance

characteristics and its distributed nature, TeaStore may also

be used as a software for testing and evaluation of software

1TeaStore on GitHub: https://github.com/DescartesResearch/TeaStore/
2TeaStore on DockerHub: https://hub.docker.com/u/descartesresearch/

TABLE I: Micro-service Benchmark [8] and our Research Benchmark Requirements for the TeaStore in comparison to ACME

Air, Spring Cloud Demo Apps, Shocks Shop and MusicStore.

Micro-service Benchmark Requirement TeaStore ACME Air Spring Cloud Demo Sock Shop MusicStore
R1 Explicit Topological View � � �
R2 Pattern-based Architecture � � � � �
R3 Easy Access from a Version Control Repository � � � � �
R4 Support Continuous Integration � � �
R5 Support for Automated Testing � � �
R6 Support for Dependency Management � � � � �
R7 Support for Reusable Container Images � � � �
R8 Support for Automated Deployment � �
R9 Support for Container Orchestration � � �

R10 Independence of Automation Technology � �
R11 Alternate Versions � �
R12 Community Usage & Interest �
Research Benchmark Requirement
B1 Service must Stress System Under Test � � (unknown) �
B2 Support for Different Load Behavior in Services � � �
B3 Support for Different Load Generators � � � � �
B4 Load Profiles Publicly Available �

performance models and model extraction techniques. It is

designed to be scalable and to support both distributed and

local deployments. In addition, its architecture supports run-

time scalability as services and service instances can be added,

removed, and replicated at run-time. The services’ different

resource usage profiles enable performance and efficiency

optimization with non-trivial service placement and resource

provisioning decisions.

To summarize, we envision the use of TeaStore in the

following research areas, among others:

1) Evaluation of software performance modeling ap-

proaches, model extractors, and model learners.

2) Evaluation of run-time software performance manage-

ment techniques such as auto-scaling and service place-

ment algorithms.

3) Evaluation of software energy efficiency, power models,

and optimization techniques.

We demonstrate the applicability of TeaStore as a test appli-

cation and benchmarking framework by using it as a reference

software in experiments that show its applicability in each of

the three motivating research areas. We show that TeaStore can

be used as a reference scenario for performance modeling by

creating a simple performance model to predict the application

performance for different deployment options. This example

model also illustrates the limitations of simplified software per-

formance models for predicting the performance of complex

distributed applications, highlighting open research challenges.

In addition, we show TeaStore’s elastic run-time scalability

by running it using a state-of-the-art baseline auto-scaler.

We show that the baseline auto-scaler can scale TeaStore

elastically at run-time, while also demonstrating the limitations

of conventional auto-scalers for complex applications. Finally,

we examine the energy efficiency and power consumption

when scaling TeaStore over multiple physical hosts. We show

that distribution and placement decisions lead to different

power and energy efficiency behavior, which can be used to

evaluate energy optimization methods.

II. RELATED WORK

With the emergence of modern trends like DevOps [14], the

focus of research benchmarks has moved from fixed multi-tier

application benchmarks, like SPECjEnterprise [15], towards

more scalable micro-service applications. With this shift in

how applications are developed, deployed and maintained,

requirements for research benchmarking reference applications

have changed.

Micro-services offer many degrees of freedom, such as

placing your services in a public or private cloud [16],

predictive elastic resource scaling [17], and auto-scaling [18].

Additional requirements become necessary for a reference

application to be used in research. Aderaldo et al. [8] identify

15 requirements for micro-service research benchmarks. Ta-

ble I lists these requirements and checks common benchmark

applications for compliance. In terms of compliance to these

criteria, the TeaStore satisfies all criteria except Alternate
Versions (R11) and Community Usage & Interest (R12) and

is, in terms of requirements, identical to the Sock Shop [13].

R12, in particular, cannot be satisfied by a newly proposed

reference application. ACME Air, Spring Cloud Demo and

MusicStore [19], [20], [21], also compared in Table I, satisfy

fewer requirements. These criteria suit micro-service bench-

marks, yet they do not cover the ability of an application to be

used as a reference research benchmark application in research

domains, such as resource management and software analysis

and modeling. We therefore extended the requirements by

four research benchmark requirements B1 - B4 in Table I.

To research current performance challenges, an application

must put actual load on the System Under Test (B1), without

focusing on a single server component like memory or CPU

load (B2). The application should also be able to be put

under load by different load generators to fit a wide variety of

benchmarking environments (B3) and the used load profiles

should be public for repeatability (B4). The TeaStore satisfies

all these criteria while the next best application, ACME Air,

only misses publicly available load profiles.

With the changing requirements and the fast living develop-

ment of modern web services, the available reference applica-

tions cannot keep up and thus cannot cover all requirements

for micro-service research benchmarking. The Rice University

Bidding System (RUBiS) was first released in 2002. It is an

eBay-like bidding platform [11] that has been implemented

using various technologies including PHP, EJB and Java HTTP

servlets. The different available implementations allow for

benchmarking of the underlying technologies [22], the specific

implementations themselves [23], the impact of applying com-

mon design patterns [24] and the already mentioned predictive

elastic resource scaling methods [17]. RUBiS only has a single

application service and an Apache HTTP load balancer [11].

While RUBiS supports remote procedure calls across multiple

hosts, it can only be scaled as a single service. In contrast, each

service of the TeaStore can be scaled individually. This allows

for creating different resource usage characteristics through

the deployment of the TeaStore’s services, consistent with the

micro-service paradigm. Similar to RUBiS, the Dell DVD

Store [12], released in 2001, also features multiple imple-

mentations. It is a single-service application that implements

a simple web store for DVDs. The CloudStore application

on the other hand, has a different focus. It is a book store

built as a reference application for comparing cloud providers,

cloud service architectures, and cloud deployment options.

It implements the Transaction Performance Council’s TPC-

W specification. However, TPC-W is obsolete since 2005.

Like RUBiS, CloudStore suffers from inherent scalability

bottlenecks. It has been used for elasticity benchmarking,

evaluating scalability metrics [25], [26], [27] in order to test

an infrastructure’s ability to mitigate these bottlenecks. Just

like RUBiS and the DVD Store, the CloudStore application

lacks many degrees of freedom regarding deployment and

configuration due to their single-service implementations.

A more modern and established benchmark both in research

and commercial domains is the SPECjEnterprise2010 [15]

from the Standard Performance and Evaluation Corporation

(SPEC). SPECjEnterprise2010 implements a three tier web

store with separate UI, business logic, and persistence com-

ponents. It can be used to evaluate resource management

techniques in a distributed setting [10]. Unfortunately, it lacks

support for modern micro-service architectures due to its

classic three tier architecture. It therefore can also not fulfill

the micro-service requirements discussed earlier.

The PCM Media Store is designed as a component-based

application with components that can be deployed on different

systems and therefore closer to a micro-service application

than RUBiS, Dell DVD Store, CloudStore and SPECjEnter-

prise2010. Each component can be replaced to support differ-

ent architectures. The Media Store is specifically developed for

evaluating design-time performance modeling techniques [9].

Also developed with its focus on design-time performance

modeling is the Common Component Modeling Example

(CoCoME). It was used in a Dagstuhl Research Seminar to

compare different modeling approaches [28]. TeaStore, on

the other hand, not only supports design-time modeling, but

is also available with built-in instrumentation required for

benchmarking, run-time model extraction, as well as elasticity

and energy-efficiency measurements.

Many other benchmark and test applications, like JPet-

Store [29], PetClinic [30], ACME Air [19], Spring Cloud

Microservice Example [20], Sock Shop [13] and Music-

Store [21] are available. Yet, PetClinic, SCME, Sock Shop

and MusicStore are primarily designed as demonstrators for

specific technologies and not as a research benchmark refer-

ence application. Additionally, modern services such as Sock

Shop are built with consistent performance in mind and do not

pose the performance challenges that current research aims at.

The TeaStore offers a modern micro-service architecture for

research benchmarks compared to other reference and bench-

marking applications. It can also fullfill most micro-service

benchmarking requirements shown in Table I without beeing

a technology demonstrator like Sock Shop. The TeaStore also

offers different performance characteristics for each service

and is not limited to a single use case like the PCM Media

Store and CoCoME.

III. THE TEASTORE

The TeaStore is an online store for tea and tea related

utilities. Its products are sorted into categories. For online

shopping, the store supports an overview of products including

preview images for each category and featuring a configurable

number of products per page. All pages of the TeaStore show

an overview header bar and include the category menu and

page footer. As main content, it shows the products for the

selected category, including shortened product information and

the preview image. Depending on the number of products

shown per page, the user has the option to cycle through

multiple pages of the category view.

Each product can be viewed on a separate product page

containing detailed information, a large image, and advertise-

ments for other store items. Besides the regular header, footer,

and category list, this page includes a detailed image of the

product (provided by the Image Provider Service), a descrip-

tion, and price. The page also contains an advertisement panel

suggesting three products that the user might be interested in.

The advertised products are provided by the Recommender

Service and are selected depending on the viewed product.

All products can be placed in a shopping cart and users

can proceed to order the current shopping cart. The user

can choose to modify the shopping cart at any time. The

shopping cart page lists all products currently included in the

cart together with some product information and the quantity.

The shopping cart view also displays product advertisements,

which are, again, provided by the separate Recommender

service and selected depending on the shopping cart’s contents.

To order, the user must supply personal information about

the billing address and payment details. After confirmation

by the user, the current shopping cart is stored in the order

history database through the Persistence service. The store also

supports user authentication and login. Registered users can

view their order history after login.

Fig. 1: TeaStore Architecture.

In addition to regular operations, the TeaStore’s user in-

terface provides an overview of all running service instances

and an option to regenerate the database. In case a specific

database setup or size is necessary, it can be regenerated

with user defined parameters. These include the number of

categories, number of products per category, number of users,

and maximum orders per user history. The service overview

and database regeneration are not intended to be run during

an experiment run, but separately on experiment setup.

All functionality is contained within the five primary micro-

services and the Registry service.

A. Architecture

The TeaStore consists of five distinct services and a Registry

service as shown in Figure 1. All services communicate

with the Registry. Additionally, the WebUI service issues

calls to the Image-Provider, Authentication, Persistence and

Recommender services.

The Image provider and Recommender both connect to

a provided interface at the Persistence service. However,

this is only necessary on startup (dashed lines). The Image

provider must generate an image for each product, whereas

the Recommender needs the current order history as training

data. Once running, only the Authentication and the WebUI

access, modify, and create data using the Persistence.

All services communicate via representational state transfer

(REST) calls, as REST has established itself as the de-facto

industry standard in the micro-service domain. The services

are deployed as web-services on Apache Tomcat. Yet, the

services can be deployed on any Java application server able

to run web-services packaged as war files. As an alternative

to deploying the war files, we provide convenient Docker

images, containing the entire Tomcat stack. Each service is

packaged in its own war file or Docker image.

The TeaStore uses the client-side load balancer Ribbon3,

to allow replication of instances of one service type. Ribbon

distributes REST calls among running instances of a service.

Instead of using Netflix Eureka4, the TeaStore uses its own

3Netflix Ribbon: https://github.com/Netflix/ribbon
4Netflix Eureka: https://github.com/Netflix/eureka

registry that supplies service instances with target instances

of a specified target specific service type. To enable this,

all running instances register and unregister at the registry,

which can be queried for all running instances of a service.

This allows for dynamic addition and removal of service

instances during run-time. Each service also sends heartbeats

to the registry. In case a service is overloaded or crashed and

therefore fails to send heartbeat messages, it is removed from

the list of available instances. Subsequently, it will not receive

further requests from other services. This mechanism ensures

good error recovery and minimizes the amount of requests sent

to unavailable service instances that would otherwise generate

request timeouts.

As the TeaStore is primarily a benchmarking and testing

application, it is open source and available to instrumentation

using available monitoring solutions. Pre-instrumented Docker

images for each service that include the Kieker5 monitoring

application [31], [32] as well as a central trace repository

service, are already available. We choose Kieker, as it requires

no source code instrumentation and the instrumentation can be

adapated at runtime. However, as the TeaStore is open source,

other monitoring solutions, such as Prometheus 6 or Logstash 7

can also be utilized.

Generally, all requests to the WebUI by a user or load

generator are handled in a similar fashion. The WebUI al-

ways retrieves information from the Persistence service. If all

information is available, images for presentation are fetched

from the Image provider and embedded into the page. Finally

a Java Server Page (JSP) is compiled and returned. This

behavior ensures that even non-graphical browsers and simple

load generators that otherwise would not fetch images from

a regular site cause image I/O in the TeaStore, ensuring

comparability regardless of the load generation method.

Figure 2 shows the service calls for a user request for a

product information page. After receiving the HTTP request,

the WebUI checks the user’s login status by calling the

Auth service. Next, it queries the Persistence for the corre-

sponding product information, based on a unique identifier.

Afterwards, the WebUI requests advertisement options for the

current product from the Recommender, which generates a

recommendation based on the learned historical order data.

The call to the Recommender takes the current login status

into account. Specifically, a logged in user receives personal-

ized recommendations, whereas an anonymous user is served

recommendations based on general item popularity. Having

received all product information, the WebUI queries the image

provider to supply a full size image of the product shown

in detail and preview images for the recommendations. The

image data is embedded in the HTML response as base-64

encoded strings.

5Kieker APM: http://kieker-monitoring.net/
6Prometheus: https://prometheus.io/
7Logstash: https://www.elastic.co/products/logstash

Fig. 2: Service calls when requesting product page.

B. Services

The TeaStore consists of five services, in addition to a

registry necessary for service discovery and load balancing.

In case monitoring is enabled, a trace repository service can

be used to collect the monitoring traces centrally.

1) WebUI: This service provides the user interface, com-

piling and serving Java Server Pages (JSPs). All data, avail-

able categories, their products, product recommendations and

images, are retrieved from the Image provider and Persistence

service instances. The WebUI service performs preliminary va-

lidity checking on user inputs before passing the inputs to the

Persistence service. The WebUI focuses purely on presentation

and web front-end operations. However, the performance of

the WebUI depends on the page that has to be rendered as

each page contains at least one picture in different formats.

2) Image Provider: The Image provider serves images of

different image sizes to the WebUI when being queried. It

optimizes image sizes depending on the target size in the

presentation view. The Image provider uses an internal cache

and returns the image with the target size from the cache if

available. If the image is not available for this size, the image

provider uses the largest available image for the category or

product, scales it to the target size, and enters it into the

cache. It uses a least frequently used cache, reducing resource

demand on frequently accessed data. Through the caching, the

response time for an image depends on whether this image is

in the cache or not. This service queries the Persistence service

once on start-up to generate all product images with a fixed

random seed.

3) Authentication: This service is responsible for the veri-

fication of both the login and the session data of a user. The

session data is validated using SHA-512 hashes. For login

verification, the BCrypt algorithm is used. The session data

includes information about the current shopping cart content,

the user’s login status and old orders. Thus, the performance

of the hashing for the session data depends on number of

articles in the cart and number of old orders. Furthermore,

as all session data is passed to the client, the Authentication

itself manages to remain stateless and does not need additional

information on startup.

4) Recommender: The Recommender service uses a rating

algorithm to recommend products for the user to purchase.

The recommendations are based on items other customers

bought, on the products in a user’s current shopping cart,

and on the product the user is viewing at the time. The

initial Recommender instance usually uses the automatically

generated data-set, as provided by the persistence service

at initial startup, for training. Any additional Recommender

instance queries existing Recommender service instances for

their training data-set and uses only those purchases for train-

ing. This way, all Recommenders stay coherent, recommend-

ing identical products for the same input. In addition, using

identical training input also ensures that different instances

of the Recommender service exhibit the same performance

characteristics, which is important for many benchmarking

and modeling contexts. The Recommender service queries the

Persistence service only once on startup.

For recommending, different algorithm implementations ex-

hibiting different performance behaviors are available. Next

to a fallback algorithm based on overall item-popularity, two

variants of Slope One [33] and one order-based nearest-

neighbor approach are currently implemented. One variant of

Slope One calculates the predicted rating matrix beforehand

and keeps it in the memory (memory-intensive), wheras the

other one calculates every row if needed, but discards all

results after each recommendation step (CPU-intensive).

5) Persistence: The Persistence service provides access and

caching for the store’s relational database. Products, their

categories, purchases, and registered store users are stored

in a relational SQL database. The Persistence service uses

caching to decrease response times and to reduce the load

on the database itself for improved scalability. The cache is

kept coherent across multiple Persistence service instances.

We use the EclipseLink JPA implementation as a black-box

cache. All data inside the database itself is generated at the first

start of the initial persistence instance. By using a persistence

service in separation from the actual database, we improve

scalability by providing a replicable caching service. However,

the performance of the database accesses depends on the

content in the database that is changed or can be repopulated

during the operation of the store.

6) Registry: The registry is not part of the TeaStore appli-

cation under test but is a necessary support service. It keeps

track of all running service instances, their IP addresses or

host names and port numbers under which the services are

available. All service instances send keep-alive messages to

the registry after registration. If a service unregisters or no

keep-alive message is received within a fixed time frame, the

service is removed from the list of available service instances.

All services can query the list of service instances for a

specified service type in order to distribute their outgoing

requests between running target instances.

Start
Page Sign In

Profile

Shopping
Cart

Category
View

Product
View

1 2
3

4

67

8

9

1011

12

5

Webpage

Call from Load
Generator

Start / End
of User Profile

Webpage Send
from Web-Service

1.
2.
3.
4.

5.

6.

7.

8.

9.

10.
11.
12.

GET
GET
POST
GET

GET

GET

GET

GET

GET

GET
GET

Start Page
Sign In
Send login data for random user
Category View for random category
and 30 items per page
Product View for random product
on first page
Shopping Cart; add currently
viewed product
Category View with previous
category
Category View with random page
number
Shopping Cart; add random product
from current category view
Profile
Start Page and Logout
Start Over

Fig. 3: “Browse” user profile configured in HTTP load generator for our use-cases, including web pages delivered and HTTP

request type. Unused web pages are omitted for clarity.

7) TraceRepository: The services are configured with op-

tional Kieker monitoring8 [31], [32]. With monitoring enabled,

each service instance collects information about utilization,

response times and call paths. Collecting these monitoring

traces manually is only feasible for small deployments. There-

fore, we offer a central trace repository, which consists of

an AMQP server coupled with a graphical web interface. All

service instances send their logs to the AMQP server. The

web interface collects them and makes them available for

download. The trace repository does not only reduce the effort

required to acquire the monitoring traces, but also enables on-

line analysis such as online resource demand estimation [34].

Kieker traces are also available for use with tools other than

Kieker’s own tooling, as they can be automatically transformed

to Open Execution Trace Exchange (OPEN.xtrace) traces, an

open source trace format enabling interoperability between

software performance engineering approaches [35].

IV. USE-CASES

We show the TeaStore’s use in three use-cases. All use-

cases are designed to show that the TeaStore can be used as

a software that exhibits the characteristics that are addressed

or needed for the respective field of research. Specifically, we

show the TeaStore’s use in three areas of research. We show

that it can be used as a distributed application for evaluating

and extracting software performance models, for testing single

and multi-tier auto-scalers, and for software energy-efficiency

analysis and management. The use-cases are constructed as

examples of the state-of-the art that current research has to

compare itself against. E.g., the auto-scaling example uses

the standard state-of-the-art reactive auto-scaler, against which

more advanced research scalers have to be compared.

8Kieker setup: https://github.com/DescartesResearch/TeaStore/wiki/
Testing-and-Benchmarking

For all of the experiments, we utilize much of the standard

testing tools and profiles found in the TeaStore’s documenta-

tion. We generate load using an HTTP load generator, which

sends requests based on an open workload model, and was

first introduced in [36]. Requests are defined using a load

profile, in which the request rate may vary over time. For

our measurements, the load profile may be constant, linearly

increasing (stress test profile), or based on a real-world load

trace. We extract the real world trace using the LIMBO load

intensity model extraction mechanism [37] and modify it to

describe the load intensity in a range that can be handled by

our system under test (SUT), varying between almost no load

and the maximum throughput capacity. On the time scale, the

real-world traces are modified to execute the load variations

of the original multiple-day-long trace within one hour.

The content of the requests (meaning, the user actions) are

defined using a stateful user profile. Each time a request is

sent, an idle user from the pool of users is selected to execute

a single action on the store. The user then performs that action

and returns to the pool. This means that the user state and

actions are chosen as they would be in a closed workload

model [38], whereas the arrival times of the single requests

are chosen according to an open workload model. We use a

cyclical user profile, in which users browse the store. Figure 3

shows this profile. Users log in, browse the store for products,

add these products to the shopping cart and then log out. The

number of users is chosen depending on the maximum load.

We place the TeaStore’s primary services on several HPE

ProLiant DL160 servers, each equipped with a Xeon E5-2640

v3 processor with 16 logical cores at 2.6 GHz and 32 GB

RAM. The servers run Debian 9 and Docker 17.12.1-ce. The

service registry is executed on an additional physical host. We

run the frond-end load balancer and load generator on separate

machines with network links to each of the service hosts.

A. Performance Modeling

Performance models provide a powerful tool for predic-

tion of performance metrics, such as utilization or response

time. These predictions enable smart capacity planning, espe-

cially in a micro-service environment where containers can

be added or removed within seconds. Examples for such

performance models are RESOLVE [39], ROBOCOP [40],

PCM [1], SAMM [41], CACTOS [42] and UML MARTE [43].

These models have a limited number of real world case

studies, making it difficult to evaluate their applicability for

real world scenarios. Additionally, quantitative comparison of

performance models is challenging, as common case studies

do not exist.

We showcase that the TeaStore is well suited as a case

study for advanced performance modeling concepts. We use

a novel modeling mechanism, modeling the TeaStore. Using

the TeaStore, we show that this novel mechanism can improve

modeling accuracy when compared to standard state-of-the-art

approaches. This, in reverse, highlights the TeaStore’s ability

to evaluate the applicability and modeling accuracy of novel

formalisms. Specifically, we evaluate the modeling concepts

for parametric dependencies of Eismann et al. [44] using

the TeaStore. This modeling formalism has the capability of

modeling and predicting the impact of the changes within a

workload profile, which can be mapped to a parameter in

the underlying model. We compare this novel formalism to a

standard state-of-the-art modeling method, by also construct-

ing a model of the TeaStore using the Descartes Modeling

Language (DML) [45]. Both models are used to predict the

utilization of previously unseen deployments under different

load levels. Using the TeaStore, we aim to show that the

ability of the novel modeling formalism to capture parametric

changes in the workload profile increases prediction accuracy

in comparison to the state-of-the-art method, which does not

model this aspect. This comparison shows how the TeaStore

can be used as a case study to highlight the benefits of

advanced performance modeling concepts.

The category page can display different amounts of products

per page, based on user preference. We investigate the question

of how changing the default number from five products per

page to ten products per page impacts the performance. We

assume that for a default of five products per page, some users

manually switch to ten or twenty products per page, leading

to the distribution shown in Equation 1, where P5(x) denotes

the probability of any given user displaying the amount of x
products per page, when a default value of 5 is pre-configured.

P5(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.9 if x = 5

0.09 if x = 10

0.01 if x = 20

0 else.

(1)

Equation 2 shows the assumed distribution for a default of

ten products per page, where P10(x) denotes the probability

of any given user displaying the amount of x products per

page, when a default value of 10 is pre-configured. We aim to

predict the impact of this change to the products per page on

the performance of the TeaStore.

P10(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x = 5

0.99 if x = 10

0.01 if x = 20

0 else.

(2)

We model the software architecture based on the TeaStore

architecture shown in Figure 1. To parameterize the service

demands in the static model, we deploy each service on a bare-

metal server as shown in Figure 4a, measure the utilization for

a load of 1000 requests per second, using the usage distribution

of Equation 1, and calculate the service demands according to

Equation 3. The service demand defines the average time the

CPU spends serving one request at the respective service [46].

SerD = U/λ, (3)

where U is the utilization and λ is the arrival rate. For

the parametric model, we use linear regression to derive

the Equations 4-6 for the service demands of the WebUI,

ImageProvider and Persistence services, respectively.

SerDWeb = 0.0034 + 0.00016 ∗ ProductsPerPage. (4)

SerDImg = 0.0012 + 0.00011 ∗ ProductsPerPage. (5)

SerDPer = 0.0022 + 0.00005 ∗ ProductsPerPage. (6)

The service demand for the Authentication service remains

static, as it is not influenced by the number of products

per page. In both models, the recommender service was not

included, since no recommendations are displayed on the

categories page.

To evaluate the resulting models, we deploy an instance

of every service on five servers to represent a production

system, as shown in Figure 4b. For each server, we measure

the CPU utilization under a load of 1000, 2000, 3000, 4000

and 5000 requests per second for the usage distributions from

Equations 1 and 2. We compare the measured utilizations

with the predicted utilizations using the static model and the

parametric model for both distributions. Figure 5 shows the

absolute prediction errors for both models. For a default of five

products per page, both the static and the parametric model

have an absolute utilization prediction error of < 5%. This

is expected, as this is the scenario the static model was build

for and calibrated with. However, for a default of ten products

per page, the parametric model significantly outperforms the

static model. Using the TeaStore as a case study, we are able

to highlight the benefit of modeling parametric dependencies.

This illustrates the TeaStore’s applicability for model evalua-

tion in one specific context.

Aside from parametric dependencies, the TeaStore provides

many opportunities to evaluate performance modeling con-

cepts due to its performance properties. In the following, we

list a number of challenges, which could be evaluated using the

TeaStore. We also list some example approaches that motivate

or tackled these issues in the past:

(a) Calibration deployment

(b) Evaluation deployment

Fig. 4: Deployments for model prediction. Services are abbre-

viated to their first letter.

Deployment options The TeaStore offers a large variety

of deployment options, as each service can be individ-

ually deployed and scaled. The prediction of resource

utilizations and response times for previously unseen

deployments and configurations is the most common use

case for performance engineering. This task overlaps with

the remaining challenges and therefore offers itself as

a scenario for benchmarking of performance modeling

approaches.

Internal state For some services, the performance does not

only depend on the request, but also the internal state of

the service. In the TeaStore, the database size influences

the service demand of the persistence provider service.

The number of entries in the database can dynamically

change during operation, leading to changing persistence

provider service demands. See e.g., [47].

Caching Caching mechanisms are challenging to model, as

the behavior of a service with caching depends on its

workload profile. The more frequent a small subset of

items is requested, the more effective caching becomes.

The Persistence and Image Provider of the TeaStore

implement caching. The implementation of the image

provider cache is known and can be modeled as a white-

box, whereas the persistence provider cache is part of the

JPA implementation and has to be modeled as a black-

box. See e.g., [48], [49]

Network For distributed applications, network delays can

influence their response time and can be a bottleneck

which limits the maximum throughput. This means, the

0
2

4
6

8
10

Arrival Rate [Request/s]

Ab
so

lu
te

 E
rro

r [
%

]

1000 2000 3000 4000 5000

Default 5 Products + Static Model
Default 5 Products + Parametric Model
Default 10 Products + Static Model
Default 10 Products + Parametric Model

Fig. 5: Absolute prediction error of the static and parametric

model for two workload profiles and five workload intensities.

network topology and limitations need to be taken into

account in a performance model to prevent significant

prediction errors. As instances of each TeaStore service

can be deployed on different machines, potentially even

in different data centers, network delays can significantly

influence the system response times. The Image Provider

transmits potentially large images over the network,

which can lead to a network bottleneck. See e.g., [50].

Load types The CPU of a server is the most common

bottleneck for applications, however the I/O capacity or

the available memory can also be a bottleneck. Addi-

tionally, the load profile of two services deployed on the

same machine influences how well they run in parallel.

The authentication service causes CPU load, the Image

provider I/O load and both the Image and Persistence

provider caches cause memory load. Therefore, modeling

of different load types is necessary to accurately predict

the performance of the TeaStore. See e.g., [45].

Startup behavior Some systems dynamically add or remove

service instances in order to adapt to changing workload.

Whether a service starts instantly or takes some time until

it is available, is an important factor when predicting the

response times of such systems. The TeaStore services

cover both cases. New Recommender instances need to

be trained before they can process requests and Image

provider instances need to generate the image files upon

startup. For the remaining services new instances can be

added and removed within seconds. See e.g., [51].

Alternate Implementations Deciding between multiple im-

plementations of the same component or service is a

classic performance modeling challenge. The TeaStore

provides multiple recommender algorithms and image

provider caches, which provides the opportunity for con-

figuration optimization case studies. See e.g., [52].

Timed tasks In most cases, the load of a system depends on

the number of requests it receives. Sometimes, a system

also regularly performs some tasks without user input,

usually some kind of maintenance tasks. Modeling this

behavior explicitly is important, as this load occurs inde-

pendently of the user behavior. The Recommender service

can be configured to be retrained at a regular interval,

which is a realistic example of such a maintenance task.

We show that the TeaStore can be used as a case-study

for performance modeling approaches. It provides sufficient

complexity to challenge existing approaches. The open source

nature of the TeaStore enables white-box modeling and any

measurements using the TeaStore can be easily replicated,

since we provide docker containers with integrated monitoring.

Therefore, the TeaStore is a suitable case-study for a quanti-

tative comparison between performance modeling approaches.

These comparisons can be done using manually created mod-

els or automatically extracted models using approaches such

as [53], [54], [55], [56]. Using automatically extracted models

would allow comparisons of full tool-chains, provided by the

respective modeling formalisms, in a realistic usage scenario.

B. Auto-Scaling

In order to show that the TeaStore works in an elastic

manner and can thus be used for auto-scaling experiments,

we stress an early development version of the TeaStore using

workloads derived from two different real-world traces (FIFA

World Cup 1998 [57] and BibSonomy [58]). We employ a

common, generic auto-scaler [18] to automatically scale the

store at run-time as the load intensity varies. We evaluate the

quality of the scaler’s decisions using a set of standard auto-

scaler evaluation metrics.

1) Workload: We stress the TeaStore using load intensity

profiles based on different real-world workloads: (i) BibSon-

omy and (ii) FIFA World Cup 1998. We select a sub-set lasting

four days from each of those traces. The BibSonomy trace

represents HTTP requests to the social bookmarking system

BibSonomy (see Benz et al. [58]) during April 2017. The

FIFA9 trace is a popular trace that was analyzed by Arlitt

and Tai [57]. The FIFA trace represents HTTP requests to

the FIFA servers during the world championship between

April and June 1998. We modify the traces to cover the load

intensity range between a low load that can be covered using

a minimal TeaStore deployment and a high load level that

reaches the maximum capacity of the potential deployments

for this scenario. On the time scale, the experiment is modified

so that the load intensity variations of the original four days

are executed within one hour.

2) Auto-Scaler: In 2009, Chieu et al. [18] present a reactive

scaling algorithm for horizontal scaling. This mechanism

provisions Virtual Machines (VMs) based on an application’s

scaling indicators. Among other things, the indicators consist

of the number of active connections or the number of requests

per second. The auto-scaler monitors these indicators for each

VM and calculates the moving average. Next, the virtual ma-

chines with active sessions above or below given thresholds are

determined. Finally, if all virtual machines have active sessions

above a given threshold, new instances are provisioned. Upon

9FIFA Source: http://ita.ee.lbl.gov/html/contrib/WorldCup.html

TABLE II: Mapping of config. number and used containers.

Configuration
Service #1 #2 #3 #4 #5 #6 #7 #8 #9
WebUI 1 1 2 3 3 4 5 5 6
Image Provider 1 1 2 3 3 4 5 5 6
Authentication 1 2 3 4 5 6 7 8 9
Recommender 1 1 1 2 2 2 3 3 3
Persistence 1 2 2 3 4 4 5 6 6

detecting VMs with active sessions below the threshold and

with at least one virtual machine that has no active session,

idle instances are removed.

In these experiments we aim to use a representative auto-

scaler. Consequently, we choose this reactive technique, as

the underlying mechanism is simple and straight-forward.

Based on this simplicity, this reactive generic auto-scaling-

mechanism can and does serve as baseline approach when

comparing state-of-the-art research auto-scalers. For our exper-

iments, we use a re-implementation of this reactive algorithm

that scales docker containers and name it React. In the

evaluation framework of A. Ilyushkin et. al [59], React shows

a generic and stable scaling performance.

Scaling distributed applications is still an open research

challenge and currently not supported by many state-of-the-art

auto-scalers and not by our baseline auto-scaler. To account

for this, we provide a best-effort list of which service to

scale at which stage. This list acts as a mapping between the

distributed services of the TeaStore and the expected single

service instances (scaling units) typically addressed by auto-

scalers. Specifically, in our case, the auto-scaler under test

always deploys a full-stack as the first scaling unit, then one

Authentication and one Persistence instance as the second unit

and, finally, one WebUI, Authentication, and Image instance

each as the third scaling unit. Each service instance is limited

to one virtual CPU core on the host machine. For additional

scaling units, these three steps are repeated on the next

available physical host (see Table II). We use up to three

physical server, resulting in a maximum configuration with

a total of 30 service containers.

3) Quantifying Scaling Behaviour: In order to evaluate the

scaling decisions made by React, we consider the proportion

of failed transactions, the average response time and a set of

system-oriented elasticity metrics endorsed by the Research

Group of the Standard Performance Evaluation Corporation

(SPEC) [60]. In particular, we focus on the wrong provisioning
time share.

The wrong provisioning time share captures the time

in which the system is in an under-provisioned (or over-

provisioned) state during the experiment interval. That is, the

under-provisioning time share τU describes the time relative

to the measurement duration, in which the system is under-

provisioned. Similarly, the over-provisioning time share τO
describes the time relative to the measurement duration in

which the system is in an over-provisioned state. The range

of this metric is the interval [0, 100]. The best value of 0

is achieved, when the system features no over- or under-

0 10 20 40 50 6030
0

1

2

3

4

5

6

7

8
C

on
fig

ur
at

io
n

nu
m

be
r

Supplied Configuration
Demanded Configuration

Fig. 6: Scaling behavior for the FIFA trace.

provisioning during the measurement. We define both metrics

τU and τO as follows:

τU [%] :=
100

T
·

T∑
t=1

max(sgn(dt − st), 0)Δt

τO[%] :=
100

T
·

T∑
t=1

max(sgn(st − dt), 0)Δt , where

dt is the minimal amount of scaling units required to meet

the Service Level Objectives (SLOs) under the load intensity

at time t, st is the resource supply at time t, and T is the

experiment duration. Δt denotes the time interval between the

last and the current change either in demand d or supply s.

To know whether or not the system is in an under-

provisioned or over-provisioned state, we execute separate

off-line calibration measurements, which measure the average

throughput of each target configuration in an over-loaded state.

Based on this configuration, capacity information, and the load

intensity of our traces, we are able to derive the required

resource configuration for each point in time, which we can

then use for calculating the time share metrics.

4) Evaluation: The scaling behavior of React on both

the FIFA and BibSonomy traces is shown in Figure 6 and

in Figure 7. Both figures are structured as follows: The

0 10 20 40 50 6030
0

1

2

3

4

5

6

7

8

C
on

fig
ur

at
io

n
nu

m
be

r

Supplied Configuration
Demanded Configuration

Fig. 7: Scaling behavior for the BibSonomy trace.

TABLE III: Result metric overview for both traces.

Metric Fifa BibSonomy
τU under-provisioning time share 15% 13%
τO over-provisioning time share 7% 6%
Proportion of failed transactions 1% 1%
Average response time 0.18 s 0.15 s

horizontal axis shows the experiment time in minutes; the

vertical axis represents the current number of scaling units

(the configuration). Table II shows the mapping between the

number and used containers. The red, dashed curve represents

the required configuration, which has been derived using the

separate off-line calibration tests, and the blue curve shows

the supplied configuration, as measured during the experiment.

For both traces, React scales the system in a similar fashion.

That is, in both traces, the supplied configuration matches

the required configuration for long periods. However, some

deviations between supplied and required configurations occur.

In Figure 6, for example, the system is in an under-provisioned

state in the entire interval between minute 2 and 5. Overall,

the under-provisioning and over-provisioning time-shares are

equal or below 15% in both traces (see Table III), indicating

good scaling behavior. In addition to the low time-share

metrics, the assertion of good scaling behavior is backed up

by the observation that the proportion of failed transactions is

below 2% and the average response time is lower than 0.19 s

for both traces.

The results of our auto-scaler tests indicate that the TeaStore

can be used to compare the elasticity and performance of

state-of-the art auto-scalers. Specifically, they show that the

TeaStore can even be used for comparing commonly used

and state-of-the art autoscalers, even though these scalers are

usually limited to single tier scaling. In addition, the results

show that the TeaStore exhibits robust behavior during run-

time scaling, as the proportion of failed transactions is below

2%. This characteristic is achieved through the micro-service

architecture and the client-side load balancers. The results also

indicate that the TeaStore is sufficiently scalable to allow for

experiments of this kind.

Many open challenges remain, despite the good perfor-

mance of the React auto-scaler. In these experiments, the

service deployment order was fixed and the auto-scalers do

not have to decide which service to place on which machine,

but rather when to add or remove the next configuration from

the pre-defined list of configurations. Distributed application

deployment decisions of this kind remain an open challenge.

Furthermore, load profiles may be more complex, as the used

profile does not change the database and does not change in

the user actions performed over time. Real-world auto-scalers

face the challenge of evolving user-behavior and changes in

request service demands over time.

C. Energy-Efficiency Analysis

Energy efficiency and power prediction methods, such

as [5], [6] are often employed to solve a placement problem

for services in distributed systems. The underlying challenge is

that different distributions of application services across physi-

cal hosts may not only result in different performance behavior

but also in differences in overall power consumption. This

section demonstrates this effect using the TeaStore. We show

that different distributions of the TeaStore’s services can result

in different performance and in different power consumption

both on homogeneous and heterogeneous systems.

For these experiments, we use an increasing load intensity

profile. The load profile starts at 8 requests per second and

increases to 2000 requests per second over the time of four

minutes. Request content is, again, specified using the user

browse profile for the 128 users accessing the store. Depending

on the current SUT configuration, some of the four minutes are

spent in an under-provisioned state, in which the load intensity

exceeds the capacity of the SUT. We measure the power

consumption of the physical servers and throughput of the

TeaStore during the entire run. However, we only take those

measurements into account, which are measured during the

time in which load arrives at the system. Each measurement

is taken on a per-second basis and thus tightly coupled to the

current load intensity.

We calculate the following metrics based on the throughput

and power consumption:

1) Energy Efficiency: In accordance to the SPEC Power

methodology [61], we define energy efficiency as the

ratio of throughput to power consumption:

Efficiency[J−1] =
Throughput[s−1]

Power[W]

As energy efficiency is a ratio, we aggregate multiple

energy efficiency scores using the geometric mean.

2) Estimated Capacity: We estimate the throughput ca-

pacity of each configuration by averaging the last 50

seconds of our load profile. Note that all configurations

are operating at maximum load (capacity) at this time.

3) Maximum Power Consumption: The maximum power

consumption measured (in Watts). It indicates the power

load that the configuration can put on the SUT.

0 50 100 150 200

0
2

4
6

8

Time [s]

En
er

gy
 E

ffi
ci

en
cy

 [1
/J

]

#1: WARIP; −
#4: WARIP; IP
#7: WARIP; WARP

Fig. 8: Energy efficiency for linearly increasing load. Services

are abbreviated to their first letter.

TABLE IV: Energy Efficiency on Homogeneous Servers.

Services are abbreviated to their first letter.

Serv.1 Serv.2 Capacity Max Pwr Eff.
1 WARIP - 779.7 ±[29.7] 114.4 W 5.3
2 WI ARP 1177.5 ±[31.5] 193.6 W 4.2
3 WAI RP 883.4 ±[39.4] 175.8 W 3.8
4 WARIP IP 863.0 ±[40.5] 173.5 W 3.9
5 WARIP AIP 1228.7 ±[18.9] 208.4 W 4.2
6 WAIP WARP 1231.8 ±[18.7] 203.7 W 4.3
7 WARIP WAIP 1404.1 ±[14.5] 217.9 W 4.3
8 WARIP WARIP 1413.2 ±[14.7] 217.7 W 4.3

1) Energy Efficiency on Homogeneous Systems: We run

the TeaStore with un-restrained docker containers on up to

two of our testing servers. Table IV shows the estimated

capacity, maximum power, and geomean energy efficiency

for different TeaStore deployments on those servers (Service

names in the table are abbreviated to their first letter). The

table confirms our previous assertion that the store performs

differently depending on the service distribution. Capacity

(maximum throughput) varies significantly for the different

deployments, with some two-server deployments barely ex-

ceeding the capacity of the single server deployment and

others almost doubling it.

The single server deployment (deployment #1) features the

lowest performance, but also the lowest power consumption.

As a result, it has the highest energy efficiency among all

tested configurations. This is mostly due to our increasing

stress test profile. At low load, as the load increases, the single

system is still capable of handling all requests, while also

consuming less power. At high load, it operates at capacity,

but still consumes less power than the two-server setups.

Figure 8 visualizes the energy efficiency over time for the

single-server and two selected two-server deployments. The

figure shows that an efficient two-server deployment can reach

a similar energy efficiency as the single-server deployment at

maximum load. However, some low performance deployments

are incapable of reaching this efficiency and are overall less

efficient due to the power overhead of the second server.

Among the two-server deployments, maximum power con-

sumption is usually greater for those deployments with greater

capacity, but some notable differences exist, which indicate

room for power and efficiency optimization, even on a homo-

geneous system. Two notable examples emerge: Comparing

deployment #2 with deployment #3, shows that deployment

#2, which deploys the WebUI and Image services on one and

the Auth, Recommender, and Persistence services on the other

server has both a better performance, as well as smaller power

footprint than deployment #3, which deploys the WebUI, Auth,

and Image services on one server and the Image and Persis-

tence services on another server. Consequently, deployment

#2 features a better energy efficiency. In this example, one

deployment is obviously better than another and the TeaStore

could be used to evaluate if a prediction or management

mechanism actually selects the better option. However, in

some cases power does not scale the same as performance.

This case is hinted at when comparing deployment #5 and #6.

TABLE V: Energy Efficiency on Heterogeneous Servers. Ser-

vices are abbreviated to their first letter.

8 core 4 core Capacity Max Pwr Eff.
1 WARIP - 779.7 ±[29.7] 114.4 W 5.3
2 AIP WARIP 781.1 ±[11.1] 163.1 W 3.9
3 WARIP AIP 1207.3 ±[23.4] 189.5 W 4.6
4 WAIP WARIP 1011.9 ±[24.7] 179.6 W 4.4
5 WARIP WAIP 1067.7 ±[26.7] 187.0 W 4.3
6 WARIP WARIP 1003.9 ±[24.9] 179.7 W 4.1

Both deliver equal performance, but deployment #6 consumes

slightly less power and is therefore a bit more efficient.

2) Energy Efficiency on Heterogeneous Systems: For our

measurements on heterogeneous systems we replace the sec-

ond server with an HP ProLiant DL20 system, which features

an Intel Xeon E3-1230 v5 processor with 4 cores at 3.5 GHz

and 16 GB RAM. This second server does not offer as much

performance and consumes less power compared to its 8 core

counterpart. Naturally, when deploying on this heterogeneous

system, the order of deployment matters, as servers differ in

power and performance.

Table V shows the measurement results of the heteroge-

neous system. It shows the performance, power, and energy

efficiency for selected deployments. It illustrates the effect that

deployment order has on the heterogeneous system, especially

regarding deployments #2 and #3, which are the same deploy-

ment, except that they deploy each respective stack on the

different server. Deployment #2 deploys the full stack on the

smaller server and replicates some components on the larger

machine, wheres deployment #3 does the reverse. Although

deployment #3 consumes more power than #2, it has a far

better performance and greater overall efficiency. It should also

be noted that deployments with fewer services on the smaller

machine seem to be more efficient in the heterogeneous

environment compared to the respective deployments in the

homogeneous environment, which deploy the smaller stack

on an equivalent machine. Deployment #5 corresponds to

deployment #7 on the homogeneous system (see Table IV),

which is the most efficient system in that context. However,

on the heterogeneous system, it is trumped in performance and

efficiency by deployment #3, which places fewer services on

the smaller machine.

In addition, the heterogeneous system demonstrates an

efficiency – performance trade-off when compared to the

homogeneous system. The most efficient heterogeneous de-

ployment has a slightly lower performance capacity than the

best homogeneous one, yet consumes less power and has a

better energy efficiency.

Overall, our experiments show that the TeaStore exhibits

different performance and power behavior depending on de-

ployment, both on heterogeneous and homogeneous systems.

Due to this, it can be used to evaluate the prediction accuracy

of power prediction mechanisms. In addition, some of our

configurations feature a performance – efficiency trade-off,

which is highly relevant for power and performance manage-
ment, showing that the TeaStore can be used to evaluate such

management approaches.

V. CONCLUSION

This paper introduces the TeaStore, a test and reference

application intended to serve as a benchmarking framework for

researchers evaluating their work10. The TeaStore is designed

to offer the degrees of freedom and performance characteristics

required by software management, prediction, and analysis re-

search. Specifically, the TeaStore is designed to be used in one

of three target domains: Evaluation of software performance

models and model-extractors, evaluation of run-time software

management methods, such as auto-scalers, and evaluation

of software energy-efficiency, power models and optimization

methods.

The TeaStore is a distributed micro-service-based applica-

tion, consisting of five separate services, each of which can

be replicated, added, and removed at run-time. The TeaStore’s

services are available as Docker containers and as manually

deployable applications. It deviates from existing testing and

benchmarking applications through its focus on the target

research application scenarios. This focus has influenced the

design, implementation, and performance characteristics of the

store. The TeaStore thus also comes with a pre-instrumented

variant that collects performance data at run-time, further

enhancing its use in the intended contexts.

We demonstrate the TeaStore’s use for the target scenarios

using separate use-case experiments:

1) We create and calibrate software performance models for

the TeaStore. We use these models to predict the store’s

utilization for different usage profiles in a distributed set-

ting. With these experiments, we show that the TeaStore

can be used to evaluate the benefit and modeling accuracy

of novel performance modeling formalisms.

2) We run the TeaStore in an elastic environment using

a state-of-the-art auto-scaler, demonstrating its run time

scalability. This experiment also highlights the limitations

of current auto-scalers regarding micro-service applica-

tions and multiple different services in general.

3) We analyze the energy efficiency of different deployments

for the TeaStore, showing the non-trivial power and

performance effects that placement decisions can have.

In addition, we show that some store configurations offer

a trade-off between energy efficiency and performance,

which can be employed by management mechanisms.

Researchers may decide to use the TeaStore and the cor-

responding testing tools and profiles in any of these three

primary application scenarios. The TeaStore can also be used

in additional settings to achieve evaluation results that demon-

strate the applicability of their work, while also enhancing

comparability of their results.

10TeaStore setup: https://github.com/DescartesResearch/TeaStore/wiki/
Testing-and-Benchmarking

REFERENCES

[1] S. Becker, H. Koziolek, and R. Reussner, “The palladio component
model for model-driven performance prediction,” Journal of Systems
and Software, vol. 82, no. 1, pp. 3–22, 2009.

[2] A. Ilyushkin, A. Ali-Eldin, N. Herbst, A. V. Papadopoulos, B. Ghit,
D. Epema, and A. Iosup, “An Experimental Performance Evaluation of
Autoscaling Policies for Complex Workflows,” in Proceedings of the
8th ACM/SPEC International Conference on Performance Engineering
(ICPE 2017). New York, NY, USA: ACM, April 2017, best Paper
Candidate (1/4).

[3] I. Lee and R. K. Iyer, “Software dependability in the tandem guardian
system,” IEEE Transactions on Software Engineering, vol. 21, no. 5, pp.
455–467, 1995.

[4] B. Littlewood and L. Strigini, “Validation of ultra-high dependability
for software-based systems,” in Predictably Dependable Computing
Systems. Springer, 1995, pp. 473–493.

[5] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Gener. Comput. Syst., vol. 28, no. 5, pp. 755–768,
May 2012. [Online]. Available: http://dx.doi.org/10.1016/j.future.2011.
04.017

[6] R. Basmadjian, N. Ali, F. Niedermeier, H. de Meer, and G. Giuliani,
“A Methodology to Predict the Power Consumption of Servers in
Data Centres,” in Proceedings of the 2Nd International Conference
on Energy-Efficient Computing and Networking, ser. e-Energy ’11.
New York, NY, USA: ACM, 2011, pp. 1–10. [Online]. Available:
http://doi.acm.org/10.1145/2318716.2318718

[7] J. von Kistowski, J. Beckett, K.-D. Lange, H. Block, J. A. Arnold, and
S. Kounev, “Energy Efficiency of Hierarchical Server Load Distribution
Strategies,” in Proceedings of the IEEE 23nd International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS 2015). IEEE, October 2015.

[8] C. M. Aderaldo, N. C. Mendonça, C. Pahl, and P. Jamshidi, “Benchmark
requirements for microservices architecture research,” in Proceedings of
the 1st International Workshop on Establishing the Community-Wide
Infrastructure for Architecture-Based Software Engineering. IEEE
Press, 2017, pp. 8–13.

[9] J. Happe, H. Koziolek, and R. Reussner, “Facilitating performance
predictions using software components,” IEEE Software, vol. 28, no. 3,
pp. 27–33, 2011.

[10] F. Willnecker, M. Dlugi, A. Brunnert, S. Spinner, S. Kounev, and H. Kr-
cmar, “Comparing the Accuracy of Resource Demand Measurement
and Estimation Techniques,” in Computer Performance Engineering -
Proceedings of the 12th European Workshop (EPEW 2015), ser. Lecture
Notes in Computer Science, M. Beltrán, W. Knottenbelt, and J. Bradley,
Eds., vol. 9272. Springer, August 2015, pp. 115–129.

[11] RUBiS User’s Manual, May 2008.
[12] D. Inc., “Dell DVD Store,” https://linux.dell.com/dvdstore/, 2011, Ac-

cessed: 13.10.2017.
[13] Weaveworks Inc., “Sock Shop: A Microservice Demo Application,”

https://github.com/microservices-demo/microservices-demo, 2017, Ac-
cessed: 19.10.2017.

[14] A. Brunnert, A. van Hoorn, F. Willnecker, A. Danciu, W. Hasselbring,
C. Heger, N. Herbst, P. Jamshidi, R. Jung, J. von Kistowski,
A. Koziolek, J. Kross, S. Spinner, C. Vögele, J. Walter, and
A. Wert, “Performance-oriented DevOps: A research agenda,” SPEC
Research Group — DevOps Performance Working Group, Standard
Performance Evaluation Corporation (SPEC), Tech. Rep. SPEC-RG-
2015-01, August 2015. [Online]. Available: https://research.spec.org/
fileadmin/user upload/documents/wg devops/endorsed publications/
SPEC-RG-2015-001-DevOpsPerformanceResearchAgenda.pdf

[15] Standard Performance Evaluation Corporation (SPEC), “SPEC jEnter-
prise 2010 Design Document,” https://www.spec.org/jEnterprise2010/
docs/DesignDocumentation.html, May 2010, Accessed: 16.10.2017.

[16] P. Ezhilchelvan and I. Mitrani, “Optimal provision of multiple ser-
vice types,” in Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2016 IEEE 24th International
Symposium on. IEEE, 2016, pp. 21–29.

[17] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource scaling
for cloud systems,” in Network and Service Management (CNSM), 2010
International Conference on. Ieee, 2010, pp. 9–16.

[18] T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal, “Dynamic scaling
of web applications in a virtualized cloud computing environment,” in E-

Business Engineering, 2009. ICEBE’09. IEEE International Conference
on. IEEE, 2009, pp. 281–286.

[19] IBM, “ACME Air,” https://github.com/acmeair/acmeair, 2015, Ac-
cessed: 19.10.2017.

[20] K. Bastani, “Spring Cloud Example Project,” https://github.com/
kbastani/spring-cloud-microservice-example, 2015, Accessed:
19.10.2017.

[21] .NET Foundation, “MusicStore (test application),” https://github.com/
aspnet/MusicStore, 2017, Accessed: 18.10.2017.

[22] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and W. Zwaenepoel,
“Performance comparison of middleware architectures for generating
dynamic web content,” in Proceedings of the ACM/IFIP/USENIX 2003
International Conference on Middleware. Springer-Verlag New York,
Inc., 2003, pp. 242–261.

[23] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “Performance and
scalability of ejb applications,” in ACM Sigplan Notices, vol. 37, no. 11.
ACM, 2002, pp. 246–261.

[24] O. Consortium, “Rice University Bidding System (RUBiS),” http://rubis.
ow2.org/index.html, 2009, Accessed: 13.10.2017.

[25] CloudScale Consortium, “CloudStore,” https://github.com/
CloudScale-Project/CloudStore, 2016, Accessed: 18.10.2017.

[26] S. Lehrig, R. Sanders, G. Brataas, M. Cecowski, S. Ivanšek, and
J. Polutnik, “Cloudstoretowards scalability, elasticity, and efficiency
benchmarking and analysis in cloud computing,” Future Generation
Computer Systems, vol. 78, pp. 115–126, 2018.

[27] G. Brataas, N. Herbst, S. Ivansek, and J. Polutnik, “Scalability Analysis
of Cloud Software Services,” in Companion Proceedings of the 14th
IEEE International Conference on Autonomic Computing (ICAC 2017),
Self Organizing Self Managing Clouds Workshop (SOSeMC 2017).
IEEE, July 2017.

[28] A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, “The common
component modeling example,” Lecture notes in computer science, vol.
5153, 2008.

[29] Oracle and S. Microsystems, “JPetStore 2.0,” http://www.oracle.com/
technetwork/java/index-136650.html, 2005, Accessed: 17.10.2017.

[30] P. Software, “Spring PetClinic,” https://github.com/spring-projects/
spring-petclinic, 2016, Accessed: 19.10.2017.

[31] A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A framework for
application performance monitoring and dynamic software analysis,”
in Proceedings of the 3rd joint ACM/SPEC International Conference
on Performance Engineering (ICPE 2012). ACM, April 2012, pp.
247–248. [Online]. Available: http://eprints.uni-kiel.de/14418/

[32] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers,
S. Frey, and D. Kieselhorst, “Continuous monitoring of software
services: Design and application of the kieker framework,” Kiel
University, Forschungsbericht, November 2009. [Online]. Available:
http://eprints.uni-kiel.de/14459/

[33] D. Lemire and A. Maclachlan, “Slope one predictors for online rating-
based collaborative filtering,” in Proceedings of the 2005 SIAM Inter-
national Conference on Data Mining. SIAM, 2005, pp. 471–475.

[34] S. Spinner, G. Casale, X. Zhu, and S. Kounev, “LibReDE: A
Library for Resource Demand Estimation,” in Proceedings of the
5th ACM/SPEC International Conference on Performance Engineering
(ICPE 2014). New York, NY, USA: ACM Press, March 2014, pp. 227–
228. [Online]. Available: http://doi.acm.org/10.1145/2568088.2576093

[35] D. Okanović, A. van Hoorn, C. Heger, A. Wert, and S. Siegl, “Towards
performance tooling interoperability: An open format for representing
execution traces,” in Proceedings of the 13th European Workshop on
Performance Engineering (EPEW ’16). Springer, 2016.

[36] J. von Kistowski, M. Deffner, and S. Kounev, “Run-time Prediction of
Power Consumption for Component Deployments,” in Proceedings of
the 15th IEEE International Conference on Autonomic Computing (ICAC
2018), September 2018.

[37] J. von Kistowski, N. Herbst, S. Kounev, H. Groenda, C. Stier, and
S. Lehrig, “Modeling and Extracting Load Intensity Profiles,” ACM
Transactions on Autonomous and Adaptive Systems (TAAS), vol. 11,
no. 4, pp. 23:1–23:28, January 2017. [Online]. Available: http:
//doi.acm.org/10.1145/3019596

[38] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open versus
closed: a cautionary tale,” in Proceedings of the 3rd conference on
Networked Systems Design & Implementation - Volume 3, ser. NSDI’06.
Berkeley, CA, USA: USENIX Association, 2006, pp. 18–18. [Online].
Available: http://dl.acm.org/citation.cfm?id=1267680.1267698

[39] M. Sitaraman, G. Kulczycki, J. Krone, W. F. Ogden, and A. L. N.
Reddy, “Performance specification of software components,” SIGSOFT
Softw. Eng. Notes, vol. 26, no. 3, pp. 3–10, May 2001. [Online].
Available: http://doi.acm.org/10.1145/379377.375223

[40] E. Bondarev, P. de With, M. Chaudron, and J. Muskens, “Modelling of
input-parameter dependency for performance predictions of component-
based embedded systems,” in 31st EUROMICRO Conference on Soft-
ware Engineering and Advanced Applications. Vienna, Austria: EU-
ROMICRO, Aug 2005, pp. 36–43.

[41] S. Becker, L. Bulej, T. Bures, P. Hnetynka, L. Kapova, J. Kofron,
H. Koziolek, J. Kraft, R. Mirandola, J. Stammel, G. Tamburelli,
and M. Trifu, “Q-impress consortium,” www.q-impress.eu/wordpress/
wp-content/uploads/2009/05/d21-service architecture meta-model.pdf,
2017, accessed: 2017.03.16.

[42] H. Groenda, C. Stier, J. Krzywda, J. Byrne, S. Svorobej, G. G. Castañé,
Z. Papazachos, C. Sheridan, D. Whigham, C. Hauser et al., “Cactos
toolkit version 2: accompanying document for prototype deliverable d5.
2.2,” 2017.

[43] S. Gérard and B. Selic, “The uml–marte standardized profile,” IFAC
Proceedings Volumes, vol. 41, no. 2, pp. 6909–6913, 2008.

[44] S. Eismann, J. Walter, J. von Kistowski, and S. Kounev, “Modeling
of Parametric Dependencies for Performance Prediction of Component-
based Software Systems at Run-time,” in 2018 IEEE International
Conference on Software Architecture (ICSA), May 2018.

[45] N. Huber, F. Brosig, S. Spinner, S. Kounev, and M. Bähr,
“Model-Based Self-Aware Performance and Resource Management
Using the Descartes Modeling Language,” IEEE Transactions on
Software Engineering (TSE), vol. 43, no. 5, 2017. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2016.2613863

[46] S. Spinner, G. Casale, F. Brosig, and S. Kounev, “Evaluating
Approaches to Resource Demand Estimation,” Performance Evaluation,
vol. 92, pp. 51 – 71, October 2015. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0166531615000711

[47] L. Happe, B. Buhnova, and R. Reussner, “Stateful component-based
performance models,” Softw. Syst. Model., vol. 13, no. 4, pp. 1319–1343,
Oct. 2014.

[48] G. Bianchi, A. Detti, A. Caponi, and N. Blefari Melazzi, “Check before
storing: What is the performance price of content integrity verification
in lru caching?” SIGCOMM Comput. Commun. Rev., vol. 43, no. 3, pp.
59–67, Jul. 2013.

[49] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to
the performance analysis of caching systems,” ACM Transactions on
Modeling and Performance Evaluation of Computing Systems, vol. 1,
no. 3, p. 12, 2016.

[50] P. Rygielski, M. Seliuchenko, and S. Kounev, “Modeling and Prediction
of Software-Defined Networks Performance using Queueing Petri Nets,”
in Proceedings of the Ninth International Conference on Simulation
Tools and Techniques (SIMUTools 2016), 2016, pp. 66–75.

[51] A. V. Papadopoulos, A. Ali-Eldin, K.-E. en, J. Tordsson, and E. Elmroth,
“Peas: A performance evaluation framework for auto-scaling strategies
in cloud applications,” ACM Trans. Model. Perform. Eval. Comput. Syst.,
vol. 1, no. 4, pp. 15:1–15:31, Aug. 2016.

[52] A. Koziolek, D. Ardagna, and R. Mirandola, “Hybrid multi-attribute QoS
optimization in component based software systems,” Journal of Systems
and Software, vol. 86, no. 10, pp. 2542 – 2558, 2013.

[53] K. Krogmann, M. Kuperberg, and R. Reussner, “Using genetic search
for reverse engineering of parametric behavior models for performance
prediction,” IEEE Transactions on Software Engineering, vol. 36, no. 6,
pp. 865–877, 2010.

[54] J. Walter, A. D. Marco, S. Spinner, P. Inverardi, and S. Kounev, “Online
Learning of Run-time Models for Performance and Resource Manage-
ment in Data Centers,” in Self-Aware Computing Systems, S. Kounev,
J. O. Kephart, A. Milenkoski, and X. Zhu, Eds. Berlin Heidelberg,
Germany: Springer Verlag, 2017.

[55] F. Willnecker, A. Brunnert, W. Gottesheim, and H. Krcmar, “Using
dynatrace monitoring data for generating performance models of java
ee applications,” in Proceedings of the 6th ACM/SPEC International
Conference on Performance Engineering. ACM, 2015, pp. 103–104.

[56] J. Walter, C. Stier, H. Koziolek, and S. Kounev, “An Expandable
Extraction Framework for Architectural Performance Models,” in Pro-
ceedings of the 3rd International Workshop on Quality-Aware DevOps
(QUDOS’17). ACM, April 2017.

[57] M. Arlitt and T. Jin, “A Workload Characterization Study of the 1998
World Cup Web Site,” IEEE Network, vol. 14, no. 3, pp. 30–37, 2000.

[58] D. Benz, A. Hotho, R. Jäschke, and more, “The social bookmark and
publication management system bibsonomy,” VLDB, vol. 19, no. 6, pp.
849–875, 2010.

[59] A. Ilyushkin, A. Ali-Eldin, N. Herbst, A. Bauer, A. V. Papadopoulos,
D. Epema, and A. Iosup, “An Experimental Performance Evaluation of
Autoscalers for Complex Workflows,” ACM Transactions on Modeling
and Performance Evaluation of Computing Systems (ToMPECS), vol. 3,
no. 2, pp. 8:1–8:32, April 2018.

[60] N. Herbst and more, “Ready for Rain? A View from SPEC Research
on the Future of Cloud Metrics,” CoRR, vol. abs/1604.03470, 2016.

[61] S. P. E. C. (SPEC), “Power and Performance Benchmark Method-
ology,” November 2012, http://spec.org/power/docs/SPEC-Power and
Performance Methodology.pdf.

