Measuring the Energy Efficiency of Transactional Loads on
GPGPU

Joakim von Kistowski
joakim kistowski@uni-wuerzburg.de
University of Wiirzburg

Johann Pais
Advanced Micro Devices

Tobias Wahl
tobias.wahl@stud-mail.
uni-wuerzburg.de

Germany johann.pais@amd.com University of Wiirzburg, Germany
Klaus-Dieter Lange Hansfried Block John Beckett
Hewlett Packard Enterprise SPECpower Committee Dell Inc.
USA Germany USA
klaus.lange@hpe.com hansfried.block@web.de john_beckett@dell.com
Samuel Kounev
samuel kounev@uni-wuerzburg.de
University of Wiirzburg
Germany
ABSTRACT CCS CONCEPTS

General Purpose Graphics Processing Units (GPGPUs) are becom-
ing more and more common in current servers and data centers,
which in turn consume a significant amount of electrical power.
Measuring and benchmarking this power consumption is impor-
tant as it helps with optimization and selection of these servers.
However, benchmarking and comparing the energy efficiency of
GPGPU workloads is challenging as standardized workloads are
rare and standardized power and efficiency measurement meth-
ods and metrics do not exist. In addition, not all GPGPU systems
run at maximum load all the time. Systems that are utilized in
transactional, request driven workloads, for example, can run at
lower utilization levels. Existing benchmarks for GPGPU systems
primarily consider performance and are intended only to run at
maximum load. They do not measure performance or energy effi-
ciency at other loads. In turn, server energy-efficiency benchmarks
that consider multiple load levels do not address GPGPUs.

This paper introduces a measurement methodology for servers
with GPGPU accelerators that considers multiple load levels for
transactional workloads. The methodology also addresses verifia-
bility of results in order to achieve comparability of different device
solutions. We analyze our methodology on three different systems
with solutions from two different accelerator vendors. We investi-
gate the efficacy of different methods of load levels scaling and our
methodology’s reproducibility. We show that the methodology is
able to produce consistent and reproducible results with a maximum
coeflicient of variation of 1.4% regarding power consumption.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’19, April 7-11, 2019, Mumbai, India

© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-6239-9/19/04. .. $15.00
https://doi.org/10.1145/3297663.3309667

« Hardware — Enterprise level and data centers power is-
sues; « Computing methodologies — Graphics processors; » Soft-
ware and its engineering — Software performance;

KEYWORDS

Power, Energy Efficiency, GPGPU, Performance, Benchmarking,
Measurement, Load Level, SPEC

ACM Reference Format:

Joakim von Kistowski, Johann Pais, Tobias Wahl, Klaus-Dieter Lange, Hans-
fried Block, John Beckett, and Samuel Kounev. 2019. Measuring the Energy
Efficiency of Transactional Loads on GPGPU. In Tenth ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE °19), April 7-11, 2019,
Mumbai, India. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3297663.3309667

1 INTRODUCTION

The energy efficiency of servers and data centers has become an
ever more important issue over the last decades. In 2010, the U.S.
Environmental Protection Agency (U.S. EPA) estimated that 3% of
the entire energy consumption in the U.S. is caused by data center
power draw [19]. According to a New York Times study from 2012,
data centers worldwide consume about 30 billion watts per hour.
This is equivalent to the approximate output of 30 nuclear power
plants [5].

Improving the energy efficiency of data centers and servers re-
quires the ability to measure and rate that efficiency. Methodologies,
workloads, and metrics for server energy efficiency can enable more
informed purchasing and provisioning decisions. This is the case
for both regular servers and servers utilizing additional accelerator
devices, such as General Purpose Graphics Processing Units (GPG-
PUs). GPGPUs have become more common over the last years and,
consequently, the importance of rating their efficiency alongside
the efficiency of other types of servers has increased.

GPGPUs are mostly used in High Performance Computing (HPC)
environments, which are run mostly at full load. In contrast, most

https://doi.org/10.1145/3297663.3309667
https://doi.org/10.1145/3297663.3309667
https://doi.org/10.1145/3297663.3309667

regular compute servers in modern day data centers are not being
utilized to their full capacity. Instead, these compute servers are
used to serve requests that arrive over time and are provisioned
with additional capacity in order to be able to cope with variations
in load, such as unexpected bursts. This leads to an average load
somewhere between 10% and 50% [7]. With the proliferation of
servers utilizing GPGPU devices, we pose that such servers will
also see use in such request-based computing contexts in the future.
In this case, benchmarking and rating methods for GPGPU servers
must be adapted to consider such transactional loads.

Existing benchmarks for GPGPUs do not consider transactional
loads or multiple load levels. Even energy efficiency itself is usually
just an afterthought for these benchmarks. Benchmark suites, such
as Rodinia [11], Parboil [27], LonestarGPU [10], and SHOC [13]
focus on performance measurements that can be used to indicate
HPC performance. All of these GPGPU benchmarks focus on deter-
mining the maximum performance level of the system under test
(SUT) and its accelerators; they do not measure at lower load levels
or utilization ranges.

This work presents a rating methodology for the energy ef-
ficiency of GPGPU servers that considers transactional loads. It
is based on the SPEC Power and Performance Benchmark Method-
ology [26] and designed to execute GPGPU kernels at different
request rates for a thorough energy-efficiency characterization.
Our methodology considers different vendor-specific workload im-
plementations, transaction scheduling, kernel parallelization, and
GPGPU result verification. We present a single workload, imple-
menting FFT, using the methodology, and showing how it can be
used for transactional execution.

The major contributions of this paper are as follows:

(1) A measurement methodology for measuring the power con-
sumption and energy efficiency of servers with GPGPUs
running transactional loads at multiple load levels,

(2) A reference workload for the methodology, using FFT,

(3) A framework that allows for different workload implemen-
tations, allowing for the use of GPGPU vendor-specific tech-
nologies, and

(4) An analysis of GPGPU power and energy-efficiency scaling
over transaction rate and size of processed data.

We evaluate our methodology using the reference FFT workload
on both AMD and NVIDIA devices. We investigate the reproducibil-
ity of results and analyze if power consumption and energy effi-
ciency scale with transaction rates and/or processed dataset sizes.
We show that the methodology is able to produce consistent and
reproducible results with a maximum coefficient of variation of
1.4% regarding power consumption and a maximum coefficient of
variation of 4.4% regarding performance.

The rest of this article is structured as follows: Section 2 de-
tails the underlying general power rating methodology employed
in this work and Section 3 covers related work. Section 4 then
introduces the GPGPU benchmarking methodology and the refer-
ence workload. The methodology is evaluated in Section 5, which
also provides an analysis on GPGPU power and energy-efficiency
scaling. Finally, Section 6 concludes the paper.

2 SPEC POWER METHODOLOGY

The work of this paper uses the SPEC Power and Performance Bench-
mark Methodology [26] as its basis. The methodology has been
developed by the SPEC OSG Power Committee as a tool for the anal-
ysis and evaluation of the energy efficiency of server systems. It was
first implemented in SPECpower_ssj2008 [17] and later in the SPEC
SERT [19] and SPEC Chauffeur WDK [4]. SPECpower_ssj2008 is a
benchmark which emulates a transactional enterprise application,
whereas SERT does not execute an application from a specific do-
main. It does not aim to emulate real world end user workloads, but
instead provides a set of focused synthetic micro-workloads called
worklets that exercise selected aspects of the server (or system)
under test (SUT). The worklets have been developed to exercise the
processor, memory, and storage I/O subsystems. The SPEC Chauf-
feur WDK is a development kit for such workloads and can be used
by researchers and industry practitioners for creation of their own
specialized worklets.

2.1 Device Setup

The SUT is at the center of the power measurement setup. It is a
physical system that runs the workloads used for evaluation. The
SUT’s power consumption and its performance during testing are
used to derive the energy-efficiency score. Performance metrics
are gathered from the SUT using a testing software harness. We
refer to the actual test execution software on the SUT as the host
software. For CPU-bound workloads, the host in turn spawns sepa-
rate on-SUT processes, referred to as clients, for each logical CPU
(hardware thread). For most workloads, a transactional workload
is executed on the clients. Clients can run work units in parallel.
However, parallelism also can be achieved by running multiple
clients concurrently. The clients collect the performance metrics of
their workload and forward this information to the host.

The workload is controlled by the controller system. It coordi-
nates which workload to run at which load level. It also collects all
measurements both from the SUT as well as external measurement
devices, and it calculates the metrics and scores. We refer to the
collection of software managing all instances and measurement
devices as the director. They are illustrated in Fig. 1.

We require at least one external power analyzer and one temper-
ature sensor. The power analyzer measures the power consumption
of the entire SUT, whereas the temperature sensor verifies the va-
lidity of measurements by making sure that all experiments are
conducted under similar environmental conditions. External power
and temperature instrumentation are used, as opposed to potential
internal instrumentation, as the methodology makes no assump-
tions about the internal structure of the SUT, allowing for maximum
portability. Reliance on external power measurement devices also
enables the definition of tight constraints on the accuracy of the
power measurement devices. Specifically, power measurement de-
vices must feature a maximum measurement uncertainty of 1% or
better.

2.2 Load Levels

According to [7], servers nowadays spend most of their time in a
CPU utilization range between 10% and 50%. As a result, workloads
within the SPEC Power and Performance Benchmark Methodology are

Controller

System under Test (SUT)

starts

| Client | | Client | | Client | | Client |
. ﬁ

A 4 A 4 A 4 A 4
Temp. Sensor | HWTO w\”—“ | | le HWTn |
w

——| Power Analyzer |-- PSU | | Core 0 || Coren |
Lk

pinned ;

HWT: Hardware Thread | CPUO | ------- |

PSU: Power Supply

Figure 1: Typical server power measurement device setup.

designed for the measurement of system energy efficiency at mul-
tiple load levels. This sets benchmarks implementing the method-
ology apart from conventional performance benchmarks, such as
SPEC CPU [9], or other energy-efficiency benchmarks, such as
JouleSort [25], and the TPC-Energy benchmarks [24], which target
maximum load and performance. To achieve workload execution
at different load levels, a methodology-compliant benchmark cali-
brates the load by determining the maximum transaction rate for
the given workload on the SUT. The maximum transaction rate
is measured by running as many of the worklet’s transactions as
possible, concurrently on each client. This calibrated rate is then
set as the 100% load level for all consecutive runs. For each target
load level (e.g., 100%, 75%, 50%, 25%), the benchmark calculates the
target transaction rate and derives the corresponding mean time
from the start of one transaction to the start of the next transaction.
During the measurement interval, these delays are randomized
using an exponential distribution that statistically converges to the
desired transaction rate. As a result, lower target loads consist of
short bursts of activity separated by periods of inactivity. Fig. 2
shows how calibration and the following measurement intervals
would run using intervals at 100%, 67%, and 33% as an example.
Note that the load levels are throughput-based and do not indicate
CPU utilization (this is a common misconception).

2.3 Transactions and Users

The implementations of the SPEC power methodology have devel-
oped a common way to handle input data and transaction state.
This method is relevant for this work, as it must be extended to
work with external accelerators. In addition, we must consider and
handle the state of accelerator execution contexts. In general, the
methodology considers any transaction to be stateless. Therefore,
states are stored separately from transactions. To achieve this, the
methodology implementations consider two types of objects: Trans-
actions and Users. Transactions are the stateless representation of
a transaction’s operations. Users, on the other hand, are passive

Scenario IScenario)
Slyaglaai(Pyl
b i
- [2 Scenario
@
8 -
£ x 5
= 2| calibr. g ol 100% |2
S 8| 1205 |5 =| 120s |
a 2 3 o| 67% |o
g s 2| 120s |©
<
s z -
Q o
120s |2
10s)-_____"_ 10s) 1_____°L 10s|2_____L) i R 10 s
~ Interval Interval " Interval Interval
Time

Figure 2: Intervals for calibration and measurement
phase [29].

resources that are allocated by transactions as they begin the active
execution of an individual transaction. Users are again released
after a transaction’s execution has finished. This way, the Users can
be used to store any data needed for the transaction’s execution,
including the execution context itself. Note that sufficient Users
must be available for transactions to utilize all tested devices (e.g.,
CPU cores or GPGPUs).

3 RELATED WORK

We categorize related work into three major non-exclusive cate-
gories: GPGPU benchmarks, works on GPGPU energy efficiency,
and server energy-efficiency benchmarks in general.

GPGPU benchmarks are mostly performance benchmarks.
They are used to measure performance of GPUs in common GPGPU
application scenarios. For example, NAMD [8], LAMMPS [23], and
GROMACS [22] implement algorithms used in scientific computing
for various fields of study and are used to measure the performance
of accelerators in HPC environments. Similarly, the Rodinia [11],
Parboil [27], LonestarGPU [10] and SHOC [13] suites focus on
performance measurements that can be used to indicate HPC per-
formance. All of these GPGPU benchmarks focus on determining
the maximum performance level of the SUT and its accelerators;
they do not measure at lower load levels or utilization ranges.

Works on GPGPU energy efficiency often employ these GP-
GPU benchmarks for analysis of energy efficiency at maximum
load. [12] performs such an analysis to compare the most common
GPGPU benchmark suites. Similarly, [14] analyzes the energy effi-
ciency of multi-GPU systems. Expanding on these analyses, works
such as [21], [15], and [31] are able to predict the power consump-
tion of GPGPU devices. Expanding on these prediction mechanisms,
contributions, such as [3] and [16], optimize energy efficiency of
GPGPUs. Notably, both these works attempt to increase efficiency
by avoiding low load conditions. [3] collects instructions of the same
type to execute them in a way that prevents low load, whereas [16]
coexecutes different computing kernels in order to better utilize the
GPU’s computing hardware at high load. However, we argue that
low load is not completely avoidable, especially in transactional
execution scenarios, and must thus be examined by benchmarking
and testing solutions.

Server energy-efficiency benchmarks measure and rate the
energy efficiency of servers. In general, server-efficiency bench-
marks run a stable load for a period of time and then compute energy
efficiency as a function of the benchmark’s performance and power
consumption measured during the benchmark run. JouleSort [25] is
one of the earliest benchmarks of this type, always running at max-
imum speed. Similarly, TPC explicitly allows for energy measure-
ment during the execution of all of their current benchmarks [24].
These benchmarks are designed for database performance testing
and often are executed in highly distributed systems. In contrast
to JouleSort and the TPC benchmarks, SPECpower_ssj2008 [17],
a benchmark that emulates a transactional business application,
features ten different load levels that scale with the application’s
throughput. This idea is expanded on in the SPEC SERT [19], which
runs multiple different mini-workloads (called worklets) and uses
SPECpower_ssj load level scaling for its CPU [30] and Storage [20]
worklets. Notably, SERT uses a different method of load level scal-
ing for its memory worklets [18], as the standard load level scaling
method is difficult to apply in this context.

Our work in this paper differs from the related work in several
aspects: We differ from existing GPGPU benchmarks and energy-
efficiency work by considering transaction workloads which enable
the investigation of energy efficiency at low load scenarios. With
this, we resemble classical server energy-efficiency benchmarks,
which have not yet addressed GPGPUs. However, the related work
on the memory worklets in the SPEC SERT [18] shows that the
standard load level scaling mechanism is not equally applicable to
all device types. Investigating if and how it can be used for GPGPUs
is one of the major contributions of this paper.

4 GPGPU ENERGY-EFFICIENCY
BENCHMARKING METHODOLOGY

The goal of the GPGPU energy-efficiency benchmarking methodol-
ogy is to run transactional workloads on GPGPU devices in order
to rate their energy efficiency. To this end, we structure the exe-
cution of our GPGPU computing kernels in a way that allows us
to execute the kernel multiple times on the GPU. The transaction
rate is then the number of times the kernel was executed, allowing
for transaction rate-based load level scaling. We must also con-
sider verifiability [28] of the work that is executed on the separate
GPGPU device. The methodology should enable testing of different
device types. However, in practice, vendors use specific implemen-
tation languages and technologies for their accelerator devices. Our
methodology and its implementation must thus allow for the exe-
cution of these different vendor-specific kernel implementations.

4.1 Methodology Building Blocks

Our GPGPU benchmarking methodology is based on the SPEC
Power and Performance Benchmark Methodology [26] and the Chauf-
feur WDK [4] implementation of the methodology. Within this
framework, we place a translation layer that passes work from the
workload transaction within Chauffeur to the GPU. This kernel
harness interface also must be able to handle multiple execution
contexts and User objects. Finally, we must consider the different,
sometimes vendor-specific implementation options for our kernels.

4.1.1 SPEC Chauffeur WDK. The SPEC Chauffeur Worklet De-
velopment Kit (WDK) is a framework designed to enable easy de-
velopment of energy-efficiency workloads to be executed and mea-
sured using the SPEC Power and Performance Benchmark Methodol-
ogy [26]. Chauffeur thus handles instrumentation, result collection
and reporting, timing of transaction executions, and transaction
rate calibration. It is implemented in Java, allowing portability ac-
cross multiple server device types.

4.1.2 GPGPU Kernel. The GPGPU executes code packaged in
so-called kernels. A kernel contains a detachable executable com-
piled before it is passed to the GPU for execution. Kernel code
primarily differs from regular C or C++ in matters regarding pro-
gram flow and memory management. Designed for parallelization,
kernel developers must always consider synchronization. Each ker-
nel instance has a unique Thread-ID and Block-ID, which it can use
as part of its program flow in order to behave differently from other
kernel instances. In our case, we use this feature as part of our FFT
workload (see Section 4.5). A major potential bottleneck in kernel
execution is the communication bus that is used for communication
between CPU and GPU. Though the PCI-Express bus has enough
power to deliver high data transfer rates, the internal memory of
the GPU always is significantly faster. To avoid slowdowns, ex-
cessive communication between the GPU and CPU executed code
should be avoided. This is especially challenging in our context, as
we attempt to execute multiple kernel instances in relatively short
time-spans, requiring communication between the CPU controlling
the experiment run and the GPU performing the work. We par-
tially address this challenge by running multiple parallel execution
contexts on the CPU (and GPU), as described in Section 4.3.

OpenCL. OpenCL is used by GPGPUs and CPUs for parallel
computation and is widely supported on every major accelerator
platform. OpenCL is an open standard maintained by several ma-
jor companies and standardized by the Khronos Group. OpenCL
provides a rich API for memory management and transmissions
and divides the memory into several address spaces: local, global,
constant, and image memory. The memory to be used must be
specified by the workload programmer. The workload in this paper
uses the global, local, and constant memory. An OpenCL kernel
is compiled during run-time, which would allow run-time source
code modification by the surrounding code. For our benchmarking
framework, this means that the surrounding GPGPU benchmarking
code can be independent fully from the actual kernel code, as this
code can be passed to it right before its first execution. This, in turn,
allows for different OpenCL kernel implementations, which might
be better suited for different accelerator devices, but still might all
run within the same framework.

CUDA. CUDA is a vendor-specific kernel implementation lan-
guage developed by NVIDIA. It is a proprietary language used by
NVIDIA and only compatible with its GPUs. However, this tech-
nology has become very popular due to relatively simple usage
and many libraries available for, among other things, deep learning,
FFT, graph search, and physics simulation. CUDA uses a special
compiler, called NVCC, for its kernels. As a result, and in contrast
to OpenCL, CUDA kernels have to be compiled ahead-of-time by
the developer, offering less flexibility in adjusting the code before

Java-Worklet OpenCL framework GPU
P Read kernel file
e
initGPGPU() :
clGetPlatformIDs() N
______________ error|
clGetDevicelDs() e
______________ error
clGetDevicelnfo() m
clCreateContext() X
_____________ context |
clCreateCommandQueue() N
___________ commands |
cICreateProgramWithSource() , :
____________ program |
cIBuildProgram() :
______________ error
clCreateKernel() ¢
______________ kernel |
cCreateBuffer() o
PRETESS—— inputbuffer ||
cICreateBuffer() A\
PO outputbuffer |
[VR i :

Figure 3: Initialization of OpenCL benchmark interval.

execution. However, many of the CUDA libraries, such as the FFT
library used by our workload in Section 4.5, are provided by the
driver and not compiled into the developer’s code. This allows the
driver to optimize the library for any specific device types, which
contrasts with the developer optimizing the code in OpenCL. This
driver-level optimization is challenging for benchmarkers, as they
may potentially lose control over parts of the workload to the hard-
ware vendor.

4.1.3 Kernel-Harness Interface. Every command for the GPGPU
coming from the Chauffeur Worklet has to pass through our kernel
harness interface. In general, this part is an interface between Java
code running within Chauffeur and a native library written in
C++. From a technical perspective, the kernel-harness interface
utilizes the Java Native Interface (JNI) [2]. It converts input data
passed from Chauffeur’s Users into datatypes to be passed to the
GPU. It also must manage device-specific initialization and cleanup
routines. Generally, the initialization and the transaction execution
are generalized to be able to work with all available datatypes.
However, the pre-processing and result-reading methods depend
on the specific data types utilized by the workload. Consequently,
the framework specifies separate pre-processing and result-reading
methods for each supported datatype. This is necessary to avoid
type conflicts during conversion of Java-types to C++-types, and
then to OpenCL/CUDA-types and vice versa.

4.2 Interval Benchmark Execution Flow

We consider the execution of each benchmarking interval (i.e.,
the execution of the benchmark at a certain load level) separately.
For each interval, we reinitialize the execution contexts for all
considered devices at the start of each interval. As a result, an
interval’s benchmark execution flow is composed of the following
steps:

o Initialization: We initialize all kernel execution contexts
and memory segments at the start of each interval.

o Kernel execution: After initialization, the actual bench-
marking work is performed by executing the kernel multiple
times (optionally in parallel) for the pre-measurement, mea-
surement, and post-measurement phases of the interval.

o Cleanup: The execution contexts are reset by removing and
cleaning allocated in-memory objects at the end of each
interval.

4.2.1 Initialization. The initialization takes care of the correct
initialization of the hardware and detection of the target platform.
It usually initializes the GPU, but may also initialize an OpenCL
context for the CPU. After determining the execution platform, and
in case of OpenCL, the harness compiles the loaded OpenCL kernel
code to create the executable kernel and then binds the kernel to the
execution context, which describes the GPU’s execution parameters.
The execution context also uses several buffers that are created to
hold the workload’s data in memory. If any dynamic variables are
used, they have to be stored in a special buffer to be accessible to
the kernel. This includes any point of data to where the GPU is
expected to write. We employ read-only buffers for larger arrays of

GPU

‘ ava-Worklet

‘ OpenCL framework

preprocessGPGPU()

:] cleanup() (if initialized previously) ;
clEnqueueWriteBuffer() &
Sl Eenie d sioves tes o o SLEOL IS
clSetKernelArg()).

oo EFIOC

clSetKernelArg() &
s e e o £ LTOU |

clSetKernelArg())

e mmm o ____Error
clGetKernelWorkGroupInfo() N
P 7 |
; calculate local size .

¢ -
"R _I
4_________§"_"Q"__‘_

processGPGPU() i
clEnqueueNDRangeKernel() ai
e e e e e i I OL
clFinish() i'
clEnqueueReadBuffer() #5

o se e s o e SO

(SIS L

Figure 4: Kernel execution during an OpenCL benchmark
interval.

data (e.g., large datasets for processing) only. Fig. 3 shows the steps
taken during the initialization of a benchmark interval for OpenCL.

4.2.2 Kernel Execution. The execution itself is divided in two
steps to accelerate the overall code execution by performing the
expensive first initialization separately and running only a small
part for re-initialization after each execution cycle. This reinitial-
ization is necessary for the variables and buffers to be filled with
the actual values and can be rerun after each execution without the
need for the entire heavy-weight initialization to run. After data
has been pushed to the GPU memory, the kernel gets enqueued in
the execution queue of the GPU and begins processing the buffers
and variables. After execution, the code pulls the output-buffer
from GPU memory and stores the returned values in the host ma-
chine’s memory. Fig. 4 shows the processing steps during a kernel’s
execution with OpenCL.

4.2.3 Cleanup. The cleanup deconstructs the context of an exe-
cution cycle by releasing all buffers and bindings. As a result, the
GPU has to run a full initialization after cleanup if it is again to be
prepared for execution. Fig. 5 shows the steps performed during
cleanup with OpenCL.

4.3 Further Parallelization

In practice, we need the ability to schedule several transactions
on the GPU devices in a parallel fashion. Running only a single
transaction at a time results in too many downtimes to achieve
high device utilization at full load, even though transactions them-
selves run a parallelized workload. To achieve this, the kernel and
the kernel-harness interface need to be transaction-aware. For this
purpose, they assign a transaction ID and allocate separate memory
spaces to each transaction. This enables transaction-wise initializa-
tion, execution, and cleanup, which is necessary to maintain the
character of a transaction when handling multiple transactions in
parallel.

(9}
s
=

Java-Worklet OpenCL framework

:_\ cleanup()

clReleaseMemObject()

clReleaseMemObject() N

1
clReleaseProgram() ;
clReleaseKernel() ;:

Figure 5: Cleanup after an OpenCL benchmark interval.

4.4 Result Verification

For verification, we create background tasks with low priority
within the benchmark harness. These tasks run on the CPU and
calculate a reference result for the corresponding dataset passed
to the GPU. After calculation of the reference result the difference
between the reference result and the GPU result is calculated and
compared within a margin to compensate for precision errors. To
minimize the impact on the GPU performance measurement the
amount of verification tasks is limited and the results to verify are
picked at random. As only a single failed verification is sufficient
to invalidate the result, there is no need to check every result as
long as the GPU cannot determine which result will be checked.
Calculating the reference result on the harness side enables our
methodology to be easily adopted for other future workload types
or upcoming technologies, as the interfaces used for validation
are mostly generic and independent of GPGPU technology and
workload.

4.5 Workload: FFT

As an initial workload, we implement the FFT (Fast Fourier Trans-
form) algorithm. FFT often is used in signal processing, encryption,
and other application areas to map a discrete time signal to the
frequency spectrum. Due to finite memory and step width, the
Fourier Transform cannot be calculated continuously and has to be
approximated by an algorithm such as Radix-2 or Radix-4. FFT has
the benefit of being data independent between its internal steps
and it is therefore highly parallelizable. In addition, we see a usage
scenario for FFT in which it is run multiple times as part of serving
requests or as part of other transactional workloads, which makes
it a candidate for use in our approach to benchmark transaction
GPGPU work units.

For CUDA, FFT already is implemented in a predefined library [1],
which is used in our implementation to ensure consistent data and
well-optimized code for the best possible performance. However,
using this pre-implemented vendor-specific code runs the risk of
decreasing comparability, as the internal workings of the in-driver
library are unknown and may even perform power management
operations. For this reason, we self-implement our OpenCL-kernel
code. It is an adapted version of [6] with some major differences,
such as the integrated conversion of one-dimensional values to
vectors. As described in [6], using vectors instead of scalar values
results in faster processing. Every FFT algorithm used in our work
uses Radix-2, which enhances comparability of results. In general,
we assume that the OpenCL kernel code features better comparabil-
ity compared to the CUDA version, especially regarding the power
consumption behavior it triggers, as it can run on all platforms and
contains no hidden optimizations.

5 EVALUATION AND ANALYSIS

We evaluate our methodology regarding two major aspects: Repro-
ducibility and power/efficiency scaling. The goal of this evaluation
is to show that our methodology can not only produce reproducible
results, but also help to show different power related behavior of
servers with GPGPU devices. This would show the relevance of
a transaction-based benchmarking approach for GPGPU. In addi-
tion, we perform an analysis on the factors that affect power and

Table 1: SUT specification.

CPU-only | NVIDIA GPU AMD GPU
Model Fujitsu Dell Reference
TX1320 M1 R730 Platform
| Sockets | T 2| T 2]
| CPU | TIntelXeon | Intel Xeon | AMD EPYC |
Model E3-1281 v3 E5-2699 v4 7601
Cores 4 2x22 2x32
Threads 8 88 128
Base Clock | 3.7 GHz GHz 2.2 GHz 2.2 GHz
Turbo/Boost | 4.1 GHz GHz 3.6 GHz 3.2 GHz
| Memory |~ 32GB | 128GB | 1 128 GB |
'GPU | None | NVIDIA Tesla | AMD Radeon |
Model K40m | Instinct MI25
Memory 12 GB GDDR5 | 16 GB HBM2
0S RHEL 6.7 RHEL 7.5 | Ubuntu 18.04

efficiency scaling. In this analysis, we consider two major factors:
1) Transaction rate and 2) Dataset size. The transaction rate is
the number of FFT transactions per second handled by the GPU,
whereas the dataset size is the size of dataset to be analyzed by each
single FFT transaction. We intend to see different types of power
and efficiency scaling when increasing dataset size or transaction
rate and also may see different types of power scaling depending
on the GPU model.

We use three physical machines for our experiments. One ma-
chine is equipped with an NVIDIA Tesla K40m GPU, running CUDA
version 9.2 (Update 1), one with an AMD Radeon Instinct MI25,
utilizing OpenCL version 2.1. and finally, we use one machine to
run CPU-only experiments as a base point of comparison for the
power-scaling analysis. The SUT specifications are shown in Ta-
ble 1. Each system is equipped with a dedicated power meter and
the experiment is controlled by a separate controller machine.

5.1 Impact of CPU on GPGPU Result

First, we analyze the impact of our CPU configuration on the
GPGPU results. This primarily addresses the number of CPU cores
running kernel execution contexts. The goal is to analyze if the
number of contexts placing load on the GPU impacts the GPU’s
performance and power consumption. We run our FFT workload
with a dataset size of 2048.

Table 2 shows the throughput (transaction rate), average power
consumption, and energy efficiency for the 100% load level, mea-
sured using the NVIDIA Tesla K40m GPU. For these measurements,
four CPU contexts feature both the best performance and highest

Table 2: Power and Performance at 100% load depending on
#CPU execution contexts on K40m GPU.

#CPU Contexts | Throughput | Power | Efficiency
2 15177.05s~1 | 3189 W | 47.59 J71
4 15916.62 s~ | 330.5 W | 48.16 J~1
8 15708.20 s~ | 341.7 W | 45.97 J71
44 13872.09 s~ | 5185 W | 26.75 J 71

Table 3: Power and Performance at 25% load depending on
#CPU execution contexts on K40m GPU.

#CPU Contexts | Throughput | Power | Efficiency
2 3865.5 s 2600 W | 14.9 J71
4 3967.2 571 265.1W | 15.0 J71
8 3932.8 57! 2658 W | 14.8 J71
44 3463.1s7! 2623 W | 13.2 71

energy efficiency. However, they do not feature the lowest power
consumption. Running with fewer contexts results in a lower power
consumption and performance. However the decrease in perfor-
mance is greater than the decrease in power, resulting in an overall
diminished energy efficiency.

Increasing the CPU context count from four to eight and be-
yond again results in a decreased performance; however, power
consumption still increases. The performance decrease is very small
when increasing the context count from four to eight results, as
this increase results only in a performance drop of 1.31%. Increas-
ing from four contexts to the total number of physical cores (44)
results in a performance drop of 12.85%. The effect of increasing
the number of contexts has a far greater impact on the power con-
sumption, though. Increasing to eight contexts increases the power
consumption by 3.37%, which is a greater relative increase than
the performance from four to eight contexts. However, increas-
ing the number of contexts to match the number of physical CPU
cores has the greatest effect on power and results in an increase in
power consumption of 56.87%. This significant increase in power
consumption results in an energy-efficiency drop of 44.56%.

These effects can be explained by bus and/or GPU contention.
Performance increases as long as additional CPU contexts are able
to put more load onto the GPU. This comes at an increase in work
performed on the CPU, which, in turn, increases power consump-
tion. Once the bus/GPU is utilized at its maximum capacity, adding
additional CPU contexts still increases the work performed by the
CPU, thus increasing power consumption. However, it does not in-
crease the work performed by the GPU; instead, it adds contention
on both devices, reducing performance a bit. The additional work
performed by the CPU results in a greater CPU load and fewer
idle CPU cores, increasing overall power consumption. As a result,
power can increase significantly, as shown in our experiments.

Table 3 supports this analysis. It shows the throughput, power
consumption, and energy efficiency at the 25% transaction rate.
When running at 25% of maximum load, the bottleneck dissipates.
As a result, power consumption drops to similar levels for all CPU
context counts, with power consumption of 44 contexts being even
slightly lower than with four contexts. Of course, some performance
differences persist as the 25% load level features 25% of the 100%
load level performance by definition. This also results in slightly
lower energy efficiency for the 44 context run.

We confirm our observation by repeating the experiments on
the AMD system with its Radeon accelerator. Table 4 shows per-
formance and power consumption normalized to the power and
performance with a single CPU context. The results are very similar
to those obtained using the NVIDIA GPU, with a small difference.
On the AMD system, performance does not always degrade when

increasing the number of contexts beyond four. Instead, increasing
the number of contexts to 128 leads to the best performing result.
However, as in the NVIDIA case, the power consumption increases
significantly with additional CPU load. Again, the sweet spot seems
to be with four CPU contexts. Running with four contexts increases
performance to 271.9% of the single context performance at a power
consumption of only 107.9% of this base setting.

From these CPU context experiments, we can conclude that
the number of CPU contexts hits a sweet spot with the minimum
number of parallel CPU contexts that are able to fully utilize the
GPU. Increasing the number of contexts beyond this point may
decrease performance by a small amount but will increase power
consumption significantly. This effect can be observed with sig-
nificant impact on CPUs with a high core count, as they have the
greatest potential of overshooting the optimum CPU context set-
ting.

5.2 Reproducibility

Next, we analyze the reproducibility of our methodology. To do so,
we perform repeat measurements on each of our three SUTs. We
analyze the coeflicient of variation (CV) and the relative difference
between the minimum and maximum measured value for both
performance and power. We use measurements on our CPU-only
system as the baseline in order to get an idea about the variation
inherent to our workload.

Table 5 shows the CVs and relative min-max differences for
OpenCL FFT running on our CPU-only system for 20 measurement
re-runs. Package size is set to 64 and parallelization level is set to the
number of logical CPU cores. Performance and power variations are
very low. Performance has a maximum CV of 0.8% and a maximum
relative min-max difference of 3.4%. As a point of comparison: the
SPEC SERT [19] sets its maximum acceptable performance CV at 5%.
Power consumption also varies little. FFT power consumption has
a maximum CV of 1.1% and maximum relative min—-max difference
of 3.2%. This is less than half of the variation observed simply when
keeping the system in an idle state. Overall, FFT seems to feature
low variation running on a CPU.

Expanding on the CPU-only results, we analyze the performance
and power variations when running our methodology and the FFT
workload on GPUs. Table 6 shows the CVs and relative min—max
differences for performance and power consumption on both the
NVIDIA Tesla K40m and the AMD Radeon Instinct MI25 SUTs.
These variations are generally comparable to the ones measured
on the CPU. The NVIDIA system even features significantly lower
performance variations than the CPU. It has a maximum CV of 0.2%,
which also might be due partly to the CUDA FFT implementation.

Table 4: Normalized power and performance at 100% load
depending on # of CPU execution contexts on Radeon GPU.

#CPU Contexts | Norm. Throughput | Norm. Power

1 100% 100%

2 183.5% 101.6%
4 271.9% 107.9%
64 265.5% 130.5%

128 283.1% 214.7%

Table 5: Run-to-run variations for OpenCL FFT running on
CPU only.

Load | Perf. CV | Pwr. CV | Perf. Diff. | Pwr. Diff.
Idle 2.2% 7.4%
25% 0.8% 1.1% 3.3% 3.1%
50% 0.8% 0.8% 3.3% 3.0%
75% 0.8% 0.8% 3.1% 3.2%
100% | 0.8% 0.6% 3.4% 2.5%

The OpenCL implementation features a slightly greater perfor-
mance variation on the AMD system compared to running on the
CPU, but clearly is still below the SERT limit of 5%. Interestingly,
the relationship is the opposite when looking at the power variation.
Variation in power consumption between runs is the lowest for the
OpenCL workload running on the AMD GPU with a maximum CV
of 0.7%, which is even lower than the power variation on the CPU.
In turn, the CUDA workload running on the NVIDIA GPU results
in the greatest power variation recorded in our measurements.

It is also noteworthy that the power and performance varia-
tions change with increasing load level on the GPU systems, but
not on the CPU system. On the AMD system, variations decrease
with increasing load. This is mostly due to the absolute variations
remaining similar over load levels, meaning that the standard devia-
tion remains the same, but average power and performance change.
Of course, these changes in average power or performance with
the same standard deviation result in a lower CV, which describes
the relative deviation. The reverse effect can be observed on the
NVIDIA system, where absolute deviations increase to a bigger
extent than the mean power and performance of each load level.

Concluding, our run-to-run variation tests show that our method-
ology is able to achieve reproducible results on GPGPU accelera-
tors. In general, our GPU methodology achieves a reproducibility
comparable to that achieved by the underlying SPEC Power and Per-
formance Benchmark Methodology [26]. While there are some small
differences in power and performance variation between different
GPGPU devices, these differences are very small and not significant
enough to challenge reproducibility of benchmark results using our
methodology.

Table 6: Run-to-run variations for CUDA/OpenCL FFT run-
ning on NVIDIA and AMD GPUs.

Load | Perf. CV | Pwr. CV | Perf. Diff. | Pwr. Diff.
25% | 0.2% 0.9% 0.5% 2.5%

E|s0% | o02% 1.0% 0.6% 2.8%

§ 75% 0.2% 1.1% 0.5% 3.2%
100% | 0.2% 1.4% 0.5% 4.8%
25% | 4.4% 0.7% 7.9% 1.3%

v 50% | 2.6% 0.7% 5.0% 1.4%

S| 75% | 3.0% 0.3% 5.6% 0.6%
100% | 1.2% 0.6% 2.5% 1.2%

—#—100% Load 75% Load ==¢=50% Load ==¥=25% Load
100%

90%

80%

70%

60%

50%

40%

30%

NORMALIZD PERFORMANCE

20%
10%

0%
64 128 256 512 1024 2048 4096
DATASET SIZE

Figure 6: Performance scaling for OpenCL FFT running on
CPU.

5.3 Power and Efficiency Scaling

Finally, we analyze how power consumption and energy efficiency
scale with increasing load level and dataset size. The goal of this
analysis is to show the relevance of our transaction-based bench-
marking approach for GPGPU. In this part of the evaluation, we
investigate the different types of power and efficiency scaling when
increasing dataset size or transaction rate and how they depend on
the GPU model. As a reference point, we run the OpenCL variant
of our workload on the CPU of our CPU-only system (see Table 1).
Based on this analysis, we compare the power and efficiency scaling
of our GPU models.

In this analysis, we normalize all power and performance results
in order to achieve comparability for the scaling behavior across
device types. We normalize against the 100% load level result of
the smallest dataset size. All other results are represented as the
percentage performance/power/efficiency compared to this baseline
result.

5.3.1 Power and Efficiency Scaling on CPU. First, we investigate
the power and performance scaling for our FFT workload when
running on a CPU using its OpenCL implementation. CPU power
and performance scaling behavior is generally well known [30].
Thus this analysis serves as a reference point for the following GPU
power and energy scaling analyses. We configure FFT to utilize all
logical cores of the SUT in parallel.

Fig. 6 shows the relative performance of the different load levels
and dataset sizes. By definition, performance scales linearly with
the load levels, which is a result of the calibration and load level def-
inition. In addition, performance decreases linearly with increasing
dataset sizes (or rather exponentially with exponentially increas-
ing dataset sizes). Even when considering the throughput of data
packets (meaning transaction rate times dataset size), performance
still decreases linearly, just at a smaller magnitude.

Power consumption also scales with load levels, as shown in
Fig. 7. It shows a difference of 62% between the 25% load level and
the 100% load level with a dataset size of 64. In contrast, power
consumption does not seem to scale significantly with dataset size.
For most sizes, it is almost constant, with only small deviations at a

—f—100% Load 75% Load =>=50% Load =X=—25% Load

120%

100% — g ——8—+——8+—*

o
& so%
B3
o V.
54 — ——
R eo%
<
2) —
o
S 40%

20%

0%

64 128 256 512 1024 2048 4096

DATASET SIZE

Figure 7: Power consumption scaling for OpenCL FFT run-
ning on CPU.

dataset size of 4096. This largest dataset size shows some variation
in power consumption with power at 75% load increasing a bit and
50% load power decreasing. However, the transacation rates with
this large dataset are so low that these observations are not very
indicative of anything specific.

This almost constant power scaling with increasing dataset size
leads to the energy-efficiency scaling observed in Fig. 8, where
energy efficiency, just like the performance, scales linearly with
increasing dataset sizes.

Notably, performance increases if we run FFT on a paralleliza-
tion level equal to the number of physical CPU cores instead of
logical cores. For example, the 100% load level features a mean per-
formance increase of 25.3% when setting the parallelization level to
the number of physical CPU cores. However, all our observations
on power and performance scaling remain the same.

Concluding, the FFT workload’s performance scales linearly with
increasing load levels and dataset sizes, but power consumption
scales only with load levels and does not seem to scale with dataset
size.

~—#—100% Load 75% Load ==>¢=50% Load === 25% Load
100%

90%

80%

70%

60%

50%

40%

NORMALIZD EFFICIENCY

30%
20%
10%

0%
64 128 256 512 1024 2048 4096
DATASET SIZE

Figure 8: Energy efficiency scaling for OpenCL FFT running
on CPU.

CPU (logical cores)
—>—nVidia OpenCL

CPU (phys. cores) =—#—NVIDIA CUDA
—¥—AMD OpenCL

100%

90%

80%

70%

60%

NORMALIZED POWER

50%

40%
100% 75% 50% 25%

LOAD LEVEL

Figure 9: Power consumption scaling over load levels.

5.3.2 Scaling with Transaction Rate. We analyze if power scales
with transaction rate on the GPGPU systems and how this compares
to our baseline CPU system. We use a dataset size of 64, which is the
smallest size measured on our systems. This dataset size performs
best on the CPU, resulting in sufficient power differences between
load levels to enable comparison.

Of course, performance scales linearly with increasing load levels,
as this is the load level definition. However, power consumption
scales differently depending on configuration and device used. Fig. 9
shows the normalized power consumption of the different setups
over the four load levels. It shows that power scales to some degree
for all considered devices. The smallest difference is observed on the
NVIDIA SUT when running the CUDA variant of the FFT workload.
In this case, the 25% load level still consumes 81.4% of the maximum
power consumption. In turn, the biggest difference can be observed
when running FFT on the CPU, with the parallelization level set to
the number of logical cores. In this case, the 25% load level consumes
only 48.08% of the system power consumed at full load.

All of the GPGPU servers feature a lower difference between low
and high load power consumption. We can attribute this to two main
factors: (1) The GPGPU systems are equipped with one additional
device (the accelerator itself), containing a CPU that actually does
not handle the workload. This way, the CPU adds to the static power
consumption of the server system under consideration, decreasing
the relative difference between minimum and maximum power. (2)
GPUs are mostly designed to run at full load, handling graphics or
HPC workloads. In contrast, CPUs are routinely run at middling
loads and have seen significantly more optimization in this regard.
However, even with these factors in mind, the GPGPU systems do
show some significant scaling with load levels.

We also can observe two types of scaling behavior in Fig. 9. FFT’s
power consumption decreases with decreasing load level for both
the OpenCL and the CUDA variant when running on the NVIDIA
SUT. However, at 50% load for CUDA and 75% for OpenCL, power
consumption stops decreasing and instead bottoms out at an almost
constant value. Looking at it from another perspective, variations
in low load don’t seem to change power consumption a lot; instead,
power consumption starts to scale only once a minimum load level
has been achieved. This is different to the power-scaling behavior

Transaction Rate Packages/s =—#&—Watts

120%

100% K % i\‘\A

80%

60%

40%

20%

NORMALIZED PERFORMANCE/POWER

0%
64 128 256 512 1024
DATASET SIZE

Figure 10: Power and performance with dataset size on AMD
GPU with OpenCL FFT.

of the CPU-only and AMD GPGPU systems. Both these systems see
a decrease in power consumption between each of the load levels.

5.3.3 Scaling with Dataset Size. Finally, we analyze how power
consumption and performance scale with increasing dataset size.
We focus this analysis on the 100% load level in order to determine
the best achievable performance and efficiency based on the dataset
configuration. We analyze the transaction rate (throughput), which
is the number of datasets handled per second, the power consump-
tion in watts, and the number of data points (packages) computed
per second. The latter is the throughput multiplied by the dataset
size. The idea behind investigating this metric is that it might give
us an additional insight into the amount of work that actually is
being performed.

Fig. 10 shows how normalized power consumption, transaction
rate, and packages per second scale with increasing dataset size on
the AMD GPU running the OpenCL variant of FFT. It shows that
performance decreases significantly with increasing dataset size.
In this sense, the scaling follows a similar path as observed in our
CPU-only analysis in Section 5.3.1. Transaction rate drops linearly
with increasing dataset size (or exponentially with exponentially
increasing size). Notably, the number of handled data points also
drops, yet it does not drop nearly as quickly as the transaction
rate. This indicates that the performance per additional datapoint
within the dataset drops beyond the work needed simply to handle
this data point. Again, this is similar to the behavior observed on
the CPU (see Fig. 11). However, the packages per second metric
decreases significantly slower on the GPU. At a dataset size of 1024
packages, the AMD GPU still offers 42.9% of its performance at
a dataset size of 64. In contrast, the CPU’s packages per second
drop to 13.2% compared to the dataset size of 64. In addition, the
power consumption of the AMD system decreases alongside with
the performance. This power consumption drop seems somewhat
analogous to the drop in package per second performance, which
may perhaps indicate some sort of idle time due to bus overheads.
These idle times, in turn, are likely a result of unoptimized code in
our OpenCL FFT library. The power consumption of the CPU-only
system seems to support this hypothesis, as it does not decrease

»—Transaction Rate Packages /s =#—Watts

120%

100% ——— A
80%
60%
40%

20%

NORMALIZED PERFORMANCE/POWER

0% TT——
64 128 256 512 1024 2048 4096 8192
DATASET SIZE

Figure 11: Power and performance with dataset size on CPU
with OpenCL FFT.

with additional data. Of course, the CPU does not need to copy
main memory over the PCI-Express bus, as the GPU does.

Fig. 12 shows a different behavior. It shows the power consump-
tion and transaction rate of the NVIDIA GPU system when run-
ning both the OpenCL and CUDA FFT implementations. Again the
OpenCL implementation shows the same performance behavior
observed on the AMD and CPU-only systems. Transaction rate
drops linearly with increasing dataset size and packages per second
drops (not shown in the figure), but to a lesser degree. This does
further support our hypothesis on some optimization issues in the
OpenCL FFT library employed by our workload. The CUDA FFT
implementation, utilizing the cuFFT library [1], features an entirely
different performance scaling behavior. The transaction rate stays
constant when increasing the dataset size from 64 to 128 and then
starts to degrade slowly to only 84.4% of its baseline performance at
a dataset size of 2048. With the transaction rate decreasing so little,
packages per second increases significantly with a larger dataset
size. At a size of 2048, CUDA FFT manages to achieve 2702% of
its baseline performance. Power consumption, however, behaves
very similarly for both the OpenCL and CUDA implementations
on the NVIDIA system. It remains almost constant for both despite
the changes in performance. Absolute differences between power
consumption of the OpenCL and CUDA implementation also are
very small, with OpenCL drawing 2% additional power.

Concluding, our analysis of performance and power scaling with
dataset size analysis shows that this scaling behavior is very device-
specific regarding how power consumption behaves with increasing
dataset size. However, as dataset size is a metric specific to the FFT
workload, workload implementation details account for most of the
performance behavior observed.

5.4 Concluding Remarks

Our evaluation shows that our transactional GPGPU benchmarking
methodology is able to produce consistent and reproducible results
with a maximum coefficient of variation of 1.4% regarding power
consumption and a maximum coefficient of variation of 4.4% regard-
ing performance. Our analysis shows that the methodology can be
used to display scaling behavior in power consumption over load

Transaction Rate (CUDA) =& Watts (CUDA)
Transaction Rate (OpenCL) == Watts (OpenCL)

120%

100% — - v »

80%

60%

40%

20%

NORMALIZED PERFORMANCE/POWER

0%
64 128 256 512 1024 2048
DATASET SIZE

Figure 12: Power and performance with dataset size on
NVIDIA GPU with CUDA and OpenCL FFT.

levels, using our transaction rate-based load level definition. We
also show that the dataset size of our test workload has a significant
impact on performance results, yet this impact seems to be more
workload-specific compared to the general transaction-based load
level scaling.

6 CONCLUSIONS

This paper presents a methodology for measuring and benchmark-
ing the energy efficiency of servers with GPGPUs. The methodology
runs transactional loads at different transaction rates in order to
achieve a power and efficiency scaling characterization of the server
and GPU under test. The methodology also is designed to consider
different vendor-specific workload implementations, transaction
scheduling, kernel parallelization, and GPGPU result verification.

We present a reference workload implementing FFT using the
methodology. The reference workload is implemented with both
OpenCL and CUDA variants. With this workload, we show that
our benchmarking methodology is able to produce consistent and
reproducible results with a maximum coefficient of variation of
1.4% regarding power consumption. We also demonstrate that it is
able to be used to analyze how performance and power scale with
transaction rate-based load levels.

The methodology in this paper is useful for server provision-
ers, developers, and researchers. Provisioners can use it to weigh
different configuration options in order to configure data centers
that include GPGPU systems in a more energy-efficient manner.
Developers, in turn, can use our framework, which implements
the methodology, to test the efficiency of their workloads. Finally,
researchers can use the methodology and the power scaling that
it can test to evaluate novel GPGPU power management, power
prediction, and power saving methods.

For future research, we see a need for additional workloads
within our methodology. We also will require new metrics that
cover the different power-scaling behaviors regarding transaction
rate and dataset sizes.

ACKNOWLEDGMENT

The authors wish to acknowledge current and past members of the
SPECpower Committee and SPEC Research Power Working Group
who have contributed to the design, development, testing, and
overall success of SERT: Sanjay Sharma, Jeremy A. Arnold, Mike
Tricker, Nathan Totura, Greg Darnell, Karl Huppler, Van Smith,
Ashok Emani, Paul Muehr, David Ott, David Reiner, Karin Wulf,
Cathy Sandifer, Jason Glick, and Dianne Rice, as well as the late
Alan Adamson and Larry Gray.

SPEC and the names SERT, SPEC PTDaemon, and SPECpower_ssj
are registered trademarks of the Standard Performance Evaluation
Corporation. Additional product and service names mentioned
herein may be the trademarks of their respective owners.

REFERENCES

[1] 2018. CUDA cufft Toolkit Documentation. http://docs.nvidia.com/cuda/cufft/
index.html. (2018). Last accessed: 10.2018.
2018. Java Native Interface Specification. https://docs.oracle.com/javase/8/docs/
technotes/guides/jni/spec/jniTOC.html. (2018). Last accessed: 10.2018.
Mohammad Abdel-Majeed, Daniel Wong, and Murali Annavaram. 2013. Warped
gates: gating aware scheduling and power gating for GPGPUs. In Proceedings of
the 46th Annual IEEE/ACM International Symposium on Microarchitecture. ACM,
111-122.
[4] Jeremy Arnold. 2013. Chauffeur: A framework for measuring Energy Efficiency of
Servers. Master Thesis. University of Minnesota.
[5] C. Babcock. 2012. NY Times data center indictment misses the big picture.
InformationWeek Cloud.
[6] Eric Bainville. 2011. Bealto FFT. http://www.bealto.com/home.html. (2011). Last
accessed: 10.2018.
[7] L.A.Barroso and U. Holzle. 2007. The Case for Energy-Proportional Computing.
Computer 40, 12 (Dec 2007), 33-37. https://doi.org/10.1109/MC.2007.443
[8] Abhinav Bhatele, Sameer Kumar, Chao Mei, J. C. Phillips, Gengbin Zheng, and
L. V. Kale. 2008. Overcoming scaling challenges in biomolecular simulations
across multiple platforms. In 2008 IEEE International Symposium on Parallel and
Distributed Processing. 1-12. https://doi.org/10.1109/IPDPS.2008.4536317
[9] James Bucek, Klaus-Dieter Lange, and Jéakim v. Kistowski. 2018. SPEC CPU2017:
Next-Generation Compute Benchmark. In Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering (ICPE ’18). ACM, New York,
NY, USA, 41-42. https://doi.org/10.1145/3185768.3185771
[10] M. Burtscher, R. Nasre, and K. Pingali. 2012. A quantitative study of irregular
programs on GPUs. In 2012 IEEE International Symposium on Workload Charac-
terization (ISWC). 141-151. https://doi.org/10.1109/IISWC.2012.6402918
[11] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron.
2009. Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE
International Symposium on Workload Characterization (IISWC). 44-54. https:
//doi.org/10.1109/IISWC.2009.5306797
[12] J. Coplin and M. Burtscher. 2016. Energy, Power, and Performance Charac-
terization of GPGPU Benchmark Programs. In 2016 IEEE International Par-
allel and Distributed Processing Symposium Workshops (IPDPSW). 1190-1199.
https://doi.org/10.1109/IPDPSW.2016.164
[13] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S Meredith, Philip C
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S Vetter. 2010. The scalable
heterogeneous computing (SHOC) benchmark suite. In Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics Processing Units. ACM,
63-74.
Y. Gao, S. Igbal, P. Zhang, and M. Qiu. 2015. Performance and Power Analysis
of High-Density Multi-GPGPU Architectures: A Preliminary Case Study. In
2015 IEEE 17th International Conference on High Performance Computing and
Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety
and Security, and 2015 IEEE 12th International Conference on Embedded Software
and Systems. 66-71. https://doi.org/10.1109/HPCC-CSS-ICESS.2015.68
[15] Sunpyo Hong and Hyesoon Kim. 2010. An Integrated GPU Power and Perfor-
mance Model. In Proceedings of the 37th Annual International Symposium on

2

[3

=

[14

[16

[17

(18

[19

[20

[21

[22

~
&

[24

[25

[26

~
)

(28]

[29]

[31]

Computer Architecture (ISCA ’10). ACM, New York, NY, USA, 280-289. https:
//doi.org/10.1145/1815961.1815998

Qing Jiao, Mian Lu, Huynh Phung Huynh, and Tulika Mitra. 2015. Improving
GPGPU Energy-efficiency Through Concurrent Kernel Execution and DVFS.
In Proceedings of the 13th Annual IEEE/ACM International Symposium on Code
Generation and Optimization (CGO ’15). IEEE Computer Society, Washington,
DC, USA, 1-11. http://dl.acm.org/citation.cfm?id=2738600.2738602

K.-D. Lange. 2009. Identifying Shades of Green: The SPECpower Benchmarks.

Computer 42, 3 (March 2009), 95-97. ht%}s://doi.org/la1109/MC42009.84
K.-D. Lange, Jeremy A. Arnold, Hansfried Block, Nathan Totura, John Beckett, and

Mike G. Tricker. 2013. Further Implementation Aspects of the Server Efficiency
Rating Tool (SERT). In Proceedings of the 4th ACM/SPEC International Conference
on Performance Engineering (ICPE ’13). ACM, New York, NY, USA, 349-360.
https://doi.org/10.1145/2479871.2479926

K.-D. Lange and Michael G. Tricker. 2011. The Design and Development of
the Server Efficiency Rating Tool (SERT). In Proceedings of the 2nd ACM/SPEC
International Conference on Performance Engineering (ICPE °11). ACM, New York,
NY, USA, 145-150. https://doi.org/10.1145/1958746.1958769

Klaus-Dieter Lange, Mike G. Tricker, Jeremy A. Arnold, Hansfried Block, and
Christian Koopmann. 2012. The Implementation of the Server Efficiency Rating
Tool. In Proceedings of the 3rd ACM/SPEC International Conference on Performance
Engineering (ICPE °12). ACM, New York, NY, USA, 133-144. https://doi.org/10.
1145/2188286.2188307

Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung
Kim, Tor M Aamodt, and Vijay Janapa Reddi. 2013. GPUWattch: enabling energy
optimizations in GPGPUs. In ACM SIGARCH Computer Architecture News, Vol. 41.
ACM, 487-498.

Erik Lindahl, Berk Hess, and David van der Spoel. 2001. GROMACS 3.0: a package
for molecular simulation and trajectory analysis. Molecular modeling annual 7, 8
(01 Aug 2001), 306-317. https://doi.org/10.1007/s008940100045

Steve Plimpton, Paul Crozier, and Aidan Thompson. 2007. LAMMPS-large-scale
atomic/molecular massively parallel simulator. Sandia National Laboratories 18
(2007), 43.

Meikel Poess, Raghunath Othayoth Nambiar, Kushagra Vaid, John M Stephens Jr,
Karl Huppler, and Evan Haines. 2010. Energy benchmarks: a detailed analysis. In
Proceedings of the 1st International Conference on Energy-Efficient Computing and
Networking. ACM, 131-140.

Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan, and Christos
Kozyrakis. 2007. JouleSort: A Balanced Energy-efficiency Benchmark. In Pro-
ceedings of the 2007 ACM SIGMOD International Conference on Management of
Data (SIGMOD °07). ACM, New York, NY, USA, 365-376. https://doi.org/10.1145/
1247480.1247522

Standard Performance Evaluation Corporation. 2014. SPEC Power and Perfor-
mance Benchmark Methodology. http://spec.org/power/docs/SPEC-Power_and_
Performance_Methodology.pdf. (December 2014).

John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. 2012. Parboil: A revised
benchmark suite for scientific and commercial throughput computing. Center for
Reliable and High-Performance Computing 127 (2012).

Joéakim von Kistowski, Jeremy A. Arnold, Karl Huppler, Klaus-Dieter Lange,
John L. Henning, and Paul Cao. 2015. How to Build a Benchmark. In Proceedings
of the 6th ACM/SPEC International Conference on Performance Engineering (ICPE
2015) (ICPE ’15). ACM, New York, NY, USA. https:/doi.org/10.1145/2668930.
2688819

Joakim von Kistowski, John Beckett, Klaus-Dieter Lange, Hansfried Block,
Jeremy A. Arnold, and Samuel Kounev. 2015. Energy Efficiency of Hierarchical
Server Load Distribution Strategies. In Proceedings of the IEEE 23nd International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS 2015). IEEE.

Joakim von Kistowski, Hansfried Block, John Beckett, Klaus-Dieter Lange,
Jeremy A. Arnold, and Samuel Kounev. 2015. Analysis of the Influences on
Server Power Consumption and Energy Efficiency for CPU-Intensive Work-
loads. In Proceedings of the 6th ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE 2015) (ICPE ’15). ACM, New York, NY, USA. https:
//doi.org/10.1145/2668930.2688057

G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou. 2015. GPGPU
performance and power estimation using machine learning. In 2015 IEEE 21st
International Symposium on High Performance Computer Architecture (HPCA).
564-576. https://doi.org/10.1109/HPCA.2015.7056063

http://docs.nvidia.com/cuda/cufft/index.html
http://docs.nvidia.com/cuda/cufft/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
http://www.bealto.com/home.html
https://doi.org/10.1109/MC.2007.443
https://doi.org/10.1109/IPDPS.2008.4536317
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1109/IISWC.2012.6402918
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IPDPSW.2016.164
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.68
https://doi.org/10.1145/1815961.1815998
https://doi.org/10.1145/1815961.1815998
http://dl.acm.org/citation.cfm?id=2738600.2738602
https://doi.org/10.1109/MC.2009.84
https://doi.org/10.1145/2479871.2479926
https://doi.org/10.1145/1958746.1958769
https://doi.org/10.1145/2188286.2188307
https://doi.org/10.1145/2188286.2188307
https://doi.org/10.1007/s008940100045
https://doi.org/10.1145/1247480.1247522
https://doi.org/10.1145/1247480.1247522
http://spec.org/power/docs/SPEC-Power_and_Performance_Methodology.pdf
http://spec.org/power/docs/SPEC-Power_and_Performance_Methodology.pdf
https://doi.org/10.1145/2668930.2688819
https://doi.org/10.1145/2668930.2688819
https://doi.org/10.1145/2668930.2688057
https://doi.org/10.1145/2668930.2688057
https://doi.org/10.1109/HPCA.2015.7056063

	Abstract
	1 Introduction
	2 SPEC Power Methodology
	2.1 Device Setup
	2.2 Load Levels
	2.3 Transactions and Users

	3 Related Work
	4 GPGPU Energy-Efficiency Benchmarking Methodology
	4.1 Methodology Building Blocks
	4.2 Interval Benchmark Execution Flow
	4.3 Further Parallelization
	4.4 Result Verification
	4.5 Workload: FFT

	5 Evaluation and Analysis
	5.1 Impact of CPU on GPGPU Result
	5.2 Reproducibility
	5.3 Power and Efficiency Scaling
	5.4 Concluding Remarks

	6 Conclusions
	References

