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Abstract: With the increasing adoption of virtualization and the transition towards Cloud Computing platforms, modern
business information systems are becoming increasingly complex and dynamic. This raises the challenge of
guaranteeing system performance and scalability while at the same time ensuring efficient resource usage. In
this paper, we present a historical perspective on the evolution of model-based performance engineering tech-
niques for business information systems focusing on the major developments over the past several decades that
have shaped the field. We survey the state-of-the-art on performance modeling and management approaches
discussing the ongoing efforts in the community to increasingly bridge the gap between high-level business
services and low level performance models. Finally, we wrap up with an outlook on the emergence of self-
aware systems engineering as a new research area at the intersection of several computer science disciplines.

1 INTRODUCTION

Modern business information systems are expected to
satisfy increasingly stringent performance and scala-
bility requirements. Most generally, the performance
of a system refers to the degree to which the system
meets its objectives for timeliness and the efficiency
with which it achieves this (Smith and Williams,
2002; Kounev, 2008). Timeliness is normally mea-
sured in terms of meeting certain response time and/or
throughput requirements, response time referring to
the time required to respond to a user request (e.g.,
a Web service call or a database transaction), and
throughput referring to the number of requests or
jobs processed per unit of time. Scalability, on the
other hand, is understood as the ability of the sys-
tem to continue to meet its objectives for response
time and throughput as the demand for the services it
provides increases and resources (typically hardware)
are added. Numerous studies, e.g., in the areas of e-
business, manufacturing, telecommunications, health
care and transportation, have shown that a failure to
meet performance requirements can lead to serious fi-
nancial losses, loss of customers and reputation, and
in some cases even to loss of human lives. To avoid

the pitfalls of inadequate Quality-of-Service (QoS), it
is important to analyze the expected performance and
scalability characteristics of systems during all phases
of their life cycle. The methods used to do this are
part of the discipline called Performance Engineer-
ing. Performance Engineering helps to estimate the
level of performance a system can achieve and pro-
vides recommendations to realize the optimal perfor-
mance level. The latter is typically done by means of
performance models (e.g., analytical queueing mod-
els or simulation models) that are used to predict the
performance of the system under the expected work-
load.

However, as systems grow in size and complex-
ity, estimating their performance becomes a more and
more challenging task. Modern business informa-
tion systems based on the Service-Oriented Architec-
ture (SOA) paradigm are often composed of multi-
ple independent services each implementing a spe-
cific business activity. Services are accessed accord-
ing to specified workflows representing business pro-
cesses. Each service is implemented using a set of
software components distributed over physical tiers
as depicted in Figure 1. Three tiers exist: presenta-
tion tier, business logic tier, and data tier. The pre-



sentation tier includes Web servers hosting Web com-
ponents that implement the presentation logic of the
application. The business logic tier normally includes
a cluster of application servers hosting business logic
components that implement the business logic of the
application. Middleware platforms such as Java EE,
Microsoft .NET, or Apache Tomcat are often used in
this tier to simplify application development by lever-
aging some common services typically used in en-
terprise applications. Finally, the data tier includes
database servers and legacy systems that provide data
management services.
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Figure 1: Modern business information system.

The inherent complexity of such architectures
makes it difficult to manage their end-to-end perfor-
mance and scalability. To avoid performance prob-
lems, it is essential that systems are subjected to rigor-
ous performance evaluation during the various stages
of their lifecycle. At every stage, performance eval-
uation is conducted with a specific set of goals and
constraints. The goals can be classified in the follow-
ing categories, some of which partially overlap:

Platform selection: Determine which hardware and
software platforms would provide the best scala-
bility and cost/performance ratio?

Platform validation: Validate a selected combina-
tion of platforms to ensure that taken together they
provide adequate performance and scalability.

Evaluation of design alternatives: Evaluate the rel-
ative performance, scalability and costs of alter-
native system designs and architectures.

Performance prediction: Predict the performance
of the system for a given workload and configu-
ration scenario.

Performance tuning: Analyze the effect of various
deployment settings and tuning parameters on the
system performance and find their optimal values.

Performance optimization: Find the components
with the largest effect on performance and study
the performance gains from optimizing them.

Scalability and bottleneck analysis: Study the per-
formance of the system as the load increases and
more hardware is added. Find which system com-
ponents are most utilized and investigate if they
are potential bottlenecks.

Sizing and capacity planning: Determine how
much hardware resources are required to guaran-
tee certain performance levels.

Run-time performance and power management:
Determine how to vary resource allocations dur-
ing operation in order to ensure that performance
requirements are continuously satisfied while
optimizing power consumption in the face of
frequent variations in service workloads.

Two broad approaches are used in Performance
Engineering for performance evaluation of software
systems: performance measurement and performance
modeling. In the first approach, load testing tools and
benchmarks are used to generate artificial workloads
on the system and to measure its performance. In the
second approach, performance models are built and
then used to analyze the performance and scalability
characteristics of the system.

In this paper, we focus on performance modeling
since it is normally much cheaper than load testing
and has the advantage that it can also be applied in
the early stages of system development before the sys-
tem is available for testing. We present a historical
perspective on the evolution of performance model-
ing techniques for business information systems over
the past several decades, focusing on the major de-
velopments that have shaped the field, such as the in-
creasing integration of software-related aspects into
performance models, the increasing parametrization
of models to foster model reuse, the increasing use of
automated model-to-model transformations to bridge
the gap between models at different levels of abstrac-
tion, and finally the increasing use of models at run-
time for online performance management.

The paper starts with an overview of classical per-
formance modeling approaches which is followed by
an overview of approaches to integrate performance
modeling and prediction techniques into the soft-
ware engineering process. Next, automated model-
to-model transformations from architecture-level per-
formance models to classical stochastic performance
models are surveyed. Finally, the use of models at



run-time for online performance management is dis-
cussed and the paper is wrapped up with some con-
cluding remarks.

2 CLASSICAL PERFORMANCE
MODELING

The performance modeling approach to software per-
formance evaluation is based on using mathemati-
cal or simulation models to predict the system per-
formance under load. A performance model is an
abstract representation of the system that relates the
workload parameters with the system configuration
and captures the main factors that determine the sys-
tem performance (Menascé et al., 1994). A num-
ber of different methods and techniques have been
proposed in the literature for modeling software sys-
tems and predicting their performance under load.
Most of them, however, are based on the same gen-
eral methodology that proceeds through the steps de-
picted in Figure 2 (Menascé et al., 2004; Smith and
Williams, 2002; Kounev, 2006). First, the goals and
objectives of the modeling study are specified. After
this, the system is described in detail in terms of its
hardware and software architecture. Next, the work-
load of the system is characterized and a workload
model is built. The workload model is used as a basis
for building a performance model. Before the model
can be used for performance prediction, it has to be
validated. This is done by comparing performance
metrics predicted by the model with measurements on
the real system obtained in a small testing environ-
ment. If the predicted values do not match the mea-
sured values within an acceptable level of accuracy,
then the model must be refined and/or calibrated. Fi-
nally, the validated performance model is used to pre-
dict the system performance for the deployment con-
figurations and workload scenarios of interest. The
model predictions are analyzed and used to address
the goals set in the beginning of the modeling study.

Performance models have been employed for per-
formance prediction of software systems since the
early seventies. In 1971, Buzen proposed modeling
systems using queueing network models and devel-
oped solution techniques for several important classes
of models. Since then many advances have been made
in improving the model expressiveness and develop-
ing efficient model analysis techniques as well as ac-
curate approximation techniques. A number of mod-
eling techniques utilizing a range of different perfor-
mance models have been proposed including standard
queueing networks, extended and layered queueing
networks, stochastic Petri nets, queueing Petri nets,
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Figure 2: Performance modeling process.

stochastic process algebras, Markov chains, statisti-
cal regression models and simulation models. Per-
formance models can be grouped into two main cate-
gories: simulation models and analytical models. One
of the greatest challenges in building a good model is
to find the right level of abstraction and granularity. A
general rule of thumb is: Make the model as simple
as possible, but not simpler! Including too much detail
might render the model intractable, on the other hand,
making it too simple might render it unrepresentative.

2.1 Simulation Models

Simulation models are software programs that mimic
the behavior of a system as requests arrive and get
processed at the various system resources. Such mod-
els are normally stochastic because they have one or
more random variables as input (e.g., the times be-
tween successive arrivals of requests). The structure
of a simulation program is based on the states of the
simulated system and events that cause the system
state to change. When implemented, simulation pro-
grams count events and record the duration of time
spent in different states. Based on these data, per-
formance metrics of interest (e.g., the average time
a request takes to complete or the average system
throughput) can be estimated at the end of the simula-
tion run. Estimates are provided in the form of confi-
dence intervals. A confidence interval is a range with
a given probability that the estimated performance
metric lies within this range. The main advantage of
simulation models is that they are very general and
can be made as accurate as desired. However, this ac-
curacy comes at the cost of the time taken to develop



and run the models. Usually, many long runs are
required to obtain estimates of needed performance
measures with reasonable confidence levels.

Several approaches to developing a simulation
model exist. The most time-consuming approach
is to use a general purpose programming language
such as C++ or Java, possibly augmented by simu-
lation libraries (e.g., CSIMor SimPack, OMNeT++,
DESMO-J). Another approach is to use a special-
ized simulation language such as GPSS/H, Simscript
II.5, or MODSIM III. Finally, some simulation pack-
ages support graphical languages for defining simu-
lation models (e.g., Arena, Extend, SES/workbench,
QPME). A comprehensive treatment of simulation
techniques can be found in (Law and Kelton, 2000;
Banks et al., 2001).

2.2 Analytical Models

Analytical models are based on mathematical laws
and computational algorithms used to derive perfor-
mance metrics from model parameters. Analytical
models are usually less expensive to build and more
efficient to analyze compared to simulation models.
However, because they are defined at a higher level
of abstraction, they are normally less detailed and ac-
curate. Moreover, for models to be mathematically
tractable, usually many simplifying assumptions need
to be made impairing the model representativeness.
Queueing networks and generalized stochastic Petri
nets are perhaps the two most popular types of mod-
els used in practice.

Queueing networks provide a very powerful
mechanism for modeling hardware contention (con-
tention for CPU time, disk access, and other hard-
ware resources). A number of efficient analysis meth-
ods have been developed for a class of queueing net-
works called product-form queueing networks allow-
ing models of realistic size and complexity to be ana-
lyzed with a minimum overhead (Bolch et al., 2006).
The downside of queueing networks is that they do
not provide direct means to model software con-
tention aspects accurately (contention for processes,
threads, database connections, and other software re-
sources), as well as blocking, simultaneous resource
possession, asynchronous processing, and synchro-
nization aspects. Even though extensions of queueing
networks, such as extended queueing networks (Mac-
Nair, 1985) and layered queueing networks (also
called stochastic rendezvous networks) (Woodside
et al., 1995), provide some support for modeling soft-
ware contention and synchronization aspects, they are
often restrictive and inaccurate.

In contrast to queueing networks, generalized

stochastic Petri net models can easily express soft-
ware contention, simultaneous resource possession,
asynchronous processing, and synchronization as-
pects. Their major disadvantage, however, is that
they do not provide any means for direct represen-
tation of scheduling strategies. The attempts to elim-
inate this disadvantage have led to the emergence of
queueing Petri nets (Bause, 1993), which combine the
modeling power and expressiveness of queueing net-
works and stochastic Petri nets. Queueing Petri nets
enable the integration of hardware and software as-
pects of system behavior in the same model (Kounev
and Buchmann, 2003). A major hurdle to the practi-
cal use of queueing Petri nets, however, is that their
analysis suffers from the state space explosion prob-
lem limiting the size of the models that can be solved.
Currently, the only way to circumvent this problem is
by using simulation for model analysis (Kounev and
Buchmann, 2006).

Details of the various types of analytical models
are beyond the scope of this article. The following
books can be used as reference for additional infor-
mation (Bolch et al., 2006; Trivedi, 2002; Bause and
Kritzinger, 2002). The Proceedings of the ACM SIG-
METRICS Conferences and the Performance Eval-
uation Journal report recent research results in per-
formance modeling and evaluation. Further rele-
vant information can be found in the Proceedings of
the ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE), the Proceedings of the
International Conference on Quantitative Evaluation
of SysTems (QEST), the Proceedings of the Annual
Meeting of the IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), and the
Proceedings of the International Conference on Per-
formance Evaluation Methodologies and Tools (VAL-
UETOOLS).

3 SOFTWARE PERFORMANCE
ENGINEERING

A major hurdle to the adoption of classical perfor-
mance modeling approaches in industry is the fact
that performance models are expensive to build and
require extensive experience and expertise in stochas-
tic modeling which software engineers typically do
not possess. To address this issue, over the last fif-
teen years, a number of approaches have been pro-
posed for integrating performance modeling and pre-
diction techniques into the software engineering pro-
cess. Efforts were initiated with Smith’s seminal
work pioneered under the name of Software Perfor-



mance Engineering (SPE) (Smith, 1990). Since then a
number of languages (i.e., meta-models) for describ-
ing performance-relevant aspects of software archi-
tectures and execution environments have been de-
veloped by the SPE community, the most promi-
nent being the UML SPT profile (UML Profile for
Schedulability, Performance and Time) and its suc-
cessor the UML MARTE profile (UML Profile for
Modeling and Analysis of Real-time and Embedded
Systems). The latter are extensions of UML (Unified
Modeling Language) as the de facto standard model-
ing language for software architectures. Other pro-
posed architecture-level performance meta-models
include SPE-MM (Smith et al., 2005), CSM (Petriu
and Woodside, 2007a) and KLAPER (Grassi et al.,
2007a). The common goal of these efforts is to enable
the automated transformation of architecture-level
performance models into analytical or simulation-
based performance models that can be solved using
classical analysis techniques (see Section 4).

In recent years, with the increasing adoption
of Component-Based Software Engineering (CBSE),
the SPE community has focused on adapting and
extending conventional SPE techniques to support
component-based systems. A number of architecture-
level performance meta-models for component-based
systems have been proposed as surveyed in (Kozi-
olek, 2009). Such meta-models provide means to de-
scribe the performance-relevant aspects of software
components (e.g., internal control flow and resource
demands) while explicitly capturing the influences of
their execution context. The idea is that once com-
ponent models are built they can be reused in multi-
ple applications and execution contexts. The perfor-
mance of a component-based system can be predicted
by means of compositional analysis techniques based
on the performance models of its components. Over
the last five years, research efforts have been targeted
at increasing the level of parametrization of compo-
nent models to capture additional aspects of their ex-
ecution context.

An example of a mature modeling language for
component-based systems is given by the Palladio
Component Model (PCM) (Becker et al., 2009b). In
PCM, the component execution context is parameter-
ized to explicitly capture the influence of the compo-
nent’s connections to other components, its allocated
hardware and software resources, and its usage pro-
file including service input parameters. Model arti-
facts are divided among the developer roles involved
in the CBSE process, i.e., component developers, sys-
tem architects, system deployers and domain experts.

4 MODEL-TO-MODEL
TRANSFORMATIONS

To bridge the gap between architecture-level perfor-
mance models and classical stochastic performance
models, over the past decade the SPE community has
focused on building automated model-to-model trans-
formations which make it possible to exploit existing
model solution techniques from the performance eval-
uation community (Marco and Mirandola, 2006). In
the following, we provide an overview of the most
common transformations available in the literature.

(Marco and Inverardi, 2004) transform UML
models annotated with SPT stereotypes into a mul-
tichain queueing network. UML-ψ, the UML Per-
formance SImulator (Marzolla and Balsamo, 2004),
transforms a UML instance annotated with the SPT
profile to a simulation model. The results from the
analysis of the simulation model are reported back
to the annotated UML instance (Marco and Miran-
dola, 2006). Another approach uses the stochastic
process algebra PEPA as analysis model (Tribastone
and Gilmore, 2008). In this case, only UML activity
diagrams are considered, which are annotated with a
subset of the MARTE profile. A software tool im-
plementing this method is also available. (Bertolino
and Mirandola, 2004) integrate their approach into the
Argo-UML modeling tool, using the RT-UML perfor-
mance annotation profile. An execution graph and
a queueing network serve as the target analysis for-
malisms.

Other approaches use UML, but do not use stan-
dardized performance profile annotations: (Gu and
Petriu, 2002) use XSLT, the eXtensible Stylesheet
Language Transformations, to execute a graph pat-
tern based transformation from a UML instance to
LQNs. Instead of annotating the UML model, it has
to be modeled in a way so that the transformation can
identify the correct patterns in the model. (Bernardi
et al., 2002) consider only UML statecharts and se-
quence diagrams. A transformation written in Java
turns the model into GSPN sub-models that are then
combined into a final GSPN. (Gomaa and Menascé,
2001) use UML with custom XML performance an-
notation. The performance model is not described in
detail, but appears to be based on queueing networks.
(Wu and Woodside, 2004) use UML component mod-
els together with a custom XML component perfor-
mance specification language. LQN solvers are used
for the analysis.

Further approaches exist that are not based on
UML: (Bondarev et al., 2004; Bondarev et al., 2005)
build on the ROBOCOP component model and use
proprietary simulation framework for model analysis.



(Eskenazi et al., 2004) propose a custom control flow
graph model notation and custom simulation frame-
work. (Hissam et al., 2002) employ the COMTEK
component technology, coupled with a proprietary
analysis framework. (Sitaraman et al., 2001) specify
component composition and performance characteris-
tics using a variant of the big-O notation. The runtime
analysis is not discussed in detail.

Several model-to-model transformations have
been developed for the Palladio Component Model
(PCM). Two solvers are based on a transformation to
Layered Queueing Networks (LQNs) (Koziolek and
Reussner, 2008) and a transformation to Stochastic
Regular Expressions (Koziolek, 2008), respectively.
Stochastic Regular Expressions can be solved analyti-
cally with very low overhead, however, they only sup-
port single user scenarios. (Henss, 2010) proposes
a PCM transformation to OMNeT++, focusing on a
realistic network infrastructure closer to the OSI ref-
erence network model. The PCM-Bench tool comes
with the SimuCom simulator (Becker et al., 2009a)
which is based on a model-to-text transformation used
to generate Java code that builds on DESMO-J, a
general-purpose simulation framework. The code is
then compiled on-the-fly and executed. SimuCom is
tailored to support all of the PCM features directly
and covers the whole PCM meta-model.

Finally, a number of intermediate languages (or
kernel languages) for specifying software perfor-
mance information have been proposed in the liter-
ature. The aim of such efforts is to reduce the over-
head for building transformations, i.e., only M + N
instead of M · N transformations have to be devel-
oped for M source and N target meta-models (Marco
and Mirandola, 2006). Some examples of inter-
mediate languages include SPE-MM (Smith et al.,
2005), KLAPER (Kernel LAnguage for PErformance
and Reliability analysis) (Grassi et al., 2007b) and
CSM (Core Scenario Model) (Petriu and Woodside,
2007b).

5 RUN-TIME PERFORMANCE
MANAGEMENT

With the increasing adoption of virtualization and the
transition towards Cloud Computing platforms, mod-
ern business information systems are becoming in-
creasingly complex and dynamic. The increased com-
plexity is caused by the introduction of virtual re-
sources and the resulting gap between logical and
physical resource allocations. The increased dynam-
icity is caused by the complex interactions between
the applications and services sharing the physical in-

frastructure. In a virtualized service-oriented envi-
ronment changes are common during operation, e.g.,
new services and applications can be deployed on-
the-fly, service workflows and business processes can
be modified dynamically, hardware resources can be
added and removed from the system, virtual machines
(VMs) can be migrated between servers, resources al-
located to VMs can be modified to reflect changes in
service workloads and usage profiles. To ensure ad-
equate performance and efficient resource utilization
in such environments, capacity planning needs to be
done on a regular basis during operation. This calls
for online performance prediction mechanisms.
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Figure 3: Online performance prediction scenario.

An example of a scenario where online perfor-
mance prediction is needed is depicted in Figure 3. A
service-oriented system made of four servers hosting
six different services is shown including information
on the average service response times, the response
time service level agreements (SLAs) and the server
utilization. Now assume that due to a change in the
demand for services E and F, the average utilization
of the fourth server has dropped down to 20% over an
extended period of time. To improve the system’s ef-
ficiency, it is considered to switch one of the servers
to stand-by mode after migrating its services to other
servers. Two possible ways to reconfigure the system
are shown. To ensure that reconfiguring the system
would not break the SLAs, the system needs a mech-
anism to predict the effect of the reconfiguration on
the service response times.

Given the variety of changes that occur in modern
service-oriented environments, online performance
prediction techniques must support variations at all
levels of the system including variations in service
workloads and usage profiles, variations in the system
architecture, as well as variations in the deployment
and execution environment (virtualization, middle-
ware, etc). To predict the impact of such variations,



architecture-level performance models are needed at
run-time that explicitly capture the influences of the
system architecture, its configuration, and its work-
load and usage profiles.

While, as discussed in the previous two sections,
many architecture-level performance prediction tech-
niques exist in the literature, most of them suffer from
two significant drawbacks which render them imprac-
tical for use at run-time: i) performance models pro-
vide limited support for reusability and customiza-
tion, ii) performance models are static and maintain-
ing them manually during operation is prohibitively
expensive (Woodside et al., 2007).

While techniques for component-based perfor-
mance engineering have contributed a lot to facilitate
model reusability, there is still much work to be done
on further parameterizing component models before
they can be used for online performance prediction.
In particular, current techniques do not provide means
to model the layers of the component execution en-
vironment explicitly. The performance influences of
the individual layers, the dependencies among them,
as well as the resource allocations at each layer should
be captured as part of the models. This is necessary in
order to be able to predict at run-time how a change in
the execution environment (e.g., modifying resource
allocations at the virtualization layer) would affect the
overall system performance.

As to the second issue indicated above, the heart
of the problem is in the fact that architecture-level
performance models are normally designed for of-
fline use and as such they are decoupled from the
system components they represent. Thus, models do
not capture dynamic aspects of the environment and
therefore they need to be updated manually after ev-
ery change in the system configuration or workload.
Given the frequency of such changes, the amount
of effort involved in maintaining performance mod-
els is prohibitive and therefore in practice such mod-
els are rarely used after deployment. Even though
some techniques have been proposed to automatically
construct stochastic performance models at run-time,
e.g., (Menascé et al., 2007; Mos, 2004), such tech-
niques abstract the system at a very high level without
taking into account its architecture and configuration.

To address the challenges described above, cur-
rent research efforts are focusing on developing on-
line architecture-level performance models designed
specifically for use at run-time. Such models aim at
capturing all information, both static and dynamic,
relevant to predicting the system’s performance on-
the-fly. They are intended to be integrated into the
system components and to be maintained and updated
automatically by the underlying execution platform

(virtualization and middleware) reflecting the evolv-
ing system environment.

Online performance models will make it possible
to answer performance-related queries that arise dur-
ing operation such as: What would be the effect on
the performance of running applications if a new ap-
plication is deployed in the virtualized infrastructure
or an existing application is migrated from one phys-
ical server to another? How much resources need to
be allocated to a newly deployed application to ensure
that SLAs are satisfied? How should the system con-
figuration be adapted to avoid performance issues or
inefficient resource usage arising from changing cus-
tomer workloads?

The ability to answer queries such as the above
provides the basis for implementing techniques
for self-aware performance and resource manage-
ment (Kounev et al., 2010). Such techniques will be
triggered automatically during operation in response
to observed or forecast changes in application work-
loads. The goal will be to proactively adapt the sys-
tem to such changes in order to avoid anticipated QoS
problems or inefficient resource usage. The adapta-
tion will be performed in an autonomic fashion by
considering a set of possible system reconfiguration
scenarios (e.g, changing VM placement and/or re-
source allocations) and exploiting the online perfor-
mance models to predict the effect of such reconfigu-
rations before making a decision.

Self-aware systems engineering is currently
emerging as a new research area at the intersection of
several computer science disciplines including soft-
ware architecture, computer systems modeling, auto-
nomic computing, distributed systems, and more re-
cently, Cloud Computing and Green IT (Descartes
Research Group, 2011; Kounev, 2011). It raises a
number of big challenges that represent emerging hot
topics in the systems engineering community and will
be subject of long-term fundamental research in the
years to come. The resolution of these challenges
promises to revolutionize the field of systems engi-
neering by enabling guaranteed QoS, lower operating
costs and improved energy efficiency.

6 CONCLUDING REMARKS

We presented a historical perspective on the evo-
lution of model-based performance engineering tech-
niques for business information systems, focusing on
the major developments over the past four decades
that have shaped the field, such as the increasing inte-
gration of software-related aspects into performance
models, the increasing parametrization of models to



foster model reuse, the increasing use of automated
model-to-model transformations to bridge the gap be-
tween models at different levels of abstraction, and
finally the increasing use of models at run-time for
online performance management. We surveyed the
state-of-the-art on performance modeling and man-
agement approaches discussing the ongoing efforts
in the community to increasingly bridge the gap be-
tween high-level business services and low level per-
formance models. Finally, we concluded with an out-
look on the emergence of self-aware systems engi-
neering as a new research area at the intersection of
several computer science disciplines.
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