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Recent reports indicate that ICT is currently responsible for 8-10% of EU’s
electricity consumption and up to 4% of its carbon emissions [2, 23]. By 2020,
only in Western Europe, data centers will consume around 100 billion kilowatt
hours each year [15] (the same as the total electricity consumption of the Nether-
lands), making energy a major factor in IT costs. However, according to [3], due
to the growing number of underutilized servers, only 6 - 12% of the energy con-
sumption in data centers nowadays is spent for performing computations.

Industry’s answer to this challenge is cloud computing, promising both re-
ductions in IT costs and improvements in energy efficiency. Cloud computing is
a novel paradigm for providing data center resources as on demand services in
a pay-as-you-go manner. It promises significant cost savings by making it possi-
ble to consolidate workloads and share infrastructure resources among multiple
applications resulting in higher cost- and energy-efficiency [9]. Despite the hype
around it, it is well established that if this new computing model ends up being
widely adopted, it will transform a large part of the IT industry [8, 17].

However, the inability of today’s cloud technologies to provide dependabil-
ity guarantees is a major showstopper for the widespread adoption of the cloud
paradigm, especially for mission-critical applications [8, 9, 16, 1]. The term de-
pendability is understood as a combination of service availability and reliability,
commonly considered as the two major components of dependability [21], in the
presence of variable workloads (e.g., load spikes), security attacks, and opera-
tional failures. Given that an overloaded system appears as unavailable to its
users, and that failures typically occur during overload conditions, a prerequi-
site for providing dependable services is to ensure that the system has sufficient
capacity to handle its dynamic workload [22]. According to [17, 16], concerns of
organizations about service availability is a major obstacle to the adoption of
cloud computing.

Today’s cloud computing platforms generally follow a trigger-based approach
when it comes to enforcing application-level service-level agreements (SLAs),
e.g., concerning availability or responsiveness. Triggers can be defined that fire
in a reactive manner when an observed metric reaches a certain threshold (e.g.,
high server utilization or long service response times) and execute certain pre-
defined reconfiguration actions until given stopping criteria are fulfilled (e.g.,



response times drop). Triggers are typically used to implement elastic resource
provisioning mechanisms. The term elasticity is understood as the degree to
which a system is able to adapt to workload changes by provisioning and de-
provisioning resources in an autonomic manner, such that at each point in time
the available resources match the current demand as closely as possible [6, 26].
Better elasticity leads to higher availability and responsiveness, as well as to
higher resource- and cost-efficiency.

However, application-level metrics, such as availability and responsiveness,
normally exhibit a highly non-linear behavior on system load, and they typically
depend on the behavior of multiple virtual machines (VMs) across several appli-
cation tiers. Thus, for example, if a workload change is observed, the platform
cannot know in advance how much, and at what level of granularity, additional
resources in the various application tiers will be required (e.g., vCores, VMs,
physical machines, network bandwidth), and where and how the newly started
VMs should be deployed and configured to ensure dependability without sac-
rificing efficiency. Moreover, the platform cannot know how fast new resources
should be allocated and for how long they should be reserved. Hence, it is hard
to determine general thresholds of when triggers should be fired, given that the
appropriate triggering points typically depend on the architecture of the hosted
services and their workload profiles, which can change frequently during opera-
tion.

Furthermore, in case of contention at the physical resource layer, the avail-
ability and responsiveness of an individual application may be significantly in-
fluenced by applications running in other co-located virtual machines (VMs)
sharing the physical infrastructure [7]. Thus, to be effective, triggers must also
take into account the interactions between applications and workloads at the
physical resource layer. The complexity of such interactions and the inability
to predict how changes in application workload profiles propagate through the
layers of the system architecture down to the physical resource layer render
conventional trigger-based approaches unable to reliably enforce SLAs in an effi-
cient and proactive fashion (i.e., allocating only as much resources as are actually
needed and reconfiguring proactively before SLA violations have occurred).

As a result of the above described challenges, today’s shared execution envi-
ronments based on first generation cloud technologies rely on “best-effort” mech-
anisms and do not provide dependability guarantees. Nevertheless, although no
guarantees are given, the provided level of dependability is a major distinguish-
ing factor between different service offerings. To make such offerings comparable,
novel metrics and techniques are needed allowing to measure and quantify the
dependability of shared execution environments, e.g., cloud computing platforms
or general virtualized service infrastructures.

In this keynote talk, we first discuss the inherent challenges of providing ser-
vice dependability in shared execution environments in the presence of highly
variable workloads, load spikes, and security attacks. We then present novel met-
rics and techniques for measuring and quantifying service dependability specif-
ically taking into account the dynamics of modern service infrastructures. We



consider both environments where virtualization is used as a basis for enabling
resource sharing, e.g., as in Infrastructure-as-a-Service (IaaS) offerings, as well as
multi-tenant Software-as-a-Service (SaaS) applications, where the whole hard-
ware and software stack (including the application layer) is shared among differ-
ent customers (i.e., tenants). We focus on evaluating three dependability aspects:
i) the ability of the system to provision resources in an elastic manner, i.e., sys-
tem elasticity [6, 5, 26, 25, 24, 4], ii) the ability of the system to isolate different
applications and customers sharing the physical infrastructure in terms of the
performance they observe, i.e., performance isolation [12, 13, 11, 14, 10], and iii)
the ability of the system to deal with attacks exploiting novel attack surfaces
such as virtual machine monitors, i.e., intrusion detection and prevention [18–
20]. We discuss the challenges in measuring and quantifying the mentioned three
dependability properties presenting existing approaches to tackle them. Finally,
we discuss open issues and emerging directions for future work in the area of
dependability benchmarking.
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