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Abstract

The queueing Petri net (QPN) paradigm provides a number of benefits over conventional modeling paradigms
such as queueing networks and generalized stochastic Petri nets. Using queueing Petri nets (QPNs), one can integrate
both hardware and software aspects of system behavior into the same model. This lends itself very well to modeling
distributed component-based systems, such as modern e-business applications. However, currently available tools
and techniques for QPN analysis suffer the state space explosion problem, imposing a limit on the size of the
models that are tractable. In this paper, we present SimQPN—a simulation tool for QPNs that provides an alternative
approach to analyze QPN models, circumventing the state space explosion problem. In doing this, we propose a
methodology for analyzing QPN models by means of discrete event simulation. The methodology shows how to
simulate QPN models and analyze the output data from simulation runs. We validate our approach by applying it to
study several different QPN models, ranging from simple models to models of realistic systems. The performance
of point and interval estimators implemented in SimQPN is subjected to a rigorous experimental analysis.
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1. Introduction

The queueing Petri net (QPN) modeling formalism was introduced in 1993 by Bause[5]. It allows
queues (queueing stations) to be integrated into the places of Petri nets (more specifically colored
generalized stochastic Petri nets) and thus brings the benefits of queueing networks into the world of
Petri nets. In[4] it is shown that QPNs have greater expressive power than queueing networks, extended
queueing networks and stochastic Petri nets. In addition to hardware contention and scheduling strate-
gies, using QPNs one can easily model simultaneous resource possession, synchronization, blocking
and software contention. This enables the integration of both hardware and software aspects of system
behavior into the same model[8,22]. While the above could also be achieved by using layered queueing
networks (LQNs) (or stochastic rendezvous networks)[45,38,29], the latter are defined at a higher-level
of abstraction and are usually less detailed and accurate. Another benefit of QPNs is that, since they
are based on Petri nets, one can exploit a number of efficient techniques from Petri net theory to verify
some important qualitative properties of QPNs, such as ergodicity, boundedness, liveness or existence
of home states. The latter not only help to gain insight into the behavior of QPNs, but are also essential
preconditions for a successful quantitative analysis[5].

In [22], we showed that QPNs lend themselves very well to modeling distributed e-business applications
with software contention and demonstrated how this can be exploited for performance prediction in the
capacity planning process. However, we also showed that modeling a realistic e-business application
using QPNs often leads to a model that is way too large to be analyzable using currently available tools
and techniques. This is the reason why QPNs have hardly been exploited in the past decade and very
few, if any, practical applications have been reported. The problem is that, until now, available tools and
solution techniques for QPN models have all been based on Markov chain analysis, which suffers the
well knownstate space explosion problem and limits the size of the models that can be analyzed.

This paper shows how the above problem can be approached by exploiting discrete event simulation
for model analysis. We present SimQPN—a Java-based simulation tool for QPNs that can be used to
analyze QPN models of realistic size and complexity. While doing this, we propose a methodology for
simulating QPN models and analyzing the output data from simulation runs. SimQPN can be seen as
an implementation of this methodology. We validate our approach by studying several different QPN
models by means of SimQPN. Models of different size and complexity are considered, including models
of realistic e-business applications such as the SPECjAppServer1 set of benchmarks. We evaluate the
quality of data provided by SimQPN, conducting an exhaustive experimental analysis of the variation of
point estimates and coverage of confidence intervals reported.

An alternative approach to simulate QPN models would be to use a general purpose simulation package.
However, this approach has some disadvantages. First, general purpose simulation packages do not provide
means to represent QPN constructs directly. Instead, they require that simulation models are described
using a general purpose simulation language. Mapping a QPN model to a description in the terms of
a general purpose simulation language is a complex, time-consuming and error-prone task. Moreover,
not all simulation languages provide the expressiveness needed to describe complex QPN models. Some
simplifications might be required, which could lead to less accurate results. Another disadvantage is that
general purpose simulators are generally not as fast and efficient as specialized simulators, since they are
usually not optimized for any particular type of models. Being specialized for QPNs, SimQPN simulates

1 SPECjAppServer is a trademark of the Standard Performance Evaluation Corp. (SPEC).
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QPN models directly and has been designed to exploit the knowledge of the structure and behavior of
QPNs to improve the efficiency of the simulation. Therefore, SimQPN is expected to provide much better
performance than a general purpose simulator, both in terms of the speed of simulation and the quality
of output data provided. Last but not least, SimQPN has the advantage that it is extremely light-weight
and being implemented in Java it is platform independent.

The rest of the paper is organized as follows. We start with a brief introduction to queueing Petri
nets in Section2. In Section3, we present SimQPN—our simulation tool for QPNs, and discuss its
features, design and architecture. In parallel to this, we discuss our methodology for simulating QPN
models, based on which SimQPN was developed. We look at the methods for output data analysis
employed, and discuss the specifics of their implementation. Following this, in Section4, we study several
different QPN models using SimQPN and validate the results with respect to correctness and accuracy. We
evaluate the performance of point and interval estimators implemented in SimQPN. Finally, we discuss
our ongoing/future work and present some concluding remarks.

2. Queueing Petri nets

Queueing Petri nets can be seen as a combination of a number of different extensions to conventional
Petri nets along several different dimensions. In this section, we include some basic definitions and briefly
discuss how queueing Petri nets have evolved. A deeper and more detailed treatment of the subject can
be found in[9,5,4]. An ordinaryPetri net (also calledplace-transition net) is a bipartite directed graph
composed of places, drawn as circles, and transitions, drawn as bars. A formal definition is given below
[9]:

Definition 1 (PN). An ordinary Petri net (PN) is a five-tuple PN = (P, T, I−, I+, M0) where

1. P is a finite and non-empty set of places (p1, p2, . . ., p|P|),
2. T is a finite and non-empty set of transitions (t1, t2, . . ., t|T|),
3. P ∩ T =∅,
4. I−, I+: P × T → N0 are called backward and forward incidence functions, respectively,
5. M0: P → N0 is called initial marking.

The incidence functionsI− and I+ specify the interconnections between places and transitions.
If I−(p, t) > 0, an arc leads from placep to transitiont and placep is called aninput place of the transition.
If I+(p, t) > 0, an arc leads from transitiont to placep and placep is called anoutput place of the transition.
The incidence functions assign natural numbers to arcs, which we callweights of the arcs. When each
input place of transitiont contains at least as many tokens as the weight of the arc connecting it tot, the
transition is said to beenabled. An enabled transition mayfire, in which case it destroys tokens from
its input places and creates tokens in its output places. The amounts of tokens destroyed and created are
specified by the arc weights. The initial arrangement of tokens in the net (calledmarking) is given by the
functionM0, which specifies how many tokens are contained in each place.

Different extensions to ordinary Petri nets have been developed in order to increase the modeling
convenience and/or the modeling power.Colored Petri nets (CPNs) introduced by Jensen[19] are one
such extension. The latter allow atype (color) to be attached to a token. A color functionC assigns a set of
colors to each place, specifying the types of tokens that can reside in the place. In addition to introducing
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token colors, CPNs also allow transitions to fire in differentmodes (transition colors). The color function
C assigns a set of modes to each transition and incidence functions are defined on a per mode basis.

A formal definition of a CPN follows[9]:

Definition 2 (CPN). A colored Petri net (CPN) is a six-tuple CPN = (P, T, C, I−, I+, M0) where

1. P is a finite and non-empty set of places (p1, p2, . . ., p|P|),
2. T is a finite and non-empty set of transitions (t1, t2, . . ., t|T|),
3. P ∩ T =∅,
4. C is a color function defined fromP ∪ T into non-empty sets,
5. I− and I+ are the backward and forward incidence functions defined onP × T, such thatI−(p, t),

I+(p, t): C(t) → C(p)MS, ∀(p, t) ∈ P × T,2

6. M0 is a function defined onP describing the initial marking such thatM0(p) ∈ C(p)MS, ∀p ∈ P.

Other extensions to ordinary Petri nets allow temporal (timing) aspects to be integrated into the net
description[9]. In particular,stochastic Petri nets (SPNs) attach an exponentially distributedfiring delay to
each transition, which specifies the time the transition waits after being enabled before it fires.Generalized
stochastic Petri nets (GSPNs) allow two types of transitions to be used: immediate and timed. Once
enabled, immediate transitions fire in zero time. If several immediate transitions are enabled at the same
time, the next transition to fire is chosen based onfiring weights (probabilities) assigned to the transitions.
Timed transitions fire after a random exponentially distributed firing delay as in the case of SPNs. The
firing of immediate transitions always has priority over that of timed transitions. Combining CPNs and
GSPNs leads tocolored generalized stochastic Petri nets (CGSPNs)[9]. While CGSPNs have proven
to be a very powerful modeling formalism, they do not provide any means for direct representation of
queueing disciplines. The attempts to eliminate this disadvantage have led to the emergence of queueing
Petri nets.

The main idea behind the QPN modeling paradigm was to add queueing and timing aspects to the
places of CGSPNs. This is done by allowing queues (service stations) to be integrated into places of
CGSPNs. A place of a CGSPN that has an integrated queue is called aqueueing place and consists of
two components, thequeue and adepository for tokens which have completed their service at the queue.
This is depicted inFig. 1. The behavior of the net is as follows: tokens, when fired into a queueing place
by any of its input transitions are inserted into the queue according to the queue’s scheduling strategy.
Tokens in the queue are not available for output transitions of the place. After completion of its service,
a token is immediately moved to the depository, where it becomes available for output transitions of the
place. This type of queueing place is calledtimed queueing place. In addition to timed queueing places,
QPNs also introduceimmediate queueing places, which allow pure scheduling aspects to be described.
Tokens in immediate queueing places can be viewed as being served immediately. Scheduling in such
places has priority over scheduling/service in timed queueing places and firing of timed transitions. The
rest of the net behaves like a normal CGSPN. An enabled timed transition fires after an exponentially
distributed delay according to a race policy. Enabled immediate transitions fire according to relative firing
frequencies and their firing has priority over that of timed transitions. We now give a formal definition of
a QPN and then present an example of a QPN model.

2 The subscript MS denotes multisets.C(P)MS denotes the set of all finite multisets ofC(p).
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Fig. 1. A queueing place and its shorthand notation.

Definition 3 (QPN). A queueing Petri net (QPN) is an eight-tuple QPN = (P, T, C, I−, I+, M0, Q, W)
where

1. CPN = (P, T, C, I−, I+, M0) is the underlying colored Petri net.
2. Q = (Q̃1, Q̃2, (q1, . . ., q|P|)) where

• Q̃1 ⊆ P is the set of timed queueing places,
• Q̃2 ⊆ P is the set of immediate queueing places,Q̃1 ∩ Q̃2 =∅ and
• qi denotes the description of a queue taking all colors ofC(pi) into consideration ifpi is a queueing

place or equals the keyword ‘null’ ifpi is an ordinary place.
3. W = (W̃1, W̃2, (w1, . . . , w|T |)) where

• W̃1 ⊆ T is the set of timed transitions,
• W̃2 ⊆ T is the set of immediate transitions,T = W̃1 ∪ W̃2, W̃1 ∩ W̃2 =∅ and
• wi ∈ [C(ti) 	→ R

+] such that∀c ∈ C(ti): wi(c) is interpreted as the rate of a negative exponential
distribution specifying the firing delay due to colorc if ti is a timed transition or a weight specifying
the relative firing frequency due to colorc if ti is an immediate transition.

Example 1 (QPN). Fig. 2 shows an example of a QPN model of a central server system with memory
constraints based on[9]. Placep2 represents several terminals, where users start jobs (modeled with
tokens of color ‘o’) after a certain thinking time. These jobs request service at the CPU (represented by
a −/C/1− PS queue, whereC stands for Coxian distribution) and two disk subsystems (represented by
−/C/1− FCFS queues). To enter the system each job has to allocate a certain amount of memory. The
amount of memory needed by each job is assumed to be the same, which is represented by a token of color
‘m’ on placep1. Note that, for readability, token cardinalities have been omitted from the arc weights
in Fig. 2, i.e. symbol o stands for 1’o and symbol m for 1’m. According toDefinition 3, we have the
following:

QPN = (P, T, C, I−, I+, M0, Q, W) where



S. Kounev, A. Buchmann / Performance Evaluation 63 (2006) 364–394 369

Fig. 2. A QPN model of a central server with memory constraints (based on[9]).

• CPN = (P, T, C, I−, I+, M0) is the underlying colored Petri net as depicted inFig. 2,
• Q = (Q̃1, Q̃2, (null, −/C/∞ − IS, −/C/1− PS, null,−/C/1− FCFS,−/C/1− FCFS)),
• Q̃1 ={p2, p3, p5, p6}, Q̃2 =∅,
• W = (W̃1, W̃2, (w1, . . . , w|T |)), whereW̃1 =∅, W̃2 = T and∀c ∈ C(ti): wi(c) := 1, so that all transition

firings are equally likely.

As already mentioned, the main hurdle to the quantitative analysis of QPNs is the fact that most
analysis techniques available are based on Markov chains and are therefore susceptible to the state space
explosion problem. More specifically, as one increases the number of queues and tokens in a QPN, the
size of the state space of the underlying Markov chain grows exponentially and quickly exceeds the
capacity of today’s computers. An attempt to alleviate this problem was the introduction ofhierarchically
combined queueing Petri nets (HQPNs)[6]. The main idea is to allow hierarchical model specification
and then exploit the hierarchical structure for efficient numerical analysis. This type of analysis is termed
structured analysis and it allows models to be solved, which are about an order of magnitude larger than
those analyzable with conventional techniques. However, while this alleviates the problem, it does not
eliminate it, since as shown in[22], models of realistic e-business applications are still too large to be
analyzable using this approach.

To the best of our knowledge, there is currently only one tool available that supports modeling and
analysis using QPNs[32]. This is the HQPN-Tool presented in[7]. The latter supports a number of
structured analysis methods for HQPNs, such as Structured Power, Structured SOR, Structured JOR
among others. These methods provide exact solution of the model’s underlying Markov chain, however,
all of them suffer the state space explosion problem.

3. SimQPN—simulator for queueing Petri nets

In this section, we present SimQPN—our simulator for QPNs, that provides an alternative approach to
analyze QPNs, circumventing the state space explosion problem. We take a detailed look at SimQPN’s
features, design and architecture. In parallel to this, we present our methodology for simulating QPN
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models, based on which SimQPN was developed. The methodology shows how to simulate QPN models
and analyze the output data from simulation runs. We look at the methods for output data analysis
employed, and discuss the specifics of their implementation.

3.1. SimQPN features

SimQPN is a discrete-event simulation (DES) engine specialized for queueing Petri nets. It is im-
plemented 100% in Java to provide maximum portability and platform-independence. It is extremely
light-weight (less than 1 MB) and requires only an installed Java Runtime Environment (JRE).3 SimQPN
simulates QPNs using a sequential algorithm based on the event-scheduling approach for simulation
modeling.

In the first version of SimQPN, the most important features typically used in QPN models have been
implemented. As of the time of writing, QPN models with the following restrictions are supported:

• Scheduling strategies for queues are limited to First-Come-First-Served (FCFS), Processor-Sharing
(PS) and Infinite Server (IS).

• The following service time distributions are supported for FCFS and IS queues: Beta, BreitWigner,
ChiSquare, Gamma, Hyperbolic, Exponential, ExponentialPower, Logarithmic, Normal, StudentT,
Uniform and VonMises. For PS queues, currently only exponential service time distributions are sup-
ported, which makes it easier to handle residual service times. For the next version of SimQPN it is
planned to relax this restriction.

• Empirical distributions are supported in the following way. The user is expected to provide a probability
distribution function (PDF), specified as an array of positive real numbers (histogram). A cumulative
distribution function (CDF) is constructed from the PDF and inverted using a binary search for the
nearest bin boundary and a linear interpolation within the bin (resulting in a constant density within
each bin).

• Timed transitions are currently not supported. However, in most cases, a timed transition can be
approximated by a serial network consisting of an immediate transition, a queueing place and a second
immediate transition.

• Since in practice immediate queueing places are very rarely used, they have been left out from the first
version of SimQPN.

The spectrum of scheduling strategies and service time distributions supported by SimQPN will be
extended. Support for timed transitions and immediate queueing places is also planned and will be
included in a future release.

3.2. Design and architecture

SimQPN has an object-oriented architecture. Every element (e.g. place, transition or token) of the
simulated QPN is internally represented as object. Communication between objects is mostly implemented
through method calls, with exception of some cases, where object data is accessed directly (bypassing
accessor methods) to provide better performance. Although the latter is a deviation from the object-
oriented paradigm, we have made this compromise because it speeds up the simulation significantly.

3 JRE version 1.1 or higher is required.
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Fig. 3. SimQPN’s object model.

Fig. 3 shows the major types of objects (classes) used in SimQPN and the relationships among them.
At the top level is the Simulator class, which contains the main simulation routine. The PlaceStats and
QueueStats objects are used to manage statistics gathered during the simulation. The AggregateStats
object is used to manage statistics gathered from multiple simulation runs.

Fig. 4outlines the main simulation routine which drives each simulation run. As already mentioned,
SimQPN’s internal simulation procedure is based on the event-scheduling approach[23,18]. To explain
what is understood by event here, we need to look at the way the simulated QPN transitions from one
state to another with respect to time. Since only immediate transitions are supported, the only place in the
QPN where time is involved is inside the queues of queueing places. Tokens arriving at the queues wait
until there is a free server available and are then served. A token’s service time distribution determines
how long its service continues. After a token has been served it is moved to the depository of the queueing
place, which may enable some transitions and trigger their firing. This leads to a change in the marking
of the QPN. Once all enabled transitions have fired, the next change of the marking will occur after
another service completion at some queue. In this sense, it is the completion of service that initiates
each change of the marking. Therefore, we defineevent to be a completion of a token’s service at a
queue.

For FCFS queues, a token’s service completion event is scheduled (added to the event list) as soon as
there is a free server available to serve the token. For IS queues, a token’s service completion event is
scheduled immediately upon arrival of the token at the queue. Finally, for PS queues, in contrast to FCFS
and IS queues, service completion events are only scheduled after all enabled transitions have fired. This
is because service rates at PS queues depend on the token population, which may change when transitions
fire. By deferring the scheduling of service completion events until after all enabled transitions have fired,
it is avoided to have to reschedule the events after each change in the token population as transitions fire.
Thus, the knowledge of the behavior of the simulated QPN is exploited to save CPU time and improve
the efficiency of the simulation. A scheduled service completion event at a PS queue might still need to
be rescheduled, however, only in the case where, before the time has come for it to be executed, events
in other queues cause new transitions to be enabled and their firing triggers a change in the queue’s token
population. If this happens, the next service completion event of the PS queue is rescheduled according
to its new token population. Elapsed service times can be safely ignored, since PS queues are assumed
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Fig. 4. SimQPN’s main simulation routine.

to have exponentially distributed service times. The next version of SimQPN is planned to also deal with
the more complicated case of PS queues with non-exponential service time distributions.

Another way in which SimQPN exploits the knowledge of the structure and behavior of QPNs to
improve the efficiency of the simulation is by using an optimized algorithm for keeping track of the
enabling status of transitions. Generally, Petri net simulators need to check for enabled transitions after
each change in the marking caused by a transition firing. The exact way they do this, is one of the major
factors determining the efficiency of the simulation[15]. In [30], it is shown how thelocality principle
of colored Petri nets can be exploited to minimize the overhead of checking for enabled transitions.
The locality principle states that an occurring transition will only affect the marking on immediate
neighbor places, and hence the enabling status of a limited set of neighbor transitions. SimQPN exploits
an adaptation of this principle to QPNs, taking into account that tokens deposited into queueing places
do not become available for output transitions immediately upon arrival and hence cannot affect the
enabling status of the latter. Since checking the enabling status of a transition is a computationally
expensive operation, our goal is to make sure that this is done as seldom as possible, i.e. only when there
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is a real possibility that the status has changed. This translates into the following two cases when the
enabling status of a transition needs to be checked:

(1) After a change in the token population of an ordinary input place of the transition, as a result of firing
of the same or another transition. Three subcases are distinguished:
(a) Some tokens were added. In this case, it is checked fornewly enabled modes by considering

all modes that are currently marked as disabled and that require tokens of the respective colors
added.

(b) Some tokens were removed. In this case, it is checked fornewly disabled modes by considering
all modes that are currently marked as enabled and that require tokens of the respective colors
removed.

(c) Some tokens were added and at the same time others were removed. In this case, both of the
checks above are performed.

(2) After a service completion event at a queueing input place of the transition. The service completion
event results in adding a token to the depository of the queueing place. Therefore, in this case, it is
only checked fornewly enabled modes by considering all modes that are currently marked as disabled
and that require tokens of the respective color added.

SimQPN maintains a global list of currently enabled transitions and for each transition a list of currently
enabled modes. The latter are initialized at the beginning of the simulation by checking the enabling status
of all transitions. As the simulation progresses, a transition’s enabling status is checked only in the above
mentioned cases. This reduces CPU costs and speeds up the simulation substantially.

3.3. Random number generation

SimQPN utilizes theColt open source library for high performance scientific and technical computing
in Java, developed at CERN[14]. In SimQPN, Colt is primarily used for random number generation and,
in particular, its implementation of the Mersenne Twister random number generator is employed[27].
The latter is one of the strongest uniform pseudo-random number generators known, and passes many
stringent statistical tests, including the diehard test of G. Marsaglia and the load test of P. Hellekalek
and S. Wegenkittl. It has an astronomically large period of 219937− 1(=106001) and 623-dimensional
equidistribution with up to 32 bit accuracy. By default, SimQPN uses Mersenne Twister for all of its
random number streams. However, for situations where one is willing to trade off quality for performance,
it offers an alternative medium quality uniform pseudo-random number generator that is a bit faster. In
addition to Mersenne Twister, SimQPN also employs Colt’s random seed generator to ensure that there
is no correlation between seeds used to initialize random number generators.

3.4. Output data analysis

3.4.1. Modes of data collection
SimQPN offers the ability to configure what data exactly to collect during the simulation and what

statistics to provide at the end of the run. This can be specified for each place (ordinary or queueing)
of the QPN. The user can choose one of four modes of data collection. The higher the mode, the more
information is collected and the more statistics are provided. Since collecting data costs CPU time, the
more data is collected, the slower the simulation would run. Therefore, by configuring data collection
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modes, the user can make sure that no time is wasted collecting unnecessary data and, in this way, speed
up the simulation.

Mode 1 considers only token throughput data, i.e. for each queue, place or depository the token arrival
and departure rates are estimated for each color.

Mode 2 adds token population and utilization data, i.e. for each queue, place and depository the
following data is provided on a per-color basis:

• Minimum/maximum number of tokens.
• Average number of tokens.
• Mean color utilization, i.e. the fraction of time that there is a token of the respective color inside the

queue/place/depository.

For queues, in addition to the above, the overall queue utilization is reported (i.e. the fraction of time
that there is a token of any color inside the queue).

Mode 3 adds residence time data, i.e. for each queue, place and depository the following additional
data is provided on a per-color basis:

• Minimum/maximum observed token residence time.
• Mean and standard deviation of observed token residence times.
• Estimated steady state mean token residence time.
• Confidence interval (CI) for the steady state mean token residence time at a user-specified significance

level.

Mode 4 provides all of the above and additionally dumps observed token residence times to files.

3.4.2. Steady state analysis
SimQPN supports two basic methods for estimation of the steady state mean residence times of tokens

inside the queues, places and depositories of the QPN. These are the well-knownmethod of independent
replications (IR) (in its variant referred to asreplication/deletion approach) and the classicalmethod of
non-overlapping batch means (NOBM). We refer the reader to[33,23,2,35]for an introduction to these
methods. Both of them can be used to provide point and interval estimates of the steady state mean token
residence time. In cases where one wants to apply a more sophisticated technique for steady state analysis
(for example ASAP[42,41]), SimQPN can be configured to output observed token residence times to
files (mode 4), which can then be used as input to external analysis tools (for example[13]).

Both the replication/deletion approach and the method of non-overlapping batch means have different
variants[42,33]. Below we discuss some details on the way they were implemented in SimQPN.

3.4.2.1. Elimination of initialization bias. Since we are interested in estimating steady-state parameters
of the simulated queueing process, we need to somehow address the well-knownproblem of the initial
transient [31,33]. Both of the above mentioned methods require that the analyzed sequence of observa-
tions is stationary, and therefore when using them, the effects of transient system behavior need to be
accounted for. A number of different approaches have been proposed in the literature for dealing with
this problem, including heuristic, statistical, graphical and hybrid approaches. For a survey of methods
refer to[26,37,33]. Most methods attempt to estimate the length of the warm-up period and then discard
all data collected during it to eliminate initialization bias. One of the simplest and most popular methods
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is the graphical method of Welch[44,16], which has met some success[26,1]. The latter is appealing
because it is simple, practical and does not make any assumptions about the type of system modeled. For
these reasons, we decided as a start to implement the method of Welch in SimQPN. We have followed
the rules in[23] for choosing the number of replications, their length and the window size. SimQPN
allows the user to configure the first two parameters and then automatically plots the moving averages
for different window sizes. Thus, simulation experiments with SimQPN usually comprise two stages:
stage 1 during which the length of the initial transient is determined, and stage 2 during which the steady-
state behavior of the system is simulated and analyzed. Again, if the user prefers to use another method
for elimination of the initialization bias, this can be achieved by dumping collected data to files (mode 4)
and feeding it into respective analysis tools.

3.4.2.2. Replication/deletion approach. We briefly discuss the way the replication/deletion approach is
implemented in SimQPN. Suppose that we want to estimate the steady state mean residence timeν of
tokens of given color at a given place, queue or depository. As discussed in[2], in the replication/deletion
approach multiple replications of the simulation are made and the average residence times observed are
used to derive steady state estimates. Specifically, suppose thatn replications of the simulation are made,
each of them generatingm residence time observationsYi1, Yi2, . . ., Yim. We deletel observations from the
beginning of each set to eliminate the initialization bias. The number of observations deleted is determined
through the method of Welch as discussed in Section3.4.2.1. Let Xi be given by

Xi =
∑m

j=l+1Yij

m − l
i = 1, 2, . . . , n (1)

and

X̄(n) =
∑n

i=1Xi

n
S2(n) =

∑n
i=1[Xi − X̄(n)]2

n − 1
(2)

Then theXi’s are independent and identically distributed (IID) random variables withE(Xi) ≈ ν and
X̄(n) is an approximately unbiased point estimator forν. According to the central limit theorem[43], if m
is large, theXi’s are going to be approximately normally distributed and therefore the random variable:

tn = [X̄(n) − ν]√
S2(n)

n

will have t distribution with (n − 1) degrees of freedom (df)[17] and an approximate 100(1− �) percent
confidence interval forν is then given by

X̄(n) ± tn−1,1−α/2

√
S2(n)

n
(3)

wheretn−1,1−α/2 is the upper (1− α/2) critical point for thet distribution with (n − 1) df [33,43].

3.4.2.3. Method of non-overlapping batch means. Unlike the replication/deletion approach, the method
of non-overlapping batch means seeks to obtain independent observations from a single simulation run
rather than from multiple replications. Thus, it has the advantage that it must go through the warm-up
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period only once and is therefore less sensitive to bias from the initial transient. Suppose that we make
a simulation run of lengthm and then divide the resulting observationsY1, Y2, . . ., Ym into n batches of
lengthq. Assume thatm = nq and letXi be the sample (or batch) mean of theq observations in theith
batch, i.e.

Xi(q) =
∑(i−1)q+q

j=(i−1)q+1Yj

q
i = 1, 2, . . . , n (4)

The meanν is estimated bȳX(n) = (∑n
i=1Xi(q)

)
/n and it can be shown (see for example[23]) that an

approximate 100(1− α) percent confidence interval forν is given by substitutingXi(q) for Xi in Eqs.(2)
and (3)above.

SimQPN offers two differentstopping criteria for determining how long the simulation should con-
tinue. In the first one, the simulation continues until the QPN has been simulated for a user-specified
amount of model time (fixed-sample-size procedure). In the second one, the length of the simulation is
increased sequentially from one checkpoint to the next, until enough data has been collected to provide
estimates of residence times with user-specified precision (sequential procedure). The precision is defined
as an upper bound for the confidence interval half length. It can be specified either as an absolute value
(absolute precision) or as a percentage relative to the mean residence time (relative precision). The se-
quential approach for controlling the length of the simulation is usually regarded as the only efficient way
for ensuring representativeness of the samples of collected observations[24,16,34]. Therefore, hereafter
we assume that the sequential procedure is used.

The main problem with the method of non-overlapping batch means is to select the batch sizeq, such
that successive batch means are approximately uncorrelated. Different approaches have been proposed
in the literature to address this problem (see for example[11,1,33]). In SimQPN, we start with a user-
configurable initial batch size (by default 200) and then increase it sequentially until the correlation
between successive batch means becomes negligible. Thus, the simulation goes through two stages: the
first sequentially testing for an acceptable batch size and the second sequentially testing for adequate
precision of the residence time estimates (seeFig. 5). The parametersn andp, specifying how often
checkpoints are made, can be configured by the user.

We use thejackknife estimators [36,33]of the autocorrelation coefficients to measure the correlation
between batch means. A jackknife estimatorĴ(k, q) of the autocorrelation coefficient of lagk for the
sequence of batch meansX1(q), X2(q), . . ., Xn(q) of sizeq is calculated as follows:

Ĵ(k, q) = 2r̂(k, q) − r̂′(k, q) + r̂′′(k, q)

2
(5)

where r̂(k, q) is the ordinary estimator of the autocorrelation coefficient of lagk, calculated from the
formula[33]:

r̂(k, q) =
1

n−k

∑n
i=k+1[Xi(q) − X̄(n)][Xi−k(q) − X̄(n)]

1
n

∑n
i=1[Xi(q) − X̄(n)]2 (6)

and r̂′(k, q) and r̂′′(k, q) are calculated like ˆr(k, q), except that ˆr(k, q) is the estimator over alln batch
means, whereas ˆr′(k, q) and r̂′′(k, q) are estimators over the first and the second half of the analyzed
sequence ofn batch means, respectively.
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Fig. 5. SimQPN’s batch means procedure.

We use the algorithm proposed in[33] to determine when to consider the sequence of batch means
for approximately uncorrelated: a given batch size is accepted to yield approximately uncorrelated batch
means if all autocorrelation coefficients of lagk (k = 1, 2,. . ., L; whereL = 0.1n) are statistically negligible
at a given significance levelβk, 0 <βk < 1. To get an acceptable overall significance levelβ we assume
that

β <

L∑
k=1

βk (7)

As recommended in[33], in order to get reasonable estimators of the autocorrelation coefficients, we
apply the above batch means correlation test only after at least 100 batch means have been recorded (i.e.
n >= 100). In fact, by defaultn is set to 200 in SimQPN. Also to ensure approximate normality of the
batch means, the initial batch size (i.e. the minimal batch size) is configured to 200.

For FCFS queues, SimQPN also supportsindirect estimation of the steady state token residence times
according to the variance-reduction technique in[12]. The latter suggests, first estimating delay times
in the waiting areas of the queues, and then adding them to the mean service times to obtain indirect
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estimates of the total residence times with reduced variance. SimQPN allows the user to configure for
each FCFS queue whether direct or indirect estimates should be used (the default is indirect).

4. SimQPN validation and performance analysis

In this section, we analyze several different QPN models by means of SimQPN, and then validate
the results with respect to correctness and accuracy. We follow the guidelines in[3,20,39,24,23]and
consider models of different size and complexity, in each case, examining the simulation output under
a variety of settings for the input parameters. We compare the simulation results with results obtained
using other methods, i.e. analytical techniques, approximation techniques or measurements on the system
modeled. In some cases, we consider QPN models that may be mapped to equivalent queueing network
models which are analytically tractable. The latter enables us to easily validate simulation results by
comparing them against results obtained using analytical techniques applied to the equivalent queueing
network models. This allows us to consider large QPN models that are not analyzable using currently
available QPN analysis techniques, but whose equivalent queueing network models may be analyzed
using conventional techniques.

In addition to validating results for reasonableness, we also study the performance of the point and
interval estimators implemented in SimQPN. We conduct an exhaustive experimental analysis of the
variation of point estimates and coverage of confidence intervals. Before we begin with the presentation
of the results, we briefly discuss the method of coverage analysis we employ.

4.1. Method of coverage analysis used

Let us consider multiple independent replications (runs) of a simulation experiment.Coverage of
confidence interval is defined as the probabilityc that the confidence interval (obtained from a replication)
covers the true valueν of the respective parameter being estimated. As usual, ifn replications of the
experiment have been executed, the coveragec can be estimated by the proportion:

ĉ = s

n
(8)

wheres is the number of replications in which the reported confidence interval contains the true value.
The accuracy with which ˆc estimatesc is usually assessed by the following confidence interval based on
the normal distribution:

ĉ − z1−α/2

√
ĉ(1 − ĉ)

n
, ĉ + z1−α/2

√
ĉ(1 − ĉ)

n


 (9)

wherez1−α/2 is the (1− α/2) quantile of the standard normal distribution. This is based on the fact that,
while the number of confidence intervals containing the true valueν has a binomial distribution with
meannc, (ĉ − c)

√
ĉ(1 − ĉ)/n tends to the standard normal distribution asn → ∞ [17,34].

In [34,28] it is argued that, unless certain rules are adhered to, the above point and interval estimators
for coverage cannot be relied upon to produce reliable results. It is advocated to conduct coverage analysis
sequentially and several rules are formulated for obtaining reliable and statistically accurate results. In
[25] the rules are revised and extended, proposing to use an interval estimator of coverage based on
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theF distribution. We now briefly summarize these rules indicating how they were implemented in our
coverage analysis for SimQPN:

• Rule 1: Coverage should be analyzed sequentially, i.e. analysis of coverage should be stopped when
theabsolute precision of the estimated coverage satisfies a specified level which is sufficiently small.
In our case, we stopped when reaching absolute precision of±0.05.

• Rule 2: An estimate of coverage has to be calculated from a representative sample of data, so the
coverage analysis can start only after a minimum number of“bad” confidence intervals have been
recorded. In our case, we required at least 200 “bad” confidence intervals (as suggested in[25]) to be
recorded before sequential analysis commences.

• Rule 3: Results from simulation runs that are clearly too short should not be taken into account. To
implement this rule, after recording 200 “bad” confidence intervals, we calculated the average run
length and then discarded all runs shorter by more than one standard deviation than the average run
length. As justified in[34,28], this filters out statistical “noise” and removes significant bias in the
results.

• Rule 4: An interval estimator which is based on theF distribution of coverage should be used to ensure
that the sequential analysis of coverage produces realistic estimates. A 100(1− α) lower limit ĉl and
upper limit ĉu of the confidence interval for the true coverage are given by

ĉl = ĉ − ∆1 = nĉ

nĉ + (n − nĉ + 1)f1−α/2(r1, r2)
,

ĉu = ĉ + ∆2 = (nĉ + 1)f1−α/2(r3, r4)

(n − nĉ) + (nĉ + 1)f1−α/2(r3, r4)
(10)

where f1−α/2(r1, r2) and f1−α/2(r3, r4) are the (1− α/2) quantiles of theF distribution with (r1,
r2) and (r3, r4) degrees of freedom,r1 = 2(n − nĉ + 1), r2 = 2nĉ, r3 = 2(nĉ + 1) and r4 = 2(n − nĉ)
[25].

In our analysis of coverage, we consider both the interval estimator in(10)based on theF distribution,
as well as the traditional interval estimator(9) based on the normal distribution.

4.2. QPN model of SPECjAppServer2001’s customer domain

SPECjAppServer2001 is an industry-standard benchmark for measuring the performance and scala-
bility of J2EE technology-based application servers. The SPECjAppServer2001 workload is based on a
large distributed application divided into four domains:customer domain dealing with customer orders
and interactions,manufacturing domain performing “just in time” manufacturing operations,supplier
domain handling supply-chain management andcorporate domain managing all corporate information.
This is a huge application, claimed to be complex enough to represent a real-world e-business system[40].
In [22], we built a QPN model of SPECjAppServer2001’s customer domain, analyzed it using analytical
techniques and validated it against measurements on the real system. We now consider the same model
again, but this time we analyze it through simulation using SimQPN. We then compare results obtained
from the simulation with the analytical solution presented in[22]. The model we consider is depicted in
Fig. 6.

In the following we describe the places of the model:
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Fig. 6. QPN model of SPECjAppServer2001’s customer domain.

• Client: Queueing place with IS scheduling strategy used to represent clients sending requests to the
system. Time spent at the queue of this place corresponds to the client think time, i.e. the service time
of the queue is equal to the average client think time.

• WLS-CPU: Queueing place with PS scheduling strategy used to represent the CPU of aWebLogic
server (WLS)4 hosting the SPECjAppServer2001 J2EE application.

• DBS-CPU: Queueing place with PS scheduling strategy used to represent the CPU of adatabase server
(DBS) used for persisting business data.

• DBS-I/O: Queueing place with FCFS scheduling strategy used to represent the disk subsystem of the
DBS.

• WLS-Thread-Pool: Ordinary place used to represent the thread pool of the WLS. Each token in this
place represents a WLS thread.

• DB-Conn-Pool: Ordinary place used to represent the JDBC connection pool of the WLS. Tokens in
this place represent JDBC connections to the DBS.

• DBS-Process-Pool: Ordinary place used to represent the process pool of the DBS. Tokens in this place
represent database processes.

• DBS-PQ: Ordinary place used to hold incoming requests at the DBS while they wait for a server process
to be allocated to them.

The following types of tokens (token colors) are used in the model:

• Token ‘ri’ represents a request sent by a client for execution of a transaction of classi. For each request
class a separate token color is used (e.g. ‘r1’, ‘ r2’, ‘ r3’, . . .). Tokens of these colors can be contained
only in places Client, WLS-CPU, DBS-PQ, DBS-CPU and DBS-I/O.

• Token ‘t’ represents a WLS thread. Tokens of this color can be contained only in place WLS-Thread-
Pool.

• Token ‘p’ represents a DBS process. Tokens of this color can be contained only in place DBS-Process-
Pool.

4 WebLogic is a trademark of BEA Systems, Inc.
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Table 1
NewOrder request mean service times

Request class WLS-CPU DBS-CPU DBS-I/O
NewOrder 70 ms 53 ms 12 ms

• Token ‘c’ represents a JDBC connection to the DBS. Tokens of this color can be contained only in
place DB-Conn-Pool.

We now take a look at the lifecycle of a client request in our system model. Every request (modeled by
a token of color ‘ri’ for somei) is initially at the queue of place Client where it waits for a user-specified
think time. After the think time elapses, the request moves to the Client depository where it waits for
a WLS thread to be allocated to it before its processing can begin. Once a thread is allocated (modeled
by taking a token of color ‘t’ from place WLS-Thread-Pool), the request moves to the queue of place
WLS-CPU, where it receives service from the CPU of the WLS. It then moves to the depository of the
place and waits for a JDBC connection to be allocated to it. The JDBC connection (modeled by token ‘c’)
is used to connect to the database and make any updates required by the respective transaction. A request
sent to the database server arrives at the place DBS-PQ (DBS Process Queue) where it waits for a server
process (modeled by token ‘p’) to be allocated to it. Once this is done, the request receives service first
at the CPU and then at the disk subsystem of the database server. This completes the processing of the
request, which is then sent back to place Client releasing the held DBS process, JDBC connection and
WLS thread.

The following input parameters need to be supplied before the model can be analyzed:

• Number of requests (i.e. clients) of each request class in the initial marking.
• Service times of request classes at the queues of places WLS-CPU, DBS-CPU and DBS-I/O.
• Average client think time (service time at the queue of place Client).
• Number of WLS threads (tokens ‘t’), JDBC connections (tokens ‘c’) and Oracle5 server processes

(tokens ‘p’) in the initial marking.

In [22], we studied three different scenarios (instances of the model) varying the above parameters.
For lack of space, in this paper we only consider the first one, which is the one with the highest number
of tokens. The conclusions we draw apply equally well to the other two scenarios. We assume that there
are 80 NewOrder clients in the system with average think time of 200 ms, and there are 60 WLS threads,
40 JDBC connections and 30 DBS processes available.

The mean service times of NewOrder requests at the various queues are shown inTable 1. They are
assumed to be exponentially distributed.

Tables 2 and 3report the results from simulating the model using SimQPN. The method of batch
means was used for steady-state analysis and the simulation was stopped as soon as the half widths of all
90% confidence intervals for residence times dropped below 5% of the respective point estimates (relative
precision stopping criterion). The length of the warm-up period (determined through the method of Welch)
was 6× 106 ms (model time) and the total run duration was 9 s (wall clock time) on a machine with a
2 GHz CPU. The results are compared with the exact results from the analytical solution in[22], obtained

5 Oracle is a trademark of Oracle Corporation.
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Table 2
Token population (N) and utilization (U) results for the QPN model of SPECjAppServer2001’s customer domain from a single
simulation run

Place N U

Analytical Simulation Analytical Simulation

ClientQ 2.857 2.864 0.942 0.943
ClientD 17.143 17.136 1.000 1.000
WLS-CPUQ 56.676 56.658 1.000 1.000
DBS-CPUQ 3.116 3.134 0.757 0.761
DBS-I/OQ 0.207 0.208 0.171 0.172
WLS-Thread-Pool 0.000 0.000 0.000 0.000
DB-Conn-Pool 36.676 36.658 1.000 1.000
DBS-Process-Pool 26.676 26.658 1.000 1.000

using thestructured SOR analysis method. For each queue and depository, the estimated steady state
token population (N), utilization (U), throughput (X) and residence time (R) are reported. For residence
times, in addition, 90% confidence intervals are given. We have used subscripts ‘Q’ and ‘D’ to distinguish
between queues and depositories of queueing places.

Tables 2 and 3show the results from a single simulation run. However, as in any simulation, re-
sults vary from run to run. To measure this variation and evaluate the confidence interval coverage,
we made multiple replications of the above simulation run as described in Section4.1. We stopped
as soon as enough data was available in order to provide, for each confidence interval in the simula-
tion results, a 95% confidence interval for the true coverage with absolute half width less than 0.05.
Tables 4 and 5present the results from our analysis. We skip the results for throughput and utilization,
since the analysis showed that their variation was negligible. As discussed in Section4.1, we include
two interval estimates of the true coverage (95% confidence intervals)—the first one based on the nor-
mal distribution and the second one based on theF distribution. As expected, the confidence intervals
based on theF distribution are slightly wider (i.e. more conservative) than the traditional ones based
on the normal distribution. Repeating the above analysis for different variations of the model (with
modified input parameters) led to similar results in terms of the precision of the point and interval
estimates.

Table 3
Throughput (X) and residence time (R) results for the QPN model of SPECjAppServer2001’s customer domain from a single
simulation run

Place X (requests/s) R (ms)

Analytical Simulation Analytical Simulation (90% CI)

ClientQ 14.286 14.309 200.00 200.11 (±00.84)
ClientD 14.286 14.309 1199.97 1197.46 (±05.73)
WLS-CPUQ 14.286 14.309 3967.25 3958.87 (±19.04)
DBS-CPUQ 14.286 14.309 218.15 218.97 (±05.25)
DBS-I/OQ 14.286 14.309 14.48 14.51 (±00.05)
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Table 4
Experimental analysis of residence time variation and coverage of 90% confidence intervals for the QPN model of SPEC-
jAppServer2001’s customer domain from 1430 runs

Place Variation Coverage point/interval (95% CI) estimates

Mean S.D. Pt.Est. Int.Est. (N-dist.) Int.Est. (F-dist.)

ClientQ 199.99 0.44 0.901 0.901± 0.015 [0.885, 0.916]
ClientD 1199.98 3.18 0.902 0.902± 0.015 [0.886, 0.917]
WLS-CPUQ 3967.14 11.30 0.896 0.896± 0.016 [0.879, 0.912]
DBS-CPUQ 218.08 3.50 0.889 0.889± 0.017 [0.871, 0.906]
DBS-I/OQ 14.48 0.03 0.898 0.898± 0.015 [0.881, 0.913]

Table 5
Experimental analysis of residence time variation and coverage of 95% confidence intervals for the QPN model of SPEC-
jAppServer2001’s customer domain from 3820 runs

Place Variation Coverage point/interval (95% CI) estimates

Mean S.D. Pt.Est. Int.Est. (N-dist.) Int.Est. (F-dist.)

ClientQ 199.99 0.58 0.948 0.948± 0.007 [0.941, 0.955]
ClientD 1200.04 4.10 0.947 0.947± 0.007 [0.940, 0.954]
WLS-CPUQ 3967.53 14.67 0.939 0.939± 0.007 [0.931, 0.947]
DBS-CPUQ 218.05 4.60 0.933 0.933± 0.008 [0.925, 0.941]
DBS-I/OQ 14.48 0.03 0.945 0.945± 0.007 [0.937, 0.952]

4.3. Product-form queueing network

The next model we consider is a queueing network model, taken from the examples shipped with the
Performance Evaluation and Prediction SYstem for Queueing NetworkS (PEPSY-QNS) tool[10]. The
example we consider is callede bcmp2 and is shown inFig. 7. It is a closed product-form queueing
network with two request classes. We first translate the queueing network into a QPN and then analyze

Fig. 7. Product-form queueing network.
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Table 6
Mean service times of requests at the queues of the product-form queueing network

Request class CPU Disk1 Disk2 Disk3 Terminals

Class 1 200 1000 500 20000 10000
Class 2 250 1000 500 20000 10000

the latter through simulation using SimQPN. We compare results obtained from the simulation with the
analytical solution provided by PEPSY. Finally, as in the previous case, we analyze the variation of point
estimates and the confidence interval coverage.

The mean service times of requests at the various queues of the model are given inTable 6(all times
are in milliseconds). Service times are exponentially distributed. There are 10 requests of class 1 and
12 of class 2. Mapping the queueing network to an equivalent queueing Petri net is straightforward and
the resulting QPN is shown inFig. 8. Basically, every queue is mapped to a queueing place and request
classes are mapped to token colors. Connected queues in the queueing network have their respective
queueing places connected through transitions in the QPN.

Tables 7 and 8show the results from simulating the product-form queueing network (more precisely
its equivalent QPN) using SimQPN. Again, the method of batch means was used for steady-state analysis
and the simulation was stopped as soon as the half widths of all 90% confidence intervals for residence
times dropped below 5% of the respective point estimates (relative precision stopping criterion). The
length of the warm-up period (determined through the method of Welch) was 16× 106 ms (model time)
and the total run duration was 65 s (wall clock time) on a machine with a 2 GHz CPU. The results are
compared with the exact results from the analytical solution provided by PEPSY. For each queue, the
estimated steady state population (N), throughput (X) and residence time (R) are reported. For residence
times, in addition, 90% confidence intervals are given.

As in the previous case, to evaluate the variation of point estimates and the confidence interval coverage,
we made multiple replications of the above simulation run and applied the coverage analysis method in
Section4.1. The stopping criterion was the same as for the previous model.Tables 9 and 10present the
results from our analysis. Repeating the evaluation for different variations of the model led to similar

Fig. 8. QPN equivalent to the product-form queueing network.
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Table 7
Queue population (N), throughput (X) and residence time (R) results for the product-form queueing network from a single
simulation run

Place N X (requests/s) R (ms)

Analytical Simulation Analytical Simulation Analytical Simulation (90% CI)

Request class 1
CPU 0.592 0.594 1.241 1.243 476.7 477.8 (±001.9)
Disk1 0.510 0.511 0.248 0.249 2055.0 2056.1 (±012.1)
Disk2 0.159 0.160 0.310 0.311 513.6 513.8 (±000.3)
Disk3 2.535 2.535 0.062 0.062 40857.0 40926.5 (±435.3)
Terminals 6.204 6.200 0.620 0.621 10000.0 9985.4 (±018.2)

Request class 2
CPU 0.864 0.866 1.468 1.468 588.7 589.6 (±002.4)
Disk1 0.604 0.603 0.294 0.293 2056.0 2054.2 (±012.5)
Disk2 0.188 0.189 0.367 0.367 513.6 513.6 (±000.3)
Disk3 3.005 3.013 0.073 0.073 40941.0 40947.1 (±417.3)
Terminals 7.339 7.330 0.734 0.734 10000.0 9989.2 (±016.5)

results with no degradation in the precision of the point and interval estimates. InTable 11we present
the results for one such variation, in which the service times of requests at the “Terminals” queue (i.e.
the client think times) were reduced from 10 000 to 5000 ms, leading tooverloading Disk3. As expected,
most affected by this change were the residence times at Disk3, which increased by over 177%. This is
because, at this load, Disk3 is completely saturated (its utilization is over 99%), leading to long waiting
times in the queue. Residence times at the other queues were not as much affected by the change, since
requests have much lower service demands for them (seeTable 6) and in spite of the heavier load, they
were still under 70% utilized (the CPU was about 67% utilized, Disk1 about 60% and Disk2 still less
than 20%). In all cases, the estimated coverage of 90% and 95% confidence intervals did not drop below
88% and 93%, respectively.

4.4. QPN model of SPECjAppServer2002

SPECjAppServer2002 is a J2EE 1.3 port of the SPECjAppServer2001 benchmark[40]. In [21], we
built a queueing network model of SPECjAppServer2002 that spanned the whole benchmark application,

Table 8
Utilization (U) results for the product-form queueing network from a single simulation run

Place U

Analytical Simulation

CPU 0.615 0.616
Disk1 0.542 0.541
Disk2 0.169 0.170
Disk3 0.903 0.904
Terminals 1.000 1.000
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Table 9
Experimental analysis of residence time variation and coverage of 90% confidence intervals for the product-form queueing
network from 2398 runs

Place Variation Coverage point/interval (95% CI) estimates

Mean S.D. Pt.Est. Int.Est. (N-dist.) Int.Est. (F-dist.)

Request class 1
CPU 476.7 1.1 0.888 0.888± 0.012 [0.875, 0.901]
Disk1 2054.4 6.4 0.902 0.902± 0.012 [0.890, 0.914]
Disk2 513.6 0.2 0.903 0.903± 0.012 [0.890, 0.914]
Disk3 40854.1 226.9 0.911 0.911± 0.012 [0.898, 0.923]
Terminals 9999.6 10.1 0.904 0.904± 0.012 [0.891, 0.915]

Request class 2
CPU 588.8 1.3 0.887 0.887± 0.013 [0.873, 0.899]
Disk1 2056.4 6.3 0.909 0.909± 0.011 [0.897, 0.920]
Disk2 513.6 0.2 0.894 0.894± 0.012 [0.881, 0.906]
Disk3 40937.1 226.1 0.907 0.907± 0.012 [0.894, 0.919]
Terminals 10000.3 9.4 0.896 0.896± 0.012 [0.883, 0.908]

i.e. all four domains and not just the customer domain as in[22]. This was a non-product-form model and
we were only able to analyze it using analytical approximation methods (more specifically, we used the
multisum method [10]). However, when increasing the number of customers interacting with the system,
even approximation methods started to fail. We now consider the same model again, but this time we
analyze it through simulation using SimQPN. We compare results obtained from the simulation with the
approximate results presented in[21]. We also consider the cases where approximation methods were
failing, and in these cases, we compare the simulation results with measurements on the real system
modeled.

Table 10
Experimental analysis of residence time variation and coverage of 95% confidence intervals for the product-form queueing
network from 4665 runs

Place Variation Coverage point/interval (95% CI) estimates

Mean S.D. Pt.Est. Int.Est. (N-dist.) Int.Est. (F-dist.)

Request class 1
CPU 476.7 1.2 0.936 0.936± 0.007 [0.928, 0.943]
Disk1 2054.6 6.9 0.947 0.947± 0.006 [0.941, 0.953]
Disk2 513.6 0.2 0.948 0.948± 0.006 [0.941, 0.954]
Disk3 40857.8 240.6 0.950 0.950± 0.006 [0.943, 0.957]
Terminals 10000.1 10.8 0.944 0.944± 0.006 [0.937, 0.951]

Request class 2
CPU 588.7 1.4 0.932 0.932± 0.007 [0.924, 0.939]
Disk1 2056.5 6.7 0.951 0.951± 0.006 [0.945, 0.957]
Disk2 513.6 0.2 0.944 0.944± 0.006 [0.937, 0.951]
Disk3 40942.9 238.6 0.946 0.946± 0.006 [0.939, 0.953]
Terminals 10000.1 9.6 0.957 0.957± 0.005 [0.951, 0.963]
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Table 11
Experimental analysis of residence time variation and coverage of 95% confidence intervals for the product-form queueing
network under heavy load from 4300 runs

Place Variation Coverage point/interval (95% CI) estimates

Mean S.D. Pt.Est. Int.Est. (N-dist.) Int.Est. (F-dist.)

Request class 1
CPU 591.1 3.2 0.933 0.933± 0.007 [0.925, 0.941]
Disk1 2403.1 13.2 0.943 0.943± 0.007 [0.936, 0.950]
Disk2 517.5 0.2 0.953 0.953± 0.006 [0.947, 0.960]
Disk3 72561.5 401.1 0.952 0.952± 0.006 [0.945, 0.958]
Terminals 5000.1 5.3 0.948 0.948± 0.006 [0.941, 0.955]

Request class 2
CPU 726.0 3.9 0.933 0.933± 0.007 [0.925, 0.941]
Disk1 2405.5 13.1 0.946 0.946± 0.007 [0.938, 0.953]
Disk2 517.6 0.2 0.948 0.948± 0.007 [0.940, 0.954]
Disk3 72857.6 398.7 0.950 0.950± 0.007 [0.943, 0.956]
Terminals 4999.9 4.8 0.951 0.951± 0.006 [0.944, 0.958]

Fig. 9. Queueing network model of SPECjAppServer2002.

The queueing network model from[21] is depicted inFig. 9. The system it models, i.e. our SPEC-
jAppServer2002 deployment, is depicted inFig. 10.6 It is a closed model with five request classes:
NewOrder (NO), ChangeOrder (CO), OrderStatus (OS), CustStatus (CS) and WorkOrder (WO). The first
four represent order-entry transactions run in the customer domain. The last one represents work orders
processed at the production lines in the manufacturing domain.

Following is a brief description of the queues used:

• C: “Infinite Server” (IS) queue used to model the client machine which runs the SPECjAppServer driver
and emulates virtual clients sending requests to the system. The service time of order entry requests

6 SuSE is a trademark of SuSE Linux AG and AMD is a trademark of Advanced Micro Devices, Inc.
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Fig. 10. Our SPECjAppServer2002 deployment.

at this queue is equal to the average client think time, while the service time of WorkOrder requests is
equal to the average time a production line waits after processing a work order before starting a new
one. Note that time spent on this queue is not part of the system response time.

• A1, . . ., AN: “Processor Sharing” (PS) queues used to model the CPUs of the WebLogic servers (WLS)
in the cluster.

• B1, B2: “Processor Sharing” (PS) queues used to model the two CPUs of the database server (DBS).
• D: “First-Come-First-Served” (FCFS) queue used to model the disk subsystem of the database server.
• L: “Infinite Server” (IS) queue used to model the virtual production line stations in the manufacturing

domain. Only WorkOrder requests ever visit this queue (for themp1 = 1 andp2 = 0; for the restp1 = 0
andp2 = 1). Their service time at the queue corresponds to the average time spent at the production
line stations during work order processing.

The mean service times of requests at the various queues in the network are shown inTable 12. Service
times are assumed to be exponentially distributed.

The following input parameters need to be supplied before the model can be analyzed:

• Number of WebLogic serversN.
• Number of order entry clients (NewOrder, ChangeOrder, OrderStatus and CustStatus).
• Average think time of order entry clients—Customer Think Time.

Table 12
Mean service times of requests at the queues of the model

Request class Ai for 1≤ i ≤ N (ms) Bj for 1≤ j ≤ 2 (ms) D (ms) L (ms)

NewOrder 12.98 10.64 1.12 –
ChangeOrder 13.64 10.36 1.27 –
OrderStatus 2.64 2.48 0.58 –
CustStatus 2.54 2.08 0.3 –
WorkOrder 24.22 34.14 1.68 1000
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Table 13
Model input parameters for the three scenarios considered in[21]

Parameter Low Moderate Heavy

NewOrder clients 30 50 100
ChangeOrder clients 10 40 50
OrderStatus clients 50 100 150
CustStatus clients 40 70 50
Planned lines 50 100 200
Customer think time (s) 2 2 3
Mfg think time (s) 3 3 5

• Number of planned production lines generating WorkOrder requests.
• Average time production lines wait after processing a work order before starting a new one—

Manufacturing (Mfg) Think Time.

Each set of values for these parameters generates a different instance of the model. In[21], we consid-
ered three scenarios (seeTable 13) representing low, moderate and heavy load, respectively. The number
of WebLogic servers was ranging from 1 to 9. In this paper, we only consider the moderate- and heavy-
load scenarios, since they are the largest and most problematic ones as far as analysis is concerned. Again,
we translate the queueing network into an equivalent QPN by mapping queues to queueing places and
connecting them through transitions. The resulting QPN is shown inFig. 11. Note that, compared to the
QPN in [22], this is a huge QPN (considering token population and colors) and even for the simplest
scenario (low load) trying to analyze it by means of conventional techniques results in explosion of the
underlying state space.

Table 14summarizes the results from 500 simulation runs of the moderate-load scenario with six
WebLogic servers. Each run took approximately 5 min on a machine with a 2 GHz CPU. For every re-
quest class, the mean and standard deviation of observed throughputs (in requests/s) and residence times
at queuesAi, Bj andD (in ms) are reported. The simulation results are compared against the approx-
imate results presented in[21]. The latter were obtained using themultisum analytical approximation
method supported by the PEPSY tool. As we can see, results from the simulation are consistent with the

Fig. 11. QPN model of SPECjAppServer2002.
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Table 14
Residence time (R), throughput (X) and utilization (U) results for scenario 2 with six WebLogic servers from 500 simulation
runs

Metric Ai (WLS-CPU) Bj (DBS-CPU) D (DBS-Disk)

Analytical Simulation S.D. Analytical Simulation S.D. Analytical Simulation S.D.

RNO 17 16.8 0.22 40 39.2 0.73 1 1.3 ≤0.01
RCO 18 17.7 0.24 39 38.1 0.73 1 1.4 ≤0.01
ROS 3 3.4 0.03 9 9.2 0.16 1 0.8 ≤0.01
RCS 3 3.3 0.03 8 7.7 0.13 0 0.4 ≤0.01
RWO 31 31.4 0.42 129 124.9 2.69 2 1.9 ≤0.01

XNO 4.05 4.06 ≤0.01 12.15 12.15 ≤0.01 24.29 24.31 ≤0.01
XCO 3.24 3.24 ≤0.01 9.72 9.72 ≤0.01 19.43 19.45 ≤0.01
XOS 8.28 8.28 ≤0.01 24.83 24.83 ≤0.01 49.67 49.66 ≤0.01
XCS 5.80 5.80 ≤0.01 17.40 17.40 ≤0.01 34.80 34.80 ≤0.01
XWO 4.00 4.01 ≤0.01 12.01 12.03 ≤0.01 24.02 24.05 ≤0.01

U 0.23 0.23 ≤0.01 0.74 0.74 ≤0.01 0.13 0.13 ≤0.01

approximate results and have very low variation. Since the exact values of the estimated parameters are
not known (exact analytical solution of the model is not available), coverage analysis for confidence
intervals does not make sense in this case.

We now repeat the same analysis for the heavy load scenario. The average run duration was 12 min.
Results are summarized inTable 15. For each request class, we consider its total response time and
throughput. Note that byresponse time we mean the total amount of time needed for processing a
request, i.e. the sum of its residence times at queuesAi (WLS-CPU), Bj (DBS-CPU) andD (DBS-
Disk). Unfortunately, available approximation methods fail to provide reliable response time estimates
for models of this size. Therefore, this time the analytical results only include throughput and utilization.

Table 15
Response time (R), throughput (X) and utilization (U) results for scenario 3 with six WebLogic servers from 500 simulation runs

Metric 6 App. servers

Analytical Simulation Measured

RNO – 98 94
RCO – 97 98
ROS – 23 27
RCS – 20 27
RWO – 286 251

XNO 32.22 32.28 32.66
XCO 16.11 16.15 16.19
XOS 49.60 49.62 49.21
XCS 16.55 16.56 16.24
XWO 31.72 31.82 32.08

UWLS-CPU (%) 26.5 26.4 29
UDBS-CPU (%) 86.1 87.7 91
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To validate response time results, we compare them against measurements taken on the real system that the
model represents. Note that the expected deviation here is higher, since the model is only an approximation
of the system, and as discussed in[21], it has some inherent limitations. Nevertheless, we see that results
obtained from the simulation are close to the actual values measured on the system modeled. Repeating
the analysis for the other configurations considered in[21] led to results of similar accuracy.

5. Summary and conclusions

This paper showed how the problem of analyzing large QPN models can be approached by exploiting
discrete event simulation for model analysis. We presented SimQPN—our simulation tool for QPNs,
and discussed its features, design and architecture. In parallel to this, we presented our methodology for
simulating QPN models, based on which SimQPN was developed. The methods for output data analysis
used in SimQPN were presented and the specifics of their implementation were discussed. It was shown
how SimQPN exploits the knowledge of the structure and behavior of QPNs to improve the efficiency
of the simulation. After that, we validated our approach by applying it to study several different QPN
models. In each case, we validated the simulation results by comparing them with results obtained using
other methods, i.e. analytical methods, approximation methods or measurements on the system modeled.
Models of different size and complexity, ranging from simple models to large and complex models of
realistic e-business systems, were considered. Each model was analyzed for different variations of its input
parameters. The variability of output data provided by SimQPN, as well as the coverage of confidence
intervals reported, were subjected to a rigorous experimental analysis. Results showed that data reported
by SimQPN is pretty accurate and stable. Even for residence time, the metric with highest variation, the
standard deviation of point estimates did not exceed 2.5% of the mean value. In all cases the estimated
coverage of confidence intervals was less than 2% below the nominal value (higher than 88% for 90%
confidence intervals and higher than 93% for 95% confidence intervals). In addition to this, SimQPN
proved to be pretty fast in terms of measured CPU running times. A simulation run for the simple models
in Sections4.2 and 4.3on a 2 GHz CPU took less than one minute on average. Even for the much larger
models in Section4.4, CPU running times did not exceed 12 min.

SimQPN provides a portable simulation engine for queueing Petri nets. Being specialized for QPNs, it
is extremely light-weight and fast. It can be used to analyze QPN models of realistic size and complexity,
making it possible to exploit the modeling power and expressiveness of the QPN paradigm to its full
potential as a performance prediction tool. The latter can be taken advantage of in the capacity planning
process for large distributed systems.

6. Ongoing and future work

We are currently developing a Java-based Graphical User Interface Environment (GUI) for modeling
with queueing Petri nets. This will provide a graphical frontend to SimQPN and make model development
and analysis more user-friendly. Furthermore, we are planning to add the following features:

• Support for timed transitions and immediate queueing places.
• Support for load-dependent service demands.
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• Support for deterministic distributions.
• Support for more scheduling strategies.
• Support for hierarchical queueing Petri nets (HQPNs).
• Support for parallel simulation.
• Support for additional methods for determining the length of the initial transient and for output data

analysis.
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