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Abstract: Multi-tenant applications (MTAs) share one application instance among several customers to increase the
efficiency. Due to the tight coupling, customers may influence each other with regards to the performance they
observe. Existing research focuses on methods and concrete algorithms to performance-isolate the tenants.
In this paper, we present conceptual concerns raised when serving a high amount of users. Based on a load
balancing cluster of multiple MTAs, we identified potential positions in an architecture where performance
isolation can be enforced based on request admission control. Our discussion shows that different positions
come along with specific pros and cons that have influence on the ability to performance-isolate tenants.

1 INTRODUCTION

Cloud computing is a model that enables ubiquitous
and convenient on-demand access to computing re-
sources (Armbrust et al., 2009) via the Internet, of-
fered by a central provider. Economies of scale re-
duce costs of such systems. In addition, sharing of
resources increases the overall utilization rate and al-
lows to distribute static overheads among all con-
sumers.

The NIST defines three service models for cloud
computing (Mell and Grance, 2011). Infrastructure
as a Service (IaaS) provides access to hardware re-
sources, usually by levering virtualization. Platform
as a Service (PaaS) provides a complete runtime en-
vironment for applications following a well-defined
programming model. SaaS offers on-demand access
to pre-installed applications used remotely.

Multi-tenancy is used in SaaS offerings to share
one application instance between different tenants, in-
cluding all underneath layers, in order to leverage cost
saving potentials the most. At this, a tenant is defined
as a group of users sharing the same view on an ap-
plication. A view includes the data they access, the
configuration, the user management, particular func-
tionality, and non-functional properties (Krebs et al.,
2012a). Typically, a tenant is one customer such as
a company. This way, multi-tenancy is an approach
to share an application instance between multiple ten-
ants by providing every tenant a dedicated share of
the instance which is isolated from other shares.

1.1 Challenges

Since MTAs share the hardware, operating system,
middleware and application instance, this leads to
potential performance influences of different tenants.
For potential cloud customers, performance problems
are a major obstacle (IBM, 2010) (Bitcurrent, 2011).
Consequently, it is one of the primary goals of cloud
service providers to isolate different customers as
much as possible in terms of performance.

Performance isolation exists if for customers
working within their quotas, the performance is not
affected when aggressive customers exceed their quo-
tas (Krebs et al., 2012b). Relating this definition
to Service Level Agreements (SLAs) means that a
decreased performance for the customers working
within their quotas is acceptable as long as their per-
formance is within their SLA guarantees. Within this
paper we assume SLAs where the quota is defined by
the request rate and the guarantees by the response
time.

In order to fully leverage benefits of multi-
tenancy, the goal is to realize an efficient perfor-
mance isolation which means that a tenant’s perfor-
mance should only be throttled when (1) its quota is
exceeded, and (2) he is responsible for performance
degradation of other tenants. If violating the quota
were the only criteria, free resources would unneces-
sarily be wasted.

Since customers have a divergent willingness to
pay for performance, SaaS providers are furthermore



interested in product diversification and providing dif-
ferent Quality of Service (QoS) levels when sharing
application instances. This is only possible when hav-
ing a mechanism to isolate the performance.

On the IaaS layer mutual performance influences
can be handled by virtualization. However, on the
SaaS layer where different tenants share one single
application instance, the layer discrepancy between
the operating system that handles resource manage-
ment and the application that serves multiple ten-
ants makes performance isolation harder to achieve.
Multi-tenant aware PaaS solutions handle issues re-
lated to multi-tenancy transparent for the application
developer in order to increase the efficiency of the de-
velopment process. However, nowaday’s PaaS solu-
tions do not address the introduced performance is-
sues.

When solving the problem of mutual performance
influences in practice, it has to be considered that
multi-tenant aware applications have to be highly
scalable since typical use cases aim at serving a very
large customer base with a huge number of simul-
taneous connections. Hence, one single application
instance running on a dedicated server may not be
enough and it is likely that more processing power
is needed than a single server can offer.

1.2 Contribution

The introduction of a load balancing cluster where
a load balancer acts as single endpoint to the ten-
ants and forwards incoming requests to one of several
MTA instances, results in the need for an architec-
tural discussion. In addition to the development of al-
gorithms that ensure performance isolation, it is also
necessary to provide solutions that show how they can
be applied in real-world environments. Hence, this
paper identifies two essential conceptual concerns for
performance isolation in multi-tenant systems with
regards to the request distribution in a load balancing
cluster. We defined three positions in an architecture
where performance isolation can be enforced based
on admission control. The discussion of their pros and
cons with respect to the elaborated concerns helps to
apply existing solutions in real-world environments.

The remainder of the paper is structured as fol-
lows. The related work presents an overview of ex-
isting isolation mechanism as well as the the current
architectural discussions, and we outline the missing
points in the ongoing research. Section 3 introduces
the conceptual concerns related to the distribution of
request. Section 4 evaluates various positions to en-
force performance isolation in a load balancing clus-
ter and the last Section concludes the paper.

2 RELATED WORK

The related work is twofold. The first part focuses
on concrete methods and algorithms to isolate tenants
with regards to the performance they observe, and the
second part discusses conceptual issues. Following,
we first give an overview of the first part of related
work.

Li et al. (Li et al., 2008) focus on predicting per-
formance anomalies and identifying aggressive ten-
ants in order to apply an adoption strategy to ensure
isolation. The adoption strategy itself is not addressed
in detail, but it reduces the influence of the aggressive
tenant on the others.

Lin et al. (Lin et al., 2009) regulate response times
in order to provide different QoS for different tenants.
For achieving this, they make use of a regulator which
is based on feedback control theory. The proposed
regulator is composed of two controllers. The first
uses the average response times to apply admission
control and regulate the request rate per tenant, the
second uses the difference in service levels between
tenants to regulate resource allocation through differ-
ent thread priorities.

Wang et al. (Wang et al., 2012) developed a
tenant-based resource demand estimation technique
using Kalman filters. By predicting the current re-
source usage of a tenant, they were able to control the
admission of incoming requests. Based on resource-
related quotas, they achieved performance isolation.

In (Krebs et al., 2012b) four static mechanisms
to realize performance isolation between tenants were
identified and evaluated. Three of them leverage ad-
mission control, and one of them uses thread pool
management mechanisms.

All of the above approaches miss to discuss archi-
tectural issues that become relevant when they have to
be implemented. Furthermore, no solution discusses
scenarios where more than one instance of the appli-
cations is running as a result of horizontal scaling. Af-
ter this overview of concrete methods, subsequently
the second part of related work is presented which ad-
dresses MTAs and isolation on a conceptual level.

Guo et al. (Guo et al., 2007) discuss multiple
isolation aspects relevant for MTAs on a conceptual
level. Concerning performance isolation they pro-
pose Resource Partitioning, Request-based Admis-
sion Control and Resource Reservation as mecha-
nisms to overcome the existing challenges. However,
the paper does not focus on situations with several ap-
plication instances.

Koziolek (Koziolek, 2011) evaluated several ex-
isting MTAs and derived a common architectural
style. This architectural style follows the web ap-



plication pattern with an additional data storage for
tenant-related meta data (e.g., customization) and a
meta data manager. The latter uses the data stored in
the meta data storage to adopt the application to the
tenants’ specific needs once a request arrives at the
system. However, Koziolek’s architectural style does
not support performance isolation.

In (Krebs et al., 2012a) various architectural con-
cerns such as isolation, persistence, or the distribution
of users in a load balancing cluster are presented and
defined. Furthermore, an overview of the mutual in-
fluences of them is presented. The paper defines var-
ious aspects relevant for the following section. How-
ever, it does not discuss in detail the information that
are needed to ensure performance isolation. Further,
the position of a potential admission control in a load-
balanced cluster is not addressed.

3 CONCEPTUAL CONCERNS IN
MULTI-TENANT SYSTEMS

In this section two major conceptual concerns are pre-
sented that are of interest for performance isolation
in the context of a load balancing cluster of multiple
MTA instances.

3.1 Tenant Affinity

The need to horizontal scale out by using multiple
processing nodes (i.e. real servers or virtual ma-
chines) to run application instances of the same ap-
plication leads to different ways to couple tenants and
application instances. For this purpose, the term affin-
ity is used. It describes how requests of a tenant
are bound to an application instance. Various types
of affinity might be introduced because of technical
limitations, or to increase the performance since it is
likely to increases the cache hit rate when the users of
one tenant use the same instance. However, sharing
a tenant’s context among application instances that
are running on different processing nodes requires a
shared database, or the use of synchronization mecha-
nisms. Since this might be inefficient, tenants may be
bound to certain application instances only. In (Krebs
et al., 2012a), four different ways are described of
how such a coupling of tenants and application in-
stances can be realized:

1. Non-affine: Requests from each tenant can be
handled by any application instance.

2. Server-affine: All requests from one tenant must
be handled by the same application instance.

3. Cluster-affine: Requests from one tenant can be
served by a fixed subgroup of all application in-
stances and one application instance is exactly
part of one subgroup.

4. Inter-cluster affine: Same as cluster-affine, but
one application instance can be part of several
subgroups.

3.2 Session Stickiness

Independent of tenant affinity, requests can be state-
ful or stateless. Stateless requests can always be han-
dled by each available application instance. However,
maintaining a user’s temporary state over various re-
quests may be required, especially in enterprise ap-
plications. This is described by the term session. A
session is a sequence of interaction between a tenant’s
user and an application in which information from
previous requests are tracked. For load balancing rea-
sons, it makes sense that requests of one session can
still be handled by different application instances de-
pending on the processing nodes’ load. Hence, when
dealing with stateful requests, it can be distinguished
between two kinds of sessions:
1. Non-sticky sessions are sessions where each sin-

gle request of a tenant’s user can be handled by
all available (depending on the tenant affinity) ap-
plication instances. Single requests are not stuck
to a certain server.

2. Sticky sessions are sessions where the first request
and following requests of a tenant’s user within a
session have to be handled by the same applica-
tion instance.
When using non-sticky sessions, the session con-

text must be shared among relevant application in-
stances. This results in an additional overhead. Con-
sequently, it might be beneficial to use sticky sessions
to avoid sharing of session information.

4 TOWARDS PERFORMANCE
ISOLATION

In this section two aspects of performance isolation in
a load balancing cluster of multiple instances are dis-
cussed. First, the information availability at different
positions of the requests processing flow, and second,
the consequences of tenant and session affinity.

4.1 Possible Positions

An intermediary component such as a proxy will get
different information at different positions in the pro-



cess flow of a request. In Figure 1, three possible
positions to enforce performance isolation based on
request admission control are depicted.
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Figure 1: Positions to enforce performance isolation.

In front of the load balancer (Position 1) an in-
termediary has access to requests from all tenants, it
can determine the response times and also whether a
tenant is within its quota. The latter is relevant since
performance isolation is based on the overall amount
of requests from a tenant. However, it is not know
which request is executed by which application in-
stance since this is decided by the load balancer. The
independence of the request distribution is a moti-
vation for this position since it can allow for easier
admission decisions. When fine-grained information
about a processing nodes’s internal state should be
used by the isolation algorithm (e.g., resource utiliza-
tion), access to this data is only possible with a no-
table communication overhead.

Directly after or included in the load balancer
(Position 2), the information available is a superset
of the information available at Position 1. In addition
to the access to all requests and their response times,
at this position, access to their distribution is given
as well. It is known which application instance is re-
sponsible for which request and the overall amount
of requests from each tenant is known as well. Again,
the use of fine-grained information about a processing
nodes’s state comes along with a notable communica-
tion overhead.

In front of the application (Position 3) an inter-
mediary has no information about other processing
nodes, such as the number of requests they processed
for a given tenant or their utilization. However, in-
formation about response times of the respective pro-
cessing node are available. Compared to the other po-
sitions, fine-grained access to a processing node’s in-
ternal state is possible with significantly less overhead
since the component can be placed directly on the re-
spective processing node. Further, no global knowl-

edge of the other instances exists. If the information
of all intermediaries is shared, this position would of-
fer the same information as Position 2.

4.2 Comparison of Different Positions

In this section, the suitability of performance isolation
at the three introduced positions is discussed with re-
spect to tenant and session affinity. It is shown that the
kind of tenant affinity and support of sticky sessions
is a major decision for horizontal scalable MTAs. Be-
sides load balancing, synchronization of data and sup-
port for session migration, it has big impact on perfor-
mance isolation.

We assume that requests from each tenant are al-
ways homogeneously distributed over all available
application instances if possible. Hence, accumula-
tions of requests from a tenant to a single applica-
tion instance are avoided and a clear separation of
server-affinity and the other cases of affinity is given.
From an information-centric point of view, it has to be
noted that the required information for performance
isolation and QoS differentiation is the same. When-
ever it is possible to performance isolate tenants, it is
also possible to give precedence to certain tenants by
adding weighting factors when isolating them.

4.2.1 In Front of Load Balancer

Server-affine: In this scenario, performance isolation
is not possible. An increase in response times and re-
quest rates can be measured. However, it can not be
determined which request will be processed at which
application instance since this information is main-
tained in the load balancer. Although it is known that
requests from a tenant are always served by the same
instance, the tenants that influence each other’s per-
formance by being bound to the same instance are not
known. This makes it impossible to efficiently sepa-
rate tenants. Sticky sessions do not in influence this
since they do not answer which tenants are influenc-
ing each other.

Non-affine: In this scenario, it depends on the ses-
sion stickiness whether performance isolation is pos-
sible. Using non-sticky sessions, performance isola-
tion is possible. In front of the load balancer it can be
determined whether a tenant is within his quota since
the full number of requests from a tenant is known.
Furthermore, in case of non-sticky sessions, the load
balancer can homogeneously distribute the requests.
Hence, the more aggressive a tenant is, the more he is
contributing to a bad performance of any tenant. With
this knowledge, it is possible to performance-isolate
tenants. However, when using sticky sessions, re-
quests are bound to an unknown instance. In this case,



interfering when one or more tenants experience a bad
performance is not possible since requests are not uni-
formly distributed to the different instance, and hence
not necessarily the most aggressive tenant is responsi-
ble for bad performances. While initial requests will
be distributed homogeneously, it might end up with a
significant number of sessions that spend more time
than others. Thus, it is possible that the most aggres-
sive tenant is bound to a processing node with no fur-
ther load whereas a less aggressive tenant has to share
a processing node’s capacity and thus is responsible
for the bad performance of other requests.

Cluster-affine: In this scenario, performance iso-
lation is not possible. The behavior in terms of request
allocation is the same as described in the non-affine
case with sticky sessions: the underling problem is
that the request allocation information is missing and
the uniform distribution of request workload could no
longer be assumed since the available instances are
limited to a subset which is not known at this posi-
tion. This is not changed by sticky sessions since they
only make existing request-to-instance allocations fix.

4.2.2 Directly After/ Included in Load Balancer

Server-affine, Non-affine, Cluster-affine: At this
point, performance isolation is possible in all three
cases of affinity. The load balancer maintains state
to enforce tenant affinity and the stickiness of ses-
sions in order to allocate requests to instances. Hence,
at this position the available information about ten-
ant affinity and session stickiness is a superset of
the information available at the two other positions.
The information about the request allocation and the
ability to measure response times allow to interfere
and performance-isolate tenants. However, as already
stated, access to a processing nodes’s state which
may increase quality of performance isolation is com-
plicated and comes along with communication over-
head.

4.2.3 In Front of Application

Server-affine: In this scenario, performance isolation
is possible. Given server-affinity, requests are always
processed by the same instance and at this point we
are directly in front of the respective processing node.
Thus, any information about other processing node
does not come along with benefits. Since requests of
a tenant are not spread over multiple instances, other
processing nodes do not influence this tenant and it
is possible to completely measure all information re-
lated to the specific tenant’s performance. Since re-
quests are already bound to a specific instance, it is
irrelevant whether sticky sessions are used or not.

Non-affine: In this scenario, performance isola-
tion is not possible without further information. Since
requests of tenants can be served by all instances, the
load balancer is free to distribute the requests of all
tenants. Hence, it can be assumed that requests of
each tenant are homogeneously distributed over all in-
stances. However, performance isolation is not possi-
ble as the information about the total number of re-
quest send by each tenant is not available. This way,
it can not be determined whether a tenant’s quota is
exceeded. The use of sticky or non-sticky sessions
does not change this since requests from a single ten-
ant are still distributed over various instances. How-
ever, in the case of non-sticky sessions, performance
isolation is possible when the processing capacity of
the processing nodes is equal and the total number of
instances is considered. Then, the overall request rate
can be determined since a homogeneous distribution
of the requests can be assumed. Hence it is possible to
determine whether a tenant’s quota is exceeded. But
in the case of sticky sessions, performance isolation
is still not possible since a homogeneous distribution
of requests cannot be assumed any more.

Cluster-affine: Again, in this scenario, it is not
possible to realize performance isolation without fur-
ther information. The behavior in terms of request
allocation is the same as in the non-affine case with
the limitation that the available set of instances is a
smaller subset. Similar as in the former case, the
problem is missing information about requests that
are processed at other instances, which makes it im-
possible to determine quota violations. Again, there
is no difference when non-sticky or sticky sessions
are used since the latter only make the request-to-
instance allocation fix. However, like in the non-
affine case, performance isolation is possible in the
case of non-sticky sessions when all processing nodes
have the same processing capacity and the cluster size
is known. Then, information can be projected from
one processing node to another by assuming a homo-
geneous distribution of the load balancer. This allows
to determine whether a tenant is within its quota and
thus performance can be isolated since access to re-
sponse times is given as well.

4.3 Summary and Implications

Table 1 summarizes the above discussion and shows
the elaborated differences based on different kinds of
tenant and session affinity. The stickiness of sessions
is only influential in some cases. In the presence of
a non-affine behavior and session affinity, a central
management of request processing information with
access to the allocation of requests to instances as well



Table 1: Positions and feasibility of performance isolation.

Tenant
Affinity

Session
Stickiness

Pos. 1 Pos. 2 Pos. 3

affine no no yes yes
yes no yes yes

non no yes yes yes
yes no yes no

cluster no no yes yes
yes no yes no

as the overall amount of requests is required in order
to guarantee performance isolation. It was explained
why, in many scenarios, performance isolation is not
possible without information about the request distri-
bution (Position 1), or directly in front of the appli-
cation instance (Position 3). Offering a superset of
the information available at the two other positions,
Position 2 is the only one that allows to realize per-
formance isolation for all affinity combinations.

5 CONCLUSION

It was shown that performance isolation between ten-
ants is an important aspect in multi-tenant systems,
and that serving a huge amount of tenants requires
the existence of several application instances and a
load balancer that distributes requests among them.
While existing work focuses on concrete algorithms
and techniques to enforce performance isolation, this
paper focuses on a conceptual realization of perfor-
mance isolation in a load-balanced multi-tenant sys-
tem.

We were able to outline that, from an information-
centric point of view, the best placement strategy for
a performance isolation component that leverages re-
quest admission control is directly after the load bal-
ancer. At this position, information about the allo-
cation of requests to processing nodes as well as the
overall amount of requests from a tenant is given. It
was shown that the positions before the load balancer,
or directly before the applications have disadvantages
which make it impossible to realize performance iso-
lation in every scenario. However, the use of fine-
grained information about a processing node’s state
may increase the quality of performance isolation and
this is best possible when the component is placed at
the respective processing node. Consequently, data
has to be transmitted via the network in the other
cases, which leads to a trade-off decision depending
on the concrete scenario.

Our future research focuses on providing a com-
plete architecture to enforce and evaluate perfor-

mance isolation based on the here presented results.
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