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Abstract

Due to the growing size of modern IT systems, their performance analysis becomes an even more challenging
task. Existing simulators are unable to analyze the behavior of large systems in a reasonable time, whereas
analytical methods suffer from the state space explosion problem. Fluid analysis techniques can be used
to approximate the solution of high-order Markov chain models enabling time efficient analysis of large
performance models. In this paper, we describe a model-to-model transformation from queueing Petri nets
(QPN) into layered queueing networks (LQN). Obtained LQN models can benefit from three existing solvers:
LINE, LQNS, LQSIM. LINE internally utilize fluid limits approximation to speed up the solving process
for large models. We present the incentives for developing the automated model-to-model transformation
and present a systematic approach that we followed in its design. We demonstrate the transformations
using representative examples. Finally, we evaluate and compare the performance predictions of existing
analytical, simulation and fluid analysis solvers. We analyze solvers’ limitations, solving time, and memory
consumption.
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1 Introduction

The complexity of today’s IT systems is increasing due to the emergence of new com-

puting paradigms, such as cloud computing, big data analytics, or cyber-physical

systems. The computing resources, such as CPUs, cannot be scaled-up vertically

effectively anymore. Instead, horizontal scaling of resources (replication) provides

the required power and addresses the growing needs of the users. As the complexity

of the systems usually grows with their size, the performance analysis becomes even

more challenging.

In order to enable the performance analysis of such systems, efficient and ac-

curate solution techniques for performance models are necessary. Simulation tech-

niques generally require long simulation runs to achieve the required accuracy. On

1 Email: christoph@raytracer.me
2 Email: {piotr.rygielski, simon.spinner, samuel.kounev}@uni-wuerzburg.de

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Christoph Müller, Piotr Rygielski, Simon Spinner, Samuel Kounev

the other hand, exact analytical models suffer from the state space explosion prob-

lem [34], severely limiting the size of models that can be analyzed in practice. Fluid

analysis is an approximate solution technique for continuous-time Markov chains

that works especially well for models with a large state space while reducing the

computational effort significantly [32]. Thus, fluid analysis techniques promise a

trade-off solution for the two extremes.

According to [4], fluid analysis techniques have been developed to avoid the state

space explosion by approximating the state space with a set of time-varying real

variables and describes their evolution by a set of differential equations. In con-

trast to the well-known approach of analyzing via continuous time Markov chains,

Hillston [14] proposed an underlying mathematical representation based on a set of

coupled ordinary differential equations. This allows efficient performance analysis

of the systems with large numbers of replicated components and users. We provide

a brief overview of fluid analysis in Section 2.1 and 3.1.

1.1 Motivation

Queuing Petri Nets (QPN) [1] are a powerful and expressive performance modeling

formalism which are a combination of classic Queueing Networks (QNs) [3] and Col-

ored Generalized Stochastic Petri Nets (CGSPN) [8]. It has been shown, that even

relatively small architecture-level models representing a data center infrastructure

and the software (e.g., as shown in [22]) may result in hundreds of places, thousands

of transitions and millions of tokens when transformed into QPNs. Unfortunately,

existing analytical solution techniques cannot be applied to QPN models of this

complexity. Only time-inefficient discrete-event simulation can be used in these

cases.

In this work, we leverage layered queueing networks (LQNs) formalism and its

solvers. LQNs can be solved using LQNS which is the standard solver for LQNs [11],

LQSIM which is a discrete-event simulation, or LINE [25] that leverages fluid-limit

approximation to accelerate the solving. We provide more background on LQN and

QPN formalisms in Section 2.3.

We use the power of model-to-model transformations to transform existing QPN

models into LQN models which can be later solved using LQNS, LQSIM, and LINE.

We transform QPN models systematically enabling the users without QPN or LQN

expertise to profit from the LQN representation and the features of LQN solvers that

are unavailable to the QPN solvers (e.g., SimQPN [18]). Without the automated

transformation, the ability to manually transform QPNs into LQNs would be limited

to experts in both fields. Moreover, the manual transformation of big models would

be time inefficient and error prone.

Finally, the third incentive is the variety of currently existing QPN mod-

els. There exist high-level models for which automated transformations to QPN

have been developed. The examples are: Palladio Component Model (PCM) [2],

Descartes Modeling Language (DML) [6], and Descartes Network Infrastructures

(DNI) [27]. DML and DNI support transformation to QPN, but are currently not

compatible with solvers that leverage fluid analysis. We elaborate more on the

capabilities of existing transformations for PCM, DML, and DNI in Section 3.2.
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The goal of this paper is to enable fluid analysis for currently existing QPN

models. We provide a concept of model-to-model transformation that converts any

valid QPN model into an equivalent LQN instance that can be solved using LINE,

LQNS, or LQSIM. LINE solver internally leverages fluid analysis [25].

The main contribution of this work is the concept of automated model-to-model

transformation that translates QPN models into LQNs. We characterize the trans-

formation, its features, and limitations. Additionally, we present the rules of the

transformation by demonstrating which QPN patterns are translated into which

LQN constructs. We characterize the semantic gaps between the QPN and LQN

formalisms. Moreover, we state which LQN models are not supported by LINE

solver but can be solved with other existing tools (e.g., LQNS or LQSIM which

does not support fluid analysis). Finally, based on two representative examples, we

demonstrate the transformation in practice and evaluate the performance prediction

capabilities, solving time, and memory consumption of SimQPN, LINE, LQNS, and

LQSIM.

1.2 Organization

This paper is organized as follows. In Section 2, we provide background of the QPN

and LQN formalisms and describe the LINE solver and its specifics regarding the

support for LQN models. Later, in Section 3, we analyze the existing works on fluid

analysis in performance prediction and existing model-to-model transformations

involving QPNs and LQNs. Section 4 is devoted to describe the concept of the

contributed transformation, whereas in Section 5, we present two examples that

demonstrate the transformation using a simple and a complex case. Then, we

evaluate the models using four solvers and quantify the prediction accuracy and

solving time of them. Finally, in Section 6, we conclude and propose directions for

future work.

2 Background

2.1 Fluid Analysis

In this paper, we focus on fluid analysis (a.k.a, fluid limits) which is a deterministic

real-valued process which approximates the evolution of a given stochastic process

in which all state variables are approximated by continuous variables [14].

Fluid analysis techniques have been developed to cope with the state-space ex-

plosion problem. According to Tribastone et al. [32], if the model is represented

as a Markov chain, the performance metrics (e.g., utilization, throughput, response

time) are modeled as real functions of the chain called reward models. The com-

plexity of their analysis grows with the increasing order of the Markov chain mak-

ing the analysis infeasible for large scale systems. Hilston [14] showed that high

order 3 continuous-time Markov chains can be approximated (Xn(t) ≈ nx(t)) by

substituting the real-valued stochastic process Xn(t)/n with x(t), where Xn(t) is

continuous-time Markov chain of a system’s parameter n, and x(t) is an ordinary

3 In a Markov chain of order m, the future state depends on the past m states.
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differential equation. The parameter n describes the scale of a model (e.g., number

of users or components). The approximation is better for higher values of n [32].

This approximation has been applied for PEPA (Performance Evaluation Process

Algebra) [14] stochastic algebra models which is an underlying internal mechanism

of LINE.

2.2 Short introduction to QPN and LQN

Queueing Petri Nets (QPNs) [1] are a combination of classic Queueing Networks

(QNs) [3] and Colored Generalized Stochastic Petri Nets (CGSPN) [8]. While

CGSPNs are a powerful formalism to describe the synchronization and timing be-

havior of software programs, they lack the expressiveness to easily describe the

scheduling of jobs at hardware resources. In addition to ordinary places and tran-

sitions known in CGSPNs, QPNs therefore introduce queueing places consisting of

a queue and a depository. The queues correspond to those in a traditional QN,

including a scheduling strategy and a service time distribution. Incoming tokens

are first served in the queue and then put into the depository where they become

available to outgoing transitions. Using QPNs, it is possible to model both software

and hardware contention of software systems in a single model [16]. For solving

QPNs, we use SimQPN discrete-event simulator [17]. The QPN graphical notation

is explained in Figure 1.

Queueing 

Place

Subnet

Place

Queue Depository

Ordinary 

Place

Nested QPN

oo o o o o

Transition Token

o
o o

Fig. 1. Notation used in QPN diagrams.

Layered Queuing Networks (LQN) [10] are performance models that are an ex-

tension of regular Queuing Networks (QN). Compared to ordinary QNs, LQNs

introduce the concept of layers, software servers, and they allow the modeling of

simultaneous resource possession. LQNs are usually used to model software and

hardware contention in a uniform way, as well as scheduling disciplines, simulta-

neous resource possession, synchronization, and blocking [36]. LQNs have been

developed as a domain-specific language (DSL) covering a wide range of computer

systems with a special focus on software and hardware systems. In contrast to that,

QPNs are general-purpose models and are not bound to a given domain.

2.3 Semantic Gaps between LQN and QPN

Woodside et al. [36] claim that “LQNs have a great advantage over the competing

models (Petri nets, Markov chains, timed process algebras) that they scale up to

large systems with dozens or hundreds of cooperating processes.” Achieving such

speed-ups in the solving is usually connected with abstracting selected data or
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limiting the modeling capabilities. In this Section, we analyze the limitations and

differences with respect to QPNs.

Heimburger analyzed in [13] the differences between the solvers for QPNs

(SimQPN [17]) and LQNs (LQNS [11]) in the context of the performance prediction

of Java EE based software. We extend the comparison to the general level of the

formalism and briefly summarize the key differences in Table 1.

Table 1
Comparison of the selected key differences of QPN and LQN formalism.

Feature QPN LQN

Unit of flow Colored tokens Calls

Workload Open and closed Open and closed

Hierarchy Yes, subnets, can be flattened Yes, layers, cannot be flat-

tened

Direction of flow Any place with any transition An activity to an entry,

higher layer to lower layer

only

Support of loops Yes, any type (including infi-

nite), loop iterations can be

modeled probabilistically or

deterministically

Yes, most of deterministically

modeled loops (for exceptions

see Section 4.3.1), number

of loop iterations must be

known (no infinite loops)

Starting point No explicit starting place or

transition. Transitions that

fire first can be calculated

Top layer

In QPNs, the colored tokens are the elements modeling the behavior—they are

deposited in places and are moved from place to place by firing the transitions.

In LQNs, this function is realized by calls denoted normally as arrows pointing

to an entry. Both formalisms support modeling of open and closed workflows,

however LQNs can be claimed to provide less support for closed workloads due

to the limitations concerning loops spanning multiple layers. Layers are used to

represent the hierarchy in LQNs, whereas in QPNs, nets can be nested using subnet

places. QPN tokens can be moved from a place to another place when a transition

fires. A transition can connect any two places at a given level in the hierarchy. The

tokens, however, can be forwarded (via input and output places of subnets) to any

place or transition disregarding the level in the hierarchy.

In contrast to QPNs, the LQN calls can connect only the layers that are non-

higher than the layer from which the call originates. This limits the direction of the

calls and narrows the modeling capabilities. The hierarchy of LQN layers cannot be

flattened, whereas QPN does. Another difference is the way the loops are modeled.

The LQN formalism allows to explicitly model simple loops where the loop iterations

need to be specified by a constant, finite value. QPNs do no support loops directly,

however loops can be built easily using few places, tokens, and transitions. Loops
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built in this way can iterate over a defined number of times (also infinite) or the

number of iterations can be specified using probability distribution. Finally, QPNs

do not have a predefined single starting point, whereas LQNs have a so-called top

layer where the execution starts. In Section 4, we describe transformation rules that

transform QPN models into their LQN equivalents.

2.4 Solvers for QPNs and LQNs and their Limitations

In this paper, we analyze four solvers: SimQPN [17] for QPNs, LINE [25],

LQNS [11], and LQSIM for LQNs. We briefly characterize the main known limita-

tion of the solvers in their current versions.

SimQPN is a tool for steady-state analysis of QPNs. It is based on discrete-

event simulation of a QPN and can yield throughput, utilization and response time

statistics as a result (including confidence interval and histograms). Its capabilities

are limited by the amount of free memory to a simulation of few millions (×106)

of tokens (tokes can be created and destroyed during the analysis) on a commodity

hardware.

LINE solver leverages the benefits of fluid analysis techniques for solving the

LQNs. Currently, its coverage of LQNs is still limited, e.g., it does not support the

<and> node in the activity graphs, limiting the set of models that can be solved

efficiently. While support for this functionality is planned, no concrete release date

is available yet. According to the developers of LINE, the <or> node is supported.

LQNS (analytical) and LQSIM (simulation) are two state-of-the-art solvers for

LQNs. The LQNS solver implements several analytical solving techniques such as

mean value analysis (MVA) and combines the advantages of other existing solvers,

namely SRVN [36] and the Method of Layers (MOL). According to [11], LQNS and

LQSIM do not support recursive calls (a task calling its own entries) and provide

only limited support of replication on subsystems (details on the limitations were

explained in [24]). LQNS cannot handle activity graphs whose fork is located in

one task and join in another. Moreover, LQNS has troubles in solving models with

exclusively external arrival flows.

The analysis of PCM models using QPNs and LQNs has been evaluated by

Brosig et al. in [7]. Compared to LQNS, SimQPN was evaluated to provide full

support of response time distributions, flexible parameter characterizations, and

blocking behavior. On the other hand, the analyzed LQN models were more com-

pact and the solving using LQNS was faster than the respective QPN models solved

in SimQPN.

3 Related Work

We divide the related work into two domains: performance modeling and model-

based software design (i.e., model-to-model transformations). First, we analyze the

applications of fluid analysis in solving of performance models, whereas later, we

briefly describe the applications of model-to-model transformations in performance

analysis.
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3.1 Application of Fluid Analysis in Performance Models

Acknowledging the works treating about fluid queueing [23] , and fluid stochastic

Petri nets [33] , we focus on the fluid analysis as defined in Section 2.1 and work [14].

Fluid limits for approximating Markov chain models were first introduced by Kurtz

in 1971 in work [20]. Since then, the fluid limits were used for approximation in

performance models consisting of high order Markov chains.

Fluid limits were applied to performance modeling by extending stochastic pro-

cess algebra PEPA [14]. The authors of [25] leveraged the fluid limits by enabling

LQNs to be solved internally using PEPA. This connection (fluid-limits approxi-

mation → PEPA → LQN ) allowed solving the software and hardware performance

models (which are the domain of LQNs) using ordinary differential equations as

approximation for the analysis of the underlying Markov chains.

There are number of applications of LQNs and stochastic algebras for perfor-

mance predictions, for example [31,37,7,19]. All LQN performance models can ben-

efit from the fluid limit approximation as long as the LINE solver [25] can be applied

(see LINE limitations in Section 2.4). To the best of our knowledge, LINE is the

only LQN solver that leverages fluid analysis techniques so far. Further, we analyze

other performance models that are transformable to LQNs and QPNs, so that they

can benefit from the transformation contributed in this paper.

3.2 Existing Transformations of Performance Models

A meta-model describes the allowed elements in a model instance as well as the rela-

tionships between them. Model transformations are used to automatically transform

between models of different meta-models. For performance modeling and analysis,

transformations have mainly been used to translate from a high-level architecture-

level performance model into a lower-level prediction model. Koziolek and Reuss-

ner [19] describe a transformation from the Palladio Component Model (PCM)—

which is a meta-model supporting quality-of-service analyses of software architec-

tures at design-time—into Layered Queueing Networks (LQNs) for their analytical

solution. Meier et al. [22] describe a transformation from PCM into Queueing Petri

Nets (QPNs) and show that it has a higher accuracy and better coverage of PCM

elements than the transformation into LQNs.

Another, descriptive meta-model for performance modeling is Descartes Mod-

eling Language (DML) [5,15], which is aimed at online performance and resource

management scenarios. Brosig [5] implements different transformations from DML

into Queueing Networks (QNs), LQNs and QPNs and proposes an algorithm to

automatically decide which transformation shall be used depending on the required

prediction accuracy and speed.

Descartes Network Infrastructures (DNI) [27] fills the gaps left by DML and

PCM in the area of data center networks. DNI models can be transformed into OM-

NeT++ Simulation and two QPNs—with finer and coarser level of details [26,27,28].

Even small DNI models may result in large QPNs so the effective and timely per-

formance analysis is difficult without abstracting some data in the DNI’s transfor-

mations.

In Figure 2 we depict some existing models, solvers, and model transformations.
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DNI

SimQPN

LINE LQNS

Model

Solver

Transformation

Contributed
Transformation

DML PCM

QPN

LQN

other otherother

Fig. 2. Selected domain-specific and general purpose models, their available transformations and solvers.

The three considered architecture level models (PCM, DML, DNI) support solv-

ing with SimQPN using corresponding QPN model transformations. Only PCM

supports wider variety of solvers, including LINE and LQNS. After transforming

QPN models into LQN, we expect obtaining more compact models than the QPN

equivalent and faster solving time thanks to the LQN analytical solvers (similar

phenomena were observed by Brosig et al. in [7]).

4 Transformation Concept

In this section, we present the systematical approach that we followed in designing

a transformation from QPN into LQN models in order to enable the fluid analysis of

the former. A transformation consists of rules that are executed for each matching

element of the source model (QPN) and that produces respective elements in the

destination model (LQN).

In Section 4.1, we describe our overall approach for the QPN-to-LQN model

transformation. In Section 4.2, we describe the individual transformation rules for

mapping QPN elements to LQN ones taking into consideration the context in which

they are used. We describe the limitations of the transformation in Section 4.3.

4.1 Approach

Our approach is based on a model-to-model transformation mapping QPN models

to equivalent LQN ones, so that existing fluid analysis solvers for LQNs can be used

to also analyze QPNs. Such a transformation requires us to define a set of rules

translating QPN elements into equivalent LQN ones. In the simplest case, transfor-

mation rules are context-free, injective functions mapping single QPN elements to

corresponding LQN ones. However, when comparing the two formalisms, one can

quickly see that this is not the case for our QPN-to-LQN transformation: certain

behaviors (e.g., loops, forks, etc.) are explicit model elements in LQNs, while the

same behavior is modeled in QPNs using a combination of places and transitions.

In order to identify such combinations of places and transitions (in the following

we call this a pattern), transformation rules also need to consider the context of a

model element. An example of such context information may be the neighboring

places and transitions or a topology of the QPN. As a result, there may be several,
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context-sensitive transformation rules that apply to the same model element in a

QPN.

To determine which of a set of context-sensitive transformation rules to use for a

certain model element, we need to analyze the graph structure of a QPN first. The

transformation searches for certain patterns (e.g., loops, forks, joins, etc.) in the

QPN model. In general, graph pattern matching is an NP-complete problem [12],

but many efficient pattern matching algorithms exist (e.g., [9]) assuming that any

colored Petri net can be unfolded into a single-colored one [21].

The LQN formalism requires us to explicitly model the starting point of requests

as top layers. In QPNs, we need to determine these starting points first, because

a net can have the form of an arbitrary graph. In order to determine the starting

places, the reachability of places withing the QPN needs to be calculated and open or

closed workload places can be identified (e.g., using the approach described in [35]).

In case of a closed workload, the cycle around the complete net is removed and

included in the LQN as a special top layer with a user population. The starting

places are also the places from which the search for the other patterns begins.

4.2 Transformation Rules

Table 2 gives an overview of our transformation rules. The rules are described in

detail and accompanied with examples in Sections 4.2.1– 4.2.7.

Table 2
Key rules used in the QPN-to-LQN transformation.

QPN element/pattern LQN representation

Queues Processors

Queueing places Task with entry and assigned processor

Ordinary places Depends on context. See Section 4.2.3

Token colors Individual entries for each color in the respective task

Modes of transitions Activity Graphs for every input color that resemble

the mode wiring (see Fig. 5)

Fork and join pattern Fork and join nodes in activity graphs

Loop pattern Loop notation (see Fig. 10)

Critical sections Critical sections are created by a layer that marks

the entrance to the section, has limited resources and

uses a processor with a FCFS scheduling strategy

4.2.1 Queues and Queuing Places

In QPNs, we distinguish between queueing places and queues. A queueing place

consists of a queue and a depository. The queue may be shared between different

queueing places. Queues are used to describe scheduling behavior in QPNs (e.g.,

at hardware resources). In LQNs, the same scheduling behavior can be described
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using processors. The transformation directly maps queues to processors. The asso-

ciated queueing places are mapped to tasks in the LQN that use the corresponding

processor. In case of shared queues, each queuing place that references the queue

will be mapped to separate tasks using the same underlying processor. Figure 3

illustrates the mapping for the different cases.

Q1: FCFS, exp: 0.1s

qp1

Q1

e1
[1] s=0.1

Q1: FCFS, exp: 0.1s

qp1

Q1: FCFS, exp: 0.2s

Q1

e1
[1] s=0.1

e2
[1] s=0.2

Q1: FCFS, exp: 0.1s

qp1

Q1: FCFS, exp: 0.2s

qp2

Q1

e1
[1] s=0.1

e1
[1] s=0.2

(a) (b) (c)

Fig. 3. Transformation of queueing places with: (a) single place, queue, and color; (b) single place, queue,
and two colors; (c) two places, single queue and single color. Processing times are modeled with the
exponential distribution with a given mean value in seconds.

4.2.2 Colors in Places

Tokens in QPN may represent a single request, a resource (e.g., database connection

in the pool), or a user. Each token has an associated color. Colors are usually used

to model the routing of requests (different colors are traversing different path) or

to represent various classes of requests (e.g., separate colors for read and write

requests). While colors help to reduce modeling efforts, they do not increase the

modeling power of QPNs. Using replication of parts of the net, every colored petri

net can be transformed into non-colored one without loss of information [21].

The calls in a LQN are identical and cannot be distinguished by different types

(or colors). In order to distinguish different types of calls to a task in LQN, we map

each color to a separate entry. An example is presented in Figure 3b. In case of

queueing places, the entries are parameterized with the service time specified in the

QPN. In case of ordinary places, the service time is always set to zero.

4.2.3 Ordinary Places

Ordinary places play a specific role in QPNs. They accumulate tokens but have

limited influence on the time aspect of the network. We transform ordinary places

based on the context in which they appear. We distinguish the following cases.

First, an ordinary place is a part of a pattern, for example a critical section and

represents the limited resources (see pool place in Fig. 11). This case is covered by

the critical section pattern described in Section 4.2.7.

Second, an ordinary place can be reduced if it does not influence the execution

(e.g., it was used only for the convenience of the modeler). An ordinary place can

be reduced—i.e., the neighboring transitions can be merged—only if the place is the

only successor of the preceding transition and the only predecessor of the succeeding

transition. An example is depicted in Figure 4a.

Third, an ordinary place can be used also as a synchronization point. This
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happens when a succeeding transition consumes multiple tokens and the tokens are

held in the ordinary place until the required amount is deposited. According to

LQNS documentation [11], LQN supports this case using the calls-mean parameter

that can be specified as a real variable. An ordinary place followed by a transition

that consumes n and produces m tokens will result in calls-mean= m
n in LQN. An

example is depicted in Figure 4b.

Finally, an ordinary place (the same applies to a queueing place) can precede a

branch where the deposited token is consumed by one of the succeeding transitions.

We depict it in Figure 4c, where the token in place p1 has the equal probability = 0.5

to be consumed by transition t1 or t2. The probabilities can be calculated based

on the priorities of the transition (by default all transitions have equal priority).

The QPN transition t1 is transformed into LQN’s activity a1 and the task directly

connected to it (here t1). The contents of the LQN tasks t1 and t2 depends on the

successors of the QPN’s transitions t1 and t2 which are abstracted in the Figure.

(a) (b)

t1 p2 p3t2p1

t1+t2 p3p1 e
t1

ep1

a1t0 a2

e
t2

(1)(1)

or 0.50.5

p1

t1

t2

(c)

t1

2 1

p2p1

ep1

(0.5)
ep2

Fig. 4. Transformation of ordinary places depending on context: (a) redundant place reduction; (b) reduc-
tion of tokens; (c) branch in workflow.

4.2.4 Transitions and Modes

In QPNs, transitions consume tokens from incoming places and produce new tokens

in outgoing places. Transitions can fire in different modes (also known as colors),

to model different dynamic behavior. The incidence function defines the number

and color of tokens consumed and produced by a firing mode. Multiple incoming

places connected to the same mode are a synchronization point or a join (for a single

mode). Multiple outgoing places from the same mode represent a fork. In LQN,

the transitions are mapped to activity graphs. Fork and joins are represented by

<and> nodes in the activity graph. Transitions containing multiple modes can be

theoretically decomposed into multiple transitions each with a single mode. As a

result, they can be treated as independent calls to the same entry of a task. Figure 5

depicts the possible transition configurations.

4.2.5 Fork and Join Pattern

The fork and join pattern (presented in Fig. 6) in QPNs is built by defining a mode

in a transition that consumes a token and forwards tokens to multiple succeeding

places. In LQNs, forks are modeled with activity graphs. The <and> nodes are used

to execute calls in parallel and to join (synchronize) them after they are finished.

We depict a simple fork-join pattern in QPN in Figure 6 and the transformed LQN

model in Figure 7.
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Fig. 5. Transformation of transitions with: (a) join-and; (b) join-or; (c) fork; (d) join-fork. The QPN
transition (denoted t1) contain modes (diamonds) that consume and produce a given number of tokens
when firing. LQNs representation is simplified (no processors) for brevity.

Finding the start and end of forking process is challenging. While the start (the

fork) is marked by a mode taking a token and forwarding it to multiple places, the

matching end (the join) must be found by processing the graph. Since colors can

change on the way through the graph it is non-trivial how to match a fork with the

respective join.

To address this problem, we utilize the following possibilities. First, we try

to fit the fork-join pattern in a single LQN’s task, so that more solvers can be

used to solve such model (see solvers limitations in Section 2.4). The analysis of

non-trivial fork-join patterns in QPN (e.g., with colors changing between fork and

join) is conducted using algorithms for graph analysis (e.g., [29]). Second, we may

skip processing the QPN topology to find the matching transitions and ignore the

transformation rule. In this way, the fork and join pair may be separated and placed

on different tasks. Although this limits the compatible set of solvers (LQNS does

not support separated fork-join), the output of the transformation is a valid LQN

model and can be solved by the solvers.

start

qp1

qp2

qp3t2t1

Q2: 
determ. 12

Q3: 
determ. 20

Q1: 
determ. 5

Fig. 6. Exemplary QPN containing the fork
and join pattern.

qp2_entry
[12]

qp2_task {inf}

CPU_2*

(1)

qp1_entry
[5]

qp1_task {inf}

CPU_1*CPU_3*

qp3_entry
[20]

qp3_task {inf}

(1)

(1)

client_entry

Start
[0]

qp2
[0]

client_task

qp1
[0]

qp3
[0]

&

&

Fig. 7. Exemplary LQN containing the fork and join repre-
sentation of the QPN shown in Fig. 6. Transitions t1 and
t2 are represented here as the fork and join elements (&).

4.2.6 Loop Pattern

The QPN formalism does not support modeling of loops directly but a loop can be

modeled indirectly. Examples of loops modeled in QPN are presented in Fig. 8 and 9.

The loop presented in Fig. 8 iterates based on the probability defined in the incidence

function of the Loop-Exit transition. The expected number of iterations needs to
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be calculated in the transformation, as LQN requires exact number of iterations

to be specified. In Fig. 9, the number of iterations is defined deterministically by

the number of tokens produced by the 1-to-num-loop-iter transition. LQN supports

loops directly, so once the loop pattern is recognized correctly and the number of

iterations is calculated, the transformation is trivial. The graphical representation

of a loop in LQN is shown in Fig. 10.

i i

i

i

i

i

i

Fig. 8. Example of a QPN loop representa-
tion with probabilistically modeled number
of iterations. Excerpted from [7].

input 1-to-
num-loop-iter

loop-iter-left loop-control

loop-
start

subworkload

forward-
generated-
traffic

loop-
stop

loop-iter-
done

num-loop-
iter-to-1 output

c

lc

t
t

c

c

c c clcc

Fig. 9. Example of a QPN loop representation with de-
terministically modeled number of iterations. Excerpted
from [26].

The QPN representations of loops are treated as patterns that need to be dis-

covered by the transformation (or a transformation pre-processing library) in order

to be transformed. In case of an unsupported loop pattern (there may exist other

patterns than the two presented in Fig. 8 and 9), the transformation of a loop will

be covered by the remaining transformation rules, however, the compact notation

of LQN loop (as in Fig. 10) will not be used.

e1

CPUnum iter

parent

pre-loop

post-loop

sub-workload

Fig. 10. LQN loop representation
with deterministically modeled num-
ber of iterations.

subnet1

pool

start endleave
section

enter
section

Fig. 11. Example QPN containing a critical
section. The pool contains, so maximally
three tokens can enter the subnet.

4.2.7 Critical Section Pattern

A critical section is a region which can simultaneously handle only limited number of

objects. Both LQN and QPN can model critical sections. Figure 11 shows a critical

section in QPN. It is modeled with the enter section transition that consumes a

token from the start and second from the pool place. The amount of initial tokens

in the pool defines the number of tokens that enter the section at the same time.

At the end, the leave section transition passes the token further to the end place

and at the same time deposits another token back into the pool, so that the next

token from start can enter the section.

LQNs represents a critical section with a layer that contains a defined number

of FCFS queues. The number of FCFS quques in LQN corresponds to the QPN’s

pool tokens that limit the maximum number of tokens in the critical section. Every

task in every queue will execute a synchronous call to perform the work in the

critical section. Only when this call finishes, the next element will be dequeued and
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processed. Graphically, we depict LQN critical section in Figure. 12. The size of

the pool is denoted with the quantity of the task critical section[3].

e1
end

start
e1

e1

enter
[0]

call_subnet
[0]

leave
[0]

e1

subnet …
critical_section [3]

Fig. 12. LQN representation of the critical sec-
tion corresponding to the QPN in Figure 11.

t1

t2t3 task2

task1start

Fig. 13. Example of QPN con-
taining a second internal loop.

4.3 Limitations of the Transformation

In this section we describe the limitations of the QPN-to-LQN transformation.

This section covers general limitations of the LQN formalism and do not focus on

solver-specific limitations (the limitations of LQN and QPN solvers are presented

in Section 2.4). The most challenging parts of the transformation are: loops where

a higher layer in LQN needs to be called, and the problem of finding the top layers

(also called reference layers). We address both problems in this Section.

4.3.1 Support for Specific Loops

Currently LQN supports only a loop node which executes a defined number of

loop iterations assuming that the number of loop iterations is known beforehand.

Unfortunately, it is impossible to build a LQN model of a QPN loop with unknown

number of iterations, for example, as seen in Figure 13. This limitation comes from

the lack of support of LQN to call layers that lie higher in the hierarchy. Solvers

like LINE will run into recursion problems (exceeding the maximum depth). The

general loop that models the closed workload of a complete LQN model is a special

case and its number of iterations can be infinite or unknown.

4.3.2 Finding the Top Layers

LQN use special layers (called reference or top layers) to start the workload cycle.

The task in the top layer will be executed periodically according to the think time

parameter. QPN does not necessarily have obvious starting places. Finding the

transitions that fire first or model the think time of the closed workload may be

also challenging. In order to address this limitation, we analyze the input QPN and

estimate which transitions will fire first. We aim to find the transition that models

the beginning of a closed workload. Unfortunately, QPN allows to represent a sys-

tem in many ways and it is not guaranteed that the transitions found are responsible

for representing the think time of the closed workload loops. An approach to this

problem was tackled by Walter et al. in [35]. For each found transition, we create a

top layer that is treated specially in LQN. We construct LQN tasks that succeed the
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top layers by traversing the next QPN elements starting with the QPN’s successor

places of the first-firing transitions.

5 Validation 4

5.1 Example #1: Simple QPN Model

We validate the transformation based on two examples. First is a simple QPN

model with three queueing places as depicted in Fig. 14. Each queueing place has

a separate queue with deterministic processing time. The execution is looped to

represent a closed workload with no think time.

We transformed it into LQN that is graphically represented in Fig. 15. Tran-

sition t1 was recognized as firing first based on the initial marking of the start

place. Transition t4 is not represented in LQN as it serves only to model the closed

workload.

start qp1 qp2 qp3t2t1

Q2: 
determ. 5

Q3: 
determ. 20

Q1: 
determ. 12

t4

t3

Fig. 14. Example #1 QPN representation.

client_entry

Start
[0]

CPU_1_call
[0]

client_task

CPU_2_call
[0]

CPU_3_call
[0]

CPU_1_entry
[12]

CPU_1_task {inf}
CPU_1*

(1)

CPU_2_entry
[5]

CPU_2_task {inf} CPU_2*

CPU_3*

CPU_3_entry
[20]

CPU_3_task {inf}

(1)

(1)

Fig. 15. Example #1 LQN representation.

The example was solved using four solvers: SimQPN for QPN, and LQNS,

LQSIM, LINE for LQN. In this experiment, we want to show that the transforma-

tion behavior is correct for simple cases. We examine the utilization of queueing

places/processors and throughput. The results are presented in Table 3.

Table 3
Example 1

Utilization CPU1 CPU2 CPU3

SimQPN 0.324 0.135 0.541

LINE 0.32432 0.13513 0.54054

LQNS 0.32432 0.13513 0.54054

LQSIM 0.32585 0.13768 0.53646

Throughput CPU1 CPU2 CPU3

SimQPN 0.0270 0.0270 0.0270

LINE 0.027027 0.027027 0.027027

LQNS 0.027027 0.027027 0.027027

LQSIM 0.02738 0.02791 0.0277

The prediction of utilization and throughput was almost identical for all ex-

amined solvers. Taking the SimQPN’s prediction as a baseline, LQSIM solved the

model with the highest error mispredicting the utilization by maximally 3%. The

results demonstrate that the transformation is correct for the simple case.

We expected higher inaccuracy for LINE because the solving using fluid limits

approximation is expected to work better for bigger models and provide higher

errors for small. This issue seems to have been addressed by the authors of LINE

4 All QPN and LQN models used in this paper are available online under the url:
http://go.uni-wuerzburg.de/aux
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as the results for small models are also good. We investigate a more complex model

in the second example.

5.2 Example #2: SPECjAppServer2001

The system represented in the second example is based on a Java Enterprise Edi-

tion (Java EE) server application benchmark (SPECjAppServer2001). The appli-

cation is modeled after a business consisting of four domains: customer domain

(customer orders and interactions), manufacturing domain (“just in time” manu-

facturing operations), supplier domain (interactions with suppliers) and corporate

domain (customer, product and supplier domain). The workload is claimed to be

big and complex enough to represent a real-world enterprise system [30]. In our

scenario, the model is focused on the customer domain including four transaction

types: NewOrder, ChangeOrder, OrderStatus and CustomerStatus. The system

is deployed on two separate machines, one hosting the application logic and the

other running a relational database. Besides the physical resources of the two ma-

chines (CPU and disk subsystem of the database), the model contains also logical

resources, such as, the thread-pool of the application server, the connection and the

process pool of the database server. A complete description of the model and its

validation on a real system can be found in our previous work [16].

WLS-CPU DBS-PQ DBS-CPU DBS-I/O 

DBS-Process-Pool 

Client 

Database Server 

t 1 t 2 t 3 t 4 t 5 

WLS-Thread-Pool 

DB-Conn-Pool x 
x 

x x x x x x x 

c 

x 

c 

t t 
t 

t t 

p 
p p 

c 
c c 

x 
x 

p p 

Fig. 16. QPN representation of example #2. WLS stands for WebLogic Server, and DBS for a database
server. Excerpted from [16].

The transformed LQN model is depicted in Figure 17. The reference layer

was selected based on transition t1 and queueing place Client. The place Client

represents the think time of the closed workload (parameter Z = 200 in clien 7

task in the LQN) and the initial population of clients set to 80 (parameter [80] in

clien 7 task in the LQN). Next, we observe three layers that represent three nested

critical sections that are limited by the thread pool, database connection pool, and

database process pool. Once the activity DBS-I 2 finishes, the process starts again.

We have examined utilization and throughput. The results are presented in Table 4.

We take SimQPN prediction as a baseline again. The utilization results show

that the WLS-CPU is the bottleneck of the modeled system. All solvers reported

16



Christoph Müller, Piotr Rygielski, Simon Spinner, Samuel Kounev

clien_7

start
[0]

WLS-T_2
[0]
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(1)

(1)

(1)

Fig. 17. LQN representation of example #2.

Table 4
Example #2—processor utilization and throughput for 80 clients.

Utilization DBS-CPU DBS-I/O WLS-CPU

SimQPN 0.757 0.171 1

LINE 0.75714 0.17142 1

LQNS 0.75742 0.17149 1.00013

LQSIM 0.75525 0.17508 0.9828

Throughput DBS-CPU DBS-I/O WLS-CPU

SimQPN 0.014 0.014 0.014

LINE 0.0142857 0.0142857 0.0142857

LQNS 0.0142934 0.0142934 0.0142877

LQSIM 0.01459 0.01425 0.01404

nearly 100% utilization. LQNS overestimated the utilization, probably due to a

rounding error, whereas LQSIM reported the utilization as 1.8% lower than the

other solvers. The predicted throughput is affected by the bottleneck resource and

is similar for all the solvers. LINE and LQNS overestimated the throughput by up

to 2% relatively, whereas LQSIM reported up to 4% higher throughput than the

baseline.

5.3 Analysis of Solving Time

Additionally to the performance prediction accuracy, we investigated the time

needed to solve the model using the four examined solvers. We examined the LQN

model from example #2. We varied the number of customers in the clien 7 layer

and solved the model for 1, 10, 40, and 80 clients. Then, we scaled up the mod-

eled system and increased the quantities of the resources 2, 4, 8, 16, and 32 times

with respect to the following configuration: 100 clients, 40 database connection

pool size, 30 database processes, and 60 WLS threads. We denote these setups as

100× {2, 4, 8, 16, 32} respectively.

We executed the four solvers in Windows 7 virtual machine running on Virtual-

Box with assigned 2 CPUs and 4GB memory. Solving times of LQNS and LQSIM

were measured using unix time command and included such activities like start-

ing the solver, reading input file, solving the model and writing output. Although

LQNS reports the solving time internally, we ignore them as the running time was

reported as 0s. The execution time of LINE was measured in the java code of the

solver as LINE’s source code is available. SimQPN reports the running wall-clock

time directly in the results. The solution time measurements for LQNS and LQSIM

may contain a constant additive error because the time command includes also the

initiation of the solver in the measurement. The results are presented in Table 5.

In this experiment, we expect the analytical solvers (LINE and LQNS) to out-

perform the simulations (SimQPN and LQSIM). The expectation was confirmed
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Table 5
Solving times of four solvers for varying number of clients in example #2.

Clients: SimQPN LINE
LQNS

(linearizer)

LQNS

(exact MVA)
LQSIM

1 0.48s 0.44s 0.03s 0.05s 06.49s

10 0.51s 0.54s 0.09s 0.94s 1m28.95s

40 1.09s 0.63s 0.06s 1.35s 2m49.89s

80 1.26s 0.72s 0.06s 3.75s 4m05.62s

100× 2 1.12s 0.96s 0.07s 9.67s 6m56.36s

100× 4 2.54s 1.34s 0.10s 2m7.01s 12m23.42s

100× 8 7.15s 2.09s 0.15s 10m8.00s 36m08.91s

100× 16 12.98s 3.54s crash∗ crash∗ 100m50.59s

100× 32 45.78s 6.37s crash∗ crash∗ 219m22.36s
∗ out of memory (> 4GB)

experimentally, as LQSIM was the slowest of the solvers and needed 4 minutes to

solve the case with 80 clients and about 3.5 hours to evaluate the 100×32 scenario.

SimQPN uses batch mean method which observes the simulation in the steady-state

(i.e., after so-called warm-up period). The simulation stops when required precision

is reached. The SimQPN’s solving time is low, although for big model instances, we

observe a non-linear growth. LINE has outperformed the simulators and achieved

linear growth of the solving time. Similar observation holds for LQNS which solved

the models in a linear time and was about 10 times faster than LINE. Unfortunately,

LQNS requires much more memory to solve bigger models. During the solving of

the 100× 16 and 100× 32 models, LQNS terminated almost immediately after the

start due to the lack of memory (reported error: std::bad alloc).

Regarding the memory consumption, LQSIM uses a constant amount of mem-

ory during the simulation—about 75MB, 150MB, and 300MB for 100× 8, 100× 16,

and 100 × 32 scenario respectively. LQNS consumes memory very fast and is un-

able to solve bigger models in the given configuration of the experimental machine.

SimQPN has larger memory footprint due to Java virtual machine, however it scales

well and can effectively handle simulations with up to several million tokens on a

machine equipped with 16GB memory (for comparison, we observed ≈ 7300 tokens

in experiment #2 for the 100×32 model). LINE uses Matlab libraries for computa-

tion so there exists a memory footprint. We are unable to observe precise memory

consumption for LINE due to short solving times. More experiments are needed

to provide an insight into memory complexity of LINE, however, we expect low

consumption as LINE uses analytical methods.

6 Conclusions

In this paper, we presented a concept of the model transformation that automati-

cally transforms QPN models into LQNs in a systematic manner. We characterized

the QPN and LQN formalisms by comparing the differences and pointing out the

possible incompatibilities. We presented selected model fragments where the in-

formation could be lost due to necessary simplifications in the automated process

of transformation (e.g., loops). We provided multiple examples to demonstrate

the transformation and evaluated the solvers by means of performance prediction

accuracy and solving time.
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We showed that solving the transformed QPN models using LQN solvers is

beneficial, especially using fluid approximation with solvers such as LINE as its

solving times are lower than LQSIM and SimQPN. For small models LQNS provides

short solving times, however, it consumes more memory than LINE, SimQPN, and

LQSIM. The contributed transformation enables support for the three new solvers to

already existing QPN models, in particular the models obtained in model-to-model

transformations of DML [6] and DNI [27].

As a part of our future works, we plan to integrate the transformation and the

LQN solvers in DML’s and DNI’s tool-chain. Additionally, we plan to develop a

library for discovering common patterns in Petri nets to support more effective

pattern matching in Petri nets and analysis of their features.
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