
Autonomic QoS control in enterprise Grid
environments using online simulation

Ramon Nou a,∗ Samuel Kounev b Ferran Julià a Jordi Torres a

aBarcelona Supercomputing Center (BSC), Technical University of Catalonia (UPC),
Barcelona, Spain

bComputer Laboratory, University of Cambridge, UK

Abstract

As Grid Computing increasingly enters the commercial domain, performance and Quality
of Service (QoS) issues are becoming a major concern. The inherent complexity, hetero-
geneity and dynamics of Grid computing environments pose some challenges in managing
their capacity to ensure that QoS requirements are continuously met. In this paper, a com-
prehensive framework for autonomic QoS control in enterprise Grid environments using
online simulation is proposed. The paper presents a novel methodology for designing au-
tonomic QoS-aware resource managers that have the capability to predict the performance
of the Grid components they manage and allocate resources in such a way that service
level agreements are honored. Support for advanced features such as autonomic workload
characterization on-the-fly, dynamic deployment of Grid servers on demand, as well as
dynamic system reconfiguration after a server failure is provided. The goal is to make the
Grid middleware self-configurable and adaptable to changes in the system environment and
workload. The approach is subjected to an extensive experimental evaluation in the context
of a real-world Grid environment and its effectiveness, practicality and performance are
demonstrated.

1 Introduction

Grid Computing emerged in the second half of the 1990s as a new computing
paradigm for advanced science and engineering. It not only managed to establish
itself as the major computing paradigm for high-end scientific applications, but it is

∗
Email addresses: rnou@ac.upc.edu (Ramon Nou), skounev@acm.org (Samuel

Kounev), ferran.julia@bsc.es (Ferran Julià), torres@ac.upc.edu (Jordi
Torres).

Preprint submitted to Elsevier July 13, 2008

now becoming a mainstream paradigm for enterprise applications and distributed
system integration [1, 2]. By enabling flexible, secure and coordinated sharing of
resources and services among dynamic collections of disparate organizations and
parties, Grid computing promises a number of advantages to businesses, for exam-
ple faster response to changing business needs, better utilization and service level
performance, and lower IT operating costs [2]. However, as Grid computing en-
ters the commercial domain, performance and QoS (Quality of Service) aspects,
such as customer observed response times and throughput, are becoming a major
concern. The inherent complexity, heterogeneity and dynamics of Grid computing
environments pose some challenges in managing their capacity to ensure that QoS
requirements are continuously met.

Large scale grids are typically composed of large number of heterogeneous com-
ponents deployed in disjoint administrative domains, in highly distributed and dy-
namic environments. Managing QoS in such environments is a challenge because
Service Level Agreements (SLA) must be established and enforced both globally
and locally at the components involved in the execution of tasks [3]. Grid compo-
nents are assumed to be autonomous and they may join and leave the Grid dynami-
cally. At the same time, enterprise and e-business workloads are often characterized
by rapid growth and unpredictable variations in load. These aspects of enterprise
Grid environments make it hard to manage their capacity and ensure that enough
resources are available to provide adequate QoS to both customers and enterprise
users. The resource allocation and job scheduling mechanisms used at the global
and local level play a critical role for the performance and availability of Grid ap-
plications. To guarantee that QoS requirements are satisfied, the Grid middleware
must be capable of predicting the application performance when deciding how to
distribute the workload among the available resources. Prediction capabilities make
it possible to implement intelligent QoS-aware resource allocation and admission
control mechanisms.

Performance prediction in the context of traditional enterprise systems is typically
done by means of performance models that capture the major aspects of system
behavior under load [4]. Numerous performance prediction and capacity planning
techniques for conventional distributed systems, most of them based on analytic or
simulation models, have been developed and used in the industry. However, these
techniques generally assume that the system is static and that dedicated resources
are used. Furthermore, the system is normally exposed to a fixed set of quantifiable
workloads. Therefore, such performance prediction techniques are not adequate for
Grid environments which use non-dedicated resources and are subject to dynamic
changes in both the system configuration and workload. To address the need for
performance prediction in Grid environments, new techniques are needed that use
performance models generated on-the-fly to reflect changes in the environment. The
term online performance models was recently coined for this type of models [5].
The online use of performance models defers from their traditional use in capacity
planning in that configurations and workloads are analyzed that reflect the real

2

system over relatively short periods of time. Since performance analysis is carried
out on-the-fly, it is essential that the process of generating and analyzing the models
is completely automated.

We have developed a method for building online performance models of Grid mid-
dleware with fine-grained load-balancing [6]. The Grid middleware is augmented
with an online performance prediction component that can be called at any time
during operation to predict the Grid performance for a given resource allocation
and load-balancing strategy. Our performance prediction mechanism is based on
hierarchical queueing Petri net models [7] that are dynamically composed to re-
flect the system configuration and workload. In [8], we showed how this approach
can be used for autonomic QoS-aware resource management. We presented a novel
methodology for designing autonomic QoS-aware resource managers that have the
capability to predict the performance of the Grid components they manage and al-
locate resources in such a way that SLAs are honored. The goal is to make the Grid
middleware self-configurable and adaptable to changes in the system environment
and workload. QoS-aware resource reservation and admission control mechanisms
are employed to ensure that resources are only allocated if enough capacity is avail-
able to provide adequate performance. Resource managers engage in QoS negoti-
ations with clients making sure that they can provide the requested QoS before
making a commitment.

Our approach is the first one to combine QoS control with fine-grained load-balancing
making it possible to distribute the workload among the available Grid resources in
a dynamic way that improves resource utilization and efficiency. The latter is cru-
cially important for enterprise and commercial Grid environments. Another novel
aspect of our approach is that it is the first one that uses queueing Petri nets as online
performance models for autonomic QoS control. The use of queueing Petri nets is
essential since it enables us to accurately model the behavior of our resource alloca-
tion and load balancing mechanism which combines hardware and software aspects
of system behavior. Moreover, queueing Petri nets have been shown to lend them-
selves very well to modeling distributed component-based systems [9] which are
commonly used as building blocks of Grid infrastructures [10]. Finally, although
our methodology is targeted at Grid computing environments, it is not in any way
limited to such environments and can be readily used to build more general QoS-
aware Service-Oriented Architectures (SOA).

Building on our previous work, in this paper we propose a comprehensive frame-
work for autonomic QoS control in enterprise Grid environments using online sim-
ulation. We first present in detail our Grid QoS-aware resource manager architec-
ture focusing on the performance prediction mechanism and the resource allocation
algorithm. We then introduce a method for autonomic workload characterization
on-the-fly based on monitoring data. This makes it possible to apply our approach
to services for which no workload model is available. Following this, we further ex-
tend our resource allocation algorithm to support adding Grid servers on demand as

3

well as dynamically reconfiguring the system after a server failure. We present an
extensive performance evaluation of our framework in two different experimental
environments using the Globus Toolkit [11]. We consider five different scenarios
each focusing on selected aspects of our framework. The results demonstrate the
effectiveness and practicality of our approach. The paper complements and extends
our previous work [6, 8] along the following dimensions:

• A method for characterizing the workload of a server on-the-fly in an autonomic
fashion based on monitoring data is proposed.

• The resource manager architecture is extended to support adding servers on de-
mand as well as reconfiguring the system dynamically after a server failure.

• The framework is evaluated in a larger more realistic environment with up to
9 Grid servers (our previous work only considered 2 servers) and with more
complex and representative workloads. The evaluation includes experiments in
dynamic environments not considered previously.

• The servers are deployed in a virtualized environment which is typical for mod-
ern state-of-the-art Grid and SOA systems.

• An extensive performance evaluation of the individual features of our extended
architecture is presented including the method for autonomic workload charac-
terization, the method for adding servers on demand and the method for dynamic
reconfiguration after a server failure.

• The online performance prediction mechanism is extended to support a general
purpose simulation system OMNeT++ [12], in addition to QPN models. With
OMNeT++ an arbitrary complex system can be modeled since it allows compo-
nent behavior to be described using a general purpose programming language.

The rest of the paper is organized as follows. In Section 2, we introduce our QoS-
aware resource manager architecture with the extensions mentioned above. In Sec-
tion 3, we describe the experimental environment in which we evaluate the perfor-
mance of our framework. Section 4 presents the detailed results of our performance
evaluation. Section 5 summarizes related work in the area of QoS management in
Grid computing. Finally, in Section 6, we present some concluding remarks and
discuss future work.

2 Grid QoS-Aware Resource Management

The allocation and scheduling mechanism used at the global and local level play
a critical role for the performance and availability of Grid applications. To prevent
resource congestion and unavailability, it is essential that admission control mech-
anisms are employed by local resource managers. Furthermore, to achieve maxi-
mum performance, the Grid middleware must be smart enough to schedule tasks
in such a way that the workload is load-balanced among the available resources
and they are all roughly equally utilized. However, this is not enough to guaran-

4

tee that the performance and QoS requirements are satisfied. To prevent inadequate
QoS, resource managers must be able to predict the system performance for a given
resource allocation and workload distribution. In this section, we present a method-
ology for designing QoS-aware resource managers as part of the Grid middleware.
Our prototype is built for a scenario where no security issues arise due to Grid
server providers being unwilling to share workload information about the services
they offer. Building the same system with limitations on the workload informa-
tion that can be shared between providers would require some extensions to our
framework.

2.1 Resource Manager Architecture

The resource manager architecture we propose is composed of four main compo-
nents: QoS Broker, QoS Predictor, Client Registry and Service Registry. Figure 1
shows a high-level view of the architecture. A resource manager is responsible for
managing access to a set of Grid servers each one offering some Grid services. Grid
servers can be heterogeneous in terms of the hardware and software platforms they
are based on and the services they offer. Services can be offered by different num-
ber of servers depending on the user demand. The resource manager keeps track
of the Grid servers currently available and mediates between clients and servers to
make sure that SLAs are continuously met. For a client to be able to use a service,
it must first send a session request to the resource manager. The session request
specifies the type of service requested, the frequency with which the client will
send requests for the service 1 (service request arrival rate) and the required aver-
age response time (SLA). The resource manager tries to find a distribution of the
incoming requests among the available servers that would provide the requested
QoS. If this is not possible, the session request is rejected or a counter offer with
lower throughput or higher average response time is made. Figure 2 shows a more
detailed view of the resource manager architecture and its internal components. We
now take an inside look at each component in turn.

The service registry keeps track of the Grid servers the resource manager is re-
sponsible for and the services they offer. Before a Grid server can be used, it must
register with a resource manager providing information on the services it offers,
their resource requirements and the server capacity made available to the Grid. For
maximum interoperability, it is expected that standard Web Services mechanisms,
such as WSDL [13], are used to describe services. In addition to sending a descrip-
tion of the services, the Grid server must provide a workload model that captures
the service behavior and resource requirements. Depending on the type of services,
the workload model could vary in complexity ranging from a simple specification

1 Note that we distinguish between session requests and the individual service requests
sent as part of a session.

5

Grid QoS-Aware
Resource Manager

Clie
nt

Ses
sio

n

Neg
oti

ati
on

Grid Server 1

Services CPUs

Grid Server N

Services CPUsClient

ServiceRequest
Service Request

Dispatcher

Client
Registry

QoS
Broker

QoS
Predictor

Service
Registry

Figure 1. Resource manager architecture.

Grid QoS-Aware Resource Manager

QoS Predictor

Online Model
Generator

Online Model
Solver

Service Request Dispatcher

Session Service Queue
Concurrent Service Requests

QoS Broker

Negotiation
Policy

Client Registry

Client Session
 - Service Requested
 - Request Arrival Rate
 - Response Time SLA

Service Registry

Grid Server
 - Offered Services
 - Server Workload Model
 - Server Capacity and Utilization Constraints

Figure 2. Inside view of the resource manager architecture.

of the service demands at the server resources to a detailed mathematical model
capturing the flow of control during service execution. The Job Submission De-
scription Language (JSDL) [14] could be used to describe service resource and data
requirements in a standarized way. Finally, the server administrator might want to
impose a limit on its usage by the Grid middleware in order to avoid overloading
it. Some Grid servers have been shown to exhibit unstable behavior when their uti-
lization approaches 99% [15]. For each server, the service registry keeps track of
its maximum allowed utilization by the Grid.

6

The QoS broker receives session requests from clients, allocates server resources
and negotiates SLAs. When a client sends a session request, the QoS broker tries to
find an optimal distribution of the workload among the available Grid servers that
satisfies the QoS requirements. It is assumed that for each client session, a given
number of threads (from 0 to unlimited) is allocated on each Grid server offering
the respective service. Incoming service requests are then load-balanced across the
servers according to thread availability. Threads serve to limit the concurrent re-
quests executed on each server, so that different load-balancing schemes can be
enforced. The QoS broker tries to distribute the workload uniformly among the
available servers to achieve maximum efficiency. In doing so it considers different
configurations in terms of thread allocation and for each of them uses the QoS pre-
dictor to predict the performance of the system. The goal is to find a configuration
that satisfies both the SLAs of active sessions and the constraints on the maximum
utilization of the Grid servers. If no configuration can be found, the QoS broker
must either reject the session request or send a counter offer to the client. While
this is beyond the scope of the current paper, the QoS negotiation protocol we use
here can easily be extended to support standard service negotiation protocols such
as the Web Services Agreement Specification (WS-Agreement) [16]. At each point
in time, the client registry keeps track of the currently active client sessions. For
each session, information on the service requested, the request arrival rate and the
required average response time (SLA) is stored.

If a session request is accepted, the resource manager sets up a service request dis-
patcher for the new session, which is a standalone software component responsible
for scheduling arriving service requests (as part of the session) for processing at
the Grid servers. It is ensured that the number of concurrent requests scheduled
on a Grid server does not exceed the number of threads allocated to the session
for the respective server. The service request dispatcher queues incoming requests
and forwards them to Grid servers as threads become available. Note that threads
are used here as a logical entity to enforce the desired concurrency level on each
server. Thread management is done entirely by the service request dispatcher and
there is no need for Grid servers to know anything about the client sessions and
how many threads are allocated to each of them. In fact the only requirement is that
the request dispatcher sends no more concurrent requests to a Grid server than the
maximum allowed by the active configuration. While the request dispatcher might
use a separate physical thread for each logical thread allocated to a session, this
is not required by the architecture and there are many ways to avoid doing this
in the interest of performance. Service request dispatchers are not required to run
on the same machine as the resource manager and they can be distributed across
multiple machines if needed. To summarize, service request dispatchers serve as
light-weight session load-balancers enforcing the selected workload distribution.

Service request dispatchers play an essential role in our framework since they com-
pletely decouple the Grid clients from the Grid servers. This decoupling provides
some important advantages that are especially relevant to modern Grid applications.

7

First of all, the decoupling enables us to introduce fine-grained load-balancing at
the service request level, as opposed to the session level. Second, service request
dispatchers make it possible to load-balance requests across heterogeneous server
resources without relying on any platform-specific scheduling or load-balancing
mechanisms. Finally, since clients do not interact with the servers directly, it is
possible to adjust the resource allocation and load-balancing strategies dynami-
cally. Thus, our framework is geared towards making the Grid middleware self-
configurable and adaptable to changes in the system environment and workload.
Taken together the above mentioned benefits provide extreme flexibility in manag-
ing Grid resources which is essential for enterprise and commercial Grid environ-
ments.

The resource manager architecture we propose is mainly targeted at scenarios where
the resources managed by a single resource manager belong to the same business
entity. In scenarios where a resource manager is used to manage resources span-
ning multiple business domains, it is expected that providers of Grid resources are
willing to share information about the behavior and resource requirements of the
services they offer. Note that only high-level information on the service resource
consumption is expected to be shared, i.e., no information about the internal service
implementation is required. Although it is outside of the scope of the current paper,
our approach can be easily extended to support managing Grid resources using a
hierarchy of resource managers. This would eliminate any confidentiality issues in
a scenario with multiple business domains, since each domain would use their own
local resource managers. As part of our future work, we plan to develop algorithms
for load balancing across multiple resource managers.

2.2 QoS Predictor

The QoS Predictor is a critical component of the resource manager architecture
since it is the basis for ensuring that the QoS requirements are continuously met.
The QoS Predictor is made of two subcomponents - model generator and model
solver. The model generator automatically constructs a performance model based
on the active client sessions and the server workload models retrieved from the ser-
vice registry. The model solver is used to analyze the model either analytically or
through simulation. Different types of performance models can be used to imple-
ment the QoS Predictor. We propose the use of Queueing Petri Nets (QPNs) which
provide greater modeling power and expressiveness than conventional modeling
formalisms like queueing networks, extended queueing networks and generalized
stochastic Petri nets [17]. In [9], it was shown that QPN models lend themselves
very well to modeling distributed component-based systems and provide a number
of important benefits such as improved modeling accuracy and representativeness.
The expressiveness that QPNs models offer makes it possible to model the logical
threads used in our load-balancing mechanism accurately. Depending on the size of

8

QPN models, different methods can be used for their analysis, from product-form
analytical solution methods [18] to highly optimized simulation techniques [19].

Figure 3 shows a high-level QPN model of a set of Grid servers under the control
of a QoS-aware resource manager. The Grid servers are modeled with nested QPNs
represented as subnet places. The Client place contains a G/G/∞/IS queue which
models the arrival of service requests sent by clients. Service requests are modeled
using tokens of different colors, each color representing a client session. For each
active session, there is always one token in the Client place. When the token leaves
the Client queue, transition t1 fires moving the token to place Service Queue (rep-
resenting the arrival of a service request) and depositing a new copy of it in the
Client queue. This new token represents the next service request which is delayed
in the Client queue for the request interarrival time. An arbitrary request interar-
rival time distribution can be used. For each Grid server the resource manager has
a Server Thread Pool place containing tokens representing the logical threads on
this server allocated to the different sessions (using colors to distinguish between
them). An arriving service request is queued at place Service Queue and waits un-
til a thread for its session becomes available. When this happens, the request is
sent to the subnet place representing the respective Grid server. After the request
is processed, the logical service thread is returned back to the thread pool from
where it was taken. By encapsulating the internal details of Grid servers in separate
nested QPNs, we decouple them from the high-level performance model. Differ-
ent servers can be modeled at different level of detail depending on the complexity
of the services they offer. It is assumed that when registering with the resource
manager, each Grid server provides all the information needed for constructing its
nested QPN model. This information is basically what constitutes the server work-
load model discussed earlier. In the most general case, Grid servers could send their
complete QPN models to be integrated into the high-level model.

Client Service
Queue

Grid Server 1

Grid Server N

Server 1
Thread Pool

Server N
Thread Pool

t1 t2 t3

QoS-Aware Resource Manager

Figure 3. Generic performance model.

9

2.3 Resource Allocation Algorithm

The presented resource manager architecture is reliant on an efficient algorithm for
allocating resources in such a way that both the QoS requirements and the Grid
server utilization constraints are honored. In this section, we present such an al-
gorithm that can be used to implement the QoS Broker component described in
Section 2.1. Formally, the Grid environment under the control of a QoS-aware re-
source manager can be represented as a 4-tuple G = (S, V, F, C) where:

S = {s1, s2, ..., sm} is the set of Grid servers,
V = {v1, v2, ..., vn} is the overall set of services offered by the Grid servers,
F ∈ [S −→ 2V] 2 is a function assigning a set of services to each Grid server. Since

Grids are typically heterogeneous in nature, we assume that, depending on the
platform they are running on, Grid servers might offer different subsets of the
overall set of services,

C = {c1, c2, ..., cl} is the set of currently active client sessions. Each session c ∈ C
is a triple (v, λ, ρ) where v ∈ V is the service used, λ is the rate at which requests
for the service arrive and ρ is the client requested average response time (SLA).

We denote the number of processors (CPUs) of server s ∈ S as P (s) and the
server’s maximum allowed average utilization as U(s). It is assumed that for each
client session, a given number of threads (from 0 to unlimited) is allocated on ev-
ery Grid server offering the respective service. Recall that threads are used as a
logical entity to limit the concurrency level on each server and they should not
be confused with physical threads allocated on the machines. The goal of the re-
source allocation algorithm is to find a configuration, in terms of allocated threads,
that satisfies both the SLAs of active sessions and the constraints on the maxi-
mum utilization of the Grid servers. A configuration is represented by a func-
tion T ∈ [C × S −→ N0 ∪ {∞}] which will be referred to as thread allocation
function. Hereafter, a superscript T will be used to denote functions or quantities
that depend on the thread allocation function, e.g. XT (c).

As discussed in Section 2.1, the QoS Broker examines a set of possible configura-
tions using the QoS Predictor to determine if they meet the requirements. For each
considered configuration, the QoS Predictor takes as input the thread allocation
function T and provides the following predicted metrics as output:

XT (c) for c ∈ C is the total number of completed service requests from client
session c per unit of time (the overall throughput),

UT (s) for s ∈ S is the average utilization of server s,
RT (c) for c ∈ C is the average response time of an arriving service request from

client session c.

2 2V denotes the set of all possible subsets of V , i.e. the power set.

10

We define the following predicates:

P T
X(c) for c ∈ C is defined as (XT (c) = c[λ])

P T
R (c) for c ∈ C is defined as (RT (c) <= c[ρ])

P T
U (s) for s ∈ S is defined as (UT (s) <= U(s))

For a configuration represented by a thread allocation function T to be acceptable,
the following condition must hold (∀c ∈ C : P T

X(c) ∧ P T
R (c)) ∧ (∀s ∈ S : P T

U (s)).
We define the following functions:

AT (s)
def
= (U(s)− UT (s))P (s)

is the amount of unused server CPU time for a given configuration taking into
account the maximum allowed server utilization,

IT (v, ε)
def
= {s ∈ S : (v ∈ F (s)) ∧ (AT (s) ≥ ε)} is the set of servers offering ser-

vice v that have at least ε amount of unused CPU time. We now present a simple
heuristic resource allocation algorithm in mathematical style pseudocode. It is out-
side the scope of this paper to present complete analysis of possible heuristics and
their efficiency. Let c̃ = (v, λ, ρ) be a newly arrived client session request. The
algorithm proceeds as follows:

1 C := C ∪ {c̃}
2 for each s ∈ S do

3 if s ∈ IT (v, ε) then T (c̃, s) := ∞
4 else T (c̃, s) := 0
5 if

(∃ c ∈ C : ¬P T
X(c)

)
then reject c̃

6 while
(∃ ŝ ∈ S : ¬P T

U (ŝ)
)
do

7 begin

8 T (c̃, ŝ) := 1
9 while P T

U (ŝ) do T (c̃, ŝ) := T (c̃, ŝ) + 1
10 T (c̃, ŝ) := T (c̃, ŝ) − 1
11 end

12 if
(∃ c ∈ C \ {c̃} : ¬P T

X(c) ∨ ¬P T
R (c)

)
then reject c̃

13 else if
(¬P T

X(c̃) ∨ ¬P T
R (c̃)

)
then

14 send counter offer o =
(
v,XT (c̃), RT (c̃)

)

15 else accept c̃

The algorithm first adds the new session to the list of active sessions and assigns it
an unlimited number of threads on every server that has a given minimum amount
of CPU time available. If this leads to the system not being able to sustain the
required throughput of an active session, the request is rejected. Otherwise, it is

11

checked if there are servers whose maximum utilization requirement is broken. For
every such server, the number of threads for the new session is set to the highest
number that does not result in breaking the maximum utilization requirement. It is
then checked if the response time or throughput requirement of one of the original
sessions is violated and if that is the case the new session request is rejected. Other-
wise, if the throughput or response time requirement of the new session is broken,
a counter offer with the predicted throughput and response time is sent to the client.
If none of the above holds, i.e., all requirements are satisfied, the session request is
accepted. In general, the larger the resource demands of a request, the higher the
likelihood of rejection would be if the system is loaded. A larger workload request
would require more resources and therefore the likelihood of interfering with the
already running sessions (breaking their SLAs) is higher leading to higher proba-
bility of rejection.

Given that for each overutilized server, threads are allocated one by one until the
maximum allowed utilization is reached, in the worst case, the number of candi-
date configurations considered would be upper bounded by the number of server
CPUs available. The algorithm presented above could be improved in a number of
different ways, for example, by aggregating sessions that execute the same service,
allocating server resources bottom up instead of top down, parallelizing the simula-
tion to utilize multi-core processors, caching and reusing analyzed configurations,
simulating configurations proactively and so forth. The overall overhead of the QoS
Broker and possible optimizations are discussed in more detail in Section 4.6. As
mentioned above, it is outside the scope of this paper to present complete analysis
of the possible heuristics and we intend to consider this as part of our future work.

2.4 Workload Characterization On-The-Fly

So far we have assumed that when a Grid server is registered with the resource
manager, a workload model is provided that captures the service behavior and its re-
source requirements. The workload model is used to generate a performance model
as described in Section 2.2. Depending on the type of services, the workload model
could vary in complexity ranging from a simple specification of the service de-
mands at the server resources to a detailed mathematical model capturing the flow
of control during service execution. In this section, we present a method for gen-
erating workload models on-the-fly in an autonomic fashion based on monitoring
data. We assume that services use the Grid to execute some business logic requir-
ing a given amount of CPU time. The method we propose is applicable for services
with no internal parallelism. The service business logic, however, might include
calls to external (third-party) service providers which are not part of the Grid envi-
ronment. Thus, in order to generate a service workload model, we need to estimate
the CPU service demands of the services (the total time they spend using the server
CPUs) and the total time during service execution spent waiting for external service

12

providers.

We have developed an algorithm for estimating the CPU service demands itera-
tively during system operation. We assume that services are added and removed
dynamically and no information on their behavior and resource consumption is
available. The service demands are estimated for each client session based on mon-
itoring data. In the beginning of the session, the service demand at each server is set
to the session response time SLA (c̃[ρ] in the notation of the previous section). The
latter serves as a conservative upper bound on the real service demand. Whenever
a request is processed at a Grid server, the server response time is compared with
the current estimate of the service demand and if it is lower the estimate is updated.
Thus, as the session progresses, the service demand is iteratively set to the lowest
observed response time on the respective server. It is expected that during periods
of lower workload intensity, the observed response time will be close to the ser-
vice demand. This approach would work provided that the time spent waiting for
external service providers is insignificant compared to the time spent executing the
service business logic. To accommodate the more general case, we further monitor
the server CPU utilization during service execution and use it to break down the
measured response time into time spent using the CPU and time spent waiting for
external calls. This allows us to estimate the external provider time. More formally,
the algorithm proceeds as follows:

1 Upon arrival of new session request ĉ do

2 for each s ∈ S : (ĉ[v] ∈ F (s)) do

3 begin

4 Γ[ĉ, s] := ĉ[ρ]
5 Ψ[ĉ, s] := 0
6 Θ[ĉ, s] := ĉ[ρ]
7 end

8

9 Upon completion of request x of session ĉ at server ŝ do

10 if (MR(x) < Θ[ĉ, ŝ]) then

11 begin

12 Θ[ĉ, ŝ] := MR(x)
13 Γ[ĉ, ŝ] := MU (ŝ)Θ[ĉ, ŝ]
14 Ψ[ĉ, ŝ] := Θ[ĉ, ŝ] − Γ[ĉ, ŝ]
15 end

where

Γ[c, s] for c ∈ C and s ∈ S denotes the CPU service demand (total CPU service
time) of requests of session c at server s.

13

Ψ[c, s] for c ∈ C and s ∈ S denotes the total time spent waiting for external service
providers when serving a request of session c at server s.

Θ[c, s] for c ∈ C and s ∈ S denotes the minimum observed response time of a
request of session c at server s.

MU(s) for s ∈ S denotes the measured CPU utilization of server s during a service
execution.

MR(x) where x is a service request denotes the measured response time of the
request excluding any queueing time at the service request dispatcher.

We shall distinguish between the basic version of the algorithm and the enhanced
version which includes the additional step to break down the measured response
time into time spent using the CPU and time spent waiting for external calls. Our
algorithm is conservative in that it starts with conservative estimates of the CPU ser-
vice demands and refines them iteratively in the course of the session. As a result
of this, in the beginning of the session, its resource requirements would be overes-
timated possibly leading to rejecting some client requests even though they could
have been accepted without breaking SLAs. The algorithm as presented above can
be used for sessions that run services for which no previous information is available
in the service registry. Once the service demands of a new service has been esti-
mated, the estimates can be registered in the service registry and used as a starting
point in future sessions. The estimates can be further refined as new sessions are
executed.

2.5 Dynamic Reconfiguration

The resource allocation algorithm we presented in Section 2.3 assumes that at each
point in time there is a fixed set of servers available and tries to distribute the work-
load among them in such a way that client SLAs are honored. With the increasing
proliferation of virtualization solutions and server consolidation, launching servers
on demand is becoming more typical. In line with this trend, we have extended our
resource allocation algorithm to support adding Grid servers on demand as well
as dynamically reconfiguring the system after a server failure. Whenever the QoS
requested by a client cannot be provided using the currently available server re-
sources, the extended algorithm considers to launch an additional server to accom-
modate the new session. At the same time, each time a server failure is detected, the
resource manager reconfigures all sessions that had threads allocated on the failed
server. The extended algorithm proceeds by considering the affected sessions as
new client requests. Existing sessions might have to be cancelled in case there are
not enough resources available to provide adequate QoS. Economic factors such
as revenue obtained from customer sessions should be considered when deciding
which sessions to cancel.

We now present the version of our algorithm that supports adding servers on de-

14

mand. We denote with B the set of off-line servers available that can be started on
demand. Let c̃ = (v, λ, ρ) be a newly arrived client session request. The algorithm
proceeds as follows:

1 C := C ∪ {c̃}
2 I := IT

3 B := B

4 for each ŝ ∈ S do T (c̃, ŝ) := 0
5 repeat

6 begin

7 for each ŝ ∈ I(v, ε) : T (c̃, ŝ) = 0 do

8 begin

9 T (c̃, ŝ) := ∞
10 if

(∃ c ∈ C \ {c̃} : ¬P T
X(c) ∨ ¬P T

R (c)
)
then

11 begin

12 T (c̃, ŝ) := 0
13 I(v, ε) := I(v, ε) \ {ŝ}
14 end

15 else break

16 end

17 if
(
(∀ s ∈ S : T (c̃, s) = 0) ∨ ¬P T

X(c̃) ∨ ¬P T
R (c̃)

)
then

18 begin

19 if (∃ n ∈ B) then

20 begin

21 B := B \ {n}
22 I(v, ε) = I(v, ε) ∪ {n}
23 end

24 else break

25 end

26 end

27 until
((

P T
X(c̃) ∧ P T

R (c̃)
) ∨ ¬ (∃ ŝ ∈ I(v, ε) : T (c̃, ŝ) = 0

))

28 if (∀ s ∈ S : T (c̃, s) = 0) then reject c̃

29 else if
(¬P T

X(c̃) ∨ ¬P T
R (c̃)

)
then

30 send counter offer o =
(
v,XT (c̃), RT (c̃)

)

31 else accept c̃

The algorithm tries to minimize the number of servers on which threads are as-
signed for the new session. In case the requested QoS cannot be provided with the
current set of servers, a new server is started.

15

Finally, we present our algorithm for dynamic reconfiguration after a server failure.
We will use Alg(ĉ, IT , S) to denote a call to our original resource allocation algo-
rithm from Section 2.3 with the respective parameters. Let E(s) be the number of
failures detected on server s (initially 0).

1 I := IT

2 while (∃ ŝ ∈ S : E(ŝ) > 0) do

3 begin

4 D := ∅
5 for each c ∈ C : T (c, ŝ) > 0 do

6 begin

7 D := D ∪ {c}
8 for each s ∈ S do T (c, s) = 0
9 end

10 S := S \ {ŝ}
11 I := I \ {ŝ}
12 for each ĉ ∈ D do Alg(ĉ, I, S)
13 end

The algorithms presented here can be easily extended to take into account addi-
tional factors such as the costs associated with adding new servers, the revenue
gained from new customer sessions as well as the costs incurred when breaking
customer SLAs. Utility functions can be used to take into account the influence of
these factors when making decisions [20].

3 Experimental Environment

In this section, we introduce the experimental environment in which we evaluate
the performance of our QoS-aware resource management framework. We use two
different experimental setups, the first one with only two Grid servers, the second
one with up to nine servers running in a virtualized environment.

3.1 Experimental Setup 1

The first setup consists of two heterogeneous Grid servers, one 2-way Pentium
Xeon at 2.4 GHz with 2 GB of memory and one 4-way Pentium Xeon at 1.4 GHz
with 4 GB of memory. Both servers run Globus Toolkit 4.0.3 [11] (with the latest
patches) on a Sun 1.5.0 06 JVM. Access to the Grid servers is controlled by our

16

QoS-aware resource manager, running on a separate machine with identical hard-
ware as the first Grid server. This machine is also used for emulating the clients that
send requests to the Grid. The machines communicate over a Gigabit network. The
focus of our analysis is on the QoS negotiation and resource allocation algorithms
and not on the way individual Grid servers are modeled.

As a basis for our experiments, we use three sample services each with different
behavior and service demands. The services use the Grid to execute some business
logic requiring a given amount of CPU time. The business logic might include calls
to external (third-party) service providers which are not part of the Grid environ-
ment. The time spent waiting for external service providers is emulated by intro-
ducing some sleep time during the processing of service requests. Table 1 shows the
CPU service times of the three services at the two Grid servers and the total time
emulated waiting for external service providers. The third service does not use any
external service providers.
Table 1
Workload service demands.

Service 1 Service 2 Service 3

CPU service time on 2-way server (sec) 6.89 4.79 5.84

CPU service time on 4-way server (sec) 7.72 5.68 6.49

External service provider time (sec) 2.00 3.00 na

Both of the Grid servers offer all of the three services and they provide the data on
Table 1 as part of their server workload model when registering with the resource
manager. The resource manager uses this data to construct a performance model of
the Grid servers as discussed in Section 2.2.

3.2 Experimental Setup 2

The second setup consists of nine Grid servers deployed in a virtualized environ-
ment based on the Xen virtual machine [21]. Using virtualization makes it easy to
run multiple Grid servers [22] on the same physical hardware and to experiment
with different system topologies. The nine virtualized servers are hosted on two
64 bit machines, one 8-way Pentium Xeon at 2.60 GHz with 9 GB of memory and
one 4-way Pentium Xeon at 3.16 GHz with 10 GB of memory. The first machine
is hosting seven 1-way servers, whereas the second machine is hosting one 1-way
server and one 2-way server. One CPU on each physical machine is assigned to
Domain-0 of Xen and the rest of the CPUs are each assigned exclusively to one
virtual server. Every server is running Globus Toolkit 4.0.5 with the latest patches
on a Sun 1.5.0 12 JVM with 1 GB of memory available. Finally, the machines are
connected using a Gigabit Ethernet. The environment is depicted in Figure 4.

17

Xen
1-CPU

Xen
1-CPU

Xen
1-CPU

Xen
1-CPU

Xen
1-CPU

Xen
1-CPU

Xen
1-CPU

Xen
1-CPU

Xen
2-CPU

8-way
Pentium Xeon

4-way
Pentium Xeon

Globus Toolkit 4.0.5 Globus Toolkit 4.0.5

Figure 4. Experimental setup 2.

The QoS-aware resource manager is running on a separate 2-way machine also
used for emulating the Grid clients. The same services as in the first setup are used.
Table 2 shows the CPU service times of the three services at the virtualized servers
and the total time emulated waiting for external service providers.
Table 2
Workload service demands in the virtualized environment.

Service 1 Service 2 Service 3

CPU service time on 1-way server (8-way machine) 7.48 5.28 6.05

CPU service time on 1-way server (4-way machine) 7.17 5.19 6.22

CPU service time on 2-way server (4-way machine) 7.04 5.07 6.04

External service provider time (sec) 2.00 3.00 na

3.3 Modeling the Grid Servers

Each Grid server is modeled using a nested QPN as shown in Figure 5. The nested
QPNs are then integrated into the subnet places of the high-level system model
in Figure 3. Service requests arriving at a Grid server circulate between queue-
ing place Server CPUs and queueing place Service Providers, which model the
time spent using the server CPUs and the time spent waiting for external service
providers, respectively. Place Server CPUs contains a G/M/m/PS queue where
m is the number of CPUs, whereas place Service Providers contains a G/M/∞/IS
queue. For simplicity, it is assumed that the service times at the server CPUs, the
request interarrival times and the times spent waiting for external service providers
are all exponentially distributed. In the general case this is not required. The firing
weights of transition t2 are set in such a way that place Service Providers is visited
one time for Services 1 and 2 and it is not visited for Service 3. The QPN models of

18

the two Grid servers were validated and shown to provide accurate predictions of
performance metrics (with error below 10%). The model solver component of the
QoS Predictor was implemented using SimQPN - our highly optimized simulation
engine for QPNs [19].

Service
Providers

Input OutputServer
CPUs

Grid Server

t1 t2

t3

Figure 5. Grid server model.

An alternative approach to model the Grid servers is to use a general purpose simu-
lation system such as OMNeT++ [12] which is based on message passing. We have
used OMNeT++ successfully to model a Tomcat Web server [23] with software
admission control. With OMNeT++ an arbitrary complex system can be modeled
since it allows component behavior to be described using a general purpose pro-
gramming language like C++. The increase in modeling power, however, comes at
the price of the extra effort needed to build the models. In this paper, we use both
QPN models (solved using SimQPN) and OMNeT++ models. Figure 6 compares
the predicted response times of a 1-way server against measurements on the real
system. A number of different configurations under different session mixes, thread
allocations and request arrival rates were analyzed and in each case the model pre-
dictions were compared against measurements of the real system. Several concrete
scenarios that we studied were presented in [6]. The results showed that both QPN
and OMNeT++ models provided very consistent and accurate predictions of per-
formance metrics. In all cases, the modeling error was below 15%.

Figure 7 compares the precision of interval estimates provided by SimQPN and
OMNeT++ when running the simulation for a fixed amount of CPU time. The pre-
cision is measured in terms of the maximum width of 95% confidence intervals for
request response times. For run times below 1 second, SimQPN provides slightly
wider confidence intervals than OMNeT++, however, there is hardly any difference
for run times greater than 1 second. At the same time, while OMNeT++ results
are limited to request response times, SimQPN results are more comprehensive
and include estimates of request throughputs, server utilization, queue lengths, etc.
Moreover, QPN models have the advantage that they are much easier to build and,
as discussed in Section 2.2, they can be hierarchically composed which facilitates

19

 0

 20

 40

 60

 80

 100

 120

 140

 2 3 4 5 6 7 8

R
es

po
ns

e
T

im
e

(s
ec

)

new service requests / min

Measured
Predicted with QPN/SimQPN

Predicted with OMNeT++

Figure 6. Predicted vs. measured session response times (sec) on a 1-way server

the dynamic model construction. The hierarchical composition is essential since it
introduces a clear separation of the high-level system model from the individual
Grid server models. The latter can be developed independently without knowing in
which environment they will be used.

 0

 50

 100

 150

 200

 250

 300

 350

 1 10 100

P
re

ci
si

on
 (

m
ax

 c
.i.

 w
id

th
)

CPU Time

SimQPN OMNeT++

Figure 7. Precision of interval estimates provided by SimQPN and OMNeT++ for a given
simulation run time (sec).

20

3.4 Client Emulation

We have developed a client emulator framework that emulates client sessions send-
ing requests to the Grid environment. Each experiment runs a set of client sessions
with given SLAs on the response time of service requests. The user can configure
the target session mix specifying for every session the service used and the time
between successive service requests (the interarrival time). Client requests are re-
ceived by the service request dispatcher and forwarded to the Grid servers accord-
ing to the configured scheduling strategy. Figure 8 illustrates the flow of control
when processing service requests.

Service Request
Dispatcher

Enforces configured concurrency
level for session n

Enforces configured concurrency
level for session m

Thread Pool for
session n

Thread Pool for
session m

GLOBUS
server i

Service returns
and response

time is computed

Service returns
and response

time is computed

Service request queue
for session n

Service request queue
for session m

GLOBUS
server j

Client Emulator

Session n emulator thread

Generates service requests with a
specified interarrival time

Session m emulator thread

Generates service requests with a
specified interarrival time

Figure 8. Flow of control when processing service requests.

21

4 Evaluation

We now evaluate the performance of our QoS-aware resource management frame-
work in several scenarios varying the system configuration and workload. The first
two scenarios were run in the first experimental setup (see Section 3.1), while the
rest of the scenarios were run in the virtualized setup (see Section 3.2).

4.1 Scenario 1

In the first scenario, 16 session requests are sent to the resource manager each
with a given throughput and response time SLA. The experiment is run until all
accepted sessions complete. The session length, in terms of the number of service
requests sent before closing a session, varies between 20 and 120 with an average
of 65. The response time SLA ranges between 16 and 30 seconds. We compare
the behavior of the system in two different configurations - “with QoS Control”
vs. “without QoS Control”. In the first configuration, the resource manager applies
admission control using our resource allocation framework to ensure that SLAs are
honored. In the second configuration, the resource manager simply load-balances
the incoming requests over the two servers without considering QoS requirements.
For both Grid servers, we assume that there is a 90% maximum server utilization
constraint. The experiment was repeated 10 times for each of the two configurations
to evaluate the variability of measured data.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

R
es

po
ns

e
T

im
e

(s
ec

)

Sessions

Response Time SLA
Response Time without QoS Control (95% c.i.)

Response Time with QoS Control (95% c.i.)

Figure 9. Response time obtained with QoS Control vs. without QoS Control.

Without QoS Control both servers are overloaded during the first half of the experi-
ment exceeding their targeted maximum utilization. In contrast, when running with

22

QoS Control enabled, some session requests are rejected and the server utilization
does not exceed its target upper bound of 90%. Figure 9 shows the measured av-
erage response times of sessions with and without QoS Control (95% confidence
intervals are given) 3 . As seen from the results, when QoS Control is enabled, re-
sponse times are very stable and all SLAs are fulfilled. The system exhibits very
stable behavior from one iteration of the experiment to the next and the confidence
intervals are very narrow given that they are computed for the mean of a quantity
which is itself an average value (i.e. average request response time). In contrast,
without QoS Control, due to the fact that the Grid servers are overloaded, the sys-
tem exhibits very variable response times and the client requested SLAs are broken.
The confidence intervals are by far much wider in this case. Further details on the
above experiment including throughput and utilization data, can be found in [8].

4.2 Scenario 2

In this scenario, a longer experiment was run in which 99 sessions were executed
over a period of 2 hours. Figure 10 shows the response time results. The average
session duration was 18 minutes in which 92 service requests were sent on average.
When running without QoS control, the system was configured to automatically re-
ject session requests during periods in which both Grid servers were completely
saturated (overload control). While this improved the average response times of ac-
cepted sessions, the response times were still too high when running without QoS
control and the SLAs were violated. In contrast, with QoS control, the response
times of accepted sessions were much lower and all SLAs were fulfilled. The ex-
periment was repeated for a number of different workload configurations varying
the transaction mix, the average session length, the Grid server utilization, etc. The
results were of similar quality as the ones presented above and they confirmed the
effectiveness of our resource manager architecture in ensuring that QoS require-
ments are continuously met.

4.3 Scenario 3: Workload Characterization On-The-Fly

In this scenario, we evaluate the effectiveness of our framework when no informa-
tion on the service behavior and resource consumption is available. Workload char-
acterization is performed on-the-fly using our technique presented in Section 2.4.
The experiment was conducted in the virtualized setup with 9 Grid servers. A total
of 85 sessions were run over a period of 2 hours. The experiment was repeated for
several different configurations:

3 Note that in the case with QoS Control, the response time is only shown for sessions that
were accepted by the resource manager. The sessions are ordered by the time they were
started.

23

 0

 5

 10

 15

 20

 25

 30

 35

R
es

po
ns

e
T

im
e

(s
ec

)

Sessions

Response Time SLA
Response Time with Overload Control

Response Time with QoS Control

Figure 10. Response time obtained with QoS Control vs. without QoS Control.

Config 1 Overload control: reject new session requests when server utilization ex-
ceeds a specified threshold.

Config 2 QoS control with workload model available in advance.
Config 3 QoS control with workload characterization done on-the-fly using the

basic algorithm.
Config 4 QoS control with workload characterization done on-the-fly using the

enhanced algorithm.

In the first configuration, server resources were allocated on a round-robin basis
without QoS control and the resource manager was configured to reject new ses-
sion requests when the utilization of all servers exceeds 70%. In the second con-
figuration, QoS Control was enabled and the resource manager was configured to
use predefined workload parameters obtained through offline workload character-
ization. In the third and fourth configurations, workload characterization was per-
formed on-the-fly using the basic and enhanced algorithm, respectively. Figure 11
shows the measured mean response times of accepted sessions in the four configu-
rations. The sessions are ordered by the time the respective session request is sent,
however, since most sessions are long their execution overlaps in time. As a result,
session requests sent in the middle are rejected since the Grid is saturated at this
point. As sessions start to finish, resources are freed and new sessions start being
accepted again. The estimated service workload parameters (CPU service demands
and time spent waiting for external service providers) for six arbitrarily selected
servers in the third and fourth configurations are shown in Table 3. As we can see,

24

the accuracy of the estimated workload parameters varies from server to server de-
pending on the average server load and the amount of measurement data available
for the different services. As time progresses, the estimates become more and more
accurate since more data becomes available.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

R
es

po
ns

e
T

im
e

(s
ec

)

Sessions

Response Time SLA
Response Time with Config 1 - Overload control

Response Time with Config 2 - QoS control, workload model available in advance
Response Time with Config 3 - QoS control, workload characterization on-the-fly with basic algorithm

Response Time with Config 4 - QoS control, workload characterization on-the-fly with enhanced algorithm

Figure 11. Response times obtained with workload characterization on-the-fly.

Table 4 presents a break down of the client sessions into i) sessions for which
the client SLA was observed, ii) sessions for which the client SLA was violated
and iii) sessions that were rejected by the resource manager. Without QoS Con-
trol, 96% of the requested sessions were admitted, however, the client SLAs were
observed in only 22% of them. In contrast to this, in all configurations with QoS
Control, the SLAs were observed for nearly 100% of the accepted sessions. Indeed,
only 2 sessions had their SLAs violated and the violation was by a tiny margin,
more specifically, the measured response times were only 1% higher than agreed.
As expected, the price for performing workload characterization on-the-fly is that
more sessions are rejected since conservative estimates of the service demands are
used. In the third configuration, with the basic workload characterization algorithm,
only 22 sessions (26%) were accepted compared to 48 (54%) in the case with of-
fline workload characterization (second configuration). In the fourth configuration,
however, with the enhanced algorithm, the penalty for not knowing the workload
parameters in advance was much less significant and only 14 sessions (16%) more
compared to the case with with offline workload characterization were rejected. As
we can see, despite of the fact that the service demand estimates were very rough
(Table 3), the resource allocation algorithm still performed quite well in distribut-
ing the load among the available servers and ensuring that the SLAs of accepted

25

Table 3
CPU service demands (Γ) and time spent waiting for external service providers (Ψ) in mil-
liseconds obtained in the 2nd, 3rd and 4th configuration for six randomly selected servers.

Server Service Configuration

2 3 4

Γ Ψ Γ Ψ Γ Ψ

0 7480 2000 9423 0 6973 2450

1-way 1 5280 3000 8570 0 4799 3771

2 6050 0 6940 0 6662 278

0 7480 2000 9513 0 7040 2473

1-way 1 5280 3000 8570 0 3599 4971

2 6050 0 6720 0 6384 336

0 7480 2000 9423 0 4052 5371

1-way 1 5280 3000 8570 0 4199 4371

2 6050 0 6720 0 5309 1411

0 7480 2000 9423 0 6502 2921

1-way 1 5280 3000 8570 0 4799 3771

2 6050 0 6720 0 4701 1719

0 7040 2000 9423 0 6973 2450

1-way 1 5070 3000 8570 0 3685 4885

2 6040 0 6720 0 4838 1882

0 7170 2000 9423 0 6973 2450

2-way 1 5190 3000 8570 0 4799 3771

2 6220 0 6732 0 6395 337

sessions are satisfied. Our experience showed that for scenarios where the Grid
servers are not continuously saturated, workload characterization on-the-fly is a
viable option.

4.4 Scenario 4: Grid Servers Added On Demand

In this scenario, we evaluate the effectiveness of our framework when servers are
added on demand as explained in Section 2.5. Again, the experiment was conducted
in the virtualized setup with 9 Grid servers. A total of 85 sessions were run over
a period of 2 hours. This time the experiment was repeated for the following four

26

Table 4
Summary of session SLA compliance in Scenario 3.

Configuration SLA fulfilled SLA violated Sessions rejected

1 19 63 3

2 46 2 37

3 22 0 63

4 34 0 51

configurations:

Config 1 Overload control with all nine servers available from the beginning.
Config 2 QoS control with all nine servers available from the beginning.
Config 3 Overload control with one server available in the beginning and servers

added on demand.
Config 4 QoS control with one server available in the beginning and servers added

on demand.

The first two configurations are the same as in the previous scenario and they as-
sume that all nine servers are available from the beginning of the experiment. The
third and fourth configurations assume that only one server is available in the begin-
ning and servers are added on demand. In the former, a new server is added to the
Grid whenever the utilization of all available servers is over 70% and a new session
request arrives. In the latter, a new server is added whenever the QoS requested by
a client cannot be provided using the currently available server resources. The main
difference in the case of adding servers on demand is that resources are allocated
incrementally and thus the space of possible configurations searched when allo-
cating threads is reduced. Therefore, a deployment with all servers available from
the beginning allows for better load balancing since the space of possible workload
distributions is larger.

Figure 12 shows the measured mean response times of accepted sessions in the
four configurations. Table 5 presents a summary of the session SLA compliance.
The results show that adding servers on demand does not have a significant impact
on the performance of the resource manager even though as mentioned above there
is less flexibility in distributing the workload. The algorithm can be easily extended
to take into account additional factors such as the costs associated with adding
new servers, the revenue gained from new customer sessions as well as the costs
incurred when breaking customer SLAs. Utility functions can be used to take into
account the influence of these factors when making decisions [20].

27

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

R
es

po
ns

e
T

im
e

(s
ec

)

Sessions

Response Time SLA
Response Time with Config 1 - Overload Control with dedicated servers

Response Time with Config 2 - QoS Control with dedicated servers
Response Time with Config 3 - Overload Control with servers added on demand

Response Time with Config 4 - QoS Control with servers added on demand

Figure 12. Response times obtained with servers added on demand.

Table 5
Summary of session SLA compliance in Scenario 4.

Configuration SLA fulfilled SLA violated Sessions rejected

1 19 63 3

2 46 2 37

3 15 61 9

4 45 7 33

4.5 Scenario 5: Dynamic Reconfiguration After Server Failure

In this last scenario, we consider dynamic system reconfiguration after a Grid server
failure. As previously, the experiment was conducted in the virtualized setup with
9 Grid servers and a total of 85 sessions were run over a period of 2 hours. The
experiment was repeated in five settings each with different number of emulated
server failures, from 1 to 5. The points at which server failures were emulated were
chosen randomly during the 2 hours. Each time a server failure is detected the
resource manager reconfigures all sessions that had threads allocated on the failed
server. This is done using the resource allocation algorithm considering the affected
sessions as new client requests. Existing sessions might have to be cancelled in case
there are not enough resources available to provide adequate QoS.

28

Table 6
Summary of session SLA compliance in Scenario 5.

Failures
emulated

Without QoS Control With QoS Control

SLA
fulfilled

SLA
violated

Sessions
rejected

SLA
fulfilled

SLA
violated

Sessions
rejected

1 14 62 9 37 1 47 (0)

2 16 57 12 39 3 43 (1)

3 10 58 17 40 3 42 (2)

4 3 56 26 38 1 46 (6)

5 4 45 36 31 4 50 (13)

Figure 13 shows the measured mean response times of accepted sessions for the
five iterations of the experiment. Table 6 presents a summary of the session SLA
compliance when running with vs. without QoS Control. In the case without QoS
Control, the proportion of cancelled sessions after a system failure is shown in
parentheses in the last column. As we can see, when run in a reactive manner the
resource manager still does a good job in distributing the workload among the avail-
able resources and ensuring that client SLAs are fulfilled.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

R
es

po
ns

e
T

im
e

(s
ec

)

Sessions

Response Time SLA
Response Time with Overload Control (5 servers failure)

Response Time with QoS Control (5 servers failure)

Figure 13. Response times obtained in an experiment with 5 server failures.

29

4.6 Overhead for QoS Control

An important goal of our resource management framework is to minimize the over-
head for evaluating alternative configurations using the resource allocation algo-
rithm and the QoS Predictor when making scheduling decisions. The more detailed
the workload models, the higher the overhead for QoS Control. Thus, there is a
trade-off between the quality of the resource allocation decisions and the efficiency
of the resource manager. To limit the time needed to reach a decision in the sce-
narios we considered, the simulation was configured to run for a fixed length of
model time. Even though the results were approximate, our experiments showed
that they were accurate enough to guarantee acceptable QoS for admitted sessions.
In scenarios 3, 4 and 5, the average time to reach a decision was 14.81 seconds with
a maximum of 37.35 seconds.

There are several approaches to speed up the resource allocation algorithm. For ex-
ample, we could significantly cut the simulation time for a candidate configuration
if we simplify the models by aggregating sessions that execute the same service.
Currently, in our QPN models every session is modeled separately using its own
token type. If two sessions execute the same service and their request arrivals can
be modeled as Poisson processes, the two sessions can be combined into one aggre-
gate session whose arrival stream is the composition of the two Possion processes.
This has the potential to significantly reduce the size of the model at the price of
less flexibility in load-balancing the workload given that sessions of the same type
would be indistinguishable. Using this approach, we were able to simulate a sce-
nario with 40 Grid servers and 80 concurrent sessions in less than 60 sec. Given that
QoS Control is done only in the beginning of a session, we believe this is acceptable
for a large class of applications.

Another approach we are currently working on is to enhance the SimQPN simu-
lation engine to take advantage of parallelism so that multi-core processors can be
utilized for faster simulation. Currently, parallelism can only be exploited by ana-
lyzing multiple candidate configurations simultaneously, however, every individual
configuration is simulated sequentially. For larger and more complex models, some
significant gains can be made by parallelising the simulation. Further, we intend to
investigate under what conditions analytical product form solution techniques for
QPNs or approximation techniques can be exploited.

Finally, as part of our future work, we intend to use efficient combinatorial search
techniques to minimize the number of candidate configurations examined when
searching for an acceptable resource allocation. In particular, we plan to investi-
gate the trade-off between bottom up and top down resource allocation methods
and consider caching and reusing analyzed configurations as well as simulating
configurations proactively.

30

5 Related Work

There is a large body of work on resource management and QoS in Grid computing
environments and service-oriented architectures in general.

The Globus Resource Management Architecture (GRMA) [10] addresses the rel-
atively narrow QoS problem of providing dedicated access to collections of com-
puters in heterogeneous distributed systems. The General-purpose Architecture for
Reservation and Allocation (GARA) [24] generalizes and extends GRMA to sup-
port advance reservation and co-allocation of heterogeneous collections of resources
(e.g., computers, networks or storage systems) for end-to-end QoS. The GARA
system comprises a number of resource managers that each implement reservation,
control, and monitoring operations for a specific resource. In [25], the authors ex-
tend their work combining features of reservation and adaptation. The above mech-
anisms provide a basic framework for managing QoS in Grid applications based
on simple ad hoc procedures used to map application QoS requirements into re-
source requirements. As such these mechanisms do not possess any sophisticated
performance prediction capabilities that are required to guarantee that application
SLAs are honored. Furthermore, being targeted at high-end applications, they do
not provide support for fine-grained QoS-aware load-balancing which is essential
for commercial workloads.

In [3] a framework for resource allocation in Grid computing is presented. The au-
thors consider the general case in which applications are decomposed into tasks
that exhibit precedence relationships. The problem consists in finding the optimal
resource allocation that minimizes total cost while preserving execution time ser-
vice level agreements. A framework for building heuristic solutions for this NP-
hard problem is developed. In [26] the authors show how analytic queueing net-
work models combined with combinatorial search techniques can be used to de-
velop methods for optimal resource allocation in autonomic data centers. The above
works however do not deal with the problem of QoS negotiation and enforcement.

In [27], a framework for designing QoS-aware software components is proposed.
The authors introduce so-called Q-components that negotiate soft QoS require-
ments with clients (i.e., average response time and throughput) and use online ana-
lytic performance models (more specifically closed multiclass queueing networks)
to ensure that client requests are accepted only if the requested QoS can be pro-
vided. The same approach was applied in [5] to the design of QoS-aware service-
oriented architectures. While these works provide some basic support for negoti-
ating and enforcing QoS requirements in loosely-coupled SOA environments, they
do not completely decouple service users from service providers and therefore suf-
fer from several significant drawbacks. For example, fine-grained load-balancing
at the service request level is not provided. Moreover, the resource allocation and
load-balancing strategy of a client session cannot be dynamically reconfigured. Fi-

31

nally, these methods being based on product-form queueing networks are rather
limited in terms of modeling accuracy and expressiveness.

An alternative approach to autonomic resource allocation in multi-application data
centers based on reinforcement learning is proposed in [28]. Instead of using ex-
plicit performance models, this approach uses a knowledge-free trial-and-error method-
ology to learn resource valuation estimates and construct decision-theoretic opti-
mal policies. In [29] the authors extend their approach to support offline training
on data collected while an externally supplied initial policy (based on an explicit
performance model) controls the system. An active learning approach to resource
allocation for simple batch workloads is proposed in [30]. This approach uses per-
formance histories gathered through noninvasive instrumentation to build predic-
tive models of frequently used applications. The approach however is focused on
compute batch tasks that run to completion at machine speed. Request arrivals and
concurrency related behavior is not considered.

In [31] a QoS guided task scheduling algorithm for Grid computing is proposed.
The algorithm uses a long-term, application-level prediction model to estimate the
task completion time in a non-dedicated environment. Based on the same model
a performance prediction and task scheduling system called Grid Harvest Service
was developed [32]. The focus of this work is on long-term (long-running) appli-
cations. In [33] a performance management system for cluster-based web services
is presented. The system supports multiple classes of web services traffic and allo-
cates server resources dynamically with the goal to maximize the expected value
of a given cluster utility function in the face of fluctuating loads. Simple queueing
models are used for performance prediction. This framework currently does not
support QoS negotiation and admission control.

Several approaches to autonomic workload characterization have recently been pro-
posed, for example in [34] based on fuzzy logic, in [35] based on genetic algorithms
and finally in [36] based on traces used to generate behavior patterns. The latter
technique is however not applicable in our environment since it assumes a homo-
geneous workload.

Two industrial standards related to our QoS negotiation and resource allocation
mechanisms are the Job Submission Description Language (JSDL) [14] and the
Web Services Agreement Specification (WS-Agreement) [16]. JSDL is used to de-
scribe the requirements of computational jobs for submission to resources in Grid
environments. JDSL contains a vocabulary and normative XML Schema that fa-
cilitate the expression of job identification, resource and data requirements. The
WS-Agreement specification, on the other hand, is a Web Services protocol for es-
tablishing agreement between two parties using an extensible XML language for
specifying the nature of the agreement, and agreement templates to facilitate dis-
covery of compatible agreement parties. The specification consists of three parts:
a schema for specifying an agreement, a schema for specifying an agreement tem-

32

plate, and a set of port types and operations for managing agreement life-cycle,
including creation, expiration, and monitoring of agreement states. Although WS-
Agreement goes beyond the scope of the current paper, our QoS negotiation proto-
col can easily be adapted and extended to comply with the WS-Agreement specifi-
cation. Similarly, the resource manager architecture can be extended to support the
specification of service resource requirements using JSDL.

Further related work in the area of resource management and QoS in Grid comput-
ing and SOA environments can be found in [37], [38], [39], [40], [41], [42], [43]
and [44]. The resource manager architecture we proposed can be extended to take
into account the trade-offs between performance and power consumption (and en-
ergy efficiency) similar to the way this is done in [45].

6 Conclusions

In this paper, we proposed a comprehensive framework for autonomic QoS control
in enterprise Grid environments using online simulation. We first presented a novel
methodology for designing autonomic QoS-aware resource managers that have the
capability to predict the performance of the Grid components they manage and
allocate resources in such a way that SLAs are honored. We then proposed a method
for autonomic workload characterization on-the-fly based on monitoring data. This
makes it possible to apply our approach to services for which no workload model
is available. Following this, we further extended our resource allocation algorithm
to support adding Grid servers on demand as well as dynamically reconfiguring the
system after a server failure.

We presented an extensive performance evaluation of our framework in two differ-
ent experimental environments using the Globus Toolkit. Five different scenarios
each focusing on selected aspects of the framework were studied. In all scenarios
with QoS Control enabled, the measured response times were stable and nearly
100% of the client SLAs were fulfilled. The results confirmed the effectiveness of
our resource manager architecture in ensuring that QoS requirements are continu-
ously met. The proposed method for workload characterization on-the-fly proved
to be quite effective in providing estimates of the service resource demands based
on online monitoring data. We saw that adding servers on demand did not have a
significant impact on the performance of our resource manager even though as ex-
pected in this case there is less flexibility in distributing the workload. Finally, we
demonstrated the effectiveness of our scheduling algorithms for dynamic reconfig-
uration after a server failure.

The evaluation presented in this paper is the first comprehensive validation of our
methodology in a dynamic environment. The results were very encouraging and
demonstrated the effectiveness, practicality and performance of the approach. The

33

area considered here has many different facets that will be subject of future work.
First, we intend to pursue ways to further optimize our resource allocation algo-
rithm and performance prediction mechanisms. The trade-offs in using different
model analysis techniques and combinatorial search methods to minimize the num-
ber of candidate configurations will be investigated. We also intend to consider
caching and reusing analyzed configurations as well as simulating configurations
proactively. Second, the overhead of the QoS Predictor as the size and complex-
ity of the modeled Grid servers and their workload increase will be evaluated. We
intend to consider larger more realistic Grid environments to evaluate the scala-
bility of our approach. While, currently only soft QoS requirements (average val-
ues) are guaranteed, we intend to enhance the architecture to support hard QoS re-
quirements. This would make it possible for clients to specify and negotiate SLAs
in terms of more detailed performance metrics such as for example the 90% per-
centiles of response times. Finally, we intend to study how our framework can be
extended to take into account the economic aspects involved in using the Grid [46].
The goal will be to extend the framework presented in this paper to take into ac-
count economic factors such as the costs associated with using the Grid resources,
the revenue gained from new customer sessions, as well as the costs incurred and
penalties imposed when breaking customer SLAs.

Acknowledgment

This work is supported by the Ministry of Science and Technology of Spain and the
European Union under contract TIN2004-07739-C02-01 and TIN2007-60625, and
the German Research Foundation under grant KO 3445/1-1. Thanks to Iñigo Goiri
for his help on virtualization issues.

References

[1] I. Foster, C. Kesselman, J. M. Nick, S. Tuecke, Grid Services for Distributed System
Integration, Computer 35 (6) (2002) 37–46.

[2] OGF, Open Grid Forum, www.ogf.org (2008).

[3] D. Menascé, E. Casalicchio, A Framework for Resource Allocation in Grid
Computing, in: Proceedings of the The IEEE Computer Society’s 12th Annual
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems, 2004.

[4] D. Menascé, V. Almeida, L. Dowdy, Performance by Design, Prentice Hall, 2004.

[5] D. Menascé, M. Bennani, H. Ruan, Self-Star Properties in Complex Information
Systems, Vol. 3460 of LNCS, Springer Verlag, 2005, Ch. On the Use of Online

34

Analytic Performance Models in Self-Managing and Self-Organizing Computer
Systems.

[6] R. Nou, S. Kounev, J. Torres, Building Online Performance Models of Grid
Middleware with Fine-Grained Load-Balancing: A Globus Toolkit Case Study, in:
4th European Performance Engineering Workshop on Formal Methods and Stochastic
Models for Performance Evaluation, EPEW, Vol. 4748 of Lecture Notes in Computer
Science, 2007, pp. 125–140.

[7] F. Bause, P. Buchholz, P. Kemper, Hierarchically Combined Queueing Petri Nets, in:
Proceedings of the 11th International Conference on Analysis and Optimization of
Systems, Discrete Event Systems, 1994.

[8] S. Kounev, R. Nou, J. Torres, Autonomic QoS-Aware Resource Management in Grid
Computing using Online Performance Models, Second International Conference on
Performance Evaluation Methodologies and Tools (VALUETOOLS-2007), Nantes,
France.

[9] S. Kounev, Performance Modeling and Evaluation of Distributed Component-Based
Systems using Queueing Petri Nets, IEEE Transactions on Software Engineering
32 (7) (2006) 486–502.

[10] I. Foster, C. Kesselman, The Grid 2: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, 2003.

[11] I. Foster, Globus Toolkit Version 4: Software for Service-Oriented Systems, in:
Proceedings of the 2005 IFIP International Conference on Network and Parallel
Computing, 2005, pp. 2–13.

[12] A. Varga, The OMNeT++ Discrete Event Simulation System, in: Proceedings of the
European Simulation Multiconference (ESM’2001), The Society for Modeling and
Simulation International (SCS), Prague, Czech Republic, 2001.

[13] R. Chinnici, J.-J. Moreau, A. Ryman, S. Weerawarana, Web Services Description
Language (WSDL) Version 2.0, Tech. rep., W3C, http://www.w3.org/TR/wsdl20 (mar
2006).

[14] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. McGough,
D. Pulsipher, A. Savva, Job Submission Description Language (JSDL) Specification,
http://www.gridforum.org/documents/GFD.56.pdf (2005).

[15] R. Nou, F. Julià, J. Torres, Should the grid middleware look to self-managing
capabilities?, in: Proceedings of the 8th International Symposium on Autonomous
Decentralized Systems, 2007.

[16] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne,
J. Rofrano, S. Tuecke, M. Xu, Grid Resource Allocation Agreement Protocol WG
(GRAAP-WG), https://forge.gridforum.org/projects/graap-wg/
(2007).

[17] F. Bause, “QN + PN = QPN” - Combining Queueing Networks and Petri Nets,
Technical report no.461, Department of CS, University of Dortmund, Germany (1993).

35

[18] F. Bause, P. Buchholz, Queueing Petri Nets with Product Form Solution, Performance
Evaluation 32 (4) (1998) 265–299.

[19] S. Kounev, A. Buchmann, SimQPN - a tool and methodology for analyzing queueing
Petri net models by means of simulation, Performance Evaluation 63 (4-5) (2006)
364–394.

[20] W. E. Walsh, G. Tesauro, J. O. Kephart, R. Das, Utility Functions in Autonomic
Systems, Proceedings of the IEEE International Conference on Autonomic Computing
(ICAC) (2004) 70–77.

[21] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
A. Warfield, Xen and the art of virtualization, in: SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems principles, ACM, New York, NY,
USA, 2003, pp. 164–177.

[22] R. Figueiredo, P. Dinda, J. Fortes, A case for grid computing on virtual machines, 23rd
International Conference on Distributed Computing Systems (2003) 550–559.

[23] R. Nou, J. Guitart, J. Torres, Simulating and Modeling Secure Web Applications., in:
6th International Conference on Computational Science- ICCS 2006, Lecture Notes in
Computer Science, 2006, pp. 84–91.

[24] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, A. Roy, A Distributed
Resource Management Architecture that Supports Advance Reservations and Co-
Allocation, in: Proceedings of the International Workshop on Quality of Service, 1999.

[25] I. Foster, A. Roy, V. Sander, A quality of service architecture that combines resource
reservation and application adaptation, in: Proceedings of the 8th International
Workshop on Quality of Service, 2000, pp. 181–188.

[26] M. Bennani, D. Menascé, Resource Allocation for Autonomic Data Centers using
Analytic Performance Models, in: Proceedings of the Second International Conference
on Automatic Computing, 2005.

[27] D. Menascé, H. Ruan, H. Gomaa, A Framework for QoS-Aware Software
Components, in: Proceedings of the 4th International Workshop on Software and
Performance, 2004.

[28] G. Tesauro, R. Das, W. E. Walsh, J. O. Kephart, Utility-Function-Driven Resource
Allocation in Autonomic Systems, in: Proceedings of the Second International
Conference on Autonomic Computing, 2005.

[29] G. Tesauro, N. Jong, R. Das, M. Bennani, A hybrid reinforcement learning approach
to autonomic resource allocation, in: Proceedings of the 3rd International Conference
on Autonomic Computing, 2006.

[30] P. Shivam, S. Babu, J. Chase, Learning Application Models for Utility Resource
Planning, in: Proceedings of the 3rd International Conference on Autonomic
Computing, 2006.

[31] X. He, X. Sun, G. Laszewski, A QoS Guided Scheduling Algorithm for Grid
Computing, in: Proceedings of the International Workshop on Grid and Cooperative
Computing, 2002.

36

[32] X.-H. Sun, M. Wu, Grid Harvest Service: A System for Long-Term, Application-Level
Task Scheduling, in: Proceedings of the 17th International Symposium on Parallel and
Distributed Processing, 2003.

[33] G. Pacifici, M. Spreitzer, A. N. Tantawi, A. Youssef, Performance management for
cluster-based web services, IEEE Journal on Selected Areas in Communications
23 (12) (2005) 2333–2343.

[34] J. Xu, M. Zhao, J. Fortes, R. Carpenter, M. Yousif, On the Use of Fuzzy Modeling
in Virtualized Data Center Management, in: Proceedings of the Fourth International
Conference on Autonomic Computing (ICAC’07), 2007, p. 25.

[35] A. Andrzejak, S. Graupner, S. Plantikow, Predicting Resource Demand in Dynamic
Utility Computing Environments, in: International Conference on Autonomic and
Autonomous Systems (ICAS), 2006.

[36] D. Gmach, J. Rolia, L. Cherkasova, A. Kemper, Workload Analysis and Demand
Prediction of Enterprise Data Center Applications, IEEE 10th International
Symposium on Workload Characterization (IISWC) (2007) 171–180.

[37] N. H. Kapadia, J. Fortes, C. E. Brodley, Predictive Application-Performance Modeling
in a Computational Grid Environment, in: 8th IEEE International Symposium on High
Performance Distributed Computing, 1999.

[38] R. Al-Ali, K. Amin, G. von Laszewski, O. Rana, D. Walker, M. Hategan, N. Zaluzec,
Analysis and Provision of QoS for Distributed Grid Applications, Journal of Grid
Computing 2 (2).

[39] C. Adam, R. Stadler, A Middleware Design for Large-scale Clusters Offering Multiple
Services, IEEE electronic Transactions on Network and Service Management 3 (1).

[40] R. Al-Ali, O. Rana, G. von Laszewski, A. Hafid, K. Amin, D. Walker, A Model for
Quality-of-Service Provision in Service Oriented Architectures, Journal of Grid and
Utility Computing.

[41] D. Xu, K. Nahrstedt, A. Viswanathan, D. Wichadakul, QoS and Contention-
Aware Multi-Resource Reservation, in: Proceedings of the 9th IEEE International
Symposium on High Performance Distributed Computing, 2000.

[42] A. Othman, P. Dew, K. Djemamem, I. Gourlay, Adaptive Grid Resource Brokering, in:
Proceedings of the 2003 IEEE International Conference on Cluster Computing, 2003,
pp. 172–179.

[43] Y. Diao, J. L. Hellerstein, S. Parekh, H. Shaikh, M. Surendra, A. Tantawi, Modeling
Differentiated Services of Multi-Tier Web Applications, in: 14th IEEE International
Symposium on Modeling, Analysis, and Simulation, 2006.

[44] D. Gmach, S. Krompass, A. Scholz, M. Wimmer, A. Kemper, Adaptive quality of
service management for enterprise services, ACM Transactions Web 2 (1) (2008) 1–
46.

37

[45] J. Slegers, I. Mitrani, N. Thomas, Optimal Dynamic Server Allocation in Systems
with On/Off Sources, in: 4th European Performance Engineering Workshop on Formal
Methods and Stochastic Models for Performance Evaluation, EPEW, Vol. 4748 of
Lecture Notes in Computer Science, 2007, pp. 186–199.

[46] R. Buyya, D. Abramson, S. Venugopal, The Grid Economy, Proceedings of the IEEE
93 (3) (2005) 698–714.

38

