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Abstract—Virtualization technology allows to share the physi-
cal resources used in IT infrastructures for efficient and flexible
system operation. Sharing of physical resources, however, comes
usually at the cost of performance and poses significant challenges
to respect the Quality-of-Service of consolidated data-intensive
applications due to the mutual performance interference among
the applications. The non-trivial impact of workload consolida-
tion on the I/O performance can be anticipated using explicit
performance analysis techniques. In current practice, however,
explicit modeling of I/O performance interference effects in virtu-
alized environments is usually avoided due to their complexity. In
this paper, we present an explicit performance modeling approach
of I/O performance interference in virtualized environments with
queueing Petri nets (QPNs). More specifically, we first highlight
major challenges when modeling I/O performance in virtualized
environments. Then, we create a single-VM I/O performance
model calibrated with response time measurements to capture
the complex behavior of a representative, real-world environment
based on IBM System z and IBM DS8700 server hardware.
Finally, we use the I/O performance model to evaluate the I/O
performance when the workload is distributed heterogeneously
on co-located virtual machines. Overall, we effectively create an
I/O performance interference model capturing the I/O perfor-
mance effects in a multi-VM environment with less than 10%
prediction error on average.
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I. INTRODUCTION

Reliable and efficient IT systems are of central importance
in today’s data centers. Virtualization technology is an enabling
mechanism for reliable and efficient data center operation by
allowing to decouple logical from physical resources with
an additional abstraction layer and granting virtual machines
(VMs) the consolidated access to pooled resources.

In virtualized environments, the running VMs are isolated
regarding operating system or application errors, for instance.
Isolation regarding performance, however, is widely an open
challenge especially for data-intensive applications [1], [2], [3].
The co-located VMs cause complex I/O performance interfer-
ence effects among their workloads and disturb the overall
system performance significantly. With the drastic increase in
I/O resource demands over the past years, applications deployed
in virtualized environment are expected to get throttled more
and more if this trend is not taken into account.

Performance modeling and evaluation techniques capturing
the I/O performance interference effects can help to run the
system environment efficiently while respecting Quality-of-
Service requirements. In current practice, however, explicit

modeling of I/O performance interference effects in virtualized
environments is avoided due to the high complexity of
today’s virtualized environments. Only few explicit modeling
approaches for I/O performance interference in virtualized
environments have been proposed (e.g., [3]), however, with a
focus on consolidation scenarios only or with validation limited
to basic environments. The complex system environments
and logical layers between the applications and the physical
storage lead to complex performance interference effects posing
significant challenges for explicit modeling approaches to create
practical performance models.

To address these problems, in this paper, we present an
explicit performance modeling approach of I/O performance
interference in virtualized environments with queueing Petri
nets (QPNs). More specifically, we first highlight major
challenges when modeling I/O performance in virtualized
environments. Then, we create a single-VM I/O performance
model to capture the complex behavior of a representative,
real-world environment based on IBM System z and IBM
DS8700 server hardware. For the calibration of the model, we
use response time measurements only that does not rely on
hardware-specific or low-level monitoring data. Finally, we use
the I/O performance model to evaluate the I/O performance
when the workload is distributed heterogeneously on co-
located virtual machines. Overall, we effectively create an I/O
performance interference model capturing the I/O performance
effects in a multi-VM environment with less than 8% and 11%
mean prediction error for read and write requests, respectively.

To summarize, the contribution of this paper is two-fold:
i) We present a modeling approach of I/O performance
interference effects in virtualized environments calibrated with
response time measurements from one virtual machine to
estimate the interference effects of multiple virtual machines.
ii) We evaluate our approach in a real-world environment
based on the state-of-the-art server technology of the IBM
System z and IBM DS8700. We extend our previous work [4],
which is limited to homogeneous workload, and create a
heterogeneous I/O performance model capturing the I/O
performance interference effects in a multi-VM environment
with different workload intensities in the VMs.

This paper is structured as follows: In Section II, we show an
example to further motivate our approach. Then, we give a brief
introduction to queueing Petri nets in Section III. Section IV
highlights the challenges when modeling I/O performance
interference. In Section V, we create and evaluate the per-
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Fig. 1: Measurements of Performance Interference Effects

formance model capturing the I/O performance interference
effects observed in the considered system environment. Finally,
Section VI reviews related work followed by Section VII
summarizing the paper.

II. MOTIVATING EXAMPLE

To illustrate typical I/O performance interference effects,
consider the following setup whose measurements are shown
in Figure 1. Two workloads with 10 clients each are running
in separate virtual machines, VM1 is running a read-intensive
workload and VM2 is running a write-intensive workload. In
a first scenario, the workload of VM2 increases up to 50
clients causing the performance of VM1 to drop (left part of
Figure 1). In a second scenario, the opposite occurs and the
workload of VM1 increases up to 50 clients while disturbing the
performance of VM2 (right part of Figure 1). In these simple
scenarios, the performance of the read and write workload,
which is kept constant in the respective VM, spreads by 92.1%
and 118.3%, respectively, depending on the workload running
on the co-located virtual machine. This simple observation is
the motivation for our approach and demonstrates the need
for performance models allowing to analyze and evaluate the
performance interference of co-located data-intensive virtual
machines.

III. MODELING WITH QUEUEING PETRI NETS

Queueing Petri nets (QPNs) are a powerful modeling
technique combining the queueing network and the Petri net
formalism. In the following, we give a brief introduction to
QPNs, which is taken from [5]. Detailed information and formal
definitions of QPNs can be found in [6].

An ordinary Petri net (PN) is a bipartite directed graph
comprised of places, drawn as circles, and transitions, drawn
as bars. In PNs, token reside in the places and travel through
the net using the firing transitions to describe a certain behavior.
Multiple extensions to PNs have been developed in order to
increase the modeling power, such as Colored PNs (CPNs)
introduced by K. Jensen [7]. CPNs allow a type (color) to be
attached to a token to classify them into groups. In addition to
introducing token colors, CPNs also allow transitions to fire
in different modes (transition colors).
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Fig. 2: A queueing place and its shorthand notation (from: [9]).

Other extensions to PNs allow temporal (timing) aspects to
be integrated into the net description. In particular, Stochas-
tic PNs (SPNs) [8] attach an exponentially distributed firing
delay to each transition, which specifies the time the transition
waits after being enabled before it fires. Generalized Stochas-
tic PNs (GSPNs) allow two types of transitions to be used:
immediate and timed. Once enabled, immediate transitions fire
in zero time. If several immediate transitions are enabled at
the same time, the next transition to fire is chosen based on
firing weights (probabilities) assigned to the transitions. Timed
transitions fire after an exponentially distributed firing delay
as in the case of SPNs. The firing of immediate transitions
always has priority over that of timed transitions.

While CGSPNs have proven to be a very powerful mod-
eling formalism, they do not provide any means for di-
rect representation of queueing disciplines, which has led
to Queueing PNs (QPNs). QPNs allow queues to be integrated
into places of CGSPNs. A place of a CGSPN that has an
integrated queue is called a queueing place and consists of
two components, the queue and a depository for tokens which
have completed their service at the queue. This is depicted in
Figure 2.

The behavior of the net is as follows: tokens, when fired into
a queueing place by any of its input transitions, are inserted into
the queue according to the queue’s scheduling strategy. Tokens
in the queue are not available for output transitions of the
place. After completion of its service, a token is immediately
moved to the depository, where it becomes available for output
transitions of the place. This type of queueing place is called
timed queueing place. In addition to timed queueing places,
QPNs also introduce immediate queueing places, which allow
pure scheduling aspects to be described. Tokens in immediate
queueing places can be viewed as being served immediately.
Scheduling in such places has priority over scheduling/service
in timed queueing places and firing of timed transitions. The
rest of the net behaves like a normal CGSPN.

IV. CHALLENGES

In this section, we discuss important challenges when
modeling I/O performance interference as well as how we
approach them.



1) Performance Evaluation of a Representative Setup
An important aspect is evaluating a representative ex-
perimental setup, i.e., both system and workload setup,
which makes performance modeling more difficult. In
our approach, we will use a representative system envi-
ronment. Considering the workload, it usually suffices to
obtain best and worst case performance estimations with
synthetic workloads, which is done in practice to evaluate
storage systems. Thus, we will use such a benchmark in
in our approach.

2) Modeling the Observation vs. Modeling the Behaviour
To build a performance model, we distinguish two ideas,
i) modeling experiment observations and ii) modeling
the internal behavior. While both require knowledge of
the environment, we reason that it is more useful to
develop a process how to execute experiments and model
the observations. This allows to abstract from details
and implementation specifics. While it can be easier
to model the internal behavior of an environment, this
requires deep internal knowledge, documentation, and
even instrumentation for parameterization, which is not
necessarily always available.

3) Determining the Topology
One part of performance modeling is to determine the
model topology covering the software and hardware
resources of the system environment. Our goal is to keep
the model as simple as possible to be able to reasonably
parameterize the model. More detailed models might
increase the model accuracy with the potential sacrifice
in applicability, such that the two goals, accuracy and
applicability, might result in a trade-off.

4) Estimating the Service Times
After the definition of the model topology, the queueing
models need to be parameterized by estimating the
service times. The most common approach is to use
utilization law, however, in contrast to the utilization of
CPUs, the notion of utilization for storage systems in
virtualized environments is not well-defined. Therefore,
we use an approach to estimate the service times based
on response time measurements.

V. MODELING I/O PERFORMANCE INTERFERENCE

In this section, we present the development of our hetero-
geneous QPN model of a representative system environment.
For modeling and model solving, we use the Queueing Petri
net Modeling Environment (QPME) [9].

A. System Under Study

For our I/O performance analysis, we consider a represen-
tative virtualized environment based on the IBM mainframe
System z and the storage system DS8700, which we have
analyzed in our previous work [10]. They are state-of-the-
art high-performance virtualized systems with redundant and
hot swappable resources for high availability. The System z
combined with the DS8700 represents a typical virtualized
environment that can be used as a building block of cloud
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Fig. 3: IBM System z and IBM DS8700

computing infrastructures. It supports on-demand elasticity
of pooled resources with a pay-per-use accounting system
(cf. [11]). The System z provides processors and memory,
whereas the DS8700 provides storage space. The structure of
this environment is illustrated in Figure 3.

The Processor Resource/System Manager (PR/SM) is a
hypervisor managing logical partitions (LPARs) of the machine
(therefore also called LPAR hypervisor) and enabling CPU
and storage virtualization. For memory virtualization and
administration purposes, IBM introduces another hypervisor,
z/VM. The System z supports the classical mainframe operating
system z/OS and special Linux ports for System z commonly
denoted as z/Linux. The System z is connected to the DS8700
via fibre channel. Storage requests are handled by the storage
server, which is equipped with a volatile cache (VC) and a
non-volatile cache (NVC). The storage server is connected via
switched fibre channel to SSD- or HDD-based RAID arrays.

The storage server applies several pre-fetching and destaging
algorithms for optimal performance, cf. [12]. When possible,
read requests are served from the volatile cache, otherwise,
they are served from the RAID arrays and stored together
with pre-fetched data in the volatile cache for future accesses.
Write-requests are propagated both to the volatile and non-
volatile cache, they are then destaged to the RAID arrays
asynchronously from the volatile cache and discarded from the
non-volatile cache.

In our system environment, the DS8700 contains 2 GB
NVC and 50 GB VC with a RAID5 array containing seven
HDDs. Calibration and validation measurements are obtained
in z/Linux virtual machines (VM) with shared cores and 4 GB
of memory each. The file system is configured to the de
facto standard EXT4 and as I/O scheduler, we use the default
scheduler in virtualized environments NOOP, cf. [13]. Further,
we focus our measurements on the storage performance using
POSIX configuration. As a basis for our experimental analysis,
we use the open source Flexible File System Benchmark
(FFSB) [14] due to its fine-grained configuration possibilities.
FFSB runs at the application layer and measures the end-to-end
response time covering all system layers from the application all
the way down to the physical storage. For a given configuration
of a benchmark run, a set of files is created first. Then, the
target number of workload threads (i.e., clients) are launched
and they begin issuing read and write requests of the specified
size, which is configured to 4 KB in this paper, directed to a
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randomly chosen target from the file set. Each thread issues
a request as soon as the previous one is completed. For any
configuration, we use a one minute warm-up time and a five
minute measurement time. During this time, the benchmark
typically gathers millions of measurement samples.

B. Initial Model

The starting point for our I/O performance interference model
is a homogeneous, single-class queueing model for read and
write requests as described in our previous work in an iterative,
step-by-step process [4].

As network topology, we use a closed model as indicated in
Figure 4. In general, closed models are the most popular for
software systems since real applications are layered and the
interactions between layers is subject to admission control or
finite threading limits [15]. The Clients queueing place with
infinite server queue and service time equal to the client think
time represents the arriving requests at the system. The Storage
System subnet place captures the I/O performance in a separate
queueing Petri subnet. Initially, this subnet consists of one
queueing place. The places are connected using immediate
transitions that fire as soon as they are enabled.

For the calibration, we model the read request and write
request service times using a gamma-distribution whose
parameters (k, θ) are estimated from the measurements. To
estimate the standard deviation σ, we measure the system under
low workload-intensity with one thread. Then, we scale the
load up to 100 threads in steps of 10 for both read and write
requests, where we observe a strong correlation between the
number of workload threads t and the mean read and write
response time measurements ρm, respectively, in the form

ρm ≈ c1 t+ c2, ci ∈ R. (1)
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...
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Fig. 6: Explicit QPN Model of Request Scheduling

Using mean value analysis (MVA) in our topology, we can
easily estimate the mean read and write request service time
µ, respectively, with a given value of t using

ρm(t) = µ[1 + t̄(t− 1)], (2)

where t̄(t− 1) is the average number of threads found in the
queue by an arriving thread. For our estimation, we use t = 25.
Then, the parameters of the respective gamma-distribution of
read and write requests, respectively, are simply

k :=
(µ
σ

)2

and θ :=
σ2

µ
. (3)

C. Mixed Workload Model

In this section, we extend the queueing model to account for
mixed read/write requests, where we consolidate read and write
workloads with different workload intensities, i.e., number of
threads. The workload that is used to create the model consists
of different numbers of read and write threads tr and tw within
one VM and both are varied between 10 and 50 in steps of 10.

In the model, the request types are distinguished using
different token classes (or colors). For the two request types,
we first introduce separate places for the tokens, cf. Figure 5.
When mixing the requests, we observe that the mean read
and write request response times are systematically over- and
underestimated, respectively. We capture this observation in
our QPN model by using a priority scheduling mechanisms
and explicitly assigning relative priorities wr and ww to the
read and write requests, respectively. As shown in Figure 6,
we model this behavior explicitly by separating the queueing
place of the storage system into Waiting queueing places and
a Storage queueing place with a connecting transition whose
incidence functions are weighted. A Scheduler place with one
token ensures that only one request is served at a time and
schedules the next request according to the relative priorities.
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We extend the network topology of our initial QPN model
and use the service times estimated as described in the previous
section for the calibration. To determine the weights of the
incidence functions, we search for appropriate values that
minimize the difference between the measurements of the
considered configurations and the simulation results. To predict
the performance of unseen configurations, we use statistical
modeling techniques to built a function f for the relative read
and write request weights wr

ww
depending on the relative number

of read and write workload threads tr
tw

, i.e., wr

ww
= f( tr

tw
).

To evaluate how well the QPN model reflects the measure-
ments, Figure 7 shows the calibration error, i.e., the difference
between measurements and simulation results. Overall, we
obtain a very good fit of the model with an average error of
the mean response times of 3.36% for read requests and 4.80%
for write requests.

D. Evaluating Multi-VM Workload

We now use our model of the previous section to estimate
the impact of workloads from multiple VMs and predict their
performance behavior and interference.

As prediction configuration, we distribute the workload on
two virtual machines and each running a read-intensive and
write intensive workload, respectively. We vary the workload
threads in each VM from 10 to 50 in steps of 10 covering
also the examples scenarios shown in the motivating example
in Section II. For the model, we use the service times
estimated in isolation and relative priority estimated using
one VM measurements. We compare the mean response time
measurements with the simulation results.

The prediction results are shown in Figure 8. Overall, the
results are promising with a median error of 5.39% and 12.11%
and a mean error of 7.55% and 10.85%, respectively. Especially
the maximum prediction errors are encouraging with 25.05%
und 21.49% for read and write requests, respectively.

Overall, there are some interesting conclusions. Albeit the
workload is relatively simple, the model could be kept compact
to capture the performance behavior and interference effects
between the request types in a sufficiently complex environment.
This makes it easier to parameterize the model and employ it
in similar contexts.
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Fig. 8: Prediction Error for Multi-VM Workload

Furthermore, while not too surprising, it was still interesting
to see that the scheduling in the operating system – with the
shifting of the default I/O scheduler – could be abstracted away.
This reduces the complexity in the model and allows to draw
reasonable conclusions from one VM workloads to multi-VM
workloads. In other words, it can be reasonable to aggregate
homogeneous VMs to mixed workload VMs for performance
evaluation and avoiding to build and measure a large amount
of VMs if it only slightly improves prediction accuracy.

The model can serve as a starting point for explicit modeling
of I/O performance interference effects in virtualized environ-
ments. It is also now to us to extend the workload scenarios
and further improve these results.

VI. RELATED WORK

The work closely related to the approach presented in
this paper can be classified into two groups. The first group
analyzes I/O performance interference effects in virtualized
environments. Here, Chiang et al. [2] use linear and second
degree polynomials to model I/O performance interference.
They use the models for scheduling algorithms to manage
task assignments in virtualized environments. As input in their
model, they use read and write request arrival rates as well as
local and global CPU utilization. In [16], Yang et al. present a
framework that uses a set of pre-defined workloads to identify
characteristics of the hypervisor I/O scheduler. Furthermore,
they show how this information can be exploited to deteriorate
the I/O performance of co-located virtual machines. To analyze
performance interference also across resources, Koh et al. [1]
manually run CPU-bound and I/O-bound benchmarks. They
develop mathematical models for prediction of normalized
performance compared to the isolated performance of the
benchmark. In an experimental study, Pu et al. [17] analyze
CPU and network I/O performance interference in a Xen-
based environment. They conclude that the least performance
degradation occurs for workloads with different resource
demands, i.e., CPU and network I/O demand or mixing small
with large network demands. In summary, however, none of
these approaches uses explicit, queueing theory-based modeling
approaches to capture the I/O performance interference effects.
Furthermore, some approaches use vendor-specific monitoring



tools (e.g., xen-top) to obtain an internal view of the global
system environment, which is not necessarily always feasible.

The second group is focused on modeling storage per-
formance in virtualized environments. Storage modeling ap-
proaches in native environments, e.g., [18], [19], [20], [21],
[22], are intentionally left out of scope as such approaches
strongly rely on low-level instrumentation and monitoring data,
e.g., allocation of data to disk sectors, disk seek times, disk
rotation time, or single disk utilization. In typical virtualized
environments, such information is hardly available for storage
users, if available at all, hampering the reliable parametrization
of these models. Closest to our work, Kraft et al. [3] present
two approaches based on queueing theory to predict the I/O
performance of consolidated virtual machines. Both methods
use monitored measurements on the block layer that is lower
than typical applications run. Moreover, both methods are
focused on performance prediction of consolidation scenarios
only without considering the performance and interference
effects due to changes in the workload intensity across multiple
VMs. In [23], Ahmad et al. analyze the I/O performance of
VMware’s ESX Server virtualization. They compare virtual
to native performance using benchmarks. They further create
mathematical models for the virtualization overhead used for
the prediction of I/O throughput degradation. By applying
different machine learning techniques, Kundu et al. [24]
use artificial neural networks and support vector machines
for dynamic capacity planning in virtualized environments.
Further, Gulati et al. [25] present a study on storage workload
characterization in virtualized environments, but perform no
performance analysis.

VII. CONCLUSION

We presented an explicit performance modeling approach of
I/O performance interference in virtualized environments with
queueing Petri nets (QPNs). We created an I/O performance
model to capture the complex behavior of a representative, real-
world environment based on IBM System z and IBM DS8700
server hardware. We calibrated the model with response time
measurements obtained in a single VM setup and refrained
from using hardware-specific or low-level monitoring tools. We
use the I/O performance model to evaluate the I/O performance
when the workload is running with different intensities on two
co-located virtual machines. We effectively captured the I/O
performance effects in the considered environment with less
than 8% and 11% mean prediction error for read and write
requests, respectively. The results are generally encouraging as
the QPN model is kept simple to be able to calibrate it in an
automated manner. It is now to us to extend the workload setup
and further improve these results. We envision that our approach
can be beneficial in a multiple application scenarios. Such
I/O performance models can support system developers and
data center operators in capacity planning and virtual machine
consolidation decisions, for instance. Our approach does not
depend on hardware-specific or low-level monitoring tools
allowing it to be generally applied to any system environment.
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