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ABSTRACT

Using different modeling and simulation approaches for pre-
dicting network performance requires extensive experience
and involves a number of time consuming manual steps re-
garding each of the modeling formalisms. In this paper, we
propose a generic approach to modeling the performance of
data center networks. The approach offers multiple perfor-
mance models but requires to use only a single modeling
language. We propose a two-step modeling methodology,
in which a high-level descriptive model of the network is
built in the first step, and in the second step model-to-model
transformations are used to automatically transform the de-
scriptive model to different network simulation models. We
automatically generate three performance models defined at
different levels of abstraction to analyze network through-
put. By offering multiple simulation models in parallel, we
provide flexibility in trading-off between the modeling ac-
curacy and the simulation overhead. We analyze the sim-
ulation models by comparing the prediction accuracy with
respect to the simulation duration. We observe, that in the
investigated scenarios the solution duration of coarser simu-
lation models is up to 300 times shorter, whereas the average
prediction accuracy decreases only by 4 percent.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling techniques
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1. INTRODUCTION

Performance modeling and prediction approaches help sys-
tem operators to analyze data center performance at system
design-time and during operation. Nowadays, data centers

*This work is a part of RELATE project supported by the
European Commission (Grant no. 264840ITN).

are becoming increasingly big and dynamic due to the com-
mon adoption of virtualization technologies. Virtual ma-
chines, data, and services can be migrated on demand be-
tween physical hosts to optimize resource utilization while
enforcing service-level agreements. This makes an accurate
and timely performance analysis a challenging problem [17].

In our research, we focus on the network infrastructures
of modern virtualized data centers. Network infrastructures
in such environments introduce several new challenges for
performance analysis. Some examples of such challenges in-
clude the growing density of modern virtualized data centers
(increasing amount of network end-points), the high volume
of intra-data-center traffic (having its source and destina-
tion within the same data center), or the new traffic sources
introduced in the management layer of virtualized environ-
ments (e.g., migration of virtual machines).

Computer networks can be represented in multiple perfor-
mance modeling formalisms, as for example, domain-specific
simulation models, stochastic Petri nets, queueing networks,
and stochastic process algebras. The use of a given perfor-
mance model requires understanding of its formalism and
the usual modeling steps. Thus, specific knowledge and ex-
perience with the various modeling formalisms are required
in order to benefit from their different characteristics. Usu-
ally, such knowledge and experience is missing or it is limited
to a single modeling formalism.

We propose an approach that requires to model the net-
work using a high-level descriptive language that is generic
and contains elements familiar to any network operator.
That approach enables the use of multiple different mod-
eling and analysis approaches without requiring in depth
expertise in the respective modeling formalisms. Using the
high-level descriptive model as a basis, we provide model-to-
model transformations to automatically generate predictive
performance models without requiring the operator to have
expertise in any of them. For the descriptive modeling of
the network infrastructure, we use the Descartes Network
Infrastructure (DNI) meta-model as a part of the Descartes
Modeling Language (DML) [9]. We refer to meta-models as
to modeling languages specified using the MOF formalism
(Meta-object Facility) [3]. Network models that are built us-
ing the DNI modeling language can be automatically trans-
formed to various predictive models; in this paper we present
three predictive models that can be automatically derived:
OMNeT++ simulation and two different stochastic models
based on Queueing Petri Nets (QPN).

The main contributions of this paper are the following.
(i) We propose two new model transformations to automat-



ically generate performance models based on a single de-
scriptive DNI model instance that is given as an input. (ii)
As an intermediate step, we propose a new miniDNI meta-
model that is smaller than DNI and offers coarser modeling
granularity. Transformation from DNI to miniDNI is per-
formed automatically, so only an instance of the DNI must
be provided at the input. (iii) We compare the three predic-
tive models against existing performance models obtained
by using the DNI model and the previous transformations
partially introduced in [27, 29]. We reveal the semantic gaps
between the model abstractions and the different model solv-
ing techniques. (iv) We evaluate the three predictive mod-
els with respect to their performance prediction accuracy
and the time needed to solve them. Finally, we discuss the
results, describe technical challenges, and characterize sit-
uations in which a given simulation model performs better
than the other models.

The novelty of our approach can be characterized by the
following aspects. First, we propose an original descriptive
performance modeling language that offers automatic trans-
formation to performance predictive models for performance
prediction. Second, thanks to the technology-independence
of the DNI modeling language, our approach can be used
for modeling novel networking technologies such as network
virtualization, and flow-based routing. Third, from a sin-
gle DNI network model, we automatically provide multiple
predictive models that offer different modeling granularity,
prediction accuracy, and model solution time. This allows
a flexible selection of the prediction model according to the
required prediction accuracy and time constrains (e.g., pre-
diction within max. 3 minutes). Fourth, we cover the end-
to-end performance specifications of the modern data cen-
ters by supporting generic server and network virtualization
and the link to the deployed software. We do not focus on
selected fragments of a specific protocol but model the net-
work as a whole including the deployed software, physical
and virtual topology, configuration and traffic.

The rest of this paper is organized as follows. In Section 2,
we introduce the foundations, briefly reviewing network per-
formance modeling formalisms and related performance pre-
diction approaches. In Section 3, we introduce our approach
to performance modeling and prediction. Section 4 briefly
presents the descriptive models and the different model-to-
model transformations. Additionally, we characterize the
differences between the generated predictive models. In Sec-
tion 5, we present our evaluation of the prediction accuracy
and the simulation overhead. We describe the model cal-
ibration process and formulate technical challenges related
to it. Finally, we present our plans for future works and
conclude the paper in Section 6.

2. FOUNDATIONS AND RELATED WORK

There is a large body of existing work on performance
modeling of communication networks. The related work can
be divided into two main areas: predictive models for perfor-
mance analysis and approaches that rely on the model-based
generation of predictive models.

2.1 Performance Models for Data Center Net-
works

There exist many performance modeling formalisms suit-
able for modeling networks, for example [16, 25]. Existing
modeling approaches are mostly based on stochastic models

such as classical product-form queueing networks, layered
queueing networks, stochastic Petri nets, stochastic simula-
tion models, and so on. We can distinguish domain-specific
performance models (e.g., network simulators) and general
purpose models that can be used to model the networks.

The most popular network simulation frameworks are OM-
NeT++ [31] and ns-2/3 [26] — both discrete event simula-
tors. In [26], ns-2 has been claimed for many years to be
standard simulator for academic network research. Model-
ing using ns-2 requires extensive knowledge of programming
in C++ and thus required time investment to learn how to
model. Similar observations apply to OMNeT++—almost
all protocol-specific models need to be implemented by hand.
According to [34], further similar simulators include: open-
WNS, OPNET, GTNetS, and IKR simulation library. All
these simulators focus on medium-detailed modeling of the
popular TCP/IP protocol stacks; extensions to support fur-
ther popular protocols are often available as well. There
exist also simulators that are tightly bound to a given pro-
tocol or even to a concrete implementation of that protocol.
An example is the Venus simulator [12]; the authors use the
TCP implementation extracted from FreeBSD v9 kernel to
keep the simulation accuracy maximized.

On the other hand, there exist general-purpose perfor-
mance modeling formalisms that can also be applied for net-
work modeling. To such formalisms we account, for example,
queueing networks, layered queueing networks, stochastic
Petri nets, stochastic process algebras, Markov chains, ana-
lytical estimation methods (bounds analysis). In [25], Puig-
janer reviewed selected general-purpose performance model-
ing formalisms and their applicability in the communication
networks area.

In this paper, we use, among others, stochastic Petri nets
as a predictive model. Regarding the stochastic Petri nets,
such as queueing Petri nets, and their usage in a network-
ing context, so far they have mainly been used to model
specific network components at a high level of detail but
with limited scope as, for example in [37, 21]. However, an
end-to-end modeling approach is crucial in modern virtual-
ized systems. The authors of [33] claim: , The fundamental
problem is that the simple textbook end-to-end delay model
composed of network transmission delay, propagation delay,
and router queueing delay is no longer sufficient. Our results
show that in the virtualized data center, the delay caused by
end host virtualization can be much larger than the other
delay factors and cannot be overlooked.”

Domain-specific simulators cover in high detail selected
performance-relevant aspects of communication networks.
To the other extreme—regarding the level of abstraction of
the models—we account black-box approaches, where the
performance metrics of interest are calculated using simple
mathematical equations based on a few general network pa-
rameters. The black-box modeling approach is normally ap-
plied in cases where the networks are not in the main focus
of the analysis, but their influence on performance cannot
be neglected. Such approaches can be found in [14, 20].

2.2 Approaches based on Model-to-model
Transformations

The wide variety of performance models makes it chal-
lenging to select the proper models and learn them exten-
sively to model the performance precisely. Model-based ap-
proaches assume that there exists a single descriptive model
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Figure 1: (a) Process of performance prediction
based on model-to-model transformations. (b) Ab-
stract division of prediction models into analytical
and simulation models. Models with very fine mod-
eling granularity (gray area) are not our target.

and all predictive models are derived automatically using
model transformations. The general performance prediction
process based on model-to-model transformations is pre-
sented in Figure la. A model of a real network is built
and stored in a descriptive model with performance annota-
tions, whereas the rest of the process is automated and can
deliver as many different predictive performance models as
many model transformations are available. Some authors,
e.g., [23], use the prediction results to further refine their
models (dashed line in Fig. 1a).

Approaches based on model-to-model transformations stem
from software engineering community. UML models are
used to analyze various software-related metrics [5]. Soft-
ware architecture models are annotated with performance-
relevant information and later transformed into predictive
models (e.g., [7, 36]). Software architecture models have
been further extended to also include information about the
hardware resources and the deployment of software compo-
nents. Among the hardware-related information also very
simple network models have been considered. Acknowledg-
ing the wide variety of such infrastructure models (e.g., [6,
10]), we further review the models that include performance
of the network infrastructures.

End-to-end performance analysis requires taking into ac-
count multiple performance-influencing factors such as com-
puting resources, deployment middleware, storage, and net-
works. Networks are usually abstracted in such complex
models and represented as black-box statistical models. In
[6], the authors model the network as a linking resource rep-
resented as a black-box analytical function, abstracting the
network configuration, topology and traffic patterns. On
the other hand, the authors in [11, 13, 18] propose highly-
detailed protocol-level simulation models that cover only se-
lected parts of network infrastructure. Other approaches
model the network environment, however without providing
support for performance analysis, e.g., [1, 24, 8].

The black-box performance modeling approaches do not
consider the internal network structure and topology while
the highly-detailed, protocol-level models focus only on se-
lected parts of the network infrastructure and do not cap-
ture the link to the running applications and services that
generate the traffic. We address these issues by providing a
generic modeling formalism that can be transformed to mul-
tiple models with different modeling granularities, whereas

in each of those models we include the whole picture of the
network in contrast to concentrating on a selected fragment.

3. APPROACH

We divide the area of performance models as shown in
Figure 1b. We intentionally exclude the simulation models
with high level of details (striped area in Fig. 1b) because
they require specifying too many low level input parameters
and usually do not model the infrastructure in an end-to-
end manner. However, we do not question usability of those
models and their high prediction accuracy; we recommend
using these models when maximum modeling accuracy is a
major requirement.

Using our model-based approach, we address the medium
and low-detailed predictive models (the non-stripped area
in Fig. 1b) that can be generated automatically using model
transformations. Among the addressed predictive models,
we consider models with various level of detail (respectively
prediction accuracy) and with different model solution time.
Using automatic model generation methods enables us to
pick the proper model according to the given situation: quick
but less detailed solution or longer simulation providing more
accurate prediction. We call this flexible performance pre-
diction because by modeling the infrastructure once, one can
freely pick the suitable predictive model or even use multiple
models in parallel.

The modeling approach we propose is based on a meta-
model for modeling network infrastructures in virtualized
data centers. This meta-model, which we refer to as Descartes
Network Infrastructure (DNI) meta-model, is part of our
broader work in the context of the Descartes Modeling Lan-
guage (DML) [9], an architecture-level modeling language
for modeling Quality-of-Service and resource management
related aspects of modern dynamic IT systems, infrastruc-
tures and services. The DNI meta-model has been designed
to support describing the most relevant performance influ-
encing factors that occur in practice while abstracting fine-
granular low level protocol details.

In our approach, instances of the DNI meta-model are
automatically transformed to predictive stochastic models
(e.g., stochastic simulation models) by means of model-to-
model transformations. The approach supports the imple-
mentation of different transformations of the descriptive DNI
models to underlying predictive stochastic models (by ab-
stracting environment-specific details, transformations to mul-
tiple predictive models are possible), thereby providing flex-
ibility in trading-off between the overhead and accuracy of
the analysis. In Section 4, we present the models, model
transformations and the resulting predictive models.

4. MODELS AND TRANSFORMATIONS
4.1 Meta-models

4.1.1 DNI

We use the DNI meta-model [29] to describe a network
infrastructure. The DNI meta-model (initially presented in
the work-in-progress paper [30] with technical details pre-
sented online in the manual [28]) is intended to describe the
common network components in an abstract manner. To
such common network components we account, for exam-
ple: network nodes (physical and virtual), links (physical



and virtual), traffic sources, flows, and routes. DNI cap-
tures the most important performance-relevant properties
of a network in a generic manner. It allows one to describe
any network (not only packet-switched) and is not bound to
any particular network technology.

The DNI meta-model covers three main parts of every
data center network infrastructure: structure, traffic and

configuration. The first part of the DNI meta-model—network

structure—is intended to model the topology of the net-
work. The meta-model contains entities such as nodes and
links connected through network interfaces. All nodes, links
and interfaces can either be physical or virtual; each vir-
tual network element is hosted on a physical node. We de-
scribe the performance-relevant parameters of every element
in the model. We distinguish end nodes (e.g., virtual ma-
chine, server) and intermediate nodes (e.g., switch, router),
because their performance descriptions are different.

In the DNI meta-model, network traffic is generated by
traffic sources that are deployed on end nodes. Each traffic
source generates traffic flows that have exactly one source
and possibly multiple destinations. The flow destinations
are located in nodes and can be uniquely identified by a
set of protocol-level addresses. Flows can be composed in
a workload model that defines how each flow is generated
(e.g., with sequences, loops, or branches). In this paper, we
describe a flow by specifying the amount of transferred data.
The meta-model and its transformations can be systemati-
cally extended to support other flow descriptions, e.g., [15].

The configuration of a network contains information about
routes, protocols and protocols stacks. We use this infor-
mation to calculate the paths in the topology graph and to
coarsely estimate the overheads introduced by the protocols.
In the model, we describe a snapshot of the current routes in
the system, disregarding if the system uses static or dynamic
routing. The protocols are described by a set of generic pa-
rameters (i.e., such parameters, that can be applied to any
protocol) such as, for example, overheads introduced by the
data unit headers.

In the meta-model, a route consists of a list of references
to network interfaces. The routing can be described in two
ways: the classical with routes defined between the pairs
of nodes (source-destination), and the flow-based descrip-
tion with a route defined for every flow individually. Even
if there are multiple flows deployed on the same node and
each having the same destination address, the routes can
be calculated individually for each of them in contrast to
the classical routing representation, where all flows would
follow the same route. The flow-based routing representa-
tion enables the modeling of the software-defined networks,
for example, based on the OpenFlow protocol [22]. We pro-
vide a model transformation to convert between the classical
and the flow-based routing description (depicted as ,Rout-
ing format conversion” in Fig. 3). We briefly describe the
transformation in Section 4.2.

4.1.2  miniDNI

Despite the high level of abstraction of DNI, it still re-
quires many parameters to be provided as input. To reduce
the amount of input data, we provide a smaller version of the
DNI meta-model; we call it miniDNI. The entities included
in the miniDNI are depicted in Figure 2.

In the miniDNI meta-model, we abstract the following
information. First, we abandon the virtual entities (links
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and nodes) and provide only one generic representation of
them. Second, we remove the NetworkInterfaces; the infor-
mation included in a NetworkInterface is now merged into
the Link. Third, we simplify the descriptions of the traf-
fic sources and workflows. In miniDNI, a workflow specifies
only a size of a message and the number of messages per
second (for brevity, not shown in Fig. 2. For more details,
see [28]) without defining what a message actually is. Fi-
nally, we abstract out all information about protocols used
in the network. From the DNI’s NetworkConfiguration, we
keep only simplified information about routes in the net-
work. The routes are flow-based, which means that there is
at least one route defined for every traffic source.

4.2 Transformations

The meta-models presented in Section 4.1 are transformed
into predictive models using model transformations. We use
the Epsilon languages [19] for model transformations. The
models and transformations between them are presented in
Figure 3.

Initial ideas and sketches of the transformations DNI-to-
QPN and DNI-to-OMNeT++ were presented in the work-
shop papers [29, 27]. Since then, the transformations have
been finalized and extended. The transformations generate
models of OMNeT++ version 4.5 with the INET library
Version 2.4 and SimQPN version 2.1 respectively. The tech-
nical details of the DNI-to-QPN and DNI-to-OMNeT++
transformations are available in the manual [28], the referred
workshop papers and in the source code that is available
under http://go.uni-wuerzburg.de/aux. Due to limited
space, we describe in this section the three new transforma-
tions: DNI-to-mDNI, mDNI-to-QPN, and the routing for-
mat conversion; for technical details, please refer to [28].

The first transformation—DNI-to-mDNI—transforms DNI
models into respective miniDNI models. In the transforma-
tion, some information is lost because the miniDNI model
contains less details than the respective DNI model. We
provide an overview of transformation rules in Table 1.

The obtained miniDNI model is a descriptive model and
needs to be further transformed in order to deliver perfor-



Table 1: Selected transformation rules from the DNI-to-mDNI transformation

DNI miniDNT Comments

*Node! Node Information about the physical and virtual nature of a Node is abstracted.

. . Information about the physical and virtual nature of a Link is abstracted. A Link connecting two

* *

Link, *NetworkInterface Link NetworkInterfaces is transformed into a Link connecting two miniDNI Nodes.
g::{: %igﬁ%? onent, TrafficSource Information about the software is abstracted. TrafficSource is the entity that represents traffic generation.
Flow, *Action, Workflow Information about traffic generated by a traffic source is aggregated into parameters: messageSize and
WorkflowDescription numberOfMessagesPerSecond.
NetworkConfiguration Route The network configuration is abstracted (except of routes).

: transmission-delay : .ﬁ t
node I ,CD_.I | node |

transmission-delay

I forward-traversing-traffic

Gummy’
traffic-
source,

H generation-delay |
link} [ traffic-sourced node

Figure 4: QPN representation of (a) Link, (b) Node,
and TrafficSource in the mDNI-to-QPN transforma-
tion.

mance predictions. We present the mDNI-to-QQPN transfor-
mation that transforms a miniDNI model into a Queueing
Petri Net (QPN) model. The QPN model resulting from
the mDNI-to-QPN transformation differs from the model
obtained in the DNI-to-QPN transformation. Both QPN
models represent the same network but they differ in the
amount of details being modeled. We briefly present the
mDNI-to-QQPN transformation.

The miniDNI model describes the structure of a network
using Nodes and Links. These two entities are mainly used
to generate the structure of the respective QPN. Every Node
is represented as a subnet. Connections between subnets are
obtained by transforming Links into pairs of queueing places
connected to Subnets using immediate transitions.

The QPN representation of a Link, presented in Figure 4a,
consists two queueing places where contention effects from
the network interfaces happen. The delays in transmission-
delay places are calculated using information included in the
LinkPerformance entities. Two pairs of immediate transi-
tions are required by the QPN formalism to connect two
consecutive places. The transitions include modes—one for
each token color traversing the link. The colored tokens rep-
resent traffic in the QPN. There is exactly one color for each
TrafficSource. Colors are assigned to places and transitions
based on the information contained in the Route entities.
The transformation reads the routing information and as-
signs a color to the place or transition if the respective link
or node carries the traffic of the given flow.

The colored tokens representing network traffic are gener-
ated in the Nodes. The structure of the QPN representing
a Node is presented in Figure 4b and consist of three parts.
The first part is the forward-traversing-traffic transition. It
is responsible for processing the tokens from the input to the
output place if the Node is neither the source nor the destina-
tion of the traffic represented by the token color. The transi-
tion is removed from the QPN model if a given node is not a
traversal node for any color. The information about traver-
sal nodes is derived from the Route entities. The second part

consist of the ordinary place called dummy-traffic-source.
This place is necessary to keep the QPN graph connected
in case the respective node does not act as traffic genera-
tor, nor destination or traversal node. The third part of the
subnet contains the set of traffic sources responsible for gen-
erating tokens representing traffic. Each traffic source (see
dashed frame in Figure 4b) generates tokens of one color.
A single token represents a single message of the given size.
The intergeneration time—derived from Workload entity—
is modeled as a parameter of the generation-delay places.
The ordinary place dummy acts as a link between the two
neighboring transitions, as QPN does not allow to connect
two transitions directly.

The transition between the input place and the traffic
source is responsible for removing incoming tokens—it con-
tains modes that remove every token that arrives to it. By
such representation, we model the traffic as an open work-
flow. Only tokens having destination in the given node are
removed; other (traversing) tokens are passed to the output
place using the forward-traversing-traffic transition.

Each QPN’s representation of the miniDNI node supports
additionally special token color called ether that was in-
troduced to guarantee the Petri net graph to be connected
and thus fulfill the liveness property. Further details of the
transformation and of the generated QPN model (e.g., to-
ken colors, the transition modes, the incidence functions)
is available in the manual [28] or can be obtained by look-
ing at the source code that is available online under http:
//go .uni-wuerzburg.de/aux.

The third transformation converts the format of the rout-
ing representation between flow-based and classical descrip-
tion (and vice versa). Transforming classical routing to the
flow-based format is trivial; for each flow a route is built
that contains the ordered list of intermediate nodes. Re-
verse transformation works analogously.

4.3 Semantic Gaps

In the presented approach, we automatically generate three
predictive models out of a single descriptive model. In this
section, we compare the predictive models by describing
which predictive model supports which performance-relevant
network features. A selection of features and metrics of the
predictive models is presented in Table 2. We briefly discuss
the main differences and then evaluate them in Section 5.

OMNeT++ along with the INET framework supports most
popular network protocols, including IP, TCP, and UDP.
Moreover, it generates network traffic on the packet level and
therefore it allows complex traffic pattern generations (e.g.,
as specified in [32]). The implementation of QoS (Quality of
Service) queue schedulers is also possible, however only sim-

L+ means any prefix of the entity name.



Table 2: Selected features of the compared predic-
tive_ models

OMNeT PN PN

Feature DNt | ot | mbNT
Intermediate- /end-nodes + + -
Physical /virtual nodes + 52 -
Traffic patterns + + -
Packet-level traffic generation + - -
QoS schedulers D [©) -
TCP/IP Protocol + © -
UDP Protocol + 52 -

Performance metrics
Throughput time series +
Throughput distribution + D ®
End-to-End delay time series ©
End-to-End delay distribution O] © O]
+ support, & partial support, ® extension possible, — no support

ple scheduling algorithms are provided in the INET library;
more complex algorithms must be programmed manually.

In contrast to OMNeT++, the QPN model can mimic
selected features of the UDP protocol behavior (e.g., drop-
ping excessive traffic, unreliable transmission). Also coarse
behavior of the TCP protocol can theoretically be modeled
using QPNs, however, we do not provide such implemen-
tation in this paper. Although detailed traffic patterns are
supported, the packet-level traffic generation is not modeled
in the QPN model. A single unit of traffic is a message of
a given size (that in reality represents a, so called, packet
train or flow) and the traffic patterns can be modeled at
the granularity of messages. In the QPN model, we support
distinction between end- and intermediate nodes (see [27]),
however, every virtual node is modeled as a VM hosted on a
physical node (independent of its nature: switch or server).

The most coarse-grained QPN model—obtained in the
mDNI-to-QPN transformation—abstracts most of the con-
sidered features. Nodes are modeled in the same manner
without distinguishing their roles: virtual, physical, end-
or intermediate nodes; the differences are encoded in the
numeric values of parameters describing their performance
whereas the structure of the QPN remains the same. The
model of the traffic is flat and is modeled at the level of mes-
sages; only message size and average numbers of messages
per unit of time are modeled. Information about protocols,
their behavior, and overheads are abstracted.

All performance models analyze throughput as the main
performance metric, however, only OMNeT++ provides de-
tailed throughput values for each moment of the simula-
tion; the other models provide aggregated statistics. Despite
the different granularity of traffic modeling (packet-level in
OMNeT++ versus message-level in QPNs), analysis of the
end-to-end transmission delay is possible in both formalisms.
The necessary extensions can be easily added, however, the
implementation is still considered as a future work.

S. EVALUATION

In this section, we evaluate the predictive models pre-
sented in Section 4, considering their prediction accuracy
and the model solution time (i.e., simulation duration).

5.1 Case Study

The system under study is a traffic monitoring applica-
tion based on results from the Transport Information Mon-
itoring Environment (TIME-EACM) project [4] at the Uni-

Figure 5: Network topology used in the experiment.
Dashed links are used for monitoring, solid links for
data traffic. Server S1 is the experiment controller.

versity of Cambridge. The system consists of multiple dis-
tributed components and is based on the SBUS/PIRATES
(short SBUS) middleware.

In the case study, we consider two types of SBUS com-
ponents: camera components and license plate recognition
(LPR) components. The cameras are located in the city and
take pictures of cars that are speeding or entering a paid
zone. Each camera is connected to a respective SBUS com-
ponent that sends the picture together with a time stamp to
an LPR component. The LPR components are deployed in
a data center due to their high consumption of computing
resources. LPRs receive the pictures emitted by cameras
and run a recognition algorithm to identify the license plate
numbers of the observed vehicles.

5.2 Reference Models

Reference models serve as a baseline to evaluate the pre-
diction accuracies of the generated predictive models. We
consider two reference models in the evaluation. First, we
consider the original SBUS implementation from the TIME-
EACM project. Second, we consider the uperf benchmark
[2] configured to mimic the traffic generated by the SBUS
implementation and to abstract the application logic of the
SBUS components (Camera, LPR) used in the case study.
In [29], uperf was shown to correctly represent the traffic
patterns of the SBUS implementation allowing the system
to scale to picture generation frequencies that cannot be
handled by the original SBUS implementation.

5.3 Hardware and Configuration

The system under study was deployed in a local data cen-
ter consisting of nine servers and three switches. Each server
is equipped with four 1Gbps Ethernet ports. The switches
are HP ProCurve 3500yl. The physical topology and the
configuration of the network environment is depicted in Fig-
ure 5. Server S1 is used to control the experiment and to
acquire the monitoring data from switches using SNMP. Two
servers, S2 and S3, are native (not virtualized). The nodes
S54-56 are hosting VMs, whereas S8 hosts VMware Control
Center and S9 is a storage.

5.4 Model Calibration

The DNI model describes the presented network, however,
to be useful for performance prediction, it first needs to be
annotated with performance-relevant information.

5.4.1 Network Structure

Annotating the network structure—mainly the process-
ing rates of the interfaces—is done straightforward by us-



ing the values provided in the technical specifications of the
respective devices. In such way, we describe all network
interfaces of switches and physical hosts. The links them-
selves are physical media and the only factor that influences
their performance is the propagation delay, which is speci-
fied as a tabulated value for the underlying network. Also
the switching delays are specified in the technical documen-
tation. Much more challenging is to calibrate other param-
eters, like for example, speeds of virtual entities, protocol
overheads, and traffic models.

5.4.2 Protocols

Information about protocol overheads is extracted from
the operating system. Parameters like the MTU (Maximum
Transmission Unit) and the length of a data unit header
play an important role for calculating protocol overheads:
every message is divided by the MTU value (to estimate the
number of packets) and then the header overhead is added
to each packet. The size of the message is then increased by
the sum of packet overheads. For DNI-to-QPN, this calcu-
lation is done in the transformation; OMNeT++ simulates
it internally, whereas mDNI-to-QPN ignores the protocol
overheads.

5.4.3 Traffic Patterns

The traffic patterns are modeled manually on the proto-
col level based on traffic monitoring tools or tcpdump traces.
Silence intervals between sending consecutive messages are
calculated manually and averaged over the duration of the
entire experiment. In case of any parameter variability, a
probability distribution can be constructed. Additionally,
we verify if the intergeneration times configured in the soft-
ware (e.g., ,send a picture every 10ms”) match the times
that are derived from the tcpdump. For our experiments,
we describe this process, its consequences, and challenges in
section 5.6.

5.4.4 Server Virtualization

Another challenging part is the extraction of the parame-
ters that describe the virtual entities. In case of data trans-
mission from one VM to another collocated VM, the data
is in fact copied between memory cells. The exact path of
the data and the overheads depend on the hypervisor type
and the delays are difficult to estimate a priori. Addition-
ally, the performance of the network bridge that is built-in
in the hypervisor depends on the system load, which is not
reflected in DNI since all model input parameters (e.g., re-
source demands) are modeled as load-independent.

The values of the performance parameters describing vir-
tual entities are finally estimated experimentally and mod-
eled in a black-box manner. In this case study, we examine
the performance of the hypervisor-emulated network by run-
ning stress tests defined in uperf. The average bandwidth
achieved in the tests is used directly to describe the speeds of
the virtual network interfaces in VMs and in the hypervisor
bridge.

5.5 Measurements

To obtain the baseline performance values, we measure
the amount of the traffic flowing through the real network
interfaces of all switches. We use the counters located in
the switches to measure the number of bytes transmitted
through each interface. We read the values of the coun-

ters through SNMP every second and calculate the aver-
age throughput for that interval. Server S1 makes measure-
ments using an isolated VLAN. The experimental network
was isolated from other networks (e.g., the Internet). During
the measurements, all intergeneration times were modeled as
exponentially distributed; confidence intervals are calculated
for a significance level of & = 0.05. In every experiment, we
send predefined amount of pictures (5 000 for each camera)
and execute the experiment 30 times for SBUS, uperf, and
OMNeT++ and once for QPN (SimQPN cares internally
about the required amount of repetitions).

5.6 Results

We evaluate the proposed approach in two scenarios. The
goal of scenario 1 is to evaluate the accuracy of throughput
prediction. We deploy the camera components and the LPR
components and configure the communication between the
components according to the following plan: S2—VM4.1,
S2—VM5.1, S3—VMS6.1, and S3—VMS5.1. In this scenario,
we increase the amount of transmitted pictures per second
by decreasing the think time between sending consecutive
pictures to: 100, 50, 35, 20, and 10ms respectively. We
also measure the wall-clock times for every simulation and
for the SBUS experiment. In scenario 2, we compare simula-
tion durations for growing traffic intensity and the increasing
number of servers in the data center.

5.6.1 Prediction Accuracy

In the evaluation of the prediction accuracy, we measure
the throughput on the switch ports (for the reference mod-
els: SBUS and uperf) and compare them against the values
predicted by the generated simulation models. In this ex-
periment, we measure throughputs on selected switch inter-
faces: S2—SW1, S3—SW3, and SW2—S5. In scenario 1, we
expect the monitored throughputs to be equal on each inter-
face. The variations may happen when the network capacity
is saturated as the TCP protocol may divide the through-
put unequally among the flows. The results are presented
in Table 3.

Based on the gathered results, we observe the expected
equalities in the measured and predicted throughputs for
scenarios 1A—1D. By unsaturated network, the two refer-
ence models performed similarly (max. 5.3% throughput
variation relatively). For scenario 1E (saturated network),
we observe wide confidence interval for the SBUS model.
This phenomenon was observed in our previous workshop
work [29] and is caused by software performance bottlenecks
in the original SBUS implementation. For that scenario, we
use uperf as the reference model. The predictions of the gen-
erated models follow the measured trends with average rela-
tive error of 7.4% for OMNeT++, 9.9% for the QPN(DNI),
and 11.4% for the QPN (miniDNT).

OMNeT++. The OMNeT++ model predicted the through-
put with the lowest average relative prediction error 7.4%
(calculated as the relative difference between the mid points
of confidence intervals). However, in scenario 1D, OMNeT++
reported the highest inaccuracy of 19% mispredicting the
throughput maximally by 117 Mbps for the link SW2—S5.
We have investigated the inaccuracy of the model and for-
mulate the following observations and challenges.

The first challenge is the TCP protocol configuration. From
the generated simulators only OMNeT++ is able to mimic
the behavior of the TCP protocol. TCP relies on multi-



Table 3: Scenario 1A-E: measured and predicted
throughput in mega-bits per second
Link SBUS uperf OMNeT | QPN| QPN
referencel | reference2 DNI DNI | mDNI
ICI[ uCI [ ICI[ uCT [ ICT] uCI| avg. | avg.
Scenario 1A (think time 100ms)
S2—SW1| 205| 216 211 219 199| 224 | 202 | 202
SW2—S5| 205| 215 211 219 199| 214 | 202 | 202
S3—SW3| 204| 215 210| 220 200 223 | 202 | 202
Scenario 1B (think time 50ms)
S2—SW1| 430 449 385| 410 407 | 448 | 450 | 450
SW2—85| 431 447 390| 403 404 | 437 | 450 | 450
S3—SW3| 430 447 383 | 410 408 | 442 | 450 | 450
Scenario 1C (think time 35ms)
S2—SW1| 541| 562 496 | 539 471| 530 | 578 | 578
SW2—S5| 526| 548 505 | 528 454| 517 | 578 | 578
S3—SW3| 524| 551 495| 538 419| 484 | 578 | 578
Scenario 1D (think time 20ms)
S2—SW1| 631| 640 579 | 652 702| 764| 675 | 675
SW2—S5| 639| 648 583 | 640 689 752 | 675 | 675
S3—SW3| 416| 426 575 | 648 657 | 728 | 675 | 675
Scenario 1E (think time 10ms)
S2—SW1| 686| 941 | 882]| 941 | 914| 942| 978 | 1074
SW2—S5| 482| 506 | 884| 939 | 883| 909 | 978 | 1074
S3—SW3| 615| 941 | 882]| 941 | 914| 942| 978 | 1074

ple fine-grained parameters that influence the performance,
however, we do not model the values of those parameters in
DNI. OMNeT++ uses for simulation a larger set of param-
eters than we are able to calculate in the transformation.
The parameters that are not included in the DNI meta-
model (e.g., TCP congestion algorithms, window size) are
not transformed, and thus are set in OMNeT—++ to their
default values. To increase the prediction accuracy, a sim-
ulator with finer granularity shall be used or the missing
parameters should be provided manually.

Second, the calibration of the traffic patterns (here we use
the ON-OFF traffic pattern) is done manually based on the
protocol level traces. Manual calibration procedures are er-
ror prone and the errors usually cumulate when the network
is under high load. In scenario 1, the main challenge was the
extraction of the think time value. We depict schematically
this phenomenon in Figure 6. Although we set the think
time in the software as predefined value, it does not mean,
that on the protocol level the respective value remains the
same. In many simulators (also in OMNeT++), the traf-
fic generation process happens immediately, whereas in the
software, the transmitted data must be copied between the
respective memory cells and the respective mutexes need to
be freed before a sleep instruction can be executed. The pre-
cise modeling of the generation delay may be omitted by in-
frequent data generations, however, by low think times this
parameter has strong influence on the predicted values. The
duration of the generation delay depends on the respective
software implementation. In case of a single threaded imple-
mentation (e.g., in case of SBUS), the generation delay may
take significant time, for example: for 1IMB message and a
1Gbit /s network interface, the generation of a message takes
about 7ms. The precise calculation of the generation delay
requires the available throughput to be known beforehand;
this causes the fine model calibration challenging.

QPN. Both generated QPN models performed identically in
low-load scenarios (1A-1D). The average prediction errors
for the DNI QPN model are usually below 10% (with max-

simulated intergeneration time
network OFF

simulation generation delay = 0

network - OFF

software
software t
i think time’
generdatllon simulation "
elay ~="think time ”

Figure 6: Differences between think times in simu-
lation (upper part) and in the software (lower part).

imal error of 13.5% in scenario 1B), whereas for miniDNI
QPN: 11.4% (maximum of 17.8% for scenario 1E).

The differences between the two QPN models appear first
when the network gets saturated. In scenario 1E, the model
generated from the miniDNI overestimates the measured
throughput by about 160 Mbps reporting higher throughput
than achievable in the practice. The reason for that is the
level of abstraction applied in the generated QPN model—
the protocol-related parameters are abstracted in the trans-
formation. Additionally, the traffic calibration plays here
an important role. Although the traffic patterns are not re-
flected in miniDNI, the DNI2miniDNI transformation relies
on the traffic patterns to aggregate the traffic information.
Thus, errors caused by the imprecise DNI calibration prop-
agate to the QPN model.

5.6.2 Simulation Time

Along with the prediction precision, we evaluated the per-
formance of the generated simulation models, i.e., the time
needed to solve them. Depending on the situation, a less pre-
cise but quickly obtained result may be more valuable than
precise but late predictions. During the execution of sce-
nario 1, we measured the execution time of the experiments
and the three generated simulation models. We examined
the run durations in two scenarios: 2A and 2B. First (24),
we varied the traffic intensity for the prediction accuracy
scenario. Second (2B), we increased the size of the network
by adding servers, whereas the traffic intensity was constant.

The duration of simulations are measured using the time
command on a non-virtualized server with Intel Xeon E3-
1230 CPU, 16GB RAM, and Ubuntu Linux 12.04. We com-
pile OMNeT++ in the release mode (make MODE=release)
and exclude the TCL library (NO-TCL=1 . /configure). Sim-
ulations are run in the command line mode (c¢cmdenv). Run
durations for OMNeT++ are estimated because of relatively
long simulation times. First, we measure wall-clock time re-
quired to simulate 30 seconds of the respective real time
(OMNeT parameter: sim-time-limit). During this simula-
tion period, we observe the ,simulation-seconds per second”
parameter that describes the performance of the simulation.
Then, we estimate the duration of the full simulation based
on the real SBUS experiment duration and the measure-
ments for 30 simulation-seconds. For selected simulation
runs, we verify the estimations by simulating the complete
experiment length. The verification shows, that the estima-
tions are precise (up to 1% error).

Scenario 2A: Traffic Intensity. The simulation dura-
tions measured in scenario 2A are presented in Table 4 and
depicted in Figure 7a. Table 4 contains the durations of
the original experiment for reference. The OMNeT++ sim-



Table 4: Scenario 2A: model solution duration (in
seconds) for growing traffic intensity

Think | SBUS | OMNeT | OMNeT | QPN | QPN
time | (real) 30s full DNI | mDNI
100ms 1136 92 666 17 3
50ms 670 175 3908 31 3
35ms 528 234 4118 48 3
20ms 416 351 4867 73 3
10ms 348 519 6020 222 3
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Figure 7: Scenarios 2A and 2B: model solution du-
ration (in seconds) for growing traffic intensity (2A)
and network size (2B)

ulation models execute visibly slower than the QPNs—up
to 100 minutes for 10ms think time. We observe exponen-
tial growth of the simulation time for OMNeT++ and DNI
QPN for growing traffic intensity. The miniDNI QPN model
is insensitive to the traffic intensity and offers constant sim-
ulation time of 3 seconds. The exponential growth of sim-
ulation duration for OMNeT++ and DNI QPN is caused
by the increasing number of events/tokens in the simula-
tion model. The miniDNI QPN model abstracts the traffic
patterns in the transformation and thus maintains constant
number of tokens and constant simulation time.

Scenario 2B: Network Size. In this scenario, we assume
a classical dumbbell topology with two directly connected
switches and servers connected to them. We increase the
number of servers connected to each switch while the traffic
characteristics remain the same. Every node is set to trans-
mit two 800KB pictures per second. The experiment is over
when each node has finished the transmission of 5000 pic-
tures. We generate 6 setups containing 5, 10, 20, 30, 40, and
50 nodes for each switch, i.e., 10, 20, 60, 80, and 100 nodes
in total respectively. The simulation durations are presented
in Table 5 and depicted in Figures 7a and 7b. Additionally,
in the column ,Transf.”, we present the total time of the
DNI model generation and the five model-to-model trans-
formations. The source code of the transformations was not
performance-optimized so the transformation duration can
be further reduced.

In scenario 2B, we observe a linear growth of simulation
time for OMNeT++ which is caused by the linear growth of
the number of events in the simulation engine. This obser-
vation confirms the results obtained by Weingartner et al. in
[35]. Similar dependency can be observed for miniDNI QPN
where the number of tokens grows linearly with respect to
the number of nodes. The DNI QPN model experiences
exponential growth of the simulation duration. Despite the
linear nature of the OMNeT++ run duration, the DNI QPN
outperforms the full length run of OMNeT++ by the factor

Table 5: Scenario 2B: transformation and model
solution duration (in seconds) for growing network
size

OMNeT | OMNeT | QPN | QPN
Nodes 30s full %NI H?DNI Transt.
2x5 35 2953 21 5 25
2 x 10 65 5484 56 3 67
2 x 20 127 10716 | 183 36 149
2 x 30 195 16453 | 376 72 277
2 x 40 262 22106 | 630 122 446
2 x 50 334 28181 | 884 182 692

of 30. In scenario 2B, the miniDNI QPN model is solved
on average 300 times faster than the respective full-length
OMNeT++ simulation; miniDNI QPN requires four times
less simulation time than the respective DNI QPN model.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we show that abstraction of selected details
in network performance models can lead to only minor pre-
diction accuracy degradation (up to 4% on average) but can
accelerate the performance analysis by factor of 300. We
stress, that maximized accuracy of performance prediction
requires highly-detailed, protocol-level modeling formalisms.
In our approach, we accept lower prediction accuracy by pro-
viding technology independent generic modeling formalism.
Despite the introduced abstractions in the DNI meta-model
and fully automatic process of predictive model generation,
we obtain good throughput prediction accuracy with maxi-
mal prediction error up to 18%.

Using the DNI meta-model and the proposed model-to-
model transformations, we automatically obtain simulation
models with different modeling granularity. The generated
simulation models can be flexibly used according to the sit-
uation: less analysis overhead and less prediction accuracy
or longer simulations but more accurate predictions. Our
approach requires a single input DNI model and offers mul-
tiple predictive models without requiring any expertise in
each of them. Non-experts can clearly benefit from our ap-
proach because they learn only one modeling formalism but
receive multiple automatically generated models.

Obtaining good prediction accuracy requires careful model
calibration. We formulate the technical challenges that need
to be considered during the calibration process. For exam-
ple, imprecise modeling of network traffic patterns, can vis-
ibly influence the predicted throughput values. To precisely
tune the model parameters, a low-level trace-based calibra-
tion is recommended. We plan to support this process in
our future work by providing tools and methods for auto-
mated or semi-automated calibration. Additionally, we plan
to evaluate the DNI meta-model in SDN scenarios for data
center networks. Furthermore, we plan to add support for
additional performance metrics like transmission delay and
network latency.
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