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ABSTRACT
Using various modeling and simulation approaches for pre-
dicting network performance requires extensive experience
and involves a number of time consuming manual steps re-
garding each of the modeling formalisms. Descartes Net-
work Infrastructure (DNI) is a data center network perfor-
mance modeling approach that addresses this challenge by
offering multiple performance models but requiring to use
only a single modeling language. In this paper, we thor-
oughly extend DNI to support new networking paradigms
like, among others, Software-Defined Networking (SDN) and
Network-Function Virtualization (NFV). Additionally, we
demonstrate how SDN-based networks can be modeled us-
ing DNI and how are they transformed later into Queueing
Petri Nets (QPN) using a model-to-model transformation.
In the analysis of the performance prediction accuracy, we
show that automatically generated QPN models represent
the performance of heterogeneous SDN hardware with max-
imal prediction accuracy error of 12%.

CCS Concepts
•Networks → Network performance modeling; Net-
work simulations; •Hardware → Networking hardware;

Keywords
performance modeling, software-defined networking, data
center networks, meta-modeling

1. INTRODUCTION
Performance modeling and prediction approaches help sys-

tem operators to analyze data center performance at the
system’s design-time and during operation. Nowadays, data
centers are becoming increasingly big and dynamic due to
the common adoption of virtualization technologies. Virtual
machines, data, and services can be migrated on demand be-
tween physical hosts to optimize resource utilization while

enforcing service-level agreements. This high level of com-
plexity makes an accurate and timely performance analysis
a challenging problem [6]. Furthermore, the network in-
frastructures shift towards virtualization with emergence of
such paradigms as Software-Defined Networking (SDN) and
Network Functions Virtualization (NFV).

In our research, we focus on the modern network infras-
tructures of virtualized data centers that leverage SDN or
NFV technologies. The network infrastructures in such en-
vironments introduce several new challenges for performance
analysis. Some examples of such challenges include the grow-
ing density of modern virtualized data centers (increasing
amount of network end-points), the high volume of intra-
data-center traffic (having its source and destination within
the same data center), or the new traffic sources introduced
in the management layer of virtualized environments (e.g.,
migration of virtual machines). For SDN and NFV paradigms,
new performance-related challenges emerge as the classical
hardware-based networking is now tightly bound to software
running on commodity servers (e.g., applications in the SDN
Controller in SDN-based networks, or virtualized network
functions in NFV setups).

Data center networks can be represented in multiple per-
formance modeling formalisms, for example, domain-specific
simulation models, stochastic Petri nets, queueing networks,
and stochastic process algebras. The modeling with a given
performance model requires understanding of its formalism
and the usual modeling steps. Thus, specific knowledge and
experience with multiple modeling formalisms are required
in order to benefit from the variety of their characteristics.
Usually, such knowledge and experience is missing or it is
limited to a single modeling formalism.

In [16], we proposed an initial modeling approach that re-
quires to model the network using a high-level descriptive
language named DNI (Descartes Network Infrastructures).
DNI is a generic network modeling formalism and contains
elements familiar to any network operator. That approach
allows to use multiple various modeling and analysis ap-
proaches without requiring in depth expertise in the respec-
tive modeling formalisms. Using the descriptive DNI model
as a basis, we provide model-to-model transformations to
automatically generate predictive performance models with-
out requiring the operator to have expertise in any of them.
Network models that are built using DNI modeling language
can be automatically transformed to various predictive mod-
els. In this paper we present new, substantial changes to the



architecture of the DNI Meta-model and its model-to-model
transformations.

1.1 Motivation
Software-Defined Networking and Network Functions Vir-

tualization slowly become ubiquitous in nowadays networks.
Most of the networking hardware vendors offer SDN-enabled
devices and software solutions to bring more programmabil-
ity into networks and move the network design from the
hardware layer to the software tier. However, new net-
working paradigms impose a new way of the network work-
load processing and thus enable new performance bottle-
necks that may originate from the software in contrast to the
purely hardware-related sources of the performance degrada-
tion in the classical networks. Moreover, to enable support
for SDN, the hardware vendors need to redesign their equip-
ment by adding new processing workflows. This may lead to
the emergence of new performance-influencing factors that
were not present in the classical network architectures.

Many authors support the need to investigate the per-
formance of SDN setups in a more throughout manner in-
cluding the hardware and the software aspect of a network.
In [8], the authors investigate various performance-related
parameters of an SDN network. The authors note that “per-
formance bottleneck may be located in the existing switches,
and the flow table entry installation delay is a pressing is-
sue.” This statement is confirmed by the authors of [11] who
investigated control planes of three hardware SDN switches
and observed that hardware is still not mature enough for
the performance to be repeatably predicted, because “each
switch under test has many quirks which result in unex-
plained performance changes.” They conclude that “the
switch performance is difficult to predict—a single rule can
degrade the update rate of a switch by an order of magni-
tude”. The authors stress high diversity of the performance
of the switches. The statements are amplified by the au-
thors of [12], who stress the diversity of switch capabilities
and behaviors what makes network harder to understand
and control. They observe that rules may be shifted be-
tween flow tables in the switch. In some switches rules may
be rejected whereas on other, rules may be installed into the
software or the hardware flow table. In contrast to this, the
authors of [5] find out that building an SDN switch emulator
is possible as “an appropriately calibrated emulation infras-
tructure can approximate the behavior of the switches.”

Many other authors (e.g., [7, 4]) focus on the data-plane of
an SDN setup and identify possible bottlenecks in the SDN
controllers. In this paper, we do not focus on the SDN con-
troller aspect, although the SDN controllers and the model-
ing of their performance is supported in DNI. In evaluation
of this paper, we analyze proactive networks scenarios, i.e.,
such a state of the network, where all SDN flow rules are
already installed in the switch.

Many SDN-related performance factors cannot be ignored
and the performance modeling approaches should take them
into consideration despite of the challenges stated in related
work. This constitutes the main incentive for the substantial
extension of the DNI modeling approach.

1.2 Contributions
The main contributions of this paper are the following.

(i) We present new, substantial changes to the architecture
of the DNI meta-model. The newly introduced modeling

entities enable modeling of modern network infrastructures
(such as SDN, NFV) and load balancing scenarios (load bal-
ancing in the sense of both: using multiple network paths
and multiple software entities as destinations) while still
supporting the classical data center network architectures
and virtualization technologies (e.g., VLAN, tunneling) at a
high level of abstraction. (ii) Furthermore, we show how the
newly introduced modeling entities are transformed from the
descriptive DNI model into the predictive QPN models. (iii)
We evaluate the automatically generated predictive mod-
els with respect to their performance prediction accuracy
in three scenarios where we compare the QPN performance
predictions against performance measurements of three het-
erogeneous SDN-enabled HP switches. We show how differ-
ent switch characteristics can be modeled in DNI and how
well the QPN simulation can represent the throughput of
the switches. Finally, we discuss the results and describe
technical challenges.

1.3 Novelty
The novelty of our approach can be characterized by the

following aspects. First, we propose an original descriptive
performance modeling language—DNI—capable of model-
ing modern network virtualization infrastructures based on
SDN and NFV paradigm. Additionally, we offer automatic
transformation to performance predictive models for perfor-
mance prediction so the DNI models can be transformed
and solved with a single mouse click. Second, thanks to the
technology-independence of the DNI modeling language, our
approach can be used for modeling novel networking tech-
nologies and custom protocols without limiting its scope to a
single technology. Third, DNI is the first descriptive model
to support all switching modes of an SDN-enabled switch:
native, software SDN switching mode, hardware SDN switch-
ing mode, and the reactive SDN scenarios with the packet -
in–flow mod message exchange between the switch and the
SDN controller. Moreover, the generic character of DNI,
the modeling of the virtualization, and the support for the
modeling of the software layers allows to model NFV setups
where parts of the network functions are offered by com-
modity servers. Finally, we have characterize the most rele-
vant performance aspect of four heterogeneous SDN-enabled
switches that served as a validation case study for DNI and
QPN simulation.

1.4 Organization
The rest of this paper is organized as follows. In Section 2,

we introduce the foundations of SDN, briefly reviewing the
related work on SDN performance prediction approaches. In
Section 3, we introduce our approach to performance model-
ing and prediction. In Section 4, we present the DNI meta-
model and its novel features. In Section 5, we present the
DNI-to-QPN model transformation, whereas in Section 6,
we evaluate the automatically generated simulation models
using four heterogeneous switches in three scenarios. We
present future work directions and conclude in Section 7.

2. FOUNDATIONS AND RELATED WORK
In this section, we briefly introduce the most relevant as-

pects of the SDN-based networks, including, so called, the
software- and the hardware SDN switching mode. Moreover,
we briefly review the related work on performance modeling
of SDN and NFV-based networks.



2.1 SDN Performance Foundations
Software-defined networking (SDN) assumes separation of

the data plane and the control plane. In the data plane, a
switch forwards the packets, whereas in the control plane,
algorithms make decisions where the packets should be for-
warded to. The control plane is implemented using an SDN
controller that is a special software running in a commodity
server. The controller makes the forwarding decisions which
are later stored in switch forwarding tables.

The forwarding tables contain forwarding rules that define
behavior of the switch. The packets arriving to the switch
are matched against the table entries and once a match is
found, the programmed action is executed (e.g., forward,
modify, drop packet). If a matching rule cannot be found,
a packet in message is sent to the controller so that it can
react and decide what to do with the packet—we will refer
to this as the reactive SDN switching. The controller cal-
culates the decision and sends a flow mod message to the
switch to modify the table. If the controller preconfigures
the switches and installs the forwarding rules beforehand, we
speak of the proactive SDN switching. The flows installed by
the controller remain in the table for the time defined in the
timeout parameter (where 0 means no timeout). The com-
munication between the switch and the controller is usually
realized with the OpenFlow protocol.

The rules saved in the switch can be exact-match (all
match fields are specified explicitly) or wildcard-match (some
fields are wildcarded). Exact match rules are stored in
the BCAM memory (binary content-addressable memory),
whereas the wildcard rules are saved in the TCAM (ternary
content-addressable memory) that allows each cell to have
three states: 1, 0, and ∗. TCAM is usually power hungry
and expensive [11]. The rules that do not fit to the hard-
ware flow tables (i.e., implemented using hardware mem-
ory chips, either in BCAM or TCAM) are placed in the
switch SDRAM—so called software flow table. Placement
of the rules in the software or hardware flow tables influ-
ence the switching performance significantly (as we show
in Section 6). If a packet is matched against a rule from
the hardware switching table, we observe the hardware SDN
switching mode, whereas if the matched rule is placed in
the switch SDRAM, we refer to the software SDN switching
mode, which is usually slower than the hardware one. More-
over, a rule placed in a given flow table can be later moved
(promoted) to another, which may be implement using a
faster memory chip. Finally, various switch models provide
various performance characteristics of the flow table imple-
mentations. More information about SDN and OpenFlow
foundations can be found in [14].

2.2 Related Work on Performance Models of
SDN-based Networks

There is a large body of existing work on performance
modeling of communication networks. However, only several
cover SDN and NFV-based networks and even less work put
focus on a whole network (i.e., including server virtualization
and software), as opposed to, for example, [7], where only
parts of a network are modeled.

The topic of performance of SDN-based networks attracts
many researchers and some aspects were already investi-
gated in the literature. However, various authors usually fo-
cus on selected parts of SDN networks so they miss the over-
all picture of the system (e.g., they focus on the control path,

data path, or a controller [11, 5, 2]), or model an SDN net-
work too coarsely [7]. The relatively young concept of SDN
resulted in multiple heterogeneous hardware products that
offer the support for the OpenFlow protocol. This variety
resulted in different implementations and thus the offered
performance may differ among the vendors, switch models,
or even among the versions of the same switch model.

Jarschel et al. [7] model an SDN switch using two queues
(M/M/1-S and M/GI/I-S) and thus specify two processing
paths (with and without the controller) with different per-
formance. The selection of the controller and non-controller
path is modeled in a probabilistic manner. Unfortunately,
the software SDN switching mode, which involves CPU and
SDRAM processing on a switch, is not modeled making the
results applicable only to a switch with unlimited BCAM/T-
CAM capacity. Similar work was conducted by Azodol-
molky et al. [1], where the authors propose an analytical per-
formance model similar to the one proposed by Jarschel et al.
The authors validate the model against results that were
obtained in the literature and do not investigate any real
hardware on their own.

In the NFV-related literature, the authors of [19] claim
that many performance problems in the modern NFV testbeds
are located in the software of the virtualized network func-
tion. This implies that the analysis of the software perfor-
mance needs to be taken into account to accurately predict
the performance of an NFV-based network. Influence of the
server virtualization on the ClickOS router was the main
focus in [13]. The authors analyzed software-emulated net-
working hardware and found out that a network function
that is virtualized may increase switching latencies and de-
crease switching capacity. This has a visible influence on the
performance of an NFV-based network.

In the contrast to the related work, we do not limit our
focus to selected parts of the system but treat the data cen-
ter as a whole (including the software architecture using the
Descartes Modeling Language (DML) [10]). By widening the
modeling scope, we represent the system at a higher level of
details as we aim to provide a good-enough performance pre-
diction in a timely manner for run-time capacity planning
purposes. Moreover, the DNI meta-model presented in Sec-
tion 4 is the first descriptive performance model capable of
modeling SDN and NFV-based network infrastructures.

3. APPROACH TO MODELING AND PER-
FORMANCE PREDICTION

The wide variety of performance models makes it challeng-
ing to select the proper models and learn them extensively to
model the performance accurately. Model-based approaches
assume that there exists a single descriptive model and all
predictive models are derived automatically using model trans-
formations. The general performance prediction process based
on model-to-model transformations is presented in Figure 1a.
A model of a real network is built and stored in a descriptive
form with performance annotations, whereas the transfor-
mations to predictive models are automated and can deliver
as many different predictive performance models as many
model transformations are available. The prediction results
can be used to further refine the descriptive models (the
dashed line in Fig. 1a).

We divide the area of performance models as shown in
Figure 1b. We intentionally exclude the simulation models



Network 
Infrastructure 

(input)

Descriptive 
Model 

(e.g., DNI)

Model 
Transformation

Predictive 
Model

(e.g., QPN)

Model SolutionModel 
Extraction

Performance 
Metrics

(a)

Level of details

Solution
time Simulation

models

Analytical
models

Addressed
models

(b)

Figure 1: (a) Process of performance prediction
based on model-to-model transformations. (b) Ab-
stract division of predictive models into analytical
and simulation models. Models with very fine mod-
eling granularity (gray area) are not in our scope.

with high level of details (striped area in Fig. 1b) because
they require specifying too many low level input parameters
and usually do not model the infrastructure in an end-to-end
manner (e.g., due to their complexity and size). However,
we do not question the applicability of those models and
their high prediction accuracy; we recommend using them
when the modeling accuracy is required to be maximized.

Using our model-based approach, we address the medium
and low-detailed predictive models (the non-stripped area
in Fig. 1b) that can be generated automatically using model
transformations. Among the addressed predictive models,
we consider models with various level of detail (respectively
prediction accuracy) and with different model solution time.
Using automatic model generation methods enables us to
pick the proper model according to the given situation: quick
but less detailed solution or longer simulation providing more
accurate predictions. We call this the flexible performance
prediction because by modeling the infrastructure once, one
can freely pick the suitable predictive model or even use
multiple models in parallel.

The modeling approach we propose is based on a meta-
model for modeling network infrastructures in virtualized
data centers. This meta-model, which we refer to as Descartes
Network Infrastructure (DNI) meta-model, is part of our
broader work in the context of the Descartes Modeling Lan-
guage (DML)![10], an architecture-level modeling language
for modeling Quality-of-Service and resource management
related aspects of modern dynamic IT systems, infrastruc-
tures and services. The DNI meta-model has been designed
to support describing the most relevant performance influ-
encing factors that occur in practice while abstracting fine-
granular low-level protocol details.

In our approach, instances of DNI meta-model are auto-
matically transformed to predictive stochastic models (e.g.,
stochastic simulation models) by means of model-to-model
transformations. The approach supports the implementa-
tion of different transformations of the descriptive DNI mod-
els to underlying predictive stochastic models (by abstract-
ing environment-specific details, transformations to multi-
ple predictive models are possible), thereby providing flex-
ibility in trading-off between the overhead and accuracy of
the analysis. In this paper, we present one of the model
transformations, which generates the predictive models au-
tomatically. In Section 4, we present the redesigned DNI
meta-model and the DNI-to-QPN model transformation.

4. MODELING NETWORK INFRASTRUC-
TURES USING DNI

In this Section, we present the new DNI meta-model de-
signed to model data center SDN- and NFV-based networks
for performance prediction purposes. Later, in Section 5, we
demonstrate how do we transform the DNI models to QPNs.

Since its last version (DNIv2 ) [16], the DNI meta-model
was redesigned and extended to support SDN, NFV, and
load-balancing scenarios (e.g., Equal-Cost Multi Path Rout-
ing (ECMP)). We use the DNI meta-model to describe a
network infrastructure. The DNI meta-model—initially pre-
sented in the work-in-progress paper [17] (v1 ) and later ex-
tended in [16] (v2 )—is intended to describe the common
network components in an abstract manner. In this section,
we present the new aspects of the DNI model (DNIv3 ).

The DNI meta-model covers three main parts of every
data center network infrastructure: network structure, net-
work traffic and network configuration. The network struc-
ture is intended to model the structure (topology) of the
network. The meta-model for network structure contains
entities such as nodes and links connected through network
interfaces. Nodes can be nested to represent server virtu-
alization. We describe the performance-relevant parameters
of every performance-relevant element in the model. The
DNI network structure meta-model is presented in Figure 2.

We characterize the network nodes as end (e.g., virtual
machine, server) and intermediate (e.g., switch, router),
because their roles (and thus the way they influence the per-
formance) are different. An intermediate node represents a
node that only forwards the traffic between its ports; an end
node usually represents a server or a virtual machine that is a
traffic generator, traffic sink, or both. Moreover, a node can
be both end and intermediate simultaneously that enables
modeling NFV scenarios where commodity servers serve as
network devices. A node that is neither End nor Interme-

diate is assumed to have no influence on the performance
and is usually used in the model to reflect the topology of
the network.

Nodes can host other nodes (e.g., VM). In the transfor-
mations, we currently support only one level of virtualiza-
tion (i.e., no VMs in a VM), but the modeling formalism
does not prohibit multi-level virtualization. Nodes are con-
nected using Links and NetworkInterfaces that have their
respective performance descriptions. Any DNI entity miss-
ing a performance description is assumed to offer infinite
performance—the element in the model has purely descrip-
tive role.

Additionally, a Node can be either SDN or Common (IType).
Common nodes are described by their Performance (end
or intermediate respectively), whereas the SDN nodes with
thePerformanceSdnNode that exclusively defines their per-
formance in SDN modes: software- or hardware SdnSwitch-
ingPerformance as some devices offer only one mode while
other support modes simultaneously. The decision how a
flow is processed (using nonSDN, software, or hardware SDN
switching mode) depends on the SdbFlowRules. An Sd-

nFlowRule defines probabilities (see Fig. 4) for a given Flow

on a given Node to be processed using the SDN controller
(reactive scenarios), software SDN, or the hardware SDN
switching mode.

The SdnController is a special type of a Communicatin-

gApplication that represents software deployed on an End
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Figure 2: Structure of the DNI meta-model including SDN-related elements. Dashed entities represent in a
compact manner elements offered by DML [10], dotted ones represent briefly other parts of DNI.

node. The SdnController hosts SdnControllerApplica-

tions that are responsible for processing the traffic forwarded
to the controller. An SdnControllerApplication applies
delay to the switching process and installs the rules in the
switch. Unfortunately, installing the rule cannot be mod-
eled directly in DNI (the model cannot be changed during
solving) and the rule installation needs to be expressed using
the probabilities located in the SdnFlowRule entities.

In the DNI meta-model, network traffic is generated by
TrafficSources that are deployed on end nodes. Each traf-
fic source generates traffic Flows that have exactly one source
and possibly multiple destinations. Flows can be composed
in a Workload that defines how each flow is generated (e.g.,
with sequences, loops, or branches). Flows are described us-
ing the amount of transferred data in the GenericFlowTraf-
fic entity. The traffic description proposed in this paper
covers all possible open workloads including traffic sources,
sinks, and traffic profile characteristics. The meta-model
and its transformations can be systematically extended to
support other flow descriptions, e.g., [3]. The traffic meta-
model is presented graphically in Figure 3.
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Figure 3: Traffic representation of the DNI meta-
model. Dotted boxes represent other DNI entities.

The NetworkConfiguration contains information about
SDN configuration, routes (paths), protocols and protocols
stacks. We use this information to calculate the paths in

the topology graph and to coarsely estimate the overheads
introduced by the protocols. In DNI, we describe a snapshot
of the currently used routes in the system, disregarding if
the system uses static or dynamic routing. The protocols
are described by a set of generic parameters such as, MTU
(maximal transfer unit) and overheads introduced by the
data unit headers. We depict the configuration meta-model
in Figure 4.
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1
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Figure 4: Configuration representation of the DNI
meta-model. Dotted boxes represent other DNI en-
tities.

In the meta-model, a path between two nodes is defined
as a set of Directions. Each Direction defines via which
network interface on a given node, the given Flow should be
directed. Additionally, a probability of taking this path is
given, so that load-balancing can be modeled. The model-
ing approach allows to define a network-path load-balancing
(node A and B are connected using multiple network paths)
and destination application load-balancing (for flows having
multiple destinations the ratio of traffic division is defined
using the probability parameter).

5. TRANSFORMATION DNI TO QPN
An instance of the DNI meta model is a descriptive model

of a network. To conduct performance analysis, the in-
stance (the DNI model) must be transformed into a predic-
tive model. In this section, we describe the transformation
that transforms a DNI model into a QPN model, which can
be simulated using the SimQPN simulator. The SimQPN
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simulator is a part of QPME (Queueing Petri Net Modeling
Environment) [18]. The graphical notation used for QPNs
in this section is summarized in Figure 5.

The transformation has it origins in [15], however due to
the substantial changes in the DNI meta-model (added sup-
port for SDN and NFV), large part of the transformation
was reimplemented. In this Section, the DNI entities are
written in verbatim font face, whereas QPN entities in cur-
sive. All transitions presented in this paper are immediate
transitions. The only source of delays in the model are the
queueing places.

The procedure of the transformation begins with build-
ing the QPN’s topology. For each Node, a subnet place is
created. To reflect the topology, the subnets are connected
with links that are represented by two transitions—for send-
ing and receiving respectively. The internal structure of the
subnet representing a Node is depicted in Figure 6a. All
incoming tokens are placed in the input-place first. Next,
they are forwarded to the queueing places that represent
receive queues of the network interfaces (port-#-rx). The
traversing-transition has two tasks: (a) deleting the tokens
that end in this node, (b) passing the traversing tokens to
the traversingTraffic place. No tokens are passed to the traf-
fic sources (exception: SDN controller) as the transforma-
tion supports only open workloads. Next, the sdn-transition
gathers the traversing tokens and the tokens generated in the
traffic sources and forwards them into the switching place or
the sdnSwitching subnet based on the type of the node—for
a Common node, all tokens go via switching place, for SDN via
sdnSwitching. Graphically, we depict it in Figure 6b.

Once the switching delay is applied in the switching or
the sdnSwitching place, the tokens are directed to the proper
port-#-rx and leave the Node. We discuss the internal struc-
ture of two parts in more details: sdnSwitching subnet, and
the routing-transition for load-balancing scenarios.

The sdnSwitching subnet groups entities responsible for
switching in SDN Nodes. We depict its internal structure in
Figure 7. Two separate subnets (hw- and swSdnSwitching)
handle the traffic switched in the hardware- and software
SDN switching mode respectively. The SdnFlowRule prob-
abilities are mapped on to the firing weights represented
by parameters A, B, C in the Figure. The internal struc-
ture of the switching (in Fig. 6a), hw- and swSdnSwitching
(Fig. 7) is identical and implements the node forwarding per-
formance as given by equation forwarding delay = latency +
max(capacity, bandwidth).

The in the third processing mode all packets are passed
to the controller. This is represented using the buffer and
toController places. The traffic tokens (color t) directed to

the SDN controller are forwarded to the toController place.
Next, the controller-tr transition issues a new token with
packet in message (color p) and forwards it via output place
to the node where the controller is deployed. At the same
time, the traffic token (color t) is deposited in the buffer
until the controller responds. When the controller responds
with a flow mod token (color f ), the traffic token is released
form the buffer and switched using hwSdnSwitching.

The SdnController subnet—depicted in Figure 8a—is re-
sponsible for receiving the packet in tokens and issuing a
flow mod reply. The SdnController subnet is a special type
of a traffic source located in a node. The tokes arriving to
the controller are delayed twice. First, the delay of the con-
troller itself and the delay of the respective controllerApp
that represent internal controller components programmed
by SDN developers.

For scenarios with load-balancing the routing-transition is
organized differently. The transition (as depicted in Fig. 6a)
is replaced by multiple transitions, each with a single mode
but different firing weight. The firing weight represents rela-
tive firing frequency of the transition, so that it can properly
represent load-balancing ratios. An example of SDN switch-
ing and “60/40” load-balancing is depicted in Figure 8b. In
this example, the tokens consumed from the sdnSwitching
place are interchangeably deposited to port port-1-tx and
port-2-tx with probabilities 0.6 and 0.4 respectively.

More information about the transformation can be ob-
tained by looking at the examples and its source code on-
line. The transformation with example models are avail-
able publicly in our git repository1. The validation of the
automatically-generated QPN simulation model is presented
in Section 6.

6. VALIDATION
In this section, we validate the approach by comparing

the performance predicted by the generated QPN models
against their respective physical hardware setups. We ana-
lyze the prediction accuracy and focus mainly on the new
SDN capabilities of DNI.

Although the modeling capabilities of DNI and QPN are
large, in this Section, we focus on simple topologies and rel-
atively simple workloads but use heterogeneous SDN hard-
ware that differs in almost every SDN performance aspect.
We conduct three experiments to investigate the factors that
influence the switching performance the most: switching la-
tency and switching capacity. We limit the validation to
proactive SDN scenarios (no traffic is forwarded to the SDN
controller), as the controller has no influence on the perfor-
mance heterogeneity of the switches.

6.1 Testbed
Our testbed consists of two servers connected with a switch.

The servers are exchanging data over the network organized
in a dumbbell topology. In the experiments, we replace the
switch with other models to investigate their heterogeneity
and its influence on the performance characteristics. We
present the set of available switches and their brief perfor-
mance characteristics in Table 1. All switches used in the
experiment support OpenFlow protocol in version at least
1.0. All connections are 1Gbps copper cables.

1DNI resources: http://descartes.tools/dni
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Switch models named 5130 and 5700 (Comware prod-
uct line) run under control of a different operating system
than the two 2920 and 3500 (ProVision product line). The
Comware switches support only hardware SDN switching
whereas ProVision support both, hardware and software
modes. According to the data sheets, the switches are het-
erogeneous not only to their data plane performance but
also built-in control plane hardware. The 2920 for exam-
ple runs a Tri-Core ARM1176 processor at 625 MHz and
uses 512 MB SDRAM memory; the 3500 is an older model
and is equipped with a Freescale PowerPC 8540 processor
at 666 MHz and 256 MB DDR SDRAM. The vendor specify
the Comware switches as follows: 1000MHz CPU and 2GB
SDRAM memory for the 5700 and 1GB for the 5130.

6.2 Experiment Setup
The two commodity servers handle the traffic using iperf

tool. A separate server runs the HP VAN SDN Controller
but this has no influence on the measurements as we do not

Table 1: Performance specification of switches.
Switching in native mode (source: vendor datasheet)

Model Capacity Throughput Latency
HP 2920 (J9726A) 92.2 Mpps 128 Gbps < 3.3µs
HP 3500 (J8692A) 75.7 Mpps 101.8 Gbps < 3.4µs
HP 5700 (JG898A) 714.2 Mpps 960 Gbps < 1.5µs
HP 5130 (JG932A) 96.0 Mpps 128 Gbps < 5.0µs

Switching in SDN Software mode (≈ empirical estimation)
HP 2920 2 Kpps ≈ 14 Mbps ≈ 340µs
HP 3500 10 Kpps ≈ 63 Mbps ≈ 90µs

investigate reactive rule-insertion scenarios. The testbed is
controlled from an experiment controller that is connected
over a separate, isolated network to not interfere with the
experiment traffic.

Every experiment starts with a configuration of the SDN
flow tables. The rules forcing a specific behavior are pushed
to the switches over the SDN Controller. We use wild-
card matching rules with defined source and destination IP
addresses, as the ProVision switches do not support SDN
switching using MAC addresses. As default action for a
matching rule, we set “output to port”. The rule timeout
is set to 0, so the rules are never removed by the switch.
For Provision switches, matching against the software flow
rules is achieved with filling the hardware flow table with
dummy rules (rules that can never be matched) as long as
the hardware flow table capacity is reached, so the next rule
is automatically installed into slower software flow table.

6.3 Heterogeneity in SDN Support
As shown in [11], the capacity of hardware flow tables

varies from 750 to 2000 rules so the probability of filling the
hardware table completely is non-negligible and should be
considered in the analysis. Our observations complement the
results of [11]; we observe the following maximal capacities
of the hardware flow tables: 460 for the 2920, 381−1526 for
the 3500, 384−512 for the 5130, and 512−640 for the 5700.
The Comware switches offer an additional memory allowing
for matching exclusive against the MAC and IP addresses
with capacities 16000 and 65535 rules for 5130 and 5700
respectively. The rest of the observations about switches
heterogeneity are abstracted in this paper as they have no
or little influence on the data-plane performance.

6.4 Experiment 1: Maximal Throughput
In the first experiment, we measure the maximal through-

put achieved for each switch in the available SDN modes;



Table 2: Maximal throughput in hardware (HW)
and software (SW) SDN switching mode for various
switch models and the QPN simulation.

Switch model
2900
HW

2900
SW

3500
HW

3500
SW

5700
HW

5130
HW

Throughput [Mbps]
measured

942 14 941 63 941 941

Throughput [Mbps]
QPN simulation

951 14.1 951 62.3 951 951

the Comware switches in hardware and the ProVision in
hardware- and software SDN switching modes. We measured
the maximal throughput of the using the values delivered by
iperf benchmark tool using TCP as the transport protocol.

We simulate the scenario by building a DNI model us-
ing the parameters from Table 1. The parameters for the
software SDN switching mode (switching latency) were esti-
mated as the official data sheets do not specify them. The
maximum switch capacity was acquired from the operating
system of the switches, whereas the switching latency was
determined empirically. The constructed DNI model was
later transformed using the model transformation presented
in Section 4 and the resulting QPN model was solved using
SimQPN. The measured (real) and predicted (simulated) re-
sults are presented in Table 2. Additionally, we measure and
predict the native (non-SDN) switching throughput. The
values were identical to the SDN switching in the hardware
SDN switching mode.

The predicted results truly depict the measured perfor-
mance. The variations of the predicted maximal through-
put hold within 1% relative difference for the hardware SDN
switching mode (and the not shown native switching). The
throughput reported for software SDN switching mode of
the 2920 and 3500 switches was bound by two parameters:
maximum switching capacity expressed in packets per sec-
ond (pps) and the switching latency that aggregates multiple
internal latencies in the switch that we abstract in DNI (e.g.,
flow table lookup).

Taking the 3500 switch as an example, we can calcu-
late the upper bound of the switching throughput (assum-
ing switching latency= 0) using the default IP packet size
(MTU=1500B) multiplied by maximal switching capacity
10Kpps resulting in 120Mbps. The constant switching la-
tency of ≈ 90µs added to each packet resulted in maxi-
mal throughput of 63Mbps that fits the observed perfor-
mance of the switch 3500. For the 2920 the switching delay
consisted of 1/2000pps = 500µs plus additionally ≈ 340µs
per packet. Higher switching latencies in the software SDN
switching mode were confirmed by the end-to-end ping mea-
surements where the setup with the 3500 switch resulted
in about 0.65ms whereas for 2920 the pings were higher
2.07ms. Unfortunately, the end-to-end ping delay cannot be
easily mapped to the respective switching latencies, but the
difference of the values obtained for the different switches
shows that the switch 2920 in software SDN switching mode
is about three times slower than 3500. The real switch-
ing latencies are difficult to measure at the microsecond
scale without a dedicated measurement hardware, so we will
use the approximated values in the experiments. In Sec-
tion 6.5 and 6.6, we demonstrate the performance metric
values for other switching latencies.

Table 3: Throughput for the 3500 switch depending
on the packet size in three switching modes: SDN
software (SW), SDN hardware (HW), and non-SDN.

IP MTU 1500 1200 900 600 300 128
Real Hardware HP 3500yl

Throughput Mbps
non-SDN 941 927 904 859 720 315

SDN Hardware 941 927 904 859 716 316
SDN Software 62.4 54.7 41.3 23.3 11.1 4.11

QPN Simulation: Software SDN switching
Switching latency Throughput Mbps

80µs 65.77 51.92 38.58 25.25 11.91 4.8
90µs 62.32 49.18 36.55 23.92 11.28 4.55

100µs 59.2 46.72 34.72 22.72 10.71 4.32
QPN Simulation: Hardware SDN switching

3.3µs∗ 951 944 934 913 645 260
∗ Value obtained form the hardware data sheet

6.5 Experiment 2: Packet Size
In the second experiment, we investigate more the soft-

ware SDN switching mode of the 3500 switch. In this exper-
iment, we varied the packet size that was emitted by the iperf
tool (parameter -M ) and observed the maximal through-
put offered by the switch in the native, the hardware-, and
the software SDN switching mode. We modeled the selected
packet sizes in DNI using the NetworkProtocol.mtu param-
eter and simulated the transformed model assuming the per-
formance characteristics of the 3500 estimated as described
in Section 6.4.

Although the iperf with parameter -M sets TCP segment
size (MSS: Maximal Segment Size), the switch observers the
IP packets as the switching of Ethernet frames is not sup-
ported in the hardware SDN switching mode in this model.
We set the maximum MTU (MTU: Maximum Transfer Unit)
to 1500B and decrease it every 300B concluding with the
minimal value of 128B (protocol limitation). The results
are presented in Table 3.

The results of the SimQPN simulation of software SDN
switching mode include additional data the presents the pre-
dicted behavior of the switch (and also the sensitivity of
the DNI model) for other switching latencies. We observe
that the simulation properly represents the measured val-
ues. Only for low MTU values the performance for hardware
SDN switching reported by simulation was underestimated.
This may be caused by the fact, that DNI represented the
full protocol stack (TCP/IP/Ethernet) and the additional
overhead of the Ethernet frame was also the part of the
switching in the simulation, whereas the real switch has de-
capsulated the IP packet and conducted L3-switching (what
is usually not expected in the switching). In the end, the
switch has processed about 14 bytes less per packet (11%
less for MTU=128) than in the simulation.

In the software SDN switching mode the throughput was
underestimated by maximally 12% for 900B and latency
90µs. Additionally, we show how similar switching laten-
cies influence the reported throughput as the precise mea-
surement of the real switching latency was impossible. The
value used in other experiments (90µs) was marked in bold.

6.6 Experiment 3: Switching Capacity
In the third experiment, we focus on the switching capac-

ity and its influence on the performance of the ProVision



switches in the software SDN switching mode. Using the op-
erating system of the switch, we lowered the switching ca-
pacity stepwise and analyzed the offered performance. The
operating system of the Comware switches does not support
neither limiting of the switching capacity nor the software
SDN switching mode.

6.6.1 Switch 2920
The 2920 switch in the software SDN switching mode of-

fers maximal switching capacity of 2000 packets per second.
We varied the value of the maximal switching capacity pa-
rameter to investigate the throughput curve of the switch
and the curve predicted by the QPN simulation. Addition-
ally, we investigated selected values of switching latencies to
present the modeling alternatives. The results are depicted
in Figure 9.
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Figure 9: Throughput of the 2920 switch in the soft-
ware SDN switching mode for variable switching ca-
pacity.

The throughput curves presented in Figure 9 represent
the measured performance less accurately than in the previ-
ous experiments—the prediction errors reach even ≈ 100%
relatively (for 340µs and 500pps). The switching latency in
the DNI model was calibrated to 340µs to properly repre-
sent the throughput at the maximal switching capacity of
2000pps. The worse fit of the model for other capacities can
be explained as follows. First, the switch in the software
SDN switching mode demands more CPU (up to 100%) and
the CPU is not modeled in DNI. Second, the switch’s CPU
conducted also other operations during the experiment (log-
ging, SDN counters update) that influenced its load but were
not possible to control or disable. Finally, the software SDN
switching mode received only 20% of the resources avail-
able to the 3500 switch so offering maximal throughput of
14Mbps must impose that the switch is incapable of using
this mode efficiently. The DNI model could include more
performance influencing factors to capture such situations
better, but we intentionally abstract them out to keep the
generic character of the model while accepting possible in-
accuracies to some degree.

6.6.2 Switch 3500
The 3500 switch in the software SDN switching mode of-

fers maximal capacity of 10000 packets per second. Simi-
larly to the switch 2920, we varied the value of the maximal
switching capacity and switching latency. The results are
depicted in Figure 10. In this experiment, the QPN model
represented the switch performance better than for the 2920
switch. The throughput curve grows nearly linearly and the
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Figure 10: Throughput of the 3500 switch in the
software SDN switching mode for variable switching
capacity.

incline is properly represented using the switching latency
between 80 and 90µs. Based on the measurements, we ob-
serve, that the CPU of the 3500 switch has more process-
ing power, although it has similar frequency and half of the
memory size compared to the 2920.

6.6.3 Conclusions: Software SDN Switching
The experiments with the performance in the software

SDN switching mode lead to the following conclusions. First,
the throughput in the software SDN switching mode is low—
about 10 to 70 times lower than the throughput in the hard-
ware SDN switching mode. Second, the behavior of the
switch in the software mode is challenging to predict as it
depends on the switch’s CPU that is difficult to observe and
model accurately. Third, the capacity of hardware flow ta-
ble in the investigated switches is limited and can be easily
reached for complex SDN scenarios (e.g., SDN QoS provi-
sioning based on customer class). The probability of placing
a rule in the software flow table cannot be neglected as the
performance penalty is high. Moreover, some switches (e.g.,
5130, 5700) do not offer software SDN switching mode and
report an error if the hardware flow table is full. Finally,
DNI is the first model to support the modeling of the SDN
performance in the software SDN switching mode, although
it does not support modeling of the switch internal architec-
ture (CPU) and the prediction accuracy for the 2920 switch
could be further optimized. All in all, the software SDN
switching mode should be avoided in general as the perfor-
mance penalty is high.

7. CONCLUSION
In this paper, we presented a redesigned generic model-

based approach to network performance prediction. We in-
troduced the modeling entities allowing to represent SDN,
NFV and load-balancing scenarios without limiting the DNI’s
ability to represent end-to-end data center network scenar-
ios including server virtualization and even software archi-
tectures (when used with DML). Furthermore, we presented
the DNI-to-QPN model transformation, so that the descrip-
tive DNI models can be automatically transformed into QPN
simulations and solved.

We characterized four models of SDN-enabled switches
and validated the prediction capabilities of DNI in three
challenging scenarios. We showed that the transformation
works correctly and the prediction accuracy is good for run-
time prediction purposes. We stress that the presented pre-



dictions were obtained through an automatically generated
simulation model from a high-level descriptive model where
most low-level details were abstracted, so the prediction er-
rors are acceptable to some degree.

The previous version of DNI (v2 ) could be transformed
into five predictive models (two additional are currently un-
der development). As part of our future work, we will update
the remaining model transformations to support the DNIv3,
i.e., SDN, NFV and load-balancing scenarios. Finally, we
aim to provide more transformations to models with differ-
ent granularities to enable flexibility in performance predic-
tion of virtualized networks, so that simulation at different
level of details can be used depending on the required accu-
racy and time constraints.
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