
Using Queuing Models

for Large System Migration Scenarios –
An Industrial Case Study with IBM System z

Robert Vaupel1, Qais Noorshams2, Samuel Kounev2, and Ralf Reussner2

1 IBM R&D GmbH, Böblingen, Germany
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Abstract. Large ITorganizations exchange their computer infrastructure
on a regular time basis. When planning such an environment exchange, it
is required to explicitly consider the impact on the Quality-of-Service of
the applications to avoid violations of Service LevelAgreements. In current
practice, however, using explicit performance models for such estimations
is frequently avoided due to scepticism towards their practical usability and
benefits for complex environments. In this paper, we present a real-world
case study to demonstrate that a queuing model-based approach can be
effectively used to predict performance impact when migrating to a new
environment in an industrial context. We first present a general modeling
methodology and explain how we apply it for system migration scenarios.
Then, we present a real-world industrial case study and show how the per-
formance models can be used. The migration is planned for a System z en-
vironment running a large scale banking application. Finally, we validate
the performance models after the system has been migrated, evaluate the
prediction accuracy, and discuss possible limitations. Overall, themeasure-
ments show very high agreement with the prediction results.

Keywords: Business Transactions, Performance, Prediction.

1 Introduction

Large IT companies use their IT systems for a limited period of time. Typically, the
main computing infrastructure is exchanged every two to three years and replaced
with newer versions of the same computing architecture. These system upgrades
are very expensive and require a thorough planning explicitly considering the per-
formance implications on the existing applications and (business) transactions.

When planning such an environment exchange, i.e., a system migration, mul-
tiple questions arise as for instance: i) What capacity is required to maintain
comparable Quality-of-Service (QoS)? ii) How does the QoS of the main ap-
plications change in the migrated environment? iii) How does the QoS of the
main applications change under higher workload intensity? Moreover, there are
multiple aspects that need to be considered posing further challenges: There
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can be many alternatives to choose from with regard to single processor speed
and overall system capacity. Systems with higher processor speed require fewer
processors to maintain the same total capacity. The higher speed of the proces-
sors might improve the transaction response times at a lower system utilization
level, however, the response times might increase more drastically with increas-
ing workload intensity. Furthermore, a system migration might initially target a
system with lower capacity with the possibility of a stepwise capacity increase
(as supported by many system architectures) if required.

In current practice, however, using explicit performance models to answer
typical capacity planning questions is usually avoided. The main obstacle is the
still existing scepticism in industry towards the practical usability, benefits, and
return-on-investment of classical queuing models in the context of complex real-
world scenarios.

To this end, in this paper, we present a real-world case study demonstrating the
practicality and effectiveness of using queuing models to predict the performance
impactwhenmigrating to a new systemenvironment in an industrial context.More
specifically, we first present a general queuing model approach and explain how it
is applied in systemmigration scenarios.Then, we present an industrial case-study
and use our approach to plan a migration of a business transaction workload of a
banking institute in an IBM System z server environment. We evaluate the queu-
ing model and validate the results with real-world production workloads after the
migration has been completed. The evaluation of the approach shows very high
agreement with the predictions. Finally, we discuss practical challenges and pos-
sible limitations that need to be considered when applying our queuing model ap-
proach and under which conditions it can be used.

In summary, the contribution of this paper is a real-world case study in industrial
context to show how a queuing model-based approach can be effectively used to
project transaction response times for large business environments. Furthermore,
we discuss limitations of the modeling approach and identify conditions that need
to be considered when using such methodologies in real-world scenarios.

The remainder of this paper is organized as follows: Section 2 gives an overview
of our modeling approach. In Section 3, we present our case study. Section 4
discusses limitations when using the modeling approach in complex scenarios.
Finally, Section 5 summarizes and concludes the paper.

2 Modeling Approach

To evaluate system migration decisions providing capacity management support,
we employ a queuing model-based approach to predict the performance after mi-
grating to another system environment. Our methodology is based on established
work [1,2] and comprises the following steps:

1. System Environment Analysis :
We analyze the structure of the environment and, more specifically, we iden-
tify the important partitions that need to be analyzed in case of a virtualized
environment.
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2. Workload Characterization:
We identify and characterize the main workloads for the system migration as
well as possible workloads running in parallel affecting the main workloads.

3. Metrics Measurements and Estimation:
We measure performance metrics for both the workload and the system
infrastructure, e.g., the workload response time and the system utilization.
Furthermore, we estimate the metrics that cannot be measured directly.

4. Performance Modeling :
Finally, we model the transaction processing in a queuing model enabling to
project and predict the response time as well as the system utilization of the
target system environment depending on the workload.

After migrating the system infrastructure, the results can be evaluated and
compared with new measurements to validate the predictions or to refine the
approach and include further performance influences for future studies.

2.1 System Environment Analysis

In general, our approach is not limited to specific environments. In this paper, we
apply our approach to System z mainframe computers. System z environments
are state-of-the-art virtualized environments with logically partitioned, shared re-
sources. The main operating system used by large organizations is predominantly
the mainframe operating system z/OS hosting applications and databases.

Depending on the organization, the partition structure on System z
mainframes may vary significantly. On the one hand, many large IT organi-
zations – especially financial institutes – typically use a few partitions to host
their applications. Such systems use many processors, large I/O subsystems and
big memory environments. On the other hand, the system can be used for up
to 60 partitions with few resources allocated for each partition. Such environ-
ments are mostly used by organizations hosting systems for other companies.
The partition and resource characteristics employed in such environments are
very different and need to be identified in the analysis.

2.2 Workload Characterization

Most z/OS-based production systems deploy batch and online transaction pro-
cessing (OLTP) workloads. Usually, such workloads run in parallel, where either
workload dominates in certain time periods. In some environments, the batch
and the OLTP workloads are deployed in separate partitions. For the considered
environment, we first identify the main workload and the respective performance
characteristics of interest. Since the workload intensity varies over time, we then
choose a representative time period in which the workload is running to param-
eterize the performance model.

The main workload may be a batch workload or an OLTP workload. For a
batch workload, the total runtime and throughput (TP) are significant. Single
request response times (RT) or the system utilization are usually less impor-
tant, since the system is usually fully utilized during the batch runtime. For
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an OLTP workload, the transaction response times and throughput as well as
the system utilization are significant. Moreover, the correlation between trans-
action throughput and system utilization is relevant as an indicator for resource
efficiency and CPU cost per transaction.

Since the transaction response times are usually part of the Service Level
Agreements with end users, our approach is specifically targeted at modeling
and predicting the performance of the OLTP workload after system migration.

2.3 Metrics Measurements and Estimation

As previously mentioned, we focus on i) the transaction response time comprised
by several components, ii) the transaction throughput describing the workload
intensity, and iii) the total system utilization including load generated by work-
loads running in parallel. These metrics are measured in the existing environment.
In general, the transaction response time is comprised of the following compo-
nents, which are estimated on the existing system by measuring the execution
states of the transactions and calculating their proportions of the total response
time: i) CPU Processing Time, ii) CPU Wait Time, iii) I/O Data Transfer Time,
iv) I/O Wait Time, and v) Other Time (e.g., due to software locking).

2.4 Performance Modeling

In this section, we model the system performance for transactional workloads.
More specifically, we model the transaction response times by projecting the
CPU processing times from the existing environment to the target environment.
We assume that the general CPU processor architecture is the same for the ex-
isting and the target system. Furthermore, we assume that the I/O and Other
components of the response time are not affected significantly by the migration.
The assumption is reasonable for I/O if only the computing system is replaced.
For the Other wait times, it is a simplifying assumption that needs to be val-
idated after the migration. Overall, our performance modeling methodology is
comprised of Model Creation, Model Calibration, and Model Projection.

Model Creation. To model the CPU service demand, we use an open multi-
server queuing model with general interarrival and service time, i.e., a G/G/C
queuing model, to cover a wide range of modeling scenarios with arbitrary interar-
rival and service times, which are obtained by parameterization from real-world
measurement data. The model is solved using the Allen-Cunneen Approxima-
tion [3] shown in Equation (1), where k is the Allen-Cunneen factor, U is the
CPU utilization of the system, C is the number of servers (i.e., CPUs) and S
is the service time. Furthermore, PW (U,C) is the probability for waiting in a
system with C servers and utilization U expressed by the Erlang-C formula [4].

W = k · PW (U,C)

C(1 − U)
· S, PW (U,C) =

(UC)C

C!

(UC)C

C!
+ (1− U) ·

C−1∑

i=0

(UC)i

i!

(1)
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The Allen-Cunneen factor k is determined as

k =
c2a + c2s

2
, where (2)

ca = coefficient of variation of the interarrival time distribution,

cs = coefficient of variation of the service time distribution.

Model Calibration. For model calibration, the Allen-Cunneen factor k is ei-
ther determined based on measurements or estimated. Typically, a value of 1
assuming a M/M/C queuing environment is a reasonable assumption. The CPU
processing time S is estimated based on measured transaction response time and
observed execution states as

S =
CPU Processing States

All States
· RT, (3)

where RT is the transaction response time.

Model Projection. To predict the performance in the target environment,
we project the transaction processing times of the existing environment to the
target environment. Generally, this can be done by determining the relative CPU
capacity of the two systems, e.g., using MIPS1 comparison or CPU benchmarks.

In System z environments, the Large SystemPerformanceReference (LSPR) [5]
value is used to determine the capacity of the target system. In LSPR, the capacity
of all systems is expressed as a multiple or a fraction of a base system. The capac-
ity also depends on the considered workload and the system layout. IBM performs
for each system generation a set of performance benchmarks covering batch work-
loads and different types of OLTPworkloads aswell asmixes of them. These bench-
marks are used to obtain five performance values that characterize the systems
when running different workloads. The values cover aspects from memory to I/O
intensive workloads, batch environments and environments with very high trans-
action volumes. For many real-world environments, the mean or Average value of
the performance numbers can be used as a representative value. This average value
is also used when System z performance is expressed in MIPS. For a given environ-
ment, the exact LSPRvalue can be obtained using a tool called zPCR [6]. Thus, we
project the CPU processing time of the existing system S to the CPU processing
time in the target system S∗ using the relative CPU capacity α as

S∗ = φ(S) = α · S, α ∈ R
+. (4)

The system utilization in the target environment U∗ is predicted using the Uti-
lization Law

U∗ = S∗ · TP, (5)

where, in steady state, the arrival rate (or transaction rate) equals the through-
put TP . The transaction response time in the target environment RT ∗ is

1 Million Instructions Per Second
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predicted by using the CPU processing time S∗ from Equation (4) and the
number of CPUs in the target environment C∗ and applying Equation (1) to
obtain W ∗, thus

RT ∗ = S∗ + k · PW∗(U∗, C∗)
C∗(1− U∗)

· S∗ (6)

+ I/O Processing Time + I/O Wait Time

+Other Time

3 Case Study

In this section, we present a real-world migration study for a banking institute
performed in 2012 with the following requirements of the installation:

– An existing System z10 with 33 processors should be upgraded to a target
System zEC12. The I/O subsystem remains unchanged.

– The initial capacity of the target system should be below the existing
system to allow incremental capacity upgrades if necessary. Moreover, the
initial transaction rates were not expected to be that high to require the full
capacity.

To support the migration, appropriate System zEC12 configurations, i.e., number
of CPUs, should be identified with the following two prediction objectives:

– Prediction of the transaction response times of the main application on the
target system as well as their development upon increase in transaction rates.

– Prediction of the utilization of the target system and, especially, the increase
in utilization due to the migration to a system with less capacity.

3.1 System Environment Analysis

The existing System z10, i.e., the base system, hosts two large partitions that
process identical types of workload. For our analysis we summarize the data
from both partitions. The operating system on both partitions is z/OS. The data
collection is performed with a standard monitoring tool Resource Measurement
Facility (RMF). The collected data is written to log files, which are managed by
the z/OS component Systems Management Facility (SMF). The data analysis is
performed using a set of tools created by the authors of this paper.

3.2 Workload Characterization

The workload analysis encompasses a three day period. Figure 1 depicts the total
workload utilization summarized across both z/OS systems for the System z10.
The main OLTP workload is produced by a banking application accessing DB2
databases. In addition, other transaction and batch processing workloads run
on the system. We observe that most batch processing takes place during night
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Fig. 1. Total Workload Utilization for Base Environment

Table 1. Measured Input Data of Base System

Total CPU Average Average
Utilization Transaction Rate Response Time (s)

Day 1 52% 320 0.096
Day 2 48% 343 0.087
Day 3 45% 336 0.087
Average 48% 333 0.090

time and OLTP during day time. Thus, the batch workload shows the highest
utilization periods during night time2. For our analysis, we focus on the OLTP
workload produced by the banking application and, more specifically, we focus
on the period between 8:00 and 12:00 since it is the most critical period having
the highest utilization for that workload, cf. dashed lines in Figure 1.

3.3 Metrics Measurements and Estimation

For our analysis, we summarize the system utilization and transaction rates.
Furthermore, we calculate the average transaction response time (weighted over
the number of transactions per day). Table 1 shows the measured input data
for the specified time period for each day and the average values for all three
days. We use the total utilization for the system, because we must consider the
influence of the other workloads on the OLTP application. Even lower priority
work (e.g., a parallel batch workload) shows influence. One main reason is that

2 The analysis for the batch window has been omitted due to space constraints.
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Table 2. Analysis of Execution States of Base System

Execution Number of Samples Corresponding Time Value (s)

State Day 1 Day 2 Day 3 Day 1 Day 2 Day 3 Average

CPU Using 10145 9919 9552 0.029 0.026 0.026 0.027

CPU Wait 2350 2251 2127 0.007 0.006 0.006 0.006

I/O Using 11248 10862 10422 0.032 0.029 0.028 0.030

I/O Wait 734 702 618 0.002 0.002 0.002 0.002

Other 9306 9302 9292 0.026 0.025 0.025 0.025

two partitions are used and the workloads running in different partitions are
equally prioritized. Another reason is that the other workloads use the same
cache structures and influence the execution of the considered workload.

The information shown in Table 1 can be measured directly. To obtain the
CPU processing time for our model, we use execution state samples to apportion
the measured response time. RMF samples execution states of all workloads
in the system. These samples are taken every second and detect whether an
execution unit is i) using CPU, ii) waiting on CPU, iii) using I/O, iv) waiting on
I/O, or v) whether the execution unit is in a state not known to the operating
system, e.g., waiting on a database lock. We summarize the samples of the OLTP
workload and use them to apportion the response time so that we can calculate
the CPU processing time. Table 2 shows the sample breakdown for the time
frame from 08:00 to 12:00 of the three days being analyzed.

We will also use the sample states of Table 2 later when we compare the results
of our model with data from the target system. We then evaluate whether our
assumption that the influence of the I/O subsystem has not changed and that
the I/O load is the same is correct. The same applies for the Other samples.

3.4 Performance Modeling

Model Creation, Calibration, and Projection. The next step is to select
the possible target system configurations. Thus, we calibrate the model with the
results from the previous section and project it using the relative capacity of the
base and target systems. The relative capacity of each possible target system is
taken from LSPR as described in Section 2.4. For our analysis we use the Average
value, which applies to most installations. We also performed the analysis with
the values obtained from the zPCR tool, which provide a slightly more accurate
relative capacity, but in order to simplify the study we omit this step. Also, the
results showed no significant difference.

Our base system has 33 processors. The target system is supposed to have less
capacity and we compare five zEC12 that provide from 85% of the base system
capacity up to a slightly higher capacity. The target system configurations have
between 14 and 18 processors. The single processor speed of the target systems
is nearly twice as fast as for the base system. As described in Section 2.4, for our
model we use the number of processors and the relative capacity of the base and
target system configurations. In addition, initially we assume an Allen-Cunneen
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Fig. 2. Change in CPU Response Time

factor of one and later modify the model explicitly with factors of two and four
to provide different estimations.

Prediction Results. We model the base system and, as example, three of the
possible target system with 14, 16, and 18 processors. The interesting question is
how the CPU processing time will change when the transaction rate is increased
and how many transactions can be processed before the capacity of any of the
target systems is exceeded. Figure 2 depicts the change in CPU processing time
for the base system and the three possible target system configurations. On the
z10 base system, 320 to 350 transactions per second are processed on average.
With the same rate, no negative impact can be expected on any of the target
systems, because the overall utilization on the base system is well below 60% as
shown in Figure 1. Furthermore, Figure 1 shows that even peak utilizations are
always below 70% during the main online processing time from 08:00 to 12:00.

More interesting is the question how many transactions can be processed be-
fore the CPU response time shows a significant increase. We define the threshold
for a significant increase as two times the measured or projected CPU processing
time. We choose two times, because this means that the CPU wait time at this
point equals approximately the CPU processing time. At this point, we can ex-
pect that a slight change on the system can cause significant queuing and a high
disturbance of transaction response times. We also take into account that the
total system utilization includes other workloads being processed on the system,
which may increase as well.

The base system is able to process at least 680 transactions per second before
the CPU wait time has the same magnitude as the CPU processing time. The
target system with 14 processors will be able to process 570 transactions per
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Table 3. Maximum Capacity in Number of Transactions

Allen Cunneen z10 zEC12

Factor 33 CPUs 14 CPUs 16 CPUs 18 CPUs

1 680 570 630 690

2 660 530 610 665

4 605 500 550 610

Table 4. Measurement Data for New System with 14 Processors

Total CPU Average Average Workload CPU
Utilization Transaction Rate Response Time Processing Time

Day 4 59% 370 0.075 0.014
Day 5 59% 364 0.093 0.017
Day 6 63% 382 0.075 0.014
Average
Measured 60% 372 0.081 0.015

Modeling
Results 62% — 0.080 0.015

Table 5. Analysis of Execution States of New System

Number of Samples Corresponding Time Value

State Day 4 Day 5 Day 6 Day 4 Day 5 Day 6 Average

CPU Using 5114 5249 5462 0.014 0.017 0.014 0.015

CPU Wait 787 870 864 0.002 0.003 0.002 0.002

I/O Using 12328 12558 13208 0.033 0.041 0.034 0.036

I/O Wait 580 589 621 0.002 0.002 0.002 0.002

Other 9271 9469 9460 0.025 0.031 0.024 0.027

second. Table 3 shows the influence of different interarrival and service time
distributions on the maximum number of transactions that can be processed on
the considered systems.

The utilization law shown in Equation (5) allows us to predict the change of
the total CPU Utilization on the target system when the number of transaction
increases. When we use the results in the first row of Table 3 assuming an
exponentially distributed transaction rate, we can determine that the maximum
number of transactions corresponds to a system utilization of around 95%.

Finally, based on the modeling results we can recommend that for the OLTP
workload, a target system with 14 CPUs should replace the existing system. We
previously mentioned that another analysis was performed to estimate the total
execution time of the batch workloads running during night time (cf. Figure 1).
This analysis also suggested that a 14 CPU system was initially sufficient to
accommodate the workload.

3.5 Evaluation

We took another set of measurements for a three day period after replacing the 33
processor system with the newer 14 processor zEC12 system. The measurement
results are now compared to the modeling results in order to evaluate whether



Using Queuing Models for Large System Migration Scenarios 273

the model predictions were accurate. The measurement were taken for the same
time period from 08:00 to 12:00 and summarized in Table 4.

Table 4 also shows the modeling results when we assume around 370 trans-
actions for the new system. A comparison of the measurement data between
Table 1 and Table 4 shows that around 11% more transactions were processed
on the new system for our evaluation period than on the previous z10 system.
Based on the utilization law we can determine that 360 to 380 processed trans-
actions will cause a CPU utilization between 61% and 63%. Our measurements
show a CPU utilization between 59% and 63%. Figure 2 shows that for 360 to
380 transactions the CPU processing time is around 0.015s, which also agrees
with the measurements.

Finally, Table 5 depicts the processing states on the new system, which we
compare with Table 2 from the previous system. We observe that the number
of Other states has not changed, which means that the processing time for non-
OS-related resources has not changed. I/O processing is slightly higher by 13%,
however, we also observed 11% more transactions.

4 Discussion

Next, we discuss encountered caveats and practical challenges when using the
proposed modeling and analysis approach.

CPU Parking. When we take a look at Table 2 and Table 5, we observe that
the CPU wait samples and CPU wait times are higher for the 33 processor system
compared to the 14 processor system. This is surprising and in general the times
look too high for systems that are utilized by less than 70%. It is also not possible
to model these waiting times in Table 2 with the existing queuing formula read-
ily. In fact, the relatively high CPU queuing times result from an optimization for
System z. The queuing formula assumes that the processors are always active and
ready to process work, however, in the real environment, this is not the case. Many
processors are placed in a parking state especially when the system is not too highly
utilized. As a result, the system is optimized to reduce cache conflicts and, thus, the
CPU processing time decreases and exhibits lower variability. The CPUwait time,
however, is slightly higher, because the CPU dispatcher queues are longer than ex-
pected on a highly parallel system. In the end, this optimization provides much
better throughput, however, the effect diminishes when the system utilization ap-
proaches 90% and can be ignored for our purposes.

Secondary Workload. It is difficult to use the model for subordinated work-
loads that typically run with lower priorities than the main workload. Especially
when the transaction rates of the subordinate workloads are low compared to
the main workload, the results may become questionable.

Virtualization. Another limitation arises from the environment setup. Our
case study showed a fairly simple virtualized environment consisting of two par-
titions running identical workloads. This is not always the case. Especially many
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small partitions that process different types of workloads can be very disturbing
and cause that no reliable results can be derived from the queuing model.

Clusters. In our case study, we used the methodology to replace a single hard-
ware system. In many large IT installations, the target workload does not only
run on a single system, but is spread across a cluster of systems. There are var-
ious difficulties arising from clusters to predict transaction response times and
utilization of the systems. The most disturbing factors are that the workload
distribution is often unequal between the systems and that the systems are con-
figured differently. A different configuration means both that the hardware can
be different, for example, that the systems have different number of processors,
as well as that the number of partitions executed on the systems is different.
Such influencing factors can cause inaccuracies when applying the modeling ap-
proach. For such environments, the queuing model needs to be extended to a
queuing network modeling both the workload scheduler and the cluster systems.

5 Conclusion

We presented an industrial migration case study for a banking institute in a
real-world environment based on IBM System z server technology. Our general
goal in this paper was to show how a queuing model-based approach can be
effectively used in a complex state-of-the-art real-world context.

In the study, an existing System z10 should be replaced with a newer Sys-
tem zEC12 model. Our approach was used to determine the appropriate number
of processors to support the main OLTP workload even during peak periods. We
used an open multi-server queuing model with general interarrival and service
time distributions calibrating the service times with measurements on the exist-
ing system. The service times were projected to the new system using relative
capacity information to predict the workload performance in the new environ-
ment. With this model, the recommended number of processors was determined.
After the system migration, the prediction accuracy was evaluated by comparing
the model predictions against measurements with a real-world production work-
load. Both the average response time and the total system utilization exhibited
very high agreement with the predictions.

Finally, we discussed practical challenges and the conditions under which the
queuing model would be inaccurate or require a more fine-grained extension
to provide reliable predictions. Such challenges typically arise when there are
system-specific optimizations, e.g., CPU parking, when the workload is running
under low priority, or when the environment is highly distributed and heteroge-
neous, e.g., in large-scale virtualized and cluster environments.
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