
Providing Model-Extraction-as-a-Service for Architectural

Performance Models

Jürgen Walter, Simon Eismann, Nikolai Reed, and Samuel Kounev
Chair of Software Engineering, University of Würzburg, Germany

(juergen.walter, simon.eismann, nikolai.reed, samuel.kounev)

@uni-wuerzburg.de

Abstract

Architectural performance models can be leveraged
to explore performance properties of software systems
during design-time and run-time. We see a reluc-
tance from industry to adopt model-based analysis ap-
proaches due to the required expertise and modeling
effort. Building models from scratch in an editor does
not scale for medium and large scale systems in an
industrial context. Existing open-source performance
model extraction approaches imply significant initial
efforts which might be challenging for layman users.
To simplify usage, we provide the extraction of ar-
chitectural performance models based on application
monitoring traces as a web service. Model-Extraction-
as-a-Service (MEaaS) solves the usability problem and
lowers the initial effort of applying model-based anal-
ysis approaches.

1 Introduction

Architectural performance models can be leveraged to
explore performance properties of software systems at
design-time and run-time. While design-time analy-
sis requires a fully parameterized model, approaches
for proactive model-based resource management often
depend on a model skeleton as input [10].

The creation of architectural performance models
can be based on manual construction or scripting of
model extraction code tailored to a specific applica-
tion. Both requires significant effort which ranges be-
tween weeks to months for experienced performance
engineers [2, 8].

We see a reluctance from industry about model-
based analysis approaches due to modeling efforts
including understanding and writing model creation
scripts. We assume that building models in an editor
from scratch does not scale in an industrial context
due to modeling overhead.

To improve acceptance in industry, model-based
approaches need to be easy to use. Novel model
extraction approaches aim at automatic extraction
of models from application performance monitoring
data[7, 11, 12, 14]. However, applying research soft-
ware is still challenging for layman users. There-
fore, this paper proposes to provide MEaaS. At

this, we explain the creation of model extraction web
services based on our Performance Model Extractor
(PMX) [14] tool. The web services receive application
monitoring traces and (optional) parameters as input
and returns an architectural performance model.

Provisioning of model extraction as a web service
offers many benefits for users, developers, and main-
tainers of that service. Users of the web service cir-
cumvent cumbersome and error-prone set up of re-
search software. Moreover, users do not have to up-
date their software, as the web service always provides
the latest software version. In contrast to running on
multiple customer environments, maintenance needs
to be done only for a single run-time environment.
Researchers developing and maintaining performance
model extraction tooling benefit, as we configured the
web service to collect submitted monitoring traces as
training data for model extraction. Furthermore, a
web service allows to investigate how the software is
used by external users. Based on the submitted mon-
itoring traces we may learn and improve automated
model extraction mechanisms. Finally, an increased
number of users and experiments improves external
validity of model extraction software.

2 State of the Art

Related approaches can be divided into (i) works pro-
viding modeling and simulation as services [4, 9] and
(ii) approaches for model learning from application
performance monitoring traces [7, 11, 12, 14].

There are several attempts to lower the effort for
modeling and simulation tools [4, 9]. This includes
Simulation-as-a-Service [9] as well as providing mod-
eling tools as web services [4]. Recent works often
provide services using REST interfaces and Docker
container technology. None of the existing Software-
as-a-Service (SaaS) solutions provides the extraction
of architectural performance models based on appli-
cation performance monitoring trace input.

In research, it is still quite popular to create per-
formance models manually. While for some domains
and applications this might be sufficient, we argue
that this does not scale for medium and large-scale
systems. Existing architectural performance model



web server
REST

proxy
server Java

REST

WebApp

Figure 1: MEaaS Architecture.

extraction tools [7, 11, 12, 14] are either not open
source or lack a public and easy to use description on
how to setup and run model extraction. None of the
performance model extraction approaches provides a
public web service.

3 Model-Extraction-as-a-Service

The goal of the presented work is to relieve the
performance engineer from the complexity of model
extraction and setup. The non-web-service version
of PMX [14] already provides performance engineers
with a solution that integrates established tooling for
monitoring and log processing [3], system model and
call graph creation [5], and resource demand estima-
tion [6]. The presented web service relieves the user
from setup and updating.

3.1 Design

Figure 1 depicts the coarse-grained architecture of our
web service. Our MEaaS includes several software
components, which we describe in the following.
Java extraction module The Java extraction

module transforms application performance
monitoring data into architectural performance
models. The model extraction logic, separating
generic and formalism specific parts, has been
described in [14]. Generic modeler extraction
parts and formalism specific object creation
routines can be packed into an executable jar file
including all dependencies. The Java extraction
module can be executed on the command line.

Spring I/O web server A web server allows to ex-
ecute model extraction within a browser. The
web interface provides an interaction layer to the
user to interact with the model extraction layer
(PMX) using a graphical interface. The web
server contains

• REST service implementation
• HTTP pages user interface
• software to trigger model extraction service
• software to return results (file download)

We decided for the Spring Framework to set up
the web server, as it allows for easy implementa-
tion of the REST API that is used to upload files,
trigger the model extraction, and download. Al-
though the framework does not impose any spe-
cific programming model, it has become popular
in the Java community as an alternative to, re-

placement for, or even addition to the Enterprise
JavaBeans (EJB) model.

Docker container The docker container simplifies
and speeds up deployment by packing web server
and java application into a single container. The
docker container allows deploying the applica-
tion and access it locally within a web browser.
We decided for Docker technology, as it provides
light-weight easy to deploy images.

NGINX proxy server The proxy provides an in-
terface between external users and docker con-
tainer and organizes communication. For exam-
ple, it provides a reverse proxy to do port for-
warding and a secure layer for https. We decided
for NGINX because it is light-weight, easy to use,
and very popular. By also providing load balanc-
ing functionality, NGINX allows for an increased
PMX user base.

3.2 Usage

Input The model extraction requires Kieker [3] ap-
plication monitoring traces as input. To receive ac-
curate models, the traces have to contain monitoring
information of a low load run (avoiding contention)
or provide additional resource utilization information
to improve resource demand estimation accuracy [6].
Additional parameters are optional and can be found
at the web-service website.

Provided Web Services Kieker application per-
formance monitoring traces and additional extraction
parameters can be passed using two different ser-
vices: First, we provide an interactive web interface
including an upload dialog. Second, we also provide a
pure REST interface suited to be used in automated
processes. Passing parameters requires to expand the
URL, for example:
http://extraction-service-url/conf?id=

traceurl/traces.zip&?core=server=4

The result of the REST call is a zip file contain-
ing several files describing the performance model (re-
source landscape, software architecture, deployment,
repository) as well as logging information.

To illustrate and evaluate our approach, we provide
web service implementations for the Descartes Model-
ing Language (DML)[13] and the Palladio Component
Model (PCM) [1] modeling formalism. 1 Both for-

1https://descartes.tools/pmx/



malisms provide complementing toolchains. Palladio
focuses on design-time analysis, while DML focuses
on run-time scenarios.

3.3 Limitations

Performance Model Extraction Despite more
than two years of research and development have been
spent on the creation of PMX, there are several known
limitations. We assume CPU bound processes. Mem-
ory bound processes have not been investigated so far.
Also, the extraction of explicit parametric dependen-
cies is not yet supported. In case performance pre-
diction capabilities of extracted models do not meet
accuracy requirements, the classical software perfor-
mance engineering model refinement process can be
applied.

Software as a Service There are open issues con-
cerning SaaS and scalability. The model extraction
might take longer than HTTP timeouts (especially if
input traces are huge). Future web service versions
should apply asynchronous communication to resolve
this problem. There is a vulnerability for denial-of-
service attacks. The large resource demand caused
by a single model extraction request makes the sys-
tem prone to such attacks. To cope with this security
breach we might be forced to use login mechanisms.
Privacy for monitoring data could be ensured running
a separate service instance behind the firewall of a
company.

4 Concluding Remarks

This paper presents MEaaS for architectural perfor-
mance models. Based on an existing model extraction
software, this paper presents additional software com-
ponents to provide a web service. Provisioning as a
web service reduces efforts to derive architectural per-
formance models for all kinds of users. Moreover, a
central service allows to collect monitoring traces and
share them with the research community.

Acknowledgments This work is supported by the
German Research Foundation (DFG) in the Priority
Programme “DFG-SPP 1593: Design For Future—
Managed Software Evolution” (KO 3445/15-1)

References

[1] S. Becker, H. Koziolek, and R. Reussner. “The Pal-
ladio Component Model for Model-driven Perfor-
mance Prediction”. In: Journal of Systems and Soft-
ware 82.1 (Jan. 2009), pp. 3–22.

[2] N. Huber et al. “Performance Modeling in Indus-
try: A Case Study on Storage Virtualization”. In:
ACM/IEEE 32nd International Conference on Soft-
ware Engineering (ICSE 2010), Software Engineer-
ing in Practice Track. Cape Town, South Africa:
ACM, Mar. 2010, pp. 1–10.

[3] A. van Hoorn, J. Waller, and W. Hasselbring.
“Kieker: A Framework for Application Performance
Monitoring and Dynamic Software Analysis”. In:
3rd ACM/SPEC Int. Conf. on Perf. Eng. (ICPE
’12). 2012, pp. 247–248.

[4] E. Cayirci. “Modeling and simulation as a cloud ser-
vice: A survey”. In: 2013 Winter Simulations Con-
ference (WSC). Dec. 2013, pp. 389–400.

[5] A. van Hoorn. Model-Driven Online Capacity Man-
agement for Component-Based Software Systems.
Kiel Computer Science Series 2014/6. Dissertation,
Faculty of Engineering, Kiel University. Kiel, Ger-
many: Department of Computer Science, Kiel Uni-
versity, 2014.

[6] S. Spinner et al. “Evaluating Approaches to Re-
source Demand Estimation”. In: Performance Eval-
uation 92 (Oct. 2015), pp. 51–71.

[7] P. C. Brebner. “Automatic Performance Modelling
from Application Performance Management (APM)
Data: An Experience Report”. In: Proceedings of
the 7th ACM/SPEC International Conference on
Performance Engineering, ICPE 2016, Delft, The
Netherlands, March 12-16, 2016. 2016, pp. 55–61.

[8] S. Lehrig and S. Becker. “Using Performance Models
for Planning the Redeployment to Infrastructure-
as-a-Service Environments: A Case Study”. In: 12th
International ACM SIGSOFT Conference on Qual-
ity of Software Architectures, QoSA 2016, Venice,
Italy, April 5-8, 2016. 2016, pp. 11–20.

[9] S. Shekhar et al. “A simulation as a service cloud
middleware”. In: Annals of Telecommunications
71.3 (Apr. 2016), pp. 93–108.

[10] S. Spinner, J. Walter, and S. Kounev. “A Refer-
ence Architecture for Online Performance Model
Extraction in Virtualized Environments”. In: Pro-
ceedings of the 2016 Workshop on Challenges in
Performance Methods for Software Development
(WOSP-C’16) co-located with 7th ACM/SPEC In-
ternational Conference on Performance Engineer-
ing (ICPE 2016). Delft, the Netherlands, Mar. 2016.

[11] F. Willnecker and H. Krcmar. “Optimization of De-
ployment Topologies for Distributed Enterprise Ap-
plications”. In: 2016 12th International ACM SIG-
SOFT Conference on Quality of Software Architec-
tures (QoSA). Apr. 2016, pp. 106–115.

[12] A. Brunnert and H. Krcmar. “Continuous perfor-
mance evaluation and capacity planning using re-
source profiles for enterprise applications”. In: Jour-
nal of Systems and Software 123 (2017), pp. 239–
262.

[13] N. Huber et al. “Model-Based Self-Aware Per-
formance and Resource Management Using the
Descartes Modeling Language”. In: IEEE Transac-
tions on Software Engineering (TSE) 43.5 (2017).

[14] J. Walter et al. “An Expandable Extraction Frame-
work for Architectural Performance Models”. In:
Proceedings of the 3rd International Workshop
on Quality-Aware DevOps (QUDOS’17). l’Aquila,
Italy: ACM, Apr. 2017.


	Introduction
	State of the Art
	Model-Extraction-as-a-Service
	Design
	Usage
	Limitations

	Concluding Remarks

