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Abstract

For years the CPU clock frequency was the key to improve processor performance. Nowa-
days, modern processors enable performance improvements by increasing the number of
cores. However, existing software needs to be adapted to be able to utilize multiple cores.
Such an adaptation poses many challenges in the field of discrete-event software simula-
tion. Decades of intensive research have been spent to find a general solution for parallel
discrete event simulation. In this context, Queueing Networks (QNg) and Petri Nets (PNs)
have been extensively studied. However, to the best of our knowledge, there is only one
previous work that considers the concurrent simulation of Queueing Petri Nets (QPN5)
[Jir97]. This work focuses on comparing different synchronization algorithms and excludes
a majority of lookahead calculation and net decomposition. In this thesis, we build upon
and extend this work. For this purpose, we adapted and extended findings from [QN,

and parallel simulation in general.

We apply our findings to SimQPN, which is a sequential simulation engine for [QPNk.
Among other application areas, SimQPN is currently applied to online performance pre-
diction for which a speedup due to parallelization is desirable. We present a parallel
SimQPN implementation that employs application level and event level parallelism. A
validation ensures the functional correctness of the new parallel implementations. The
parallelization of multiple runs enables almost linear speedup. We parallelized the execu-
tion of a single run by the use of a conservative barrier-based synchronization algorithm.
The speedup for a single run depends on the capability of the model. Hence, a number
of experiments on different net characteristics were conducted showing that for certain
models a superlinear speedup is possible.
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Zusammenfassung

Lange Zeit war die Frequenz des Prozessors ausschlaggebend fiir die Geschwindigkeit
von Prozessoren. Heutzutage erlauben moderne Prozessoren Leistungssteigerungen durch
eine Erhohung der Anzahl von Prozessorkernen. Allerdings muss die bestehende Soft-
ware angepasst werden, um die Kerne eines Multikernprozessors auch nutzen zu kénnen.
Auf dem Gebiet der ereignisgesteuerten Simulation birgt eine derartige Anpassung viele
Herausforderungen. Jahrzehnte intensiver Forschung wurden darauf verwandt, eine allge-
meine Losung fiir parallele ereignisgesteuerte Simulationen zu finden. In diesem Zusam-
menhang wurden Warteschlagen-Netzwerke und Petri-Netze intensiv untersucht. Jedoch
existiert, nach unserer Kenntnis, nur eine einzige Arbeit zur Parallelisierung der Simu-
lation von Warteschlangen-Petri-Netzen [Jiir97]. Diese Arbeit konzentriert sich auf den
Vergleich von Synchronisationsalgorithmen und schliefit die Betrachtung vorausschauen-
der Berechnungen und Netzwerkzerlegung weitgehend aus. Die vorliegende Diplomarbeit
baut auf dieser Arbeit auf und erweitert sie. Hierfiir haben wir bestehende Erkenntnisse
von Warteschlangen-Netzwerken, Petri-Netzen und paralleler Simulation im Allgemeinen
fiir Petri-Warteschlangen-Netzwerke angepasst und erweitert.

Wir wenden unsere Erkenntnisse auf den sequentiellen Warteschlangen-Petri-Netz Simu-
lator SiImQPN an. Neben anderen Anwendungsgebieten wird SimQPN aktuell dazu ver-
wendet, Geschwindigkeiten von Software in Echtzeit vorherzusagen. Insbesondere fiir die
Echtzeitvorhersage ist eine Beschleunigung durch Parallelisierung wiinschenswert. Wir
priasentieren eine neue SImQPN Implementierung bei der Parallelisierungen auf Anwen-
dungsebene und auf Ereignisebene zum Einsatz kommen. Eine Validierung stellt die funk-
tionale Korrektheit der parallelen Implementierung sicher. Das Parallelisieren mehrerer
Durchlaufe ermoglicht eine nahezu lineare Beschleunigung. Die Durchfithrung eines ein-
fachen Durchlaufs haben wir unter Nutzung eines konservativen Barrieren-basierten Syn-
chronisationsalgorithmus parallelisiert. Die erreichbare Beschleunigung héngt hierbei stark
von den Eigenschaften des getesteten Modells ab. Daher wurde eine Vielzahl von Exper-
imenten zu unterschiedlichen Netzwerkcharakteristika durchgefiihrt, die zeigt, dass fiir
einige Modelle sogar superlineare Beschleunigung moglich ist.
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1. Introduction

For years the clock frequency was the key to improve microprocessor performance.
As Pancratius states in [PT08] "We have reached a major turning point: microprocessor
performance can no longer be improved by increasing clock frequencies; instead, higher
performance will have to come from parallelism”.

Sequential software can only utilize a single core. In order to utilize multiple cores effi-
ciently, existing software has to be adapted. Like many other discrete-event simulation
engines, SImQPN, which is a simulator for Queueing Petri Nets (QPN), is a strictly sequen-
tial program and cannot utilize multiple cores so far. However, as multi-core processors
become more and more common, it is highly desirable to parallelize the simulation. The
adaptation from sequential to parallel simulation will be discussed in this thesis.

In the following, we distinguish between parallel and distributed simulation. Distributed
simulation means that subparts of the execution are placed on multiple computers con-
nected by a network. In this context, network communication plays an important role in
contrast to parallel simulation. Parallel simulation refers to the execution on one com-
puter with multiple processors and shared memory. The umbrella term for the execution
of multiple simulation parts at the same time is concurrent simulation. This thesis focuses
on parallel simulation. In the following, we apply the term concurrent simulation
when we want to highlight concepts that apply for parallel and distributed simulation.

is a general modeling formalism combining the modeling power and expressiveness
of Petri Nets and queueing models. can be used for quantitative and qualitative
analyses in different domains. For instance, are commonly used for the analysis of
the performance of a system as it allows to model hardware and software contention in
a combined formalism. The modeling power and convenience of have been shown
in various case studies [KB03| [Kou06, KNTO07, KSBB0S8, [SKB12]. All these publications
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state a high accuracy in performance prediction.

In [BBK95], Bause et al. introduced the HIQPN tool for the qualitative and quantitative
analysis of QPNk. HiQPN performs the quantitative analysis by transforming it into a
Markov chain. This approach can result in a high number of possible states limiting the
size of models the can be analyzed. This problem is commonly known in literature as the
state space explosion problem[Web09]. The state space explosion problem severly limits

the usage of [QPN5 for system performance analysis as shown in [KDO7].

In order to overcome this limitation, Kounev and Buchmann [KBO06] proposed to use
simulation techniques for the quantitative analysis of [QPNk. They developed SimQPN,
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which is a discrete-event simulation engine optimized for quantitative analysis of [QPNk.
Discrete-event simulation of SImQPN scales better than Markov analysis [KBO7].

The next section motivates research on parallel simulation. At first, we explain the
benefits for established and recent application areas. Then we refer to the challenges of
parallelization. Some might have in mind that parallel simulation has been something that
did not work. Hence, we refer to encouraging publications which justify research in the
challenging field of parallel simulation.

1.1 Motivation

In recent years, have been applied in new contexts in which the time for analyz-
ing a model is severely limited. For example, ongoing research at the Descartes Research
Group investigates online performance prediction for a multi-tenant TPC-W application.
A performance isolation framework runs the model concurrent to the proactive system
reconfiguration to ensure the performance isolation at runtime by using performance pre-
dictions form a [QPNL A speedup due to parallelism has the potential to improve this
research.

Quantitative analysis is a complex task that requires high computational effort and
due to that a long simulation time. While the analysis speed is sufficient for offline analysis
during software development and maintenance, this is not the case for online analysis.

While a lot of work on parallel and distributed discrete-event simulation exists, the sim-
ulation engine SimQPN still runs sequentially. SimQPN has not been parallelized so far,
as parallel and distributed simulation is not a trivial task [FujOOb]. Fujimoto
described the challenge of parallel simulation by the following words: "From an academic
point of view, parallel simulation is interesting because it represents a problem domain
that contains substantial amounts of parallelism, yet paradoxically, is one of the most
difficult to parallelize on existing machines”. Misuse of parallelization approaches to un-
suitable models can cause parallel simulation to be slower than sequential simulation. It
depends on the chosen modeling formalism and the characteristics of the model which par-
allelization approach performs best. For some model characteristics no speedup through
parallelization could be achieved so far.

In contrast to and concurrent simulation has been paid less attention so
far. Only Jiirgens [Jiir97] considered the distributed simulation of (QPNk. His master the-
sis focused on comparing different synchronization algorithms for distributed simulation.
He concluded that the encouraging speedups on artificial models make further research
promising. However, he excluded major parts of the formalism, such as queueing
strategies, which are relevant for concurrent simulation in performance modeling and other
scenarios. A discussion on queueing strategies may help to utilize the full potential of the
formalism and increase the number of models that may benefit from concurrent
simulation.

Furthermore, we can refer to recent advances in implementation techniques for parallel
simulation. Ball and Bull investigated the performance of synchronization-barriers
in Java. The proposed active wait and multi-level barriers provide the basis for high per-
formance barrier implementations like the JBarrier framework developed at the University
of Bonn. By the use of this barrier framework, Pelschow [PVMO09] reached a superlinear
speedup in distributed simulation.

Our optimism for obtaining a speedup is based on local instead of distributed simulation
and on technical advances. Nevertheless, parallel simulation remains a challenging task
where success is not guaranteed. The risk is justified though a successful parallelization
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would improve established and recent fields of research. New application areas and the
above-cited encouraging publications underscore the need for further research.

A performance-improved SimQPN would increase convenience for established application
areas and possibly unlock new application areas. A faster and more scalable SimQPN
version can advance the usage of models for online performance and resource man-
agement. One way to improve performance and to make applications more scalable is
to parallelize their execution. A successful parallelization has the potential to speed up
simulation. In summary, the following benefits can be expected of a parallelized SImQPN
version:

Faster Analysis The parallelized version of SimQPN has the potential to perform faster
analysis than the sequential version.

Better use of multi-cores The parallel SImQPN version utilizes common hardware better
than the existing sequential SimQPN.

Better Scalability By the utilization of multiprocessors the possibility to analyze larger
models becomes available. In best-case scenario, the size of models scales with
the number of processors.

Extended application areas The improved performance and scalability enables more com-
plex models to be processed in reasonable time. This enables to research more com-
plex software systems. Further, this makes more applicable for online per-
formance prediction. An improved analysis tool makes attractive to a wider
audience.

1.2 Aim of the Thesis

This diploma thesis focuses on exploring the potential of parallelizing the simulation of
/QPN5 in the context of SImQPN. The aim of the thesis is to evaluate the possibility of
speeding up the simulation of by means of parallel simulation.

This thesis consists of a conceptual and a practical part. The conceptual part investi-
gates existing approaches for parallelization and checks their applicability to parallel
simulation.The second goal is to implement parallel versions of existing analysis methods
within SimQPN and evaluate their potential for speedup.

In summary, the sub-goals of this thesis will be:

1. Design and apply a new software architecture for SimQPN which supports parallel
simulation.

2. Identify existing techniques for parallel event-discrete simulation and assess their
applicability to the simulation of [QPNk. This includes an analysis of strengths and
weaknesses of the formalism and models for performance prediction in relation
to parallel simulation.

3. Select a subset of the identified techniques and implement them in the existing
SimQPN simulator.

4. Validate the correctness of the implemented parallel simulation techniques.

5. Evaluate the implemented parallel simulation techniques regarding their potential
for improving simulation times.
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1.3 Outline

The remaining chapters of this thesis are organized as follows:

Chapter 2| sets the foundations necessary to comprehend the essence of this thesis. It

starts by a description of the formalism based on its subformalisms in [Section 2.1
Next, [Section 2.2| characterizes simulation concepts and fundamental parallel simulation

concepts. [Section 2.3|is about the QPME tool and its SimQPN simulation engine.

Chapter 3| describes our approach for this thesis. This chapter refines the goals of the
thesis and explains how we proceeded to reach them.

In |Chapter 4 we discuss related work. Thereby, we differ between general publications on
parallel simulation in [Section 4.1, publications on parallel simulation in [Section 4.2
and publications on parallel simulation in [Section 4.3

Chapter 5| describes how to design parallel simulation and provides an overview on
promising techniques. The chapter subdivides in the parallelization options at application

level [Section 5.1| event level [Section 5.2/ and functional level [Section 5.3
Chapter 6| provides technical details of our implementation. First, [Section 6.1| describes

the adaptation of the sequential software. Then, like the design chapter, we subdivide in

application level |Section 6.3| event level |[Section 6.4 and functional level |Section 6.5, The

implementation is validated in |[Chapter 7| and evaluated for performance improvements in

Chapter 8|

Finally, |Chapter 9] summarizes results, names our contributions |Section 9.1 and outlines
further research [Section 9.2



2. Foundations

In this chapter, we lay foundations required to more easily follow the subsequent chapters.

First we construct the Queueing Petri Net (QPN]) modeling formalism in |Section 2.1

Then we explain simulation concepts and fundamental parallel simulation concepts in
Section 2.2, Finally, a short overview about the Queueing Petri Net Modeling Environment

(QPME]) tool and its simulation engine [SimQPN]is provided in

2.1 Modeling Formalisms

The Queueing Petri Net formalism is a combination of and [QNs. To under-
stand the formalism a basic understanding of its constitutive formalisms is required.
We provide a short introduction to QN5 in[Section 2.1.1] and explain and some exten-
sions in [Section 2.1.2

Then we construct[QPN5 by the inclusion of queues into the places of in Section 2.1.3

2.1.1 Queueing Networks (QN)

Queueing Networks (QN5) represent a system by a set of interconnected queues. Each
queue consists of a waiting area and servers that process tasks from the waiting area.

Figure 2.1| depicts an exemplary queue:

Queue

Waiting Area Server

Figure 2.1: Queue Example
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Queues represent service stations that process incoming requests. The scheduling strategy
of a queue determines the order in which requests are processed. Examples for scheduling
strategies are:

First-Come-First-Served (FCFS)). Requests are processed in incoming order.

Round Robin (RR). Incoming requests get time slices of fixed length according to
Requests that have not been completely served during their time slice return to the
queue and wait for the next time slice. This continues until the request has been
completely served.

Processor Sharing (PS). A version of[RR|with infinitesimal small time slices. All requests
are served simultaneously. is used to model Central Processing Units (CPUk).

Priority Scheduling (PRIQ). Requests are performed according to their priority.

Infinite Server (IS). Delays any number of entities for a period of time. Queues with this
scheduling strategy are often called delay resources or delay servers [Kou05].

Random Scheduling (RANDOM). Incoming requests are processed in random order.

In queueing theory, the standard description for a service station is Kenadall’s Notation.
Originally introduced as a three-tuple , the common version consists of six param-
eters A/S/m/B/K/SD [Kou05]:

A describes the distribution of inter arrival times

S stands for the distribution of service times

m stands for the number of servers

B limits the number of requests a queue can hold. If not specified, the default is:
B = .

K determines the maximum number of requests that can arrive in a queue. If not
set: K = oo.

e SD stands for the scheduling discipline (also scheduling strategy). If not specified:
FCFS

We explain the interconnection of service stations using an example. shows
a network with two service stations representing a dual-core and a disk device.
Incoming requests arrive at service station 1(CPU)). Then the requests are served by
one of the servers. Afterwards, the requests move with probability p1 to service station
2 (DSIK) or leave the system with probability p2. From service station 2 requests
move back to service station 1. In general, the way the requests process through the
network is determined by routing probabilities.
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¥ p'I
— > ¢ > i DISK
Arriving P, |
Requests| Waiting R ——
! Area SERVICE STATION 2
Servers

' Departing
SERVICE STATION 1 Requests

Figure 2.2: Queueing Network Example from

The modeling formalism easily enables to model hardware systems as can be seen
in Overall, are a powerful modeling technique to model hardware con-
tention and scheduling strategies. By contrast, have weaknesses in modeling software
contention (contention for processes, threads, database connections and other software
resources [KBO03]). Software aspects, such as blocking, synchronization and simultaneous
resource possession, cannot be modeled in an appropriate way [KB03]. Petri nets are more
suitable for modeling software contention aspects.

2.1.2 Petri Nets (PN)

Petri Nets (PNk) (also called Place-Transition Net) are a general formalism that can be
used for the analysis of concurrent systems. Carl Adam Petri introduced the formalism in
1962. We start with the introduction of a graphical representation in combination with
the formal definition. Then we describe behavioral properties of helpful for analysis.
We use the basic definitions for and all extensions from [KS11].

In mathematical terms, a is a directed bipartite graph with two different types of
nodes named places and transitions. Places represent system states. Places can contain
a number of tokens/marks. Tokens can stand for resource availability, jobs to perform,
flow of control or synchronization conditions [Nie99]. The initial marking can be changed
by the firing of transitions. Transitions are connected to input and output places with
forward and backward incidence functions. The firing of a transition changes the system
state by removing one token from each input place and adding one token to each output
place. Firing order, like in concurrent systems, is nondeterministic. depicts a
example. Places are drawn as circles. Tokens are illustrated as dots within the place.
Transitions are pictured by rectangles and incidence functions by arrows.
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par begin @—>I—>2§1 par
p >

F\
-/

Figure 2.3: A Petri net representing deterministic parallel activities (reprinted from
Mur89])

In comparison to [QNE, lend themselves better to model concurrency and synchro-
nization. However, do not support a direct representation of scheduling strategies
and therefore are not suitable to model hardware contention [Kou05]. We define
as follows:

Definition 1 (Petri Net).
An ordinary Petri Net (PN) is a 5-tuple PN = (P, T,I~, 1", My) where:

1. P=p1,p2,...,pn is a finite and non-empty set of places
2. T =ty,to,...,tm 18 a finite and non-empty set of transitions, PNT =)

3. I7,I" : PxT — Ny are called backward and forward incidence functions, respec-
tively,

4. My : P — Ny s called initial marking

The formalism can be used for quantitative and qualitative analysis. Qualitative
analysis searches for properties. A brief introduction to basic properties is listed
below. For a more detailed discussion on properties we recommend [Mur8&9].

Reachability The reachability set R(C, Mp) of a net C is the set of all markings M’
reachable from initial marking My. If obvious, we abbreviate R(C, M) to R(M).

Boundedness A Petri net is k-bounded ”if the number of tokens in each place does not
exceed a finite number k for any marking reachable from My’ [Mur89]. If a net is
1-bounded we call it save. Every k-bounded net is bounded.

Liveness A petri net is live if it has no deadlocks, i.e. for every marking it is possible to
ultimately fire any transition of the net by progressing through some firing sequence”

.

Reversibility and Home State A Petri net is reversible, if the initial state is reachable
from every marking M € R(Mj). In some scenarios it is not necessary to get back
to the initial state My, but to some (home) state. A home state is a marking M’,
which is reachable from every M € R(My).

Coverability A marking M is coverable, if there exists a marking M’ € R(M;p) with
M'(p) > M(p) for each p in the net.

Persistence A net is persistent, if for any two enabled transitions the firing of one transi-
tion will not disable the other transition.
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Synchronic Distance The synchronic distance can be seen as the degree of mutual depen-
dency between two events. The distance between two transitions ¢; and to is defined
as

dig = mgx|6’(t1) —5’(t2)| (21)

where o is a firing sequence starting at some marking M € R(My) and o (t;) is the
number of times that transition t; fires in o.

Fairness There exist a lot of fairness notions. We list two basic concepts on fairness. Those
are bounded fairness and unconditional (global) fairness. A bounded fair net requires
every pair of transitions to be bounded fair. A bounded fair relation between two
transitions ensures the maximum number of mutual exclusive firings to be bounded.
"A firing sequence o is called unconditionally (globally) fair if it is finite or every
transition in the net appears infinitely often. A Petri net (IV, M) is said to be an
unconditionally fair net if every firing sequence o from M € R(Mj) is unconditionally

fair”.

The original have the advantage of being very simple, expressive and having a proper
mathematical foundation. But even for simple scenarios the graphs get very complex.
Hence, many extensions to have been proposed.

In some cases it is convenient to distinguish between different resources in one net. For
this purpose Jensen introduced Colored Petri Nets (CPNk). In[CPNS5, token colors
represent different resources. Firing rules can be defined according to colors. A color
function C assigns different modes to one transition. This means one incidence function
per color and transition. By that, C' introduces different firing modes per transition and
color. The greater modeling convenience comes along with no loss of properties as
are a backward-compatible extension to the original [PNk. We define as
follows:

Definition 2 (Colored Petri Net).
A Colored Petri Net (CPN) is a 6-tuple CPN = (P, T,C,I~,1", My) where:

1. P=p1,p2,...,pn is a finite and non-empty set of places
2. T =ty,tg, ..., ty 1s a finite and non-empty set of transitions, PNT = ()

3. C is a color function that assigns a finite non-empty set of colors to each place and
a finite and non-empty set of modes to each transition.

4. I=,I" are the backward and forward incidence functions defined on P x T, such that
I=(p,t), IT(p,t) € [C(t) — C(p)ms], V(p,t) € P x T. The subscript MS denotes
multisets. C(p)prs denotes the set of all finite multisets of C(p).

5. My is a function defined on P describing the initial such that My(p) € C(p)ms-

Ordinary lack the integration of temporal aspects needed in the field of performance
evaluation [Mar90]. Stochastic Petri Nets (SPN5) enable a firing delay to each transition.
This delay specifies the time a transition waits until it fires after it has been enabled.
Ordinary use immediate transitions whereas use timed transitions. If timed
transitions are enabled at the same time, the next transition to fire is chosen based on
firing weights (probabilities) assigned to the transitions [KS11].

Generalized Stochastic Petri Nets (GSPN5) enable both types of transitions. Once enabled,
immediate transitions fire in zero time like in ordinary [PNk. Timed transitions
enable to use a delay like in [SPNk. Immediate (normal, black) transitions should be
used to model instant and logical actions. help to reduce the number of timed
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transactions, that are expensive to analyze. [Figure 2.4|exemplifies this by a transformation
from [GSPN! to a [SPN:

O

N/
1L I11
OO0 00O

(a) GSPN (b) SPN

Figure 2.4: Transformation from [GSPN|to

We define [GSPN5 as follows:

Definition 3 (Generalized SPN).
A Generalized SPN (GSPN) is a 4-tuple GSCPN = (PN, Ty, T>, W) where:

1. PN = (P, T,I",I", M) is the underlying ordinary PN,
Ty C T is the set of timed transitions, Ty # 0,

Ty C T is the set of immediate transitions, Ty NTo =0, Ty UTy, =T

e e

W = (wy,... ,wm) is an array whose entry w; € R is a rate of a negative exponen-
tial distribution specifying the firing delay , if t; € T or is a firing weight specifying
the relative firing frequency, if t; € T

The combination of the colors of[CPNk and the timed and immediate transitions of [GSPN
creates Colored Generalized Stochastic Petri Nets (CGSPNE) [BK02]. [CGSPNk are a pow-

erful modeling mechanism, but "they do not provide any means for direct representation
of queueing disciplines” [KBO07].

2.1.3 Queueing Petri Nets (QPN)

Queueing Petri Nets (QPNg) combine the advantages of and by allowing the
integration of queues into the places of a A place with an integrated queue is called
a queueing place. Queueing places are drawn with a horizontal line within the circle (see

Figure 2.5).

= = A
SO—~O1) =
] - ~ ®<%

Figure 2.5: Queueing Place Example(reprinted from [KS11]).

10



2.2. Simulation 11

suit for quantitative analysis while suit for qualitative analysis [Bau93b]. By the
combination of both a powerful modeling formalism arises that suits well for qualitative
and quantitative analysis. The definition uses the modeling power and convenience
of instead of ordinary [PNs. The formal definition of is:

Definition 4 (Queueing Petri Net).
A Queueing Petri Net (QPN) is an eight-tuple QPN = (P, T,C,I~, 1", My) where:

1. CPN = (P, T,C,I~,I*, M) is the underlying colored Petri net
2. Q=0Q1,Q2,(q,-.. q,p| where:

e Q1 C P is the set of timed queueing places

e Q3 C P is the set of immediate queueing places, Q1 N Q2 = ()

e g; denotes the description of a queue taking all colors of C(p;) into considera-
tion, if p; is a queueing place or equals the keyword “null”, if p; is an ordinary
place.

8. W = (Wi, Wy, (w1, ..., wy))) where:
o Wi C T is the set of timed queueing places
o Wy C T is the set of immediate transitions, Wy N Wy =0, Wy UWa =T and

o w; € [C(t;) = RT] such that Vc € C(t;) : wi(c) € RY is interpreted as a rate of
a negative exponential distribution specifying the fizing delay due to color c, if
t; € W2

Bause showed that some qualitative characteristics of Petri nets still exist in[QPN5.
The concepts of ergodicity, boundedness, liveness and home states can be applied to
[KS11]. The preservation of these qualitative properties is an essential precondition for
quantitative analysis [Bau93a]. One way to perform quantitative analysis on is

simulation. The next section provides an introduction to simulation.

2.2 Simulation

The previous sections discussed different modeling formalisms. This section will demon-
strate how simulation can be used to perform quantitative analysis. will
present fundamentals on discrete event simulation. Then, in steady-state
analysis is explained. This section then will conclude with a description of parallel simu-

lation concepts in |Section 2.2.3

2.2.1 Discrete-Event Simulation

Dynamic systems change their state over time. If the behavior over time can be described
as a finite sequence of events, the simulation can be split into discrete events [Merl1].
Then discrete-event simulation is the method of choice. Otherwise, if the system cannot
be split into discrete events, continuous simulation is applied. Physical phenomena with
an infinite number of states between two time instants are one example for continuous

simulation .

The discrete-event simulation approach suits well for software system simulation .
In a model view, computer systems are discrete. For example, user interactions or resource
requests can be split into discrete events. As time plays a big role in simulation we define,

like [FujO0b|, three different terms of time:

Physical time refers to the time in the physical systems

11



12 2. Foundations

Simulation time is an abstraction used by the simulation to model physical time.
Wall-clock time refers to time during the execution of the simulation program

If we do not specify the term time we refer to simulation time. An instant is a value of
simulation time at which the value of at least one attribute of an object can be altered. The
time between two successive instants is named interval. The state of an object consists of
its attribute values at a particular instant. The previous notions on time and state enable
to introduce fundamental simulation concepts [Nan81]:

e An activity is the state of an object over an interval.

e An event is a change in an object state, occurring at an instant, and initiates an
activity precluded prior to that instant.

e An object activity is the state of an object between two events describing successive
state changes for that object.

e A process is the succession of states of an object over a span

| Process |

Object Activity

Activity ——

b— Activity —— time

Event Event Event Event

Figure 2.6: Illustration of Event, Activity and Process [Pag95]

Events, activities and processes form the basis of three primary world views:

Event scheduling "In an event scheduling world view, the modeler identifies when actions
are to occur in a model”[Pag95].

Acticvity scanning "In an activity scanning world view, the modeler identifies why actions
are to occur in a model”’[Pag95].

Process interaction ”In a process interaction world view, the modeler identifies the com-
ponents of a mode and describes the sequence of actions of each one” [Pag95].

In discrete-event simulation, world views (sometimes conceptual frameworks) are simula-
tion modeling paradigms. All alternative world views are different perceptions of the same
reality.

The choice for a world-view affects performance and scalability of the simulator. Merkle
Merl1] compared the most common event-scheduling and process-interaction in perfor-
mance prediction scenarios. He concluded event-scheduling to perform and scale much
better in the inspected scenarios.

Besides the three primary world views there exist several world views the simulation model
can be build on. For additional surveys on world views see [DBN89] and [Pegl0].

12



2.2. Simulation 13

2.2.2 Steady-State Analysis

The previous section described technical approaches to simulation. This section describes
how information can be gained from simulation. Steady-state analysis answers the ques-
tion of how systems behave in the long run. From the mathematical view, we simulate
a discrete-time stochastic process X;,7 =1,2,... and are interested in the steady-state
behavior. For example, we can determine steady-state mean p = lim;_, F(X;). In the
context of performance prediction we assume the existence of a steady-state. One should
keep in mind that steady-state analysis only makes sense if a steady-state exists. For
instance, the average of a rising population would not be useful to determine.

2.2.2.1 Determination of Initialization Bias

In general, a simulation run is not steady-state from the beginning. In such cases the
model has to be simulated until a steady-state is reached. If the steady-state behavior
should be analyzed, the initialization bias Xj,..., X;_1 has to be removed. Otherwise
initialization bias contaminates the result. We name X; as truncation point. In literature
this problem is also referred to as startup or initial transient problem. Stochastic processes
reach their steady-state at different speed and behavior. shows the complexity
of the problem by picturing shape types of different bias functions.

1. Mean Shift 2. Linear \ S

3. Quadratic /_ 4. Exponential } r

5. Oscillating - decreasing. ..

...Iinearly ...quadratically ...exponentially

fh— o —

Figure 2.7: Shapes of the Initial Bias functions [HRDO08

The key problem in initial bias detection is to find a minimal truncation point of suffi-
cient size to discard initialization bias. If the initialization bias is overestimated biased
values falsify the result. If the initialization bias is underestimated steady-state values are
thrown away and longer simulation runs have to be computed. In general, it is better to
underestimate the initialization bias as this does not falsify the results.

The overall simulation speed for steady-state analysis profits from a short length of ini-
tialization bias. Some initialization bias detection approaches depend on user interaction
like e.g. the method of Welch. In our opinion, approaches should not depend on user
interaction to alleviate the combination with steady-state approaches. Further, initial bias
detection approaches should be accurate and fast.

Many approaches to determine truncation point have been proposed. A general classi-
fication of initialization bias identification methods was done by Robinson [Rob04]. He
classifies the approaches into the following five types:

13



14 2. Foundations

e Graphical methods involve the visual inspection of time-series of the output data.
e Heuristic approaches apply simple rules with few underlying assumptions.

e Statistical methods build upon the principles of statistics for determining the
warm-up period.

e Initialization bias tests identify whether there is initialization bias in the data.
Strictly speaking, these are not methods for identifying the warm-up period but they
can be combined with warm up methods for this purpose.

e Hybrid methods combine graphical or heuristic methods with an initialization bias
test.

The following remarks on initialization bias methods base on [Rob04]. The drawback of
graphical methods is the fact that they depend on user interaction for determining the
truncation point. Examples are the method of Welch and a simple time
series inspection as introduced by Gordon [Gor69].

One heuristic approach that is very popular at the moment is Marginal Standard Error
Rule-5 (MSER-5)). Pasupathy provides a survey of historical evolution of MSER-5!
The Marginal Standard Error Rule idea was first proposed as Confidence Maxi-
mization Rule (CMR)) in the master thesis of McClarnon [McC90]. She proposed the use of
the statistic to determine initial bias. Franklin and White [FWO08] see the strength
of in the fact that it starts from the premise that observations near the end of a
simulation run are most representative of the steady-state behavior. This premise allows

the MSER-5| heuristic to work backwards.

Examples for statistical approaches are the Algorithm for a Static Dataset and
Algorithm for a Dynamic Dataset proposed by Bause and Eickhoff [BEQ3] or the
regression method of Kelton and Law [KL83].

Examples for the initialization bias tests are Schruben’s maximum test [Sch82] and its
successor Schruben’s modified test [Nel92].

Besides the named approaches there are a lot more. Hoad et al. use Robinson’s
classification scheme and group 42 methods for initialization bias identification they found
in literature. After the extraction of a short list the most promising algorithms are tested.
They conclude MSER-5 approach to perform best and most consistently. MSER-5 con-
firms the good results in other experiments [WCS00] [MI04]. Freeth proposes a
forecasting method. This recently proposed approach has not been reviewed externally so
far. Summing up, we propose a short survey of initialization bias detection techniques.

2.2.2.2 Steady-State Statistics

By now, we know when steady state starts. During steady state we gather statistics to
later combine them into a description. The statistics to search for in steady-state analysis
are the mean u, the variance o and the corresponding confidence interval. The confidence
interval describes the number of samples we have to gather during simulation to get reliable
results. By that, the confidence interval determines the length we have to simulate the
steady state.

We assume the stochastic process consists of independent and identically distributed ran-
dom variables X; with ¢ = 1,2,.... Further, we assume X; to have a finite mean u and
variance o. The variance ¢ is unknown but we know that the sample variance S%(n) con-
verges to o for large n. Using this and the central limit theorem one gets a confidence
interval for p [Law06]. For sufficiently large n the confidence interval is given as:

5%(n)

n

MO (2:2)
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2.2. Simulation 15

where z1_,, is the upper 1 — «/2 critical point for a standard normal random variable.
Unfortunately it is not easy to determine what sufficiently large for n means. If the
variance is unknown it can be estimated by the sample variance. In such scenarios the
student t distribution is used. The student t distribution is a continuous probability
distribution to estimate the mean in case the number of metered samples is very small.
We replace the standard normal distribution by the student t distribution. The modified
confidence interval looks as follows:

5%(n)

() £ty 110/ (2.3)

The variable ¢, 11 o/ is the upper 1 — a/2 critical point for the t distribution with
n — 1 degrees of freedom. It is obvious that the estimation of the variance increases the
confidence interval. Hence, the student t distribution is less peaked and has longer tails
compared to the normal distribution [Law06]. With an increasing number of samples n
the value for degrees of freedom increases and the student t distribution approximates the
standard normal distribution. Although the difference between both distributions is small
Law [Law06] recommends using the t confidence interval described in

According to Law [Law06], there are two basic approaches for point and confidence interval
estimation. Sequential procedures work iterative until a certain precision has been reached.
In contrast, fixed-sample-size procedures determine the steady-state length according to
an initially chosen sample length.

Sequential Procedures increment the length of a single simulation run until an acceptable
confidence interval can be constructed. Several techniques exist to determine the
termination of the simulation run.

Fixed-Sample-Size Procedures perform a single simulation run of fixed length. Then the
confidence interval is constructed from the available data.

Sequential procedures are more simple to parameterize, but fixed-sample-size methods
are more efficient, as they do not have to determine the confidence interval incremen-
tally. Moreover, fixed-sample-size procedures are often the basis for sequential procedures.
Therefore, we focus on fixed-sample size procedures. Law lists the following proce-
dures: replication/deletion, batch means, autoregressive, spectral, regenerative and stan-
dardized time series analysis.

The replication/deletion approach is based on n independent short replications of length
m observations. Replication/deletion can be applied to reduce variance. The advantage is
that the simulation runs are independent of each other.

The five other approaches are based on one long simulation run. They have the advantage
of simulating the transient period only once [Law(06].

2.2.3 Parallel Simulation

Parallel simulation is one option to improve performance and scalability of simulation. It
is helpful to classify the amount of parallelization methods. We prefer a subdivision in
three orthogonal abstraction levels for event-discrete simulations to which parallelization
can be applied. This classification is used for example in [Kau87] and [Jir97]. The three
orthogonal levels are:

e Application Level describes the execution of separate simulation runs in parallel.

e Event Level uses the parallelism of the model. The simulation is partitioned into
Logical Processes (LPs). Each processor executes a subpart of all events.

15



16 2. Foundations

e Functional Level describes the parallelism independent of simulation runs. This
can be parallelism in the analysis of a simulation run. Further, this can be the
extraction and processing of functional helpers concurrent to the simulation run.
Examples for functional helpers are event set processing, input/output processing
and random number generation [Jir97].

Another classification was done by Palinkowski et al. [PYM94]. They distinguish between
Multi Replication In Parallel and Single Replication In Parallel (SRIP). MRIP|
describes the run of independent sequential simulations on a set of concurrent which
is comparable to parallelism on application level. describes parallelism on event
level.

On event level the simulation is partitioned in subparts called [LPs. Each preserves
its events to process in a queue. The decomposition of the event set in can be done
in three different ways. |Figure 2.8 shows each decomposition method in a space-time
diagram.

8 8 8
22 LPy 2= 251 AA BA CA
% % LPg b7 % LPy LPp LPFPgo §7 % AB BB (B
>‘ TLPCT ‘ >‘ | | | >‘AC‘BC‘CC‘
0 10 20 30 0 10 20 30 0 10 20 30
simulation time simulation time simulation time
(a) spatial (b) temporal (c) space-time

Figure 2.8: Decomposition of the Space Time Diagram into

Temporal decomposition describes the horizontal split of the space-time diagram. Each
performs a simulation of the entire system for the interval of simulation time covered
by its strip of the space-time diagram. Further names for this approach are time parallel
simulation or time scale decomposition [AD91]. Spatial decomposition describes
the vertical split of the space-time diagram. The simulation network is split into subparts,
often connected subnets. Each subpart{LP]simulates the whole time interval. Space-time
describes the vertical and horizontal split of the space-time diagram. This approach is a
combination of spatial and temporal decomposition. If the parallelism derived by temporal
or spatial decomposition is not sufficient the combination results in a higher amount of
parallelism.

In case time parallel approaches are applicable, they are preferred to apply as avoid
expensive synchronization throughout the simulation. They enable massive parallelism as
the simulated time span often is very long. A temporal decomposition requires time spans
of independent simulation. For this purpose a system specification as recurrence equation
or state descriptor is required [Fuj93a]. This precondition makes time parallel simulation
only suitable for certain classes of simulation problems [FujoOb].

The common way to parallelize on event level is spatial decomposition. As many
process the same time interval the temporal ordering of event processing is predetermined.
The order of parallel processed events has to be equal to a sequential execution.
communicate by exchanging timestamped messages. Like that the synchronize their
advance and ensure the preservation of order. The preservation of order is often referred
to as local causality constraint:

16



2.2. Simulation 17

Definition 5 (Local Causality Constraint).
The local causality constraint is met if each event, within an|LP, is processed in timestamp
order

The spatial discrete-event simulation can be classified in pessimistic/conservative and op-
timistic approaches [Fuj99], [Fuj0Ob]. Pessimistic approaches meet the local causality con-
straint while optimistic approaches allow violations.

The following explanations on conservative and optimistic simulation base on the book
Simulation Systems [FujOOb].

2.2.3.1 Conservative Approaches

Conservative synchronization algorithms satisfy the local causality constraint. Namely,
they ensure that each processes events in timestamp order.

A common distinction for conservative algorithms is drawn between asynchronous and
synchronous algorithms. As well, conservative approaches can be separated in first gener-
ation algorithms and second generation algorithms [Fuj99]. Both ways of notations term
the same families of algorithms.

Asynchronous Algorithms

One of the first solutions to parallel discrete-event simulation was the asynchronous null-
message algorithm [PYMO94]. The null-message algorithm was independently proposed
by Chandy and Misra [CM78] and Bryant [Bry77]. Hence, it is also referred to as
Chandy/Misra/Bryant algorithm. spread the information of a processed event
timestamped to the adjacent/neighboring [LPs. Each saves the received timestamped
messages in a queue. The timestamp of the last message received is a lower bound
on the timestamps of subsequent messages the will receive in the future. Each can
process to its lower bound and then has to wait for new messages increasing that lower
bound. A can process all events that are between current time and the lower bound
timestamp without violation of local causality constraint. The lower bound timestamp
value is the current simulation time plus lookahead.

Definition 6 (Lookahead).
Lookahead is the time alLP can look ahead from the current time and process independently
of other[LPs without violation of the local causality constraint.

Lookahead is a complex function which highly depends on the simulation problem and
the way it is programmed [Fuj88]. The lookahead varies with time and the type of event

[Fuj8s].

We regard a simple synchronization algorithm that solely sends processed token informa-
tion to the receiver of the token. This information is stored in incoming queues. The
messages in each incoming queue are sorted by timestamp. If each incoming queue con-
tains at least one message can ensure the local causality constraint by processing only

smallest timestamps [FujO0b].

This simple algorithm that shares only processed token information does not meet the
above constraint. This simple timestamp synchronization can lead to a deadlock so that
all have to wait for each other. Consequently, the simulation state is frozen and cannot
advance. pictures such a deadlock scenario. LP1 is waiting to receive a message
from LP2. LP2 is waiting for LP3. LP3 is waiting for LP1.

17



18 2. Foundations

1IN

LP1 LP2

Figure 2.9: All have simulation time smaller than 1. Each [LP|waits for the other
to send a newer timestamp to process its event. Without further information
the simulation is deadlock.

1.1
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Figure 2.10: Simulation Time Creep. LP2 starts at simulation time 0.1. The delay be-
tween LPs (lookahead) is 0.2. The first null-message is send with timestamp
0.3 from LP2 to LP1. LP1 notifies LP2 and so on. The null-message algo-
rithm needs 5 null-messages until the next event with timestamp 1 can be
processed in LP3.

One method of deadlock avoidance is the use of null-messages. send null-messages on
each outgoing link after the processing of each event. A null-message contains no infor-
mation except for a timestamp which increases the time interval for safe event processing
in the receiving Null-messages are processed like non-null-messages. If lookahead is
small, there may be many null-messages which is exemplified in The key
problem is that can only advance in (small) lookahead increments. This "simulation
time creep” is solved by second generation algorithms.

Synchronous Algorithms

Synchronous algorithms use a central barrier for communication. The simulation time
creep can be solved by including information on the timestamp of the next unprocessed
event in computing Lower Bound on the Time Stamp (LBTS) for the next emitted token.

Definition 7 (Lower Bound on Timestamp).
The Lower Bound on the Time Stamp (LBTS) for an LP is the lower bound on the time
stamp of any message it can receive in the future. [FujO0b

This enables the synchronization protocol to advance immediately to the next unprocessed
event. It is helpful to stop the computation at a barrier to make a snapshot of the system.
This simplifies the determination of the smallest timestamped event.

A waiting for safe events to process is named blocked. Otherwise, are named
unblocked. Pursuant to this notation all waiting at the barrier are blocked. Given a
snapshot of the computation, [LBTS|is the minimum among

18



2.2. Simulation 19

e Unblocked [LPk: Current simulation time + lookahead
e Blocked [LPs: Time of next event + lookahead

The assumption for unblocked works for blocked as well. However, blocked
produces a superior estimation than unblocked estimation. On condition that all
are blocked the calculation can be improved. The knowledge of the next event
is referred to as conditional information whereas the estimation for unblocked bases

on unconditional information [Fujo0b].

The difference between asynchronous and synchronous barrier-based algorithms is that
barrier-based algorithms can utilize conditional information.

In general, transient messages have to be considered for calculation. A transient
message is a message that has been sent, but not yet received. Simulation engine has to
wait for transient messages to arrive. This plays a role in distributed simulation but on
parallel machines transient messages do not occur.

The barrier changes the way of communication. While the communication of is
asynchronous, the barrier algorithms use synchronous communication.

Many synchronization algorithms work with a synchronous barrier. Examples are the
bounded lag algorithm proposed by Lubachevsky [Lub89], Chandy and Sherman’s condi-
tional event approach [CS89], Ayani’s distance between objects algorithm [Aya89], Nicol’s
Yet Another Windowing Network Simulator protocol and Steinman’s
Time Buckets protocol [Ste91].

YAWNS] protocol waits for all threads to run into the barrier. Then the event with the
smallest timestamp is determined followed by the creation of a time-window in which
events are safe. All process to the end of the synchronization window. The size of the
synchronization window is the worst-case lookahead among all [LP5.

The conditional event approach also uses a global min-reduction to determine the [LBTS
for all[LPk to safely process events. TheLBTS|is set to the minimum of earliest conditional
events plus the lookahead among all [LP5.

Besides the barrier solutions, another solution to the simulation time creep was proposed
by Chandy and Misra [CM81]. They allow deadlocks and introduce a detection mechanism
followed by a deadlock resolution. The deadlock can be resolved by having each[LP|sending
null-messages indicating a lower bound on the timestamp of future messages. The messages
with the smallest timestamps in the entire simulation are always safe to process. By that,
we have the next event(s) to process. The deadlock can be resolved by sending null-
messages to all owning an event with smallest timestamp. The smallest timestamp
can easily be determined as the simulation is deadlocked and the creation of new events has
stopped. This solution utilizes the fact that if all are blocked, they can immediately
advance to the time of the minimum timestamp event in the system.

Assessment of Conservative Approaches

The development of conservative synchronization algorithms has achieved algorithms fea-
sible in real-world simulation problems [FujOOb]. The success of parallelization strongly
depends on the lookahead characteristics of the model. Pawlikowski [PYM94] states that
a reasonable speedup is possible, provided that a given simulation model is highly decom-
posable. Lookahead plays a crucial role in the performance of conservative synchronization
algorithms. Hence, the focus on simulation application development is to maximize the
lookahead [FujOOb]. Even if the model has a healthy amount of parallelism conservative
algorithms struggle to achieve good performance as soon as the simulation application has
poor lookahead [FujO0b]. Until now, there is no reliable automatic lookahead determina-
tion within an application and code restructuring in favor of improving lookahead [Fujo0b).
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20 2. Foundations

Conservative synchronization algorithms can only progress until reach their lookahead
border. By that, conservative approaches cannot fully exploit the inherent parallelism of
the model [Fuj00b]. Optimistic approaches try to exploit this inherent parallelism to a
greater extend.

2.2.3.2 Optimistic Approaches

In contrast to conservative synchronization, optimistic synchronization allows violations
of the local causality constraint to occur and provide mechanisms to recover [FujO0b].
Jefferson introduced the basic time warp algorithm that actual optimistic methods
are build on. It introduced many fundamental concepts as rollback, anti-messages, and
Global Virtual Time (GVT).

Jefferson introduced a Time Warp Logical Process that differs from the
known by the fact that events in the event set may be changed by messages of other
[LPs. Hence, processed events are not thrown away but preserved in a queue. This is
necessary to roll back and reprocess previously processed events. A queue shows
processed and unprocessed events.

A violation of the local causality constraint occurs if a message arrives with timestamp
t; < Local Virtual Time (LVTJ). These late arriving messages are called straggler messages.
If the has not sent any message with a higher timestamp only the local history
has to be refreshed. Otherwise the sent messages have to be undone. The corresponding
time warp mechanism is called anti-messages. An anti-message deletes its corresponding
message in the receiving [ TWLP5.

If the local causality constraint is violated, a rollback is performed. A rollback needs
earlier states. These states need to be stored in a queue which leads to a high amount of
memory allocation. If we do not want to preserve all earlier states, we have to introduce a
lower bound on the timestamp of any future rollback. This lower bound is named Global
Virtual Time (GVT). Besides the reduction of memory costs the reduces the possible
rollback length.

Definition 8 (Global Virtual Time).
ThelGVT at wallclock time T (GVT T) during the execution of a time warp simulation is

defined as the minimum timestamp among all unprocessed and partially processed messages
and anti-messages in the system at wallclock time T [Fuj00b

The original time warp has performance hazards. While the rollback/anti-message mech-
anism tidies incorrect simulations the incorrect message propagates through the system.
In worst case the incorrect computation stays one step ahead of the canceling operations.
Then the wrong message will never be canceled. The effect is commonly known as dog is
chasing its tail [LAH99| [FujoOb]. This effect is enhanced by a low level of parallelism. A
low level of parallelism raises the probability that incorrect computation is spread directly

[Fuj00b]. An example of the dog is chasing its tail effect is depicted in [Figure 2.11
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Figure 2.12: Echo Example [Fuj00b] (a) LP4 sends a message to LPp, causing LPp to roll
back (b) While LPg rolls back, LP4 advances in simulation time (c) Sequence
repeats with the length of rollback expanding at an exponential rate.
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Figure 2.11: Dog Chasing its Tail Effect

Another performance hazard is called rollback echo. An echo occurs if the rollback con-
sumes more time than the forward progress. We explain the echo effect by an example of
pictured in The scenario consists of two logical processes LPp and
LP, that are mapped to different processors. LPp has advanced 10 units of simulation
time from LP4. Subsequently, L P4 sends a message to LPg. LPp recognizes that it has
advanced too far and rolls back to simulation time zero . At the same time LPy
advances 20 units of simulation time. Then LPpg notifies its timestamp to LP, which
causes LP4 to roll back (2.12(b)). During the rollback of LP4, LPp advances 40 units of
time which causes a rollback of the same length (2.12(c)).

Advanced Optimistic Approaches
There exist several approaches to avoid performance hazards. We will provide a short
overview.

Moving Time Window sets a time window of size W which defines how far ahead
one can advance from the other [LPk. In the technical solution this means that
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29 2. Foundations

are not allowed to process beyond +W.

Window-based approaches block without reference to model properties. In contrast,
lookahead-based blocking tries to use the information obtained by applying a conservative
synchronization protocol. Safe events can be processed without further control mecha-
nisms whereas unsafe events are processed with optimistic synchronization mechanisms.
This leads to hybrid conservative/optimistic synchronization algorithms.

The Breathing Time Buckets approach combines synchronous event processing with
barriers, time windows and local rollback. Local rollback ensures that do no spread
wrong messages. It is not allowed to send messages until it can be guaranteed that they
will not be rolled back.

The combination of multiple time warp extension has been performed in the Georgia Tech
Time Warp (GTW) [FDP*97|. The includes the proposed and many other time

warp extensions.

Assessment of Optimistic Approaches

In general, optimistic approaches can exploit more parallelism than conservative approaches.
Optimistic approaches are not sensitive to lookahead characteristics. Disadvantages of op-

timistic approaches are the high memory consumption and the additional overhead. Many

approaches tend to be overoptimistic which causes expensive rollbacks.

2.3 QPME

Queueing Petri Net Modeling Environment (QPME) [KS09] is a tool for modeling and
simulating [QPNk. Together with the HIQPN[BBKO95] tool developed at University of
Dortmund, QPME]is the only tool to model and analyze QPNks. HiQPN analyzes by
a Markov chain transformation and the resolution of the balance equations. According to
the HIQPN tool greatly suffers from state space explosion problem and takes huge
amount of resources and time for large number of user requests and/or components. In
contrast to HIQPN, analyzes the model with discrete-event simulation which avoids
the state space explosion problem. uses SimQPN, a highly optimized simulation
engine, for analysis. The graphical editor QPE enables to build intuitively [QPNk.

QPME]|is often used for the performance analysis of computer systems. Many case studies
prove a successful usage of (QPME]| for modeling and analysis in various scenarios
KNT07, [KSBB08| INKJT09| [KS09] [Sac10], [SKB12]

The development of QPME started 2003 at University of Darmstadt. The first release
was published 2007 in Cambridge. Since the first release, the tool has spread to over 120
universities and organizations [SKM12|. Currently, the tool is developed and maintained
by the Descartes Research Group at KIT [SKM12]. It is available as open-source software
under Eclipse Public License v 1.0 since May 2011. is fully java-based and therefore
easy portable to various platforms.

SimQPN supports batch/means and replication/deletion for steady-state analysis and the
method of Welch for manual truncation point analysis. Besides the parametrization for
theses simulation procedures, SImQPN enables to set more parameters to specify statistic
collection. SimQPN collects statistics on a per location basis where a location has one of
the following four location types [KS11]:

1. Ordinary place.
2. Queue of a queueing place (considered from the perspective of the place).

3. Depository of a queueing place.
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4. Queue (considered from the perspective of all places it is part of).

For each location a stats-level can be set. The stats-level determines the amount of statis-
tics to be gathered for this location during the run. A level of 0 means no data collection.
A level of 1 means lowest output detail, level 5 yields the most detailed output files. The
more detailed description from :

stats-level 0 In this mode no statistics are collected.

stats-level 1 This mode considers only token throughput data, i.e., for each location the
token arrival and departure rates are estimated for each color.

stats-level 2 This mode adds token population, token occupancy and queue utilization
data, i.e., for each location the following data is provided:

e Token occupancy (for locations of type 1 or 3): fraction of time in which there
is a token inside the location.

e Queue utilization (for locations of type 2 or 4): proportion of the queue’s server
resources used by tokens arriving through the respective location.

e For each token color of the respective location:
— Minimum/maximum number of tokens observed in the location.
— Average number of tokens in the location.

— Token color occupancy: fraction of time in which there is a token of the
respective color inside the location.

stats-level 3 This mode adds token residence time data, i.e., for each location the following
additional data is provided on a per-color basis:

Minimum/maximum observed token residence time.

Mean and standard deviation of observed token residence times.

Estimated steady state mean token residence time.

Confidence interval (c.i.) for the steady state mean token residence time at an
user-specified significance level.

stats-level 4 This mode adds a histogram of observed token residence times.

stats-level 5 This mode additionally dumps token residence times to a file for further
analysis.
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3. Approach

This chapter describes our approaches to reach the previously declared goal of the thesis
to evaluate different strategies for parallelizing a Queueing Petri Net simulation.
Before we go into detail, we refine our goal into subgoals. The goal can be split in the
following sub-goals:

e Design The aim for the theoretical part is to identify different techniques for the
parallelization of event-discrete simulation. This sub-goal includes an analysis of
their applicability to simulation and the selection of a subset of the identified
techniques for implementation.

e Implementation We define the following sub-goals for the implementation:

— Develop a new software architecture for SimQPN which supports parallel sim-
ulation. Then refactor the current SimQPN code towards the new design.

— Implement parallelization techniques in the SImQPN simulator.
e Evaluation We define the following sub-goals for the evaluation:

— Validate the correctness of the implemented parallel techniques by comparing
the parallel and sequential version.

— Evaluate the techniques in order to determine the performance improvements
through parallelization.

According to our subgoals, our approach can be split into identification, implementation
and evaluation of parallelization approaches. explains how we identify the
parallelization approaches to implement. describes the approach we chose for
the implementation. specifies how we evaluate the implemented approaches.

3.1 Design

We consider three levels of parallelization: application level, functional level and event
level.

Application level Exploiting the parallelism on application level means to run multiple
replications in parallel. This parallelization level is favorable as each replication can
run on its own|[CPU]without any synchronization effort. Application level paralleliza-
tion requires analysis approaches with multiple runs. We determine the approaches
where application level parallelism is applicable.
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Event level There is a lot of previous work on the parallelization on event level. For the
purpose of event level parallelization we performed an extensive literature research.
We provide a survey of the state-of-the-art methods and algorithms. We identify
three major issues that need to be solved for a successful parallelization:

e synchronization algorithm,
e decomposition, and
e lookahead.

The discussion on synchronization algorithms considers their strengths and weak-
nesses and compares them to the characteristics of [QPNs. The characteristics that
determine the capability of our models for different synchronization algorithms
depend to some extent on decomposition and lookahead.

Synchronization algorithms require a model to be decomposed into disjunct parts.
To the best of our knowledge, there is no publication on decomposition for
parallelization. Therefore, we review strategies proposed for and PNk. In
addition, we discuss extensions for .

At lookahead calculation, the situation is similar to decomposition. A general dis-
cussion on lookahead for QPN has been absent so far. Again we employ strategies
from and [PNk.

Functional level On functional level we can extract certain parts of the simulation logic
into helper functions and execute them in parallel to the simulation. Furthermore,
we can also run the analysis of simulation results in parallel to the simulation. A
helper function is a candidate for extraction and parallelization if it has a remarkable
impact on performance and offers a service that can be computed parallel to the not
extracted part. This service is either a precalculation or a subsequent calculation
which is not instantly accessed by the core simulation. Possible helper functions
have to be determined. To find functional helpers we access experiences form other
publications and analyze the source code for sequential simulation.

3.2 Implementation

In this section, we explain our approach on the adjustment of SimQPN towards a parallel
simulation engine. We explain requirements and point out difficulties for implementation.

SimQPN is a grown software system. Before starting to parallelize the simulation, we
refactor SIimQPN to improve modularity and state encapsulation. This refactoring is
necessary to integrate the new parallel simulation engine into SimQPN.

Application level We chose the Replication/Deletion approach for application level paral-
lelization. For the application level we do not need to parallelize the core simulation
loop. The existing sequential simulation engine can be reused and just be started
multiple times in parallel.

Event level We parallelized the Batch/Means approach on event level. A specialty of se-
quential SImQPN is that it uses a mixture of process and event based scheduling.
The firing of transitions is implemented based on process scheduling. SimQPN cre-
ates only queue-events for scheduling tokens in queues. This reduces the number
of events within the simulator. The parallel implementation keeps this performance
optimization. Apart from this performance optimization the SimQPN behaves like
other discrete event simulators.
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To implement event level parallelization techniques sequential simulators need some
adaptation. For SimQPN, or any other sequential simulator, adjustments at the
following parts have to be performed for parallelization:

e net decomposition

e simulation logic

e progress communication
e lookahead calculation.

The net needs to be decomposed into [LP5. Besides decomposition, we implement a
merge function. This merge function enables to merge two adjacent [LPs. Thereby,
the size of [LP|can be varied.

The simulation logic can be reused with minor changes from the sequential version
to a great extend. New parts to implement are the handling for incoming tokens
and progress communication. The progress communication mechanism depends on
the synchronization algorithm. The considerably more complex part of progress
communication is the implementation of lookahead for different queueing strategies.
Last but not least, dependent on the chosen synchronization algorithm further parts
need to be implemented.

Functional Parallelism It is not useful to parallelize every possible functional helper. Be-
fore extracting helper functions we evaluate their performance impact. We meter
the share on overall runtime before we implement parallel execution of functional
helpers. We search for promising functions by the help of a profiler. During search
we kept a special focus on common helper functions.

3.3 Evaluation

This section presents the procedure of parallel SImQPN evaluation. We subdivide the
evaluation into validation and a performance testing.

3.3.1 Validation

We performed the validation on existing example models from previous case studies.
SimQPN selects statistics during simulation. These statistics are for example the to-
ken arrival and departure counts, mean service time, mean token occupancy. To test for
correctness, we compare the resulting statistics for equality.

An existing test framework for SimQPN assumes equality by a t-test with significance level
of five percent. Within the test framework the results alternate because of a randomly cho-
sen initial random seed. To improve faith in the precision of the parallel implementation,
we performed experiments where we set the initial random seed equal for the compared
runs. This enables to demonstrate the precision of the parallel implementation.

3.3.2 Performance Impacts

After the validation we evaluated for performance impacts and overheads introduced by
the parallel SimQPN version. The analysis for performance improvements is split into the
analysis of Replication/Deletion and Batch/Means.

The parallelization of Replication/Deletion is on application level. We test the speedup
on a model from an existing case study. The Batch/Means approach has been parallelized
on event level. On event level the speedup depends on model characteristics. We test
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parallel implementation on artificial models where we can determine and modify degree
of parallelism and workload. The artificial models enable a more systematic evaluation
of certain model characteristics compared to the complex models form case studies. This
further enables distinct conclusions about strengths and weaknesses which are not blurred
by mixed characteristics.

The experiments on performance impact of parallelization compare the run times for the
sequential and the parallel version. By the help of artificial models we investigate effects
of multiple model characteristics on performance. Experiences from subformalisms
show that not all models suit for parallel simulation. Our experiments help to asses the
suitability of models inspecting different model characteristics. The experiments consider
the following aspects:

e Level of statistic collection
e Events between barrier synchronizations
e Number of concurrently processing

SimQPN determines the statistics on a per net element basis. We evaluate the impacts
of six statistic levels on performance. SimQPN does not collect any statistic data during
initialization bias. Thus initialization bias can be emulated by statistic level zero. This
enables to discuss the suitability of parallel simulation for the different statistic levels and
for the initialization bias. Besides, we explore the effects of different workloads by an
increase of events between synchronizations. Furthermore, we modify the model inherent
parallelism which influences the number of concurrently processing [LPk.
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4. Related work

In this chapter, we provide an overview of previous research on approaches to parallel and
distributed simulation. The related work can be divided into publications on parallel and
distributed simulation in general and approaches applying these principles to the analysis of
Petri Nets (PNk) and Queueing Networks (QNE). At first, we refer to general publications
on concurrent simulation in [Section 4.1 [Section 4.2]is about publications on concurrent
simulation of and its extensions. Parallelizations of simulation are discussed in
Section 4.3

4.1 Parallel and Distributed Simulation

Discrete event simulation is a complex field. Hence, many publications exist on the difficul-
ties and opportunities without focus on a concrete domain. One very famous publication of
Fujimoto [Fuj93b| asks whether the field of parallel discrete event simulation will survive.

An approach that works well, independent of the modeling formalism, is the parallel execu-
tion of multiple replications. Pawlikowski et al. consider traditional approaches
and conclude to apply Multi Replication In Parallel to distributed stochastic
discrete-event simulation instead of parallelizing the execution of a single run. They pro-
vide an implementation with linear speedup within the AKAROA simulation package.
AKAROKA automatically creates the environment to run on the workstations of a
local area network.

In many scenarios the problem cannot be decomposed into multiple runs. If we cannot
subdivide the problems into multiple runs the execution of a single run has to be par-
allelized. Implementations often focus on applications areas, model characteristics and
hardware at hand. This complicates comparability and repeatability. Thereby, the choice
for an optimal algorithm is difficult. Multiple conservative and optimistic algorithms have
been proposed. Ewald et al. try to improve the choice for a scenario dependent
parallelization with the help of simulation.

Himmelspach et al. employ large scale simulations where parallelization can
be performed on multiple orthogonal levels. Hereby, hardware resources are limited and
often not sufficient for doing everything in parallel. Himmelspach et al. try to exploit the
available hardware best by an efficient combination of parallel tasks. They implemented
the simulation system JAMES II which is a proof of concept for their high-level approach
to parallelization.

29



30 4. Related work

Besides the conservative synchronization algorithms named in |[Section 2.2.3.2| there exist
a lot more. As an example we mention a few optimizations for conservative simulation
dependent on model characteristics.

Such special model characteristics may occur at large models. More precisely, we refer to
large models where distributed parts cannot affect each other. The conservative barrier-
based bounded lag algorithm by Wagner et al. [WLB88| [WL89| utilizes this fact. The

bounded lag algorithms allows only those to communicate, which actually can affect
each other. By that, the communication overhead can substantially be reduced.

Lookahead characteristics influence the choice for algorithms. Liu and et al.
assume lookahead to be fixed. This precondition empowers optimizations and higher
speedups. The deterministic behavior enables the avoidance of locking operations. Liu
et al. state their conservative asynchronous lock-free algorithm performing well when the
number of assigned to each processor is small.

Moreover, multiple extensions to the algorithm have been proposed. The approach
of Xiao et al. improves scheduling throughout determination of limiting paths.
Their Critical Channel Traversing algorithm enables to schedule critical paths first.
By that, waiting times can be reduced.

A further approach was proposed by Liu and Rong [LR12]. They combine asynchronous
CMB) and synchronous (YAWNS] protocol) synchronization in a hierarchical composite
synchronization algorithm.

To the best of our knowledge, adaptations of optimistic simulation algorithms to spe-
cial model characteristics have not been proposed. General optimizations for optimistic

simulation have been discussed in [Section 2.2.3.2

4.2 Parallel and Distributed Simulation of Petri Nets

In this section we focus on publications on parallel and distributed analysis of the
formalism and its extensions. We see mainly two different approaches. The first family
of approaches builds on special Single Instruction Multiple Data hardware. Ac-
cording to Flynn’s taxonomy [Fly72], a [SIMD| hardware exploits multiple data streams
against a single instruction stream. Examples for such hardware are Graphics Processing
Units (GPUk) and vector processors. This hardware is able to solve vector operations
very fast. These vector operations appear when solving recurrence equations. The
second family of approaches is [LPtbased simulation as described in The
parallelization is independent of the underlying hardware. A more detailed description
and comparison of both approaches is provided in [Fer94].

Baccelli and Canales parallelize the simulation of for a architecture.
They transform the net into recurrence equations and then parallelize the emerging matrix
operations. Associative matrix multiplication enables to alter the order of multiplications.
Baccelli and Canales distinguish two multiplication orders, which represent a spatial and
a temporal decomposition. They propose using the spatial approach for large networks
and the temporal for small networks. In general, Baccelli and Canales exploit the
architecture to speedup matrix operations.

Geist et al. [GHSWO05] use [SIMD] architecture as well. They propose a method that
uses [GPUs (NVidia 5-series and 6-series) common in desktop computers. Chalkidis et
al. utilize to analyze biological processes called biopathways. They use
the Hybrid Functional Petri Net modeling formalism introduced by Matsuno

IMTA*03]. HFPN5 include several[PNlenhancements (CPN,[SPNk and Hybrid Petri Nets
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[HPNK)). Hereby, the (not previously listed) formalism enables to model discrete

and continuous events.

Multiple [LPtbased parallelizations have been proposed. Nicol and Roy apply a
conservative synchronization protocol for discrete-event analysis of Timed (Transition)
Petri Nets (TPNk). They identify three types of events. Those event types are the
arrival of a token, the start and the end of transition firing. The tripartition of event types
enables Nicol and Roy to provide an efficient conservative parallelization for [TPNS.

Chiola and Ferscha describe how can be split in to apply conservative
and time warp synchronization. They define minimum regions by the use of (extended)
conflict sets. The minimum regions form a partition of the net such that each transition
and each place is in exactly one region. Conflicting transitions and their places reside
in the same region. Then the regions are merged according to five merging rules. The
merged regions form [LPk. In general, they provide a good overview about advantages of
different partitionings. They state, for example, that forward incidence functions (f €
Place x Transition) have more impact on performance than backward incidence functions
(f € Transition x Place).

Nketsa and Khalifa [NK01] modified the lookahead definition of [CF93] to better suit
asynchronous communication. Fang et al. [FXYO07] refine [NKO1] approach to fit on
extended [TPNk.

Ammar and Deng apply an optimistic time warp simulation to [SPNk. They use
a combination of spatial and time scale decomposition to derive [LPs. Their time scale
decomposition divides a large network into small subnets by separating short activities
and long activities into different subnets.

Ferscha tries to make the time warp algorithm more robust to different model
domains. He proposes an adaptive time warp algorithm for timed [PNk. His approach is
based on monitoring of synchronization messages and statistical analysis.

Jiirgens [Jiir97] applies distributed simulation to Hierarchical Queueing Petri Nets (HQPNG).
He implemented a pessimistic and an optimistic synchronization protocol. In his experi-
ments on artificial models the pessimistic protocol reaches better speedups than the op-
timistic protocol. Two model characteristics that limit speedup are degree of parallelism
and the lookahead characteristics. Therefore, he considers distributed simulation to be
worthwhile only for a subset of models with good characteristics.

Jiirgens’ and our own intuition behind the term degree of parallelism is different from the
definition used in [vdA96] and [VJ03]. In our opinion, Van der Aalst [PNtbased
degree of parallelism is suitable to determine bottlenecks in Business Process Management
scenarios, but does not suit to be a good indicator of the possible speedup a
simulation can reach.

Concluding Remarks

Except for Jiirgens’ [Jiir97] approach, none of the presented approaches parallelized the
execution of [QPNk. In contrast to our approach, Jiirgens applies distributed instead of
parallel computation. By the distribution, the communication costs consume a lot of the
possible speedup.

A further difference is that Jiirgens does not take queueing places into account. In his
models, timed transitions were used to model the temporal aspects. He does not consider
queueing places with scheduling strategies.

The publications on[LP|based simulation have in common that they investigate formalisms
that form a foundation for the formalism. Hence, the proposed publications about
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conservative and optimistic approaches can help to find an optimal splitting in[LP5s. Timed
Transition are a super class of stochastic [PNk. Hence, all of the proposed lookahead
research can improve lookahead calculation for [(QPN5.

The publications that use architecture transform into recurrence equations.
The publications apply a conservative parallelization approach without lookahead.
Their speedup is solely reached by specialized hardware but not by an efficient strategy.
This thesis is about parallel simulation and not about parallelizing of recurrence equations.
Hence, the[SIMDI publications are considered to be dispensable in the context of this thesis.

4.3 Parallel and Distributed Simulation of Queueing Net-
works

Queueing Networks (QNE) have been a common benchmark for the evaluation of differ-
ent synchronization protocols e.g. [Nic88| [RMMS8| [Fuj88, WLBS88]. Conservative
simulation performed only well in subclasses of the formalism. Many studies conclude
conservative simulation to be unsuitable for speeding up the simulation of [(QNb, or limit

it to special subclasses with good lookahead characteristics. Often the models have been
restricted to First-Come-First-Served (FCFS) networks.

The reactions to these experiments were different. Some, like e.g. Fujimoto [Fuj89b],
switched their focus to optimistic simulation. Others, like e.g. Lazowska [LLI0],
searched for improved lookahead estimations. Wagner and Lazowska [WL89] improve
lookahead calculation for non{FCFS| scheduling strategies. Their work is of importance
because the formalism enables multiple scheduling strategies. Later, Lin and La-
zowska, provided further experiments on the improved lookahead calculation.
networks still provide better lookahead than most other queueing strategies. Nevertheless,
a wider range of models can be simulated with benefit. The formalisms and [QPNg
have the same queueing strategies. Hence, improvements on lookahead can improve

lookahead calculation.
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This chapter provides an overview of techniques for parallel simulation of [QPNk. Paral-
lelization techniques can be categorized in three orthogonal levels of parallelism. These
levels are:

e application level
e event level

e functional level.

The following subsections specify parallelization approaches for each level.
describes the parallelization of multiple runs on application level. discusses
various aspects on event level parallelization. In particular, we discuss synchronization
algorithms in net decomposition in and lookahead calculation
in [Section 5.2.3] Last but not least, we mention possible functional helper functions that
can be extracted to be executed parallel to simulation in

5.1 Application level

Exploiting the parallelism on application level means to run a set of sequential simulation
programs on different processors. Application level parallelization promises speedup pro-
portional to the number of cores as each simulation run may run on its own without
any synchronization effort. We recommend to apply this parallelization whenever possi-
ble. It is applicable to all analysis approaches that perform more than one simulation run.

SimQPN supports three analysis approaches as described in [Section 2.3

Replication/Deletion runsn independent short replications each of length m observations.
Thereby it imitates a run of length n x m.

Batch/Means performs one long run and divides into m batches for analysis.

Method of Welch uses multiple runs to determine initialization bias.

Replication/Deletion and Method of Welch use multiple runs for analysis and lend itself
very well for a parallelization on application level. In contrast, Batch/Means does not
fulfill the requirement of multiple runs.

By now, the interface of (QPME| does not support testing multiple parameter settings in
parallel. In general, cases exist where different models or parameterizations have to be
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tested. The emerging runs are candidates for parallelization. A precondition for par-
allelization is that the executions of analysis approaches are independent of each other.
Applications that support a combined analysis approach for examination of different pa-
rameter settings can parallelize the execution of corresponding runs.

The application parallel program structure avoids communication between runs during
their execution. |[Algorithm 1|shows the skeleton of application level parallelism.

Algorithm 1 Application level parallelism skeleton

1: function RUN(numRuns)

2 runArray[numRuns;

3 initializeRunArray();

4: for all run in RunArray do

5: startSimulationRunThread();
6 end for

7 for all run in RunArray do

8 waitForSimulationRunToJoin();
9: end for

10 combineResultsOfRuns();

11: end function

This level of parallelism is not expected to create as complex challenges as the other levels.
However, one should keep in mind that each simulation run needs its own random number
generation. For some simulators the generation of random numbers has to be adapted.

5.2 Event level

Parallelization on event level is based on a decomposition of the model into [LPs. The
synchronization algorithm controls how the individual communicate with each other
to execute the whole simulation. Lookahead enables to predict the behavior of other
[LPk. This allows to anticipate future system states and improves the utilization of model
inherent parallelism in parallel simulation. This section on event parallel simulation
answers the general questions concerning:

e synchronization algorithm
e model decomposition

e Jlookahead calculation

We analyze lookahead characteristics and compare them to the strengths and weak-
nesses of synchronization algorithms in Section 5.2.11 Thereafter we describe details of net

decomposition in [Section 5.2.2| and lookahead calculation in [Section 5.2.3

5.2.1 Synchronization Algorithm

No synchronization mechanism exists that performs best for all scenarios. This section tires
to determine the most promising algorithm for the formalism and our application
area of performance models.

The choice for the optimal scheduling algorithm encompasses two fundamental decisions.

Section 5.2.1.1|compares conservative and optimistic synchronization and explains why we
decide for the more promising conservative paradigm. The choice of either asynchronous

or synchronous communication is discussed in |Section 5.2.1.2
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5.2.1.1 Conservative vs. Optimistic

The most general classification of synchronization algorithms is to differentiate between
conservative and optimistic synchronization. Conservative algorithms ensure local causal-
ity constraint (Definition 5| in [Section 2.2.3.1) whereas optimistic algorithms enable vi-
olations. Details on conservative and optimistic synchronization have been set in
tion 2.2.3.1] and [Section 2.2.3.2|

In the case of conservative algorithms, the individual communicate with each other
before they could possibly get too far ahead in time. By this intense communication they
avoid any violations of the local causality constraints. If we use an optimistic synchro-
nization, the continue in order to avoid intense communication. We see a fine-grained
communication to be the bottleneck of conservative simulation. Communication intervals
increase when can estimate the time of the next token emissions. This estimation is
called lookahead. Hence, the success of conservative parallelization strongly depends on
the lookahead characteristics of the model.

Models with good lookahead characteristics tend to work best with conservative synchro-
nization. Models with poor lookahead characteristics and high inherent parallelism tend
to perform better with optimistic synchronization.

Developers rely on model analysis, their expert knowledge and their intuition to judge
lookahead characteristics of the models when choosing an appropriate synchronization
algorithm. The only experiments on parallel simulation by Jiirgens [J{ir97] state
the conservative approach to perform better than the optimistic approach. The overhead
for the prevention of straggler messages or the otherwise costly rollbacks introduce high
overheads that hinder speedup. His experiments make conservative simulation appear more
promising. Based on his experiences and recommendations, we decide to use conservative
synchronization for parallelizing SimQPN.

5.2.1.2 Asynchronous vs. Synchronous

The next step is to decide about the communication mode. This decision on communication
mode is independent of conservative and optimistic synchronization. The communication
between is either asynchronous or synchronous. Asynchronous communication em-
ploys direct neighbor communication between Synchronous algorithms use a central
barrier to control simulation progress.

Sometimes, according to their order of publication, conservative approaches are grouped
into first generation (asynchronous) and second generation algorithms (synchronous). To
explain the difference between these two paradigms we use differentiation of unconditional
and conditional information from [FujOo0b].

Unconditional Information describes guarantees based on local information. For example,
if an has advanced to simulation time T, and it has a lookahead of L, then the
can unconditionally guarantee to its successors not to send messages before T +
L

Conditional Information Conditional information is information provided by a that
is only guaranteed to be true if some predicate is true. On condition that no token
will arrive before the actual token will finish we we can set the [LBTS (Definition 7

in |Section 2.2.3.2)) to finish time of the actual token.

The referenced algorithms in the following have been described in Asyn-
chronous algorithms, like [CMB| transmit only unconditional information. Synchronous
barrier-based algorithms supplementary utilize conditional information. Conditional in-
formation provides benefits if the estimation for the next arriving token is poor so that we
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expect the arrival of a token soon, although it takes time until the next token arrives. In
this case the lookahead is smaller than the actual service time of the token in the queue
or in the timed transitions. Models containing cycles with small lookahead entails simula-
tion time creep (has been depicted in at asynchronous communication. The
probability of such simulation creep in models cannot universally be answered. To
judge this probability we have to go deeper into lookahead characteristics of

The formalism unifies many formalisms. From its sub-formalisms got elements
with good and poor lookahead characteristics. This enables to build well and poor per-
forming models for parallel simulation. In the following, we focus on the parts of these
formalisms which hinder a good lookahead computation. Here, especially some queueing
strategies have to be reviewed.

Every queue has a service time distribution, which determines the service times. Indepen-
dent of scheduling strategy, the minimum of the service time distribution is a lower bound
for the lookahead estimation. No token can pass faster than the minimum service time. In
general, the service times for queues may be chosen according to arbitrary distributions.
Performance models often show distributions with minimum set to zero which means a
zero lookahead. Thus we have to review the queueing strategies individually.

The prediction of lookahead in[FCFS|queues is a feasible problem. Incoming tokens cannot
pass tokens that are already enqueued. The token that has entered the first will be the
next which finishes service. The service time of the first token determines the maximum
lookahead. Hence, we cannot improve the calculation by the use of conditional
information.

In contrast, and come along with poor lookahead characteristics. These queueing
strategies allow incoming tokens to surpass currently enqueued tokens at every point in
time. Additionally, performance models tend to have service distributions with a lower
bound of zero. Then we cannot set a lower bound on the next emitted token. Consequently,
we cannot predict lookahead. The predictability of [IS| and queues could greatly be
improved if we assume fixed service times. Fixed service times ensure no passing of tokens.
The lookahead can be estimated equal to the fixed service time. Fixed service times are
a special case. As mentioned before distributions may have its minimum set to zero. The
worst case scenario of zero lookahead is likely.

Asynchronous conservative algorithms, like[CMB| require to ensure progress on each cycle
within the net. At least one lookahead value on each cycle between has to be bigger
than zero. If a cycle with zero lookahead exists, first generation algorithms cannot be
applied. In case of performance models we cannot exclude the case of zero lookahead
cycles. To ensure the application of algorithm the model can be modified. The
minimum of distributions is set to a small non-zero value which would only marginally
affect final results. However, applicable does not mean suitable. In such a scenario, we
ensure a non-deadlocked but simulation time creep is very likely.

The model characteristics may vary at different application areas. Jiirgens’ [Jiir97] models
descend from transportation scenarios and provide different characteristics than perfor-
mance models. In his models timed transitions are used to model the temporal aspects.
He does not consider queueing places with scheduling strategies. The models shipped with
descend from performance engineering. Here, queues are used to model delays and
scheduling behavior. Scenarios with [IS| or are more likely to produce lookahead creep
than Jiirgens’ models. Consequently, we propose the implementation of a second genera-
tion algorithm instead of Synchronous barrier-based second generation algorithms
are more robust in case of small lookaheads. Instead of lookahead time creep, barrier-based
algorithms progress at each barrier synchronization to the next event [FujOOa]. Thereby,
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barrier-based algorithms avoid lookahead creep. Therefore, we propose the more promising
synchronous barrier-based synchronization.

process 1 process 2 process 3 process 4

- barrier -

wallglock
time

Figure 5.1: Barrier synchronization from [Fuj00a]

Concluding remarks

The optimal synchronization algorithm does not depend on the formalism. It depends on
the models and their capability. No algorithm exists that solves all scenarios perfectly. We
focused on conservative synchronization approaches as they perform better than optimistic
approaches on[QPNE as shown in [Jiir97]. Further, this section points out characteristics of
our models which depend to a certain degree on the formalism. In our context, we expect
models with small cycles containing poor lookahead characteristics. Hence, we argued for
a barrier-based synchronization for

To reach speedups, especially the lookahead characteristics play an important role. The
decomposition into influences lookahead calculation as it can preserve or ruin looka-
head characteristics. In the following we describe possible decomposition strategies for
before we go into detail of lookahead calculation.

5.2.2 Model Decomposition

Event level parallelism requires the simulation model to be partitioned into disjoint [LPk. In
our case, the decomposition should support the goal of ”as fast as possible” simulation. This
requires to keep in mind some general ideas about parallel simulation. Parallel simulation
can be fast if the decomposition enables the utilization of the available cores and minimizes
synchronization overhead.

Decomposition should provide high lookahead between [LP5. This helps to minimize the
count of synchronization operations. Further, decomposition should consider granularity.
A fine-grained decomposition supports the utilization of the model inherent parallelism.
However, it introduces synchronization even if the local causality constraint requires se-
quential execution. Sequential passages of the model should reside in one to avoid
non-necessary synchronization operations. Thereby multiple events can be scheduled in
one before next synchronization. This reduces synchronization effort as a look on the
extreme case shows: A model decomposed into one requires no synchronization but
cannot benefit from parallelism. The challenge is to decompose the net fine-grained, where
we can employ parallelism, and coarse-grained where we cannot employ parallelism.

In general, the model can be split spatially and temporally. For [QPNk, we cannot an-
ticipate future system states and we would have to execute temporal in sequential
order. Hence, a temporal decomposition would not have any positive effect on perfor-
mance. Furthermore, temporal decomposition does not scale with the size of the net as
spatial decomposition does [Fujo0b]. Spatial decomposition promises a higher potential
for parallelism as stated in [NR91| [CF93] and [NKO1]. The spatial decomposition enables

1
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each processor to load only the relevant subparts of the model and thereby to save memory
costs.

One partition method is to transform each place and each transition into a The
disadvantage of this simple approach is that it adds fine-grained synchronization to the
simulation. More sophisticated decomposition rules may help to minimize synchronization
overhead.

In some cases, we can derive hints from structural properties of the modeling formalism.
Jiirgens [J1ir97] states the hierarchies in to be a good indicator for decomposition.
Each hierarchical place forms the net region dedicated to one[LPl The heuristic was tested
on artificial models and has not been evaluated on real world models. This complicates
the assessment of the general qualification of this approach.

Jiirgens’ approach requires hierarchical structures that have to be set by the user
during model creation. If the model has no native model structure an expert may partition
the net by hand. From our point of view, human interaction to speed up simulation should
be minimized for multiple reasons. Besides the fact that we expect human interaction not
to be available in general, we see this as a possible source of errors. Furthermore, human
interaction is more expensive than computational effort.

In order not to rely on human interaction we require an automatable approach. For|[QPNE
no decomposition approach has been proposed. Hence, we review [PNlstrategies.
decomposition rules have been proposed in [CF93] and [NKO1]. They start by the definition
of minimum regions followed by the application of merging rules on these minimum regions

to form [LPk.

Normally, we reach a point where it is not reasonable to merge further as this would
destroy potential parallelism. In most cases, we have more than processors. Instead
of running multiple on one processor in parallel, multiple can be packed into one
multiprocess. This multiprocess processes all safe events of its sequentially. Then it
synchronizes with the other multiprocesses. This idea reduces synchronization overhead
and has been applied for example in [PR94] and [LSCDO04]. The multiprocess concept is
not a replacement for decomposition, it is a supplement.

decomposition is specified in three parts. In |Section 5.2.2.1| we explain Chiola and

Ferscha’s [CF93] concept of minimum regions. Afterwards we discuss the application of
their PN/merging rules to[QPN5 in[Section 5.2.2.2| Finally, we propose additional merging
rules in [Section 5.2.2.3

5.2.2.1 Minimum Regions

Chiola and Ferscha focused on minimization of network communication of dis-
tributed Stochastic Petri Nets (SPNk) simulation. For this purpose, they optimized the
decomposition of [SPNk. They define a conflict set as all transitions that share an input
place. Together with their input place those transitions form a minimum region. Accord-
ing to their argumentation, can combine but not subdivide minimum regions. Their
key idea is that arcs from places to transitions effect the enabling and firing of transitions.
In contrast, arcs from transitions to places do not affect firing decisions. Formed into a
decomposition rule, should be cut at arcs from transitions to places. This has the
positive effect that in case of transition firing the random choice of the next transition to
fire depends only on one

In distributed environments, like in [CF93], the conflict resolution is very expensive. Nev-
ertheless, even local environments can benefit by avoiding non-necessary context switches.
Therefore, the concept of minimum regions suits well for parallel simulation.
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5.2.2.2 Merging Rules from Petri Nets

By now we have minimum regions. The next question is how to form optimal regions from
minimum regions. Chiola and Ferscha propose a set of heuristics which focus on the
reduction of network communication. Their merging rules work with characteristics
which we have already defined in Moreover the following notes support the
comprehension of Chiola’s and Ferschas’ rules. order the firing at one time using
priorities. In this connection, m; denotes the priority of a transition ¢;. The weight w(¢, p)
for a transition ¢ and a place p terms the service time of the transition when it picks
tokens from that place. A P-invariant ensures conditions for a set of places P in every
reachable state of the net. At optimistic synchronization algorithms, a may progress
ahead of others. Then, messages may arrive too late which causes rollbacks. These late
arriving messages are called straggler messages. A more detailed description has been set

in [Section 2.2.3.2|
Going back from introductory notes to the merging rules of Chiola and Ferscha [CF93]:

Rule 1 Mutually exclusive (ME) transitions go into one since they bear no potential
parallelism. Two transitions t;,¢; € 1" are said to be mutually exclusive, denoted
by (t; ME t;), if and exclusively if they cannot be simultaneously enabled in any
reachable marking. A sufficient condition for (¢;M Et;) is that the number of tokens
in a P-invariant out of which ¢; and ¢; share places prohibits a simultaneous enabling.
Another sufficient condition for (¢;M Et;) is that 3¢, : m, > m; such that

e Vp € input arcs of ¢, p € input arcs t; Ut;

o w(ty,p) < max(w(ts,p),w(t;,p)).

Rule 2 Endogenous simulation speed is balanced to prevent from rollbacks, i.e. the prob-
ability of receiving straggler messages is reduced by balanced virtual time increases

in all
Rule 3 with high message traffic intensity are merged to safe message transfer costs

Rule 4 Persistent net parts and free choice conflicts are always placed to the output border
to allow sending out messages ahead of the (lookahead) without possibility of
rollback, (i.e. sending ahead messages that will be inevitably generated by future
events — unless local rollback occurs)

Rule 5 Transitions having a single input place can also be connected to the input border,
since the enabling test can be avoided for these transitions (firing can be scheduled
immediately upon receipt of the positive token message without additional overhead)

The next question to solve is whether we can apply these merging rules for [QPNk. We
provide a review for each rule.

Review Rule 1 Rule 1 is applicable to and should be applied. The example models
shipped with do not have any mutual exclusive transitions. Furthermore,
the application of this rule requires a complex structural analysis to find mutual
exclusive parts of the net.

Review Rule 2 Rule 2 is about optimizations to minimize inter{LP] communication for an
optimistic synchronization protocol. Conservative simulation cannot benefit from
this rule.

Review Rule 3 Rule 3 proposes to merge at transitions with high firing frequency which
is recommendable for parallel simulation. Relevant transitions can be derived
comparing service time (distributions) of all transitions. This can be applied to a
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subset of the formalism. The approach requires timed transitions with different
service times. However, the formalism enables to build models solely with
immediate transition type which means zero service time at all transitions. Under
these conditions it is more difficult to determine transitions with high firing frequency.

Review Rule 4 Rule 4 is an optimization rule to reduce rollbacks for optimistic synchro-
nization. The principle can be ported to[QPN5, but has no impact on conservative
synchronization.

Review Rule 5 Rule 5 describes an [LP+nternal improvement which has no impact on de-
composition. The rule assumes transitions which need only one token to be enabled.
However, the formalism enables more complex transition modes. Transition
modes may require more than one token to be enabled. Moreover, transition modes
may require special token color combinations to fire. Summing up, the application
of Rule 5 has many restrictions on formalism.

5.2.2.3 New Merging Rules

The previous section showed that certain merging rules proposed for can be applied to
|QPNE. In this section we suggest additional merging rules in order to improve the decom-
position. Therefore, we search for representative structures. Structures we analyzed are
non-branching lanes and branching transitions. We explain factors that indicate whether
merging or non-merging of [LPs is is appropriate.

Non-Branching Lanes

Something that we did not see published in the context of net decomposition and merging
is the idea of lanes. For convenience, we define places and transitions to be nodes.

Definition 9 (Lane).
A lane is an interconnected list of nodes with only one input and one output arc each.

Intuitively one does not expect parallelism within a lane. Consequently nodes respectively
in a lane would be a candidate for merging.

In case of simulation, this intuition is a false friend. Even lanes offer inherent
parallelism. This is for example depicted in The figure shows a lane from place
pl to queueing place p4 where t1 and t3 can fire concurrently. When we expect the service
times of p4 to be less or equal to p2 then even the queueing places can be processed in
parallel. The optimal decomposition in this scenario is in two [LPk, LP; (p1 ...t2) and

LP, (p3...p4).
O——=O——=©——O0
pl tl p2 t2 p3 t3 4

Figure 5.2: A lane of places and transitions

Despite of the negative example, the idea of merging in a lane is not totally wrong.
The question is when to merge nodes respectively into lanes. If each token leaves the
before a new token arrives then the has no inherent parallelism. The arrival of new
tokens can be appraised by the help of lookahead of the predecessor. The processing speed
of a is the sum of service times of nodes in the lane. The combination of predecessor
lookahead and the sum of service times determines the optimal length of the lane. The
corresponding rule is:

40



5.2. Event level 41

Rule 6 Merge in a lane as long as the cumulated service times of the lane do not
exceed the lookahead of the preceding [LP5.

Even before simulation we can estimate the lowest token frequency of the predecessor. We
know the service time distributions of the predecessor. However, the estimation before
simulation can be less precise than during simulation. Rule 6 is a lower bound on the
length of the lane. If lookahead prediction deviates strongly from what we expect from
predecessor service time distribution, the rule can be modified to merge more elements.

Instead of the lookahead we can set a statistical border of cases where the service time may
less. Thereby, we increase the border and can introduce more elements into the lane. We
use the service time quantiles of the predecessor. The quantile is a point taken from the
cumulative distribution function of the service time distribution. The variable ¢ denotes
100 percent of the observations. The k** g-quantile is the value z so that at most k/q
will be less than x and at least 1 — k/q are higher than z. The 0, 1-quantile  means that
at most 10/1 percent of tokens arrive faster than . The lane processes incoming tokens
before a new token arrives for at least 90 percent of all cases.

Lookahead and service times determine when to merge within lanes. A corollary of
Rule 6 is that nodes with zero lookahead, like places and immediate transitions, should
always be merged into lanes.

Branching Transitions

Lanes do not possess intersections. Now we take a look at branching transitions. We
name a transition a branching transition if it has more than one outgoing arc. We deal
with the question whether to merge at branching transitions or not. Therefore, we will
refine branching transitions into distributor transitions and choice transitions. We start
introducing distributor transitions:

Definition 10 (Distributor Transition).
We name a transition a distributor transition if it is a branching transition where all modes

fire on all output-arcs.
1%@—Pool

o o @
newmoh1

WLS-CPU

.

Figure 5.3: Distributor transition

A distributor transition creates parallelism as it fires on all output arcs in parallel. The
transition in creates three parallel actions after firing in new mode. All subse-
quent queueing places WLS-Thread-Pool, DBS-CPU and DBS-I/0 simultaneously receive a
token. All subsequent places can process in parallel. The example illustrates: We should
avoid merging distributor transitions and succeeding [LP5s. We form this perception into a
rule:

Rule 7 with distributor transition at the output border should not be merged with
the connected to the distributor transition.
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There also exist branching transitions which are suitable for merging. In contrast to
distributor transitions, choice transitions are promising merging points. We define choice
transitions as follows:

Definition 11 (Choice Transition).
We name a transition a choice transition if it is a branching transition and each mode
fires at only one output arc.

The example in shows a choice transition with three modes (model, mode2,
mode3). The firing of the transition sends a token to only one of the out places (WLS-
Thread-Pool, DBS-CPU and DBS-I/0). The choice for the mode is mutually exclusive.
Regardless of the mutual exclusive mode choice, the out places can execute tokens concur-
rently. This happens when the transition fires all modes before either WLS-Thread-Pool
or DBS-CPU or DBS-1/0 finishes service. A choice transition creates parallelism when the
firing frequency is high. The scenario has no parallelism when -for example- the service
time of the in place WLS-CPU is higher than the service of the out places.

——4)
1 mode1 WLS-Thread-Pool

WLS-CPU 1 mode2 DBS-CPU
1 r )
1 Q 7)

mode3 DBS-1/0

Figure 5.4: Choice transition

For the most part, a choice transition indicates mutual exclusive parts of a net. If so,
one should merge succeeding at the choice transition. Especially, when the firing
frequency of the choice transition is low. A high firing frequency of the choice transition
raises the chance to experience parallelism. The corresponding rule reads as follows:

Rule 8 with choice transition at the output border should be merged with the
connected to the distributor transition, except for transitions with high firing fre-
quency.

Subsequent to the decomposition and merging rules the next section explains how to
calculate the lookahead.

5.2.3 Lookahead Calculation
This section explains lookahead calculations for The previous|Section 5.2.2| proposed

decomposition into multiple element [LPs. Hence, this section starts by an explanation
on how the lookahead for an can be composed from the lookahead of places and
transitions. Afterwards we explain the lookahead calculation for places, queueing places,
immediate transitions and timed transitions.

5.2.3.1 Logical Processes

Lookahead is the time a can look ahead from the current simulation time and process
independently of other without violation of the local causality constraint. Lookahead
is a guarantee that the will not receive tokens with smaller timestamps. The more
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precise we can predict the next token emittance of predecessors, the longer the time span
to safely process events. Hence, the objective is to predict a high lookahead. An optimal
lookahead calculation predicts exactly the arrival of the next token that affects simulation.

To calculate lookahead for we define in places and out transitions. Places connected
to another via incoming arcs are in places. Transitions connected to another are
out transitions. New tokens arrive at in places. Tokens leave the via out transitions.

To predict the emittance of the next token we review the paths throughout the There-
fore, the number of places and transitions on such paths is irrelevant. Instead, we apply
node weights like Dijkstra’s shortest path algorithm [Dij59]. The weights of places and
transitions are equal to the lookahead of the corresponding net elements. The length of a
path is the sum of its weights.

The lookahead calculation is different if the places of the hold any token or if they do
not. If the does not hold any token we name it empty. In the empty case the can
only emit tokens if it first receives a token from another The lookahead is the shortest
path from an in place to an out transition. Non-empty can emit the tokens they
already hold plus new arriving tokens. Hence, we additionally have to take the shortest
paths from tokens to out transitions into account.

To combine empty and non-empty scenarios we walk backwards starting form out tran-
sitions. The end of a path is either an in places or a place containing a token. A valid
estimation for the combined lookahead is the shortest path backwards from an out
transition to a place containing a token or an in place. Hereby, the shortest path forms a
valid solution that is optimal in many scenarios. In the following we will analyze different
net structures to exemplify when and how the prediction can be improved.

formalism enables multiple transition modes. At first we consider transition modes
that can be enabled by one token. For multiple modes at one transition an anticipa-
tion of future choice of transition modes can further improve calculation. If we have no
anticipation of mode choice the shortest path approach is optimal. Otherwise, we can
improve the conservative shortest path approach to a shortest possible path approach. A
previous scheduling of branching decisions can provide this additional information. This
previous scheduling cannot be performed by every simulator. It has to be considered how
the simulator performs the random choice of next transition mode. If the simulator, like
SimQPN, considers the modes currently enabled for mode choice a previous scheduling
is impossible. Nevertheless, we run through a short example. We examine to
explain how better lookahead may be calculated. We assume that the next three times
the transition is enabled mode 1 is chosen. Under these conditions an improved lookahead
for Client can be calculated. The shortest possible path is the one for the fourth token
arriving at WLS-CPU. To consider the fourth arriving token instead of the first constitutes
the improvement.

WLS-CPU

Client

Figure 5.5: Transition modes with one input token
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The formalism allows transition modes which require multiple tokens. Again we can
improve the conservative shortest path approach to a shortest possible path approach.
For transitions that require multiple tokens to fire we determine the minimum subset of
incoming paths to enable the transition. For lookahead calculation we follow the path with
the maximum length from this minimum subset.

WLS-CPU
1

| —

new mode DBS-CPU

DBS-PQ 1

WLS-Thread-Pool

Figure 5.6: Transition mode with multiple input token

For visualization, we consider The firing depends on tokens in multiple places
and /or multiple token colors. The transition with new mode needs tokens in WLS CPU, DBS-
PQ and DBS-Conn-Pool to be enabled. Further, DBS-PQ has to provide both colors. The
enabling subset consists of four paths. The subset contains the path for a brown token
in WLS-CPU, paths for a brown and a turquoise token in DBS-PQ and a backward path
from WLS-Thread-Pool. The path with the maximum length is considered for lookahead
calculation. The lookahead calculation considers the last token that is needed to enable
the transition.

The shortest possible path procedure is as follows: We process backwards through the
net and follow the same procedure at every transition. We follow all transition modes. If
the transition mode has one incoming arc we follow this arc. For more incoming arcs, we
pursue all incoming paths. Either the mode is enabled by multiple paths and we consider
the path of maximum length or we choose the shortest path.

Moreover the consideration of branching decisions may improve lookahead estimation. This
happens when tokens take other directions than the lookahead calculation expected. Until
now, we expected that each token branches directly towards the actual place in focus. If
the token branches in another direction, places receive the next token later then predicted.
Branching of token streams may occur when a place on the previous path is source for
multiple transitions. Usually, we cannot predict which transition fires next and we assume
each to fire next. Remedy for the knowledge gap can be achieved by a precalculation of
branching decisions. By that, the prediction for the next token arrival can be improved.
We assume a place pl which is connected to the transitions ¢1 and ¢2. Both transitions
enable simultaneously. The knowledge that ¢1 is chosen three times before ¢2 is chosen
allows to consider the time for the fourth token for t2 which improves lookahead prediction.

Finally another option for such branchings exists which is a transition with multiple modes
where none of the modes is connected to all out places. For those transitions some out
places may starve. A prescheduling of the transition mode choice may improve the pre-

diction. An example has already been depicted in Figure 5.5 Please note that we only
require a prescheduling for the described transition type.

The prediction and precalculation of transition modes at branching transition is only feasi-
ble if the choice of branching decision is independent of the current state. SImQPN chooses
the transition mode dependent on the currently enabled transition modes. In SimQPN, as
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well as for transition modes, the scheduling of the next transition to fire depends on the
current state. In general, the prescheduling approach is limited to simulators where the
choice is independent of current state.

Summing up, this section proposed a baseline technique to combine lookahead followed by
improvements which enable more precise token arrival time prediction. These improve-
ments enable an increased lookahead which is a essential for successful parallel execution.
Until now, we assumed that places and transitions may provide lookahead. The next
sections explain difficulties and solutions to lookahead generation for all net elements.
5.2.3.2 Places

The question about lookahead for places can easily be answered. The service times for
places without queues is always zero. Hence, the lookahead is zero too. In contrast, service
times and lookahead for queueing places depend on the employed scheduling strategy and
service time distribution.

5.2.3.3 Queueing Places

The lookahead for a queueing place depends on the queueing strategy. (QPME]| supports
the following scheduling strategies for queues which we already described in |Section 2.1.1

o First-Come-First-Served
Infinite Server

Processor Sharing

Random Scheduling
Priority Scheduling

All these queueing strategies have in common that the simulator creates service times
according to a distribution. A sequential simulator has no benefit of choosing the service
time and branching destination any sooner than required. In contrast, parallel execution
can benefit form an early choice. The key idea is to select a job’s service time and branching
destination before it arrives at the queue. This allows an improvement on lookahead
prediction.

For each incoming transition random service time values can be sampled before the next job
arrives. The in advance sampled service times can be stored in a future list as introduced

by Nicol .

The basic functionality of a future list is that every job that arrives peeks the next service
time from the future list that has not been peeked so far. The finishing of a service removes
the head of future list. Next we explain how the different scheduling strategies can benefit
from a future list based on Wagner and Lazowska [WL89].

First Come First Served

A First-Come-First-Served queue processes jobs in incoming order. Jobs that
arrive in a queue cannot be passed by jobs that will arrive later. If the queue has
already jobs enqueued, the service time of jobs which has arrived first equals the head of
future list. Otherwise, if the queue has no jobs enqueued the service time of the next event
is the head of future list too.

We assume queue @ to be at time ¢ and the head of future list to have service time s.
Then @ will send no jobs before time t + s. For a[FCFS| queue the lookahead is the head
of the future list.

lookahead = head of future list
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Infinite Server

Infinite Server delays all incoming jobs according to a random distribution. An
(also called delay resource) delays each job according to its service time. The lookahead of
a [ISkqueue is the minimum service time of all possibly arriving jobs. If no precautions on
the token arrival are taken into account lookahead equals the minimum of the service time
distribution. In performance models, we typically use exponential distributions where the
minimum is zero. Hardware does not react in zero time but distributions commonly have
a lower bound of zero.

Wagner and Lazowska proposed a simple approach to improve the lookahead pre-
diction. This approach requires to set up an upper bound on the jobs that can be processed
in parallel. For a queue that has a limit of jobs it can hold the lookahead can be deter-
mined with a previously calculated sample of service times of same size. The minimum
of these previously sampled service times is a lower bound for the next token emittance.
Often the queue-model does not provide limitations on the number of jobs a queue can
hold. Instead, the upper bound on arriving tokens can be used to create a limit. The
bound problem description is modified from maximum acceptance to maximum arrival.
The new limitation does not derive from the queue but from the number of tokens in the
network model. Models that ensure a non-rising overall token population ensure an upper
bound on token arrival. The global number of tokens is an upper bound on token arrival
for each queue. More accurate bounds may be derived by the help of structural analysis.

Provided by an upper bound of n tokens we can improve lookahead estimation. We use
the set of service times s1, ..., s, of jobs already enqueued or next to be enqueued:

lookahead = min{s;|1 < i < n}
The set s1,..., 8, is equal to the first n jobs of the future list.

Processor Sharing

Processor Sharing is an idealization of scheduling with infinitesimal time slices.
When n jobs are enqueued the jobs are served with n* share of the full processor power.
The determination when the next event finishes is difficult even if we know current time
is t and the job ¢ with the shortest residual time r;. Given that no token arrives before
the currently enqueued jobs have been processed, the lookahead would be ¢ + r;. This job
may finish later than ¢t 4 r; if a new job arrives that steels time slices. Incoming jobs slow
down the jobs already enqueued. Nonetheless, a job may finish before t + r;. A newly
arriving job may pass the enqueued jobs. The worst case that lookahead calculation has to
consider is that a new job arrives that has a smaller service time than the smallest residual
time of enqueued tokens.

Wagner and Lazowska [WL&9] proposed the following lookahead calculation for queues.
The lookahead is the minimum of the enqueued service residual times and the minimum
service time of future jobs. We assume n customers with residual times r1,...,7, and a
the minimum service time of the next incoming service. Then the lookahead is

lookahead = min{{nr;|1 <i<n}U(n+1)a}

The first bracket of the equation {nr;|1 < i < n} describes the minimum residual time of
enqueued services and (n + [)a the minimum processing time of future jobs.

The idea of Wagner and Lazowska requires that the queue either has a maximum capacity
or an upper bound on tokens that may arrive concurrently. Otherwise an unbounded
future list has to be reviewed to determine a.
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In performance modeling, queues are used to model [CPUk. In most models the
sets no limit on customer population. Furthermore, may finish small work packages
in infinitesimal time slices which results in a lower bound on service time distribution set
to zero. Then a is zero and consequentially, the lookahead is zero too. Normally, [CPUk
set no limit on concurrently arriving tokens. Similar to [IS| we can estimate the maximum
token count that can arrive at the queue. This upper bound ub determines the number of
future list jobs used for determination of a. The minimal service time a is the minimum
of the first ub future list service times.

Random Scheduling

The scheduling strategy randomly chooses the jobs from waiting line. Hence,
this queueing strategy is disadvantageous for lookahead prediction. Nevertheless, we apply
the same approach as in We estimate an upper bound n on the tokens that may
arrive. We use the set of service times s1, ..., s, of tokens already enqueued or next to be
enqueued:

lookahead = min{s;|1 <i <n}

The set s1,...,s, is equal to the first n jobs of the future list. If we cannot determine an
upper bound on the incoming tokens the lookahead is the minimum of the service time
distribution.

Priority Scheduling

For Priority Scheduling (PRIO) it is important to define how the queue reacts on incoming
jobs with same priority. We assume [FCFS] ordering if two (or more) jobs arrive with the
same priority. For this case, Wagner and Lazowska’s [WL89] proposed an array based
strategy.

Lookahead calculation for queues considers the enqueued job with the highest pri-
ority, which is the job actually being scheduled. This job can only be passed by incoming
jobs with higher priority. Hence, the lookahead is the minimum of the (not yet fully
processed) service time and the heads from future list with priority less or equal to the
actual job. The implementation requires a priority list for every priority level. Wagner
and Lazowska name the set of lists a future array. Let prio be the highest priority level

of any job currently at the queue. If no job is enqueued prio is set to the minimum of all
priorities. The lookahead for [PRIO| queues is set to:

lookahead = min({head of future list|priority level future list > prio})

In summary, this section discussed lookahead for multiple queueing strategies. The looka-
head for queues can be transfered to corresponding queueing place. Next, we explain
lookahead for further net elements.

5.2.3.4 Immediate Transitions

Immediate transitions have no service times. They fire in zero time. Hence, the lookahead
of an immediate transition is zero. In contrast, timed transitions have service times and
lookahead. The lookahead for immediate transitions is:

lookahead = 0
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5.2.3.5 Timed Transitions

Lookahead calculation for timed transitions behaves like the calculation for queues.
The queue processes jobs in incoming order. The service time of timed transitions depends
on a random distribution. Analog to the FCESFqueues we introduce a future list that holds
future service times. The lookahead is:

lookahead = head of future list

5.3 Functional level

Functional parallelization means the extraction of helper functions of the simulation algo-
rithm and their execution parallel to the simulation algorithm. Possible helper functions
are random number generation and statistic processing for example parallel batching of
intervals for the Batch/Means algorithm. Further common helpers are I/O management
and event management.

In addition to the classical helpers at the sequential algorithm, the parallel algorithm
introduces new helper functions. The lookahead calculation requires future lists which
have to be filled in an effective way. One option is to perform an initial filling of all future
lists and then to perform a refill if an object has been polled. This creates a (potentially
high) delay at the beginning of the simulation. We see two main strategies avoiding this
disadvantage.

Lazy Filling means to create jobs of the future list only at the time lookahead calculation
requires them.

Idle Filling means to utilize CPU cycles which cannot be utilized through regular simula-
tion and would otherwise remain unused.

It is obvious that these strategies compete. The advantage of idle filling is that it may
utilize idle CPU times which are common in conservative simulation. The advantage of
lazy filling is that it creates only jobs that are necessary compared to idle filling. Tests
on the simulator have to show whether the functional parallelism of idle filling performs
better.

From the excursus of future lists back to general remarks on functional parallelism. Before
extracting helper functions one has to test their relevance for overall performance. A
helper function should be chosen for extraction and parallelization if it has a remarkable
impact on performance. Otherwise parallelization is not likely to offer speedup. Even a
negative impact on overall performance is possible. To implement functional parallelism a
performance relevant function has to exist and has to be identified. It is not guaranteed
that such an appropriate function exists. Notice that badly written helpers suit well for
functional helpers. Before parallelization we recommend to evaluate if this function can
be tuned without parallelism.

Functional parallelism enables speedup by a constant factor but does not scale with the size
of the model. Hence, functional parallelism is not qualified to solve large scale problems.

5.4 Summary

Since this chapter contains some of the most important parts of the thesis, a short summary
will be provided before continuing with the next part. We have presented an overview on
parallelization approaches for simulation on a theoretical basis. We discussed the
possibilities for the three parallelization levels:
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e application level
e cvent level

e functional level

The application level parallelization executes multiple independent runs in parallel. This
requires an experiment design that allows the decomposition of the problem into multiple
runs. Meeting this requirement, the emerging runs can be simulated in parallel.

The event level parallelization is independent of experimental design. For event level par-
allelization the characteristics of the models have to be considered. We identified
parts of the formalism that complicate speedup in parallel simulation. We discussed
different synchronization algorithms and argued that a barrier-based conservative syn-
chronization fits best for our models. Before parallel execution, the is decomposed
into disjunct [LPk. We reviewed decomposition rules from and proposed additional
rules. Furthermore, we discussed advanced techniques for lookahead calculation for QPN5.
Therefore, we transfered concepts from [QNk.

The functional level parallelization requires an analysis of the algorithm and its imple-
mentation. Functional helpers can be extracted and be computed parallel to execution.
In contrast to the other levels, the speedup for functional parallelism does not scale with
the model size. The next chapter is about the implementation of what this chapter has
discussed on a theoretical basis.
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6. Implementation

The previous chapter dealt with parallel simulation on a theoretical basis. The
current chapter describes the implementation of these concepts in |(QPME

In|Section 6.1, we explain the adjustment of SImQPN towards a parallel simulation engine
before we introduce parallelism. The adaptation yields a new component architecture

which [Section 6.2| depicts. |Section 6.3 is about the application level implementation.
Then [Section 6.4| describes parallelization on event level. Finally, Section 6.5|is about the

potential for functional parallelism within SimQPN.

6.1 Adaptation of SiImQPN

is a grown software system which we restructure to improve modularity and state
encapsulation. The refactoring creates adaptation points for the new simulation engine.
Moreover, the refactoring allows to reuse existing implementations and to organize the
implementation to cope with its complexity.

The established SimQPN version unifies the core simulation engine and three analysis
approaches in one class. We separate analysis approaches and the core simulation engine
into different classes. The new implementation accesses the extracted classes via newly
introduced interfaces. In the new version, the simulation controller chooses via strategy
pattern which analysis approach to use. The analysis approaches choose via strategy
pattern which simulation engine to use. These modifications enable a simple integration
of new core simulation engines and new analysis approaches. Both modifications are
required as insertion points for the new parallel simulation approaches.

The main simulator class in the established version contains entities in a non-
encapsulated manner. Parallel and sequential simulators have to access the same
entities to perform simulation. To avoid code duplicates we encapsulate the entities repre-
senting the in a Net class available to sequential and parallel core simulation engines.
This refactoring also improves code readability as it reduces the amount of code within
the core simulation engine class.

The established version has a queue class which unifies the implementation for all queueing
strategies. We make the queue class abstract and extract the specific queueing strategies
into subclasses. This object oriented hierarchical organization simplifies the integration of
additional queueing strategies into SImQPN. Furthermore, the implementation for looka-
head calculation can be attached per corresponding queueing strategy class.
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Figure 6.1: QPN Class Diagram

depicts the classes that represent a within SimQPN. This class diagram includes
previously mentioned refactoring of queue and the newly introduced net class.

Parallel simulation requires a component that loads the model as well as sequential sim-
ulation. The net loading of the established SImQPN version is nested in the sequential
core engine. We extract the loading into a newly created component to keep it
reusable for new simulation engine. Moreover, we extract parts related to loading such as
net validation and the flattening function for [HQPNE.

We do not only refactor but also speedup the existing code. For the multiple replication
case the established SimQPN loads the simulation model multiple times from file. We
introduce a net copy function which avoids costly loading of the model from file. This
performance improvement benefits from our previous encapsulation of entities in the
Net class. We implement the net copy as a deep copy function for all net elements. The
interconnection between net elements are set in a final step. We test on a model with
less than 70 transitions and saved about half a second per run. This copy function is
not straightforward related to parallelism but speeds up all approaches that use multiple
replications. The result of SImQPN adaptation is a new component architecture which is
described in the next section.

6.2 Component Architecture

The adaptation at SImQPN divides the existing code into a set of components.
shows a component diagram of the new design. The SimulationController component
manges multiple services to create a composed simulation service that simulates an XML
specified model. The interface towards has not changed compared to established
SimQPN. The SimulationController component has three sockets. It requires a Net-
LoaderService, an AnalyzerService and a drawProgressService to provide its service.
In the following we explain the services provided by the components.

Net Loader The Net Loader loads a Net from an XML file. To fulfill its service the Net
Loader uses a HQPN Flattener and a NetValidator.

e HQPN Flattener
The HQPN Flattener transforms Hierarchical[QPN5 to flat by expanding
subnet places. It takes a a (hierarchical) net description as input and produces
a (flattened) net description. The Net is created with the modified description.

e Net Validator
The Net Validator validates if the net description within the file is correct.
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Figure 6.2: Component diagram of the new SimQPN architecture

It requires the net description from XML file and returns a boolean indicating
whether the description is correct or not.

Analyzer The Analyzer analyzes a Net with either Batch/Means, Replication/Deletion
or Method of Welch. Its parameters are a Net and a configuration which specifies
parameterizations for analysis approach and core simulation. To perform the core
simulation loop it uses the SimulationEngine component. After the simulation
run(s), the component returns the statistics of collected analysis results in an array.

SimulationEngine The SimulationEngine requires a Net plus a configuration which spec-
ifies various parameterizations such as the length of ramp up and total run length.
It produces a Net enriched with statistics of the simulation run. For the simulation
run it requires a Random Number Generator component.

e Random Number Generator
The Random Number Generator component returns random numbers and dis-
tributions needed for simulation. SimQPN utilizes a library from the Colt
projec developed at European Organization for Nuclear Research (CERN)).

StatsDocumentBuilder The StatsDocumentBuilder component persists the statistics in
a *.simqpn file. It requires the statistics array that has been created by the Analyz-
erService and is provided by the SimulationController.

Visualizer The Visualizer component shows the progress of the simulation. Simula-
tionController, Analyzer and SimulationEngine notify their progress to the
chosen visualization method. The component contains a textual and a graphical
visualization. The graphical representation is embedded in

"http://acs.1bl.gov/software/colt/
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6.3 Application Level

Parallelization on application level does not need a parallel simulation engine. The se-
quential simulation engine can be started multiple times in parallel. Nevertheless, certain
technical adjustments were performed. The parallelization accesses Java implementations
from the java.util.concurrent library. All mentioned classes and functionalities are
available in this library. We extend the sequential executor to support the Callable in-
terface. The new call method returns a reference to a Net which has been enriched with
statistics during simulation. The use of the common Callable interface suits for parallel
simulation and further enables an easy adaptation towards distributed simulation.

Callable objects can be passed to an ExecutorService to be executed. For execution
of the callable objects we use a threadpool with fixed number of threads. The number of
threads is equal to number of available processors. The threadpool creation is performed
by Executors.newFixedThreadPool from the java.util.concurrent package.

Our ambition was to ensure the results of parallel Replication/Deletion equal to the se-
quential execution. To reach this, the chosen random distributions have to be equal. The
random distributions are created during initialization due to the initial random seed. The
order of creation determines the pseudo random values of the distribution. A parallel
initialization would mix the creation order and we would receive different results. For
this reason we did not parallelize the initialization. The time for initialization is a very
small fraction on overall simulation time. Hence, it is justifiable to keep the initialization

sequential. [Algorithm 2| depicts our implementation of the parallel Replication/Deletion
algorithm.

Algorithm 2 Parallel Replication/Deletion

1: function RUN(numRuns)

2 List<Callable<Net>> listOfModelsToSimulate;

3 List<Future<Net>> listOfSimulatedNets;

4 for numRuns do

5: listOfModelsToSimulate < callable refererence for new run;

6 end for

7 ExecutorService executor <— new ThreadPoolExecutor(numCores)
8 listOfSimulatedNets < executor.invokeAll(listOfModelsToSimulate)
9: for future € listSimulatedNets do

10: simulated net < future.get|()

11: finalStatistics < statistics of simulated net;

12: end for

13: end function

The next section provides insights into event level implementations.

6.4 Event Level

Unlike application level parallelism, the event level parallelization requires a parallel ex-
ecution of the core simulation loop. For this purpose, our implementation performs a
spatial decomposition of the net. The resulting communicate their progress using
a barrier-based synchronization algorithm. This algorithm constantly alternates between
event processing and updating of the times safe to process. The execution of these two
phases is separated by barrier operations. The time safe to process is the upper bound of
time the can process to before it enters the barrier. A barrier synchronization means
any must stop at this point and cannot proceed until all have reached the barrier.
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get blocked when they enter the barrier. The barrier waits until all LP+threads have
entered before a barrier release unblocks all [LP5. During each barrier synchronization
we test for termination condition. stop processing when the termination condition is
fulfilled. Finally, the results of all are merged into one combined result.

The implementation of the decomposition is described in The remaining
sections deal with the implementation of parallel simulation. The simulation procedure
is explained in [Section 6.4.2. This section illustrates communication and progress
during simulation run. points out the how times safe to process are set. The
termination condition for simulation is explained in The high performance

barrier implementation is described in [Section 6.4.5

6.4.1 Decomposition

The decomposition can be split into two parts. First we decompose the net into minimum
regions. We implement a minimum region decomposer which creates a set of by
walking through the net structure. At the beginning a list of all free places is created that
represents the places not yet attached to a minimum region. The list of places is processed
by iterative removal. Each initial removal starts a new minimum region. For each removed
place we check all outgoing transitions whether they are connected to another incoming
place not yet attached to a minimum region. These input places are in conflict to the
currently viewed input place. The aim is to clamp conflict sets in a[LPl Thus, we remove
all places from the free list which are input places for the transition and add it to the
minimum region. The corresponding transitions are added to the minimum region as well.
Then we test for the newly added places whether they share transitions with places still
in the list of free places not yet attached to a minimum region. If this procedure does not
yield a new place, the next removal from the free place list starts a new minimum region.
The overall procedure stops once the list of free places is empty.

A is created for each minimum region. The can be merged according to merging
rules as described in [Section 5.2.2.2] and [Section 5.2.2.3 A merge function has been
implemented. The fundamental merge function enables the integration of multiple merging
rules. We implemented a subset of the merging rules described in [Section 5.2.2.2] and
[Section 5.2.2.3l The implementation supports Rule 6 and Rule 7 with the constraint
that we merge in lane without consideration of lookahead borders. Additional rules
have not been implemented as they are not needed in the evaluation for this thesis. The
current implementation enables to decompose (QPNs. However, parallel simulation is very
sensitive to the decomposition. Complex models require additional merging rules for an
optimal decomposition. The current implementation has to be extended to be applied in
a fully automated process. A more detailed decomposition strategy is left for future work.

Given that we use an active wait for barrier synchronization, there is an additional con-
straint to decomposition. An active wait barrier synchronization implementation requires
a decomposition with less [LPk-threads than cores available. The number of threads can
be reduced to be less than the number of by a multiprocess which unifies multiple
[LPk. This enables to fit the number of threads to the number of available cores. The mul-
tiprocess approach has been described in However, the optimization of the
load balancing is not in the focus of this thesis. Therefore, the multiprocess functionality
has not been implemented so far.

6.4.2 Simulation Procedure

The decomposition step delivers a set of which we then simulate in parallel. For
the event level parallelization we build upon the classes from the java.util.concurrent
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library. The class implements the Runnable interface. The corresponding Runnable is
passed to a Thread. The main simulation procedure starts all LPk-threads and waits until
they finish simulation. The main simulation logic is implemented within the Before
the threads enter the main simulation loop the data structures representing the local
state have to be initialized. The initialization of the is performed in parallel. We
ensure that all have been initialized by an additional barrier synchronization before
the main simulation loop.

After initialization, each simulates its region of the net and communicates with the
other [LP5s to increase its time safe to process. enter the inner loop when all[LPk finished
initialization. The inner loop is the actual simulation. One part of the inner loop is barrier
synchronization. Barrier synchronization enables improvements at the calculation.
However, barrier synchronization is expensive and may be a performance bottleneck. The

common 2"¢ generation algorithm skeleton in |Algorithm 3| uses two barriers within the
inner simulation loop.

Algorithm 3 Communication with two barrier synchronizations

1: while not simulation finished do

2 processEventsSafeToProcess(); > Details see
3 waitForBarrier();

4: updateTimeSafeToProcess();

5 waitForBarrier();

6: end while

Barrier synchronization is costly. It is possible to avoid the second barrier synchronization
by performing some actions within the barrier. TheLBTS|calculation is performed sequen-
tially before the barrier is released. The skeleton of the optimized algorithm is depicted

in |[Algorithm 4

Algorithm 4 Communication with one barrier synchronization

1: barrier < global barrier action

2 > The barrier action sequentially sets times safe to process for all LPs
3: > The barrier action is executed when LPs have entered the barrier
4: while not simulation finished do

5 processEventsSafeToProcess(); > Details see
6 waitForBarrier();

7: end while

A general consideration of [Algorithm 3| and [Algorithm 4] yields no superiority of one ap-
proach. minimizes barrier operations. enables parallel processing
of the time safe to process. In context of SImQPN, time for event processing is very small.
The smaller the time for event processing, the more expensive is the barrier operation
compared to event processing. Hence, suits better for the parallelization of
SimQPN.

The event processing within slightly differs from sequential simulation. Small changes
to simulation logic have to be applied. The firing logic of transitions has to be adapted.
The transition has to check whether it fires to a place within the or whether it fires to
another If the place is within the the transition just fires as in sequential mode.
If the place is in a different [LPk, the transition adds a token to the incoming token list of
the successor. Later the successor removes the token from incoming token list and adds it
to the corresponding place.
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The incoming token list has to be synchronized as the and its predecessors can access
concurrently. For some the incoming token list is not necessarily unique. A that
employs a incoming token list implementation requires as much incoming queues
as it has predecessors. For multiple predecessors the order of timestamps is not necessary
equal to the order of arrival. The order of timestamps is only ensured per predecessor
because each sends tokens in timestamp order. The incoming lists can be merged if
the order of events is ensured.

We unified all incoming token lists by the help of a PriorityQueue. This brings advantages.
At the processing of incoming token events only one instead of multiple lists has to be
checked. The tokens are already ordered. The insertion operation for a [FCFSLQueue
is in O(1) and for PriorityQueue is in O(n), whereas n terms the number of currently
enqueued events. However, when the load level is low we can assume an almost constant
overhead. Under the assumption of almost constant overhead for we chose a PriorityQueue
implementation instead of multiple queues.

For with one predecessor a priority queue creates unnecessary operations for the right
insertion point. A simple [FCFS| queue would perform better in this scenario. Hence, we
initialized the incoming token list scenario dependent on the number of predecessors:

if numberOfPredecessors > 1 then

incomingTokenList <— new PriorityBlockingQueue<TokenEvent>();
else

incomingTokenList +— new ConcurrentLinkedQueue<TokenEvent>();
end if

From now on, we expect the to be initialized start the description of internal
event processing. The basic strategy is to process incoming token events and queue events
in timestamp order and to fire transitions whenever possible. depicts the
previously mentioned strategy and formalizes how safe events are processed. Line 5 de-
scribes the actualization of residing service times for queues. Lines 7 to 17 describe
the case the event list holds jobs not yet processed. The case when no jobs are enqueued is
depicted in the lines 19 to 32. Here we process incoming tokens if available. The repre-
sentation slightly differs from the original implementation. For formating reasons some if
clauses are split into two if clauses but functionality remains exactly the same. Compared
to the sequential simulation, the processing of queue events has to be synchronized with
the processing of incoming token events. Moreover, the queue event list has to be tested
for emptiness. An empty queue event list does not occur in sequential simulation except
for the case that the simulated model is not live or in a deadlock situation
properties in . For simulations this scenario appears more frequently
due to decomposition. Apart from the mentioned changes, the simulation logic remains
untouched for the most part. The next section describes how the time safe to process is
determined.

6.4.3 Lookahead

The update of times safe to process is a time critical aspect. An update that takes more
time than the event processing precludes speedup. To reach a speedup, the update has
to be markedly faster than event processing. Hence, we had to take a tradeoff decision
between extensive search for best lookahead and efficient calculation of lookahead.

The performance models shipped with [QPME]| use different token colors. In most cases
the distinction of the incoming places is sufficient to differentiate between different colors.
Hence, the implementation does not differentiate token colors.

Some of the queueing strategies inhibit good lookahead characteristics. |[Section 5.2.3.3
discusses how the prediction can be improved. The better lookahead has to be translated
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Algorithm 5 Processing of events safe to process

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

function PROCESSSAFEEVENTS

QueueEvent nextQueueEvent = null;
TokenEvent nextTokenEvent = null;
while true do
updateQueueEvents(); > Updates service times in queues
if (nextQueueEvent = eventList.peek()) != null then
if nextQueueEvent.getTime() <= timeSafeToProcess then
> timeSafeToProcess will be described in
while (nextTokenEvent = incomingTokenList.peek()) != null do
if nextTokenEvent.getTime() < nextQueueEvent.getTime() then
processNextTokenEvent();
else
break;
end if
end while
processNextQueueEvent();
end if
else if nextTokenEvent = incomingTokenList.peek()) != null then
if nextTokenEvent.getTime() <= timeSafeToProcess then
while true do
processNext TokenEvent();
if (nextTokenEvent = incomingTokenList.peek()) != null then
break;
end if
if nextTokenEvent.getTime() <= timeSafeToProcess then
break;
end if
end while
else
fireTransitions();
break;
end if
end if
fireTransitions();
end while

36: end function
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into an increased number of processed events between barrier synchronizations. Otherwise
we cannot benefit from advanced rules. We tested the potential for models from existing
benchmarks applying overly optimistic lookahead (the time of the next event or higher).
This breaks the local causality constraint but enabled an estimation for the potential
speedup due to improved lookahead calculation. The number of events between barrier
synchronizations did not rise sufficiently to justify the additional overhead. In our test
cases it was not worth the effort.

In order to determine the time safe to process we determine for each the time of the
next event assuming no token arrives. depicts the implementation for the
next event time. This time is the minimum among all times in the incoming token list and
the times of already enqueued jobs in the event list. We return zero to indicate that both
lists are empty.

Algorithm 6 Time of next event function

1: QueueEvent queueEvent < eventList.peek();

2: TokenEvent tokenEvent <— incomingTokenList.peek();

3: if queueEvent != null then

4: if tokenEvent != null && tokenEvent.getTime() < queueEvent.getTime() then

5: return tokenEvent.getTime();

6: end if

7: return queueEvent.getTime();

8: else

9: if tokenEvent != null then

10: return tokenEvent.getTime()

11: else

12: return 0; > Indicates the LP has no token
13: end if

14: end if

Next, the results are combined to receive a global time safe to process.
combines minimum event times to a global time safe to process which is spread to all [LP5.
The combination is improved by two optimizations. We consider only those which
may influence successors. Moreover, we can ignore containing no token.

Algorithm 7 Global time safe to process function
1: double timeSaveToProcess = Double. MAX_VALUE;
2: for Ip € IpArray do

3: if lp.numOfSuccessors == 0 then > Ignore LPs that have no successors
4: continue;

5: end if

6: double time <« lp.getNextEventTime();

7 if timeSafeToProcess > time then

8: if time != 0 then > Ignore all LPs that have no token
9: timeSaveToProcess + time;

10: end if

11: end if

12: end for

13: return min

It has to be stated, that this time save to process implementation does not exploit the
advanced techniques proposed in [Section 5.2.3| Lookahead calculation is a tradeoff de-
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cision between speed and accuracy. This decision depends on the models at hand. The
chosen implementation may not be the best tradeoff decision for all scenarios. Hence, the
evaluation of additional [LBTS]| strategies is an option for future work.

6.4.4 Termination Condition

SimQPN offers two options to end simulation. Simulation ends when either the total run
length has been reached or required statistics have been gathered. The first termination
condition is globally known before simulation starts. The sequential SimQPN version
checks after each event whether condition for termination is reached. However, at parallel
simulation time may be different at each Our implementation checks for termina-
tion within the barrier. Thereby, the parallel simulation may stop few events later than
sequential simulation.

The second termination condition checks for each net element whether the collected statis-
tics suffer to reach the required precision. In parallel simulation, each checks the statis-
tics for the net elements dedicated to it. that have finished statistic collection cannot
stop simulation but have to progress simulation as other may rely on their tokens.
The simulation procedure continues but statistic collection may be turned off. Simulation
stops when all have collected statistics at required precision.

6.4.5 Barrier Optimizations

In parallel simulation the workload between barrier synchronizations depends on looka-
head and the simulator implementation. In case of SImQPN and software performance
models the processing of workload takes few microseconds. The barrier is entered very
often during simulation. Due to that, an effective barrier implementation is a precondition
for an effective parallelization. We applied two optimizations compared to standard bar-
rier implementations, like the CyclicBarrier provided in SUN’s java.util.concurrent
library. We used

e busy wait
e hierarchical barriers

Busy wait means that the does not release the[CPUlwhen it enters the barrier. Instead,
it repeatedly checks to see whether the other reached the barrier. Busy wait wastes
cycles compared to passive wait. However, barriers applying busy wait in Java are
remarkably faster than a passive wait and notify strategy. The effect can be explained by
the weak Java memory model [BB03].

The barrier entering function has to be synchronized and have to enter the barrier
sequentially. This is no problem if arrive sequentially at the barrier with sufficiently
large time gaps at the barrier. But in a perfectly balanced parallelization scenario all
try to enter the barrier at the same time. Small workloads during simulation cycles increase
the chance for access contention. Further, the effect increases, when an increasing number
of access the barrier. To weaken access contention we used hierarchical barriers instead
of one centralized barrier.

The idea behind hierarchical barriers is to reduce the access contention by the introduction
of multiple low-level barriers. The set of is partitioned and each subset is assigned to
a low-level barrier. The low-level barriers notify higher level barriers if all dedicated
have entered. Once the highest level barrier has been notified by all its sub-barriers, the
barrier release message can be processed backwards through the tree and the barrier is
released.
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Common barriers are tree barriers and butterfly barriers [FujOOb]. The JBarrier library
developed at University of Bonn includes these and multiple other hierarchical barrier
implementations. A small restriction of their implementation is that the hierarchical im-
plementations require the number of threads dedicated to the barrier to be a power of two.
All barriers provided by the JBarrier library use busy wait. Their implementation is based
on the fundamental paper of barrier synchronization in Java by Ball and Bull [BB03].
Experiments |°| show the high performance of barrier implementations from the JBarrier
library. Our goal of the fastest possible simulation requires a fast barrier implementation
which prompted us to included their library. Our implementation uses a butterfly barrier
if the number of is a power of two. Otherwise a central barrier implementation is
used.

6.5 Functional Parallelism

The parallelism on functional level can be applied orthogonal to the other levels. Fur-
thermore, it offers the possibility to utilize idle times of the event level approaches. This
approach requires the identification of functional helpers with relevant impact on perfor-
mance. If the impact is too low, the overhead may destroy positive effects. Hence, it is
not useful to parallelize every possible functional helper.

We search for relevant functions via sampling and profiling. We start from sampling and
then profile promising functions with VisualVM [*. We meter the share on overall runtime
before we implement parallel execution of functional helpers. The higher the share, the
better the potential of the function. The next subsections describe our approach on the
two most promising candidates: statistic processing and random number generation.

6.5.1 Statistic Processing

Statistic processing is a candidate that suits well for parallelization on a theoretical ba-
sis. During simulation run small statistic operations can be swapped to another core.
However, SimQPN does not provide a statistical function with a relevant share on overall
simulation time. Hence, it was impossible to implement a beneficial parallel statistic pro-
cessing. Instantaneous statistic processing performs better than expensive distribution.
This makes SimQPN not very promising to perform statistical processing in idle times
during event-parallel simulation. Another option for parallelization is the analysis sub-
sequent to simulation runs. The final processing of statistics subsequent to simulation is
performed within few milliseconds. Hence, no noteworthy improvement could be expected
when forecasting final analysis into the idle times.

Summing up, SimQPN provides no statistical helper functions with relevant impact on
performance. Hence, we did not parallelize SimQPN’s statistic processing.

6.5.2 Random Number Generation

A function that has often been proposed for extraction is the random number generation.
SimQPN utilizes the Colt library [°| for random number generation. Colt has been de-
veloped at for high performance scientific and technical computing in Java. The
random number generation is performed via Mersenne twister [MNO98]. This method for
pseudo random number generation is efficient and enables fast random number generation.
We tested the runtime share of random number generation on different models. The share

’http://net.cs.uni-bonn.de/de/wg/cs/anwendungen/ jbarrier/
3http://net.cs.uni-bonn.de/de/wg/cs/anwendungen/ jbarrier/jbarrier-performance/
‘http://visualvm. java.net/

Shttp://acs.1bl.gov/software/colt/

61


http://net.cs.uni-bonn.de/de/wg/cs/anwendungen/jbarrier/
http://net.cs.uni-bonn.de/de/wg/cs/anwendungen/jbarrier/jbarrier-performance/
http://visualvm.java.net/
http://acs.lbl.gov/software/colt/

62 6. Implementation

on overall time was very small. [Table 6.1 shows the share for two representative scenarios.
A detailed description of the models can be found in [Section 7.1|

Share on overall runtime in percent
Model cern.jet.random.Exponential.nextDouble() | all Colt functions
pepsy-bemp2.qpe 1.3 5.3
SPECjms2007Model.qpe 2.5 4.1

Table 6.1: Experiment on impact of random number generation

The maximum improvement due to parallel random number generation is estimated to be
less than six percent. In order to do not miss the chance of performance improvement, we
implemented a separate thread that circulates through the queues and fills the future list.
We tested on a machine with eight cores so that the parallel progress of the thread can be
ensured. For the sequential simulation we experienced neither a performance degradation
nor a performance improvement. Hence, for sequential simulation it is not worthwhile to
use this parallel extension.

For the event-parallel implementation more random numbers have to be calculated to fill
the future lists. The more random numbers have to be generated, the higher the share of
random number generation on overall runtime rises. However, this effect amortizes even
for short simulation runs as future lists have only one big fill operation at the beginning
of simulation. The share of random number generation rises marginally at event-parallel
simulation. Hence, a parallelization would not promise any improvements.

One approach is to fill the future list in idle times that may appear during event level
parallelization. The test with the additional random number thread showed the search for
idle times to be aimless. Hence, future lists are filled by lazy filling instead of idle filling.

Neither for event-parallel nor for sequential simulation did we reach measurable speedup
due to parallel random number generation. Hence, the delivered version employs sequential
random number generation.
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7. Validation

The objective of this chapter is to validate the correctnes of the parallel simulator imple-
mentation developed in the context of this thesis. It is important that the parallel version
yields the same precission as the sequential version. Before we describe the experiments

we explain the models we tested on in [Section 7.1, Then, in [Section 7.2] we describe the

validation.

7.1 Models

In order to derive realistic scenarios we use models and parametrization from the following

examples shipped with the actual |(QPME| version:

e SPECjAppServer2001 The models a distributed e-business system [KB03].
The file is named ispass03.qpe.

e Product form The is a closed product-form queueing network with
two request classes[KB06]. The network pepsy-bcmp2.qpe is a transformation of
an example shipped with the Performance Evaluation and Prediction SYstem for

Queueing NetworkS (PEPSY-QNS) tool [BK94].

7.2 Validation

To replace a sequential by a parallel simulation engine it is required to get the same
precision. We compare the final statistics of analysis methods. Those statistics contain
mean and standard deviation for multiple variables. The variables are for example, the
token arrival and departure counts, service time, token occupancy, et cetera.

The following experiments ensure the same seeds for the runs to be compared. The colt
package sets the initial random seed according to a java.util.Date object. Therefore, we
synonymously use the terms date and initial seed in the following. Please do not attach
importance to the randomly chosen dates. We picked the following dates/seeds for each
experiment:

e Thu Jan 01 01:00:00 CET 1970
e Fri Oct 12 02:00:03 CEST 2012
e Fri May 31 13:33:20 CEST 2013
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e Sun Mar 13 08:06:40 CET 2011
e Fri Jul 14 04:40:00 CEST 2017

We validated parallel versions of Replication/Deletion and Batch/Means. In case of par-
allel Replication/Deletion we tested only for one example as the simulation engine did not
change. The parallel version ensures exactly the same results as sequential simulation.
In spite of highly resolved statistics none of the five experiments showed any deviation
between sequential and parallel version.

We tested with pepsy-bcmp2. gpe and reused an existing configuration and set the number
to eight replications. [Table 7.1|lists the elements and their success with regard to passing

the test on equality of sequential and parallel simulation.

Model Element Part Test for equality
Passed | Missed
pepsy-becmp2.qpe | Terminals | Queue X
pepsy-bemp2.qpe Depository X
pepsy-bcmp2.qpe | CPU Queue X
pepsy-bemp2.qpe Depository X
pepsy-bemp2.qpe | Diskl Queue X
pepsy-bemp2.qpe Depository X
pepsy-bemp2.qpe | Disk2 Queue X
pepsy-bcmp2.qpe Depository X
pepsy-bemp2.qpe | Dis k3 Queue X
pepsy-bcmp2.qpe Depository X

Table 7.1: Validation of Replication/Deletion

We tested the Batch/Means implementation on two models. The experiments on is-
pass03.qpe, depict in [Table 7.2, showed no deviation between sequential and parallel ver-
sion.

Model Element Part Test for equality
Passed | Missed
ispass03.qpe | WLS-Thread-Pool | Ordinary Place X
ispass03.qpe | Client Queue X
ispass03.qpe Depository X
ispass03.qpe | DBS-Conn-Pool Ordinary Place X
ispass03.qpe | DBS-Process-Pool | Ordinary Place X
ispass03.qpe | WLS-CPU Queue X
ispass03.qpe Depository X
ispass03.qpe | DBS-PQ Ordinary Place X
ispass03.qpe | DBS-CPU Queue X
ispass03.qpe Depository X
ispass03.qpe | DBS-1/0 Queue X
ispass03.qpe Depository X

Table 7.2: Validation of Batch/Means on ispass03.qpe

The Batch/Means experiments on ispass03.qpe showed no deviation. However, experi-
ments on pepsy-bcmp2.qpe show deviations between parallel and sequential simulation.

64
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Model Element Part Test deviation < 1 percent
Passed Missed
pepsy-becmp2.qpe | Terminals | Queue X
pepsy-becmp2.qpe Depository X
pepsy-becmp2.qpe | CPU Queue X
pepsy-bemp2.qpe Depository X
pepsy-bemp2.qpe | Diskl Queue X
pepsy-bemp2.qpe Depository X
pepsy-bemp2.qpe | Disk2 Queue X
pepsy-bemp2.qpe Depository X
pepsy-becmp2.qpe | Disk3 Queue X
pepsy-bemp2.qpe Depository X

Table 7.3: Validation of Batch/Means on pepsy-becmp2.qpe

These deviations can be explained by the differences in the choice of the next transition.
In both versions the next transition to fire is chosen based on an array that contains the
transition weights of enabled transitions. In sequential simulation the passed array has a
size of all transitions belonging to the net. In parallel simulation, the array contains only
the transitions belonging to the The distribution that chooses the next transition is
the same but has different samples due to different input. Hence, even the same initial
random seed cannot ensure equal results. A logging showed that the effect of different
transition choices occurs at pepsy-bcmp2.qpe. According to the law of large numbers
we can expect that simulation results for parallel and sequential simulation converge the
longer simulation proceeds. compares sequential and parallel implementation
for pepsy-bcmp2.qpe. To show that the difference is small, we compare the runs assum-
ing sequential and parallel version to be equal if the deviation is below 1 percent. The
deviations are comparable to a comparison of sequential simulations at different random
seeds.

In some scenarios the parallel version may simulate a few additional events. Compared
to the sequential version, our parallel Batch/Means implementation does not test the
termination condition after each event. Instead, we test within the barrier. Therefore,
small deviations may occur when two preconditions are fulfilled. The first precondition is
that multiple events are processed between the last two barrier executions. The second
is that these events exceed the termination condition more than once. Through this,
multiple events are processed before the final test for termination and a slightly enhanced
time interval may be simulated. The high number of events usually processed make this
effect insignificant.

The validation includes a subset of the whole SimQPN functionality. We restricted the
test to fixed sample size length simulation. SimQPN offers termination at relative and

absolute precision which has not been tested as they are not required for speedup analysis
evaluation for this thesis. Likewise HQPNE and probes have not been tested.

Summing up, we performed a basic validation for both parallelization approaches. The
parallelization of Replication/Deletion returns exactly the same statistics as sequential
simulation.The parallel Batch/Means shows no deviation to sequential simulation when-
ever no random choice of the next transition is required. If the model requires a random
choice of the next transition to fire, the final statistics may slightly differ. These effects
are negotiable as the employment of a different random seed has a similar effect.
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8. Evaluation

This chapter the performance evaluation of the parallel SImQPN version is described.
We analyze the parallel implementations of Replication/Deletion and Batch/Means. For
each approach we compare the parallel to the original sequential version. The parallel

implementation is presented in |[Chapter 6/ and validated in |Chapter 7

This chapter starts with the description of the experimental setup in We
name the test environment in Then we define the metrics speedup and level
of parallelism in which will be used for the comparison of the parallel and
sequential simulation. Moreover, we explain the structure of the models used for

analysis in |Section 8.1.3

First, we describe the experiments for the parallelization of the Replication/Deletion ap-
proach on application level in Second, we test the event level parallelization of
Batch/Means in The experiments on event level parallelism contain a compar-
ison of active versus passive wait in and an impact analysis of different levels
of statistic collection in Experiments that vary workload between barrier
synchronizations ar shown in[Section 8.3.3| Experiments that vary the number of that

may process concurrently are described in |Section 8.3.4

8.1 Settings

Performance evaluation needs a proper setting to show strengths and weaknesses of the
parallel simulation. There exist mainly two degrees of freedom for evaluation:

Simulation Environment Describes the setting independent of the model.
e Architecture (number of cores, computer architecture, cache sizes)
e Software (operating system, Java version)

Simulation Model Describes performance-relevant properties of the (size, degree of
parallelism, initialization, level of statistics)

Besides these aspects, this section defines the metrics for evaluation.

8.1.1 Simulation Environment

The test environment has a high impact on the results. We ran our experiments on a Intel
Xeon E5430 2x4core, 2.66GHz, 12MB L2 Cache per and 32 GB RAM. We tested on
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a Linux CENTOS 5.8 (Final). All tests were conducted by the help of Eclipse Modeling
Tools Version: Juno Service Release 2. The code was compiled and run with Java 64bit
JDK 1.7.0_04.

8.1.2 Metrics

The relevant basic metrics for the performance evaluation are the number of cores and the
runtime of the investigated simulation. These basic metrics enable to build the composed
metrics speedup and level of parallelism. We define the speedup as follows:

Definition 12 (Speedup).
For a number of ¢ cores the speedup S. of a program is defined as

11
S, = =L
C TC

whereas T terms the time the program runs on a single core and T, is the time the program
needs on c cores.

The usual range of S, is defined as 1 < S, < ¢. A speedup equal to the number of cores ¢
shows a full utilization of cores. A speedup equal to the number of cores S. = ¢ is called
linear speedup. A speedup S. > c is called superlinear speedup. The speedup heavily
depends on the number of cores which makes it a non-intuitive metric. Hence, a metric
that is less dependent on the number of cores has its benefits. We introduce the level of
parallelism as follows:

Definition 13 (Level of Parallelism).
The level of parallelism of a program is defined as:

L="2¢
C

whereas ¢ terms the number of cores and S, terms the speedup of the program.

8.1.3 Simulation Model

To test for speedup we used multiple models. In some experiments can reuse the real world
models introduced in For most experiments a simple model structure enables
to enlighten several effects. Hence, we create artificial models which enable variations to
explain influencing factors. Especially the speedup on event level parallelization depends
on the model characteristics. The net properties determine the degree of parallelism the
parallel implementation can utilize.

The artificial model is composed as follows. The model generates tokens and distributes
them to multiple lanes. Token generation and distribution remains a constant block
whereas the number and length of lanes can be varied.

The lanes can execute in parallel. Thereby, each incrementation of the lane number enables
the utilization of an additional processor. The length of the lanes determines the number
of events scheduled before next synchronization. By that, the variation of length enables
to increase or decrease the workload until the next synchronization.

An example for a generated model is depicted in [Figure 8.1 The example has three lanes
and two queueing places per lane. We term the model lane 3 x 2. A model with five
lanes and ten places per lane would be lane 5 x 10.
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Figure 8.1: Generated Model with Three Lanes Each of Length Two Places.

We adapt the token generation frequency to the length of lanes. The service time of token
generator is set to the length of lanes. A new token passes the token generator when
the lanes finish the service at the last queueing place.

What happens on a technical level? The initial marking of the contains one token
in token generator. The token generator processes the initial token and fires the
generator transition. The transition multiplies this token and fires one token to place
start and one back to token generator. The distributor transition removes the token
from start and fires a token to each lane. The tokens process through the lanes. Then the
procedure starts from the beginning.

The decomposition for this models creates one partition for the token generation (token
generator, generator, start, distributor). Moreover, each lane forms a partition. The
simple structure of our generated models enables a prediction of theoretical speedup. For
n lanes of length m and k being the constant overhead for the token generation the
possible speedup is

speedup = nxm + k (8.1)

This view excludes memory effects and other decomposition effects. Nevertheless, we see
this a as good indicator to assess the parallelization on event level. The next subsections
describe different experiments on performance.

8.2 Performance of Application Level Parallelism

In this section we evaluate the application level parallelization of the Replication/Deletion
approach. The runtime for all experiments in this section are depicted in [Table 8.1
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Runtime in seconds

Model Number | Sequential | Parallel Speedup
of Repli-
cations

43,738 25,801 | 1,6952056122
62,715 24,984 | 2,5102065322
83,187 27,321 | 3,0448007028
104,769 26,663 | 3,9293777894
130,795 30,084 | 4,3476598857
141,002 26,005 | 5,4221111325
170,497 27,878 | 6,1158260994

pepsy-becmp2.qpe
pepsy-bemp2.qpe
pepsy-becmp2.qpe
pepsy-bemp2.qpe
pepsy-becmp2.qpe
pepsy-bemp2.qpe
pepsy-bemp?2.qpe

0O = O U i W N

Table 8.1: Comparison of sequential and parallel Replication/Deletion

To show the speedup of the parallel implementation of Replication/Deletion, we test on the
pepsy-bcmp2.gqpe model that has already been used for validation in[Section 7.1|Figure 8.2|
shows speedups compared to the number of replications executed in parallel. The speedup
increases linear with the number of replications but remains slightly below the number of

replications.

speedup

N W O N

0 1 2 3 4 5 6 7 8 9

Number of Replications

Figure 8.2: Speedup Replication/Deletion

A reason for the deviation from linear speedup can be different start seeds for each run.
The Replication/Deletion approach starts multiple replications, each with a different start
seed to study the indeterministic behavior of the model. Hence, the duration for execution
time for the runs may vary the start seed. We made further experiments with a deter-
ministic model which is independent of transition choices and random service times. The
deterministic model yields a higher speedup but speedup that, however, still deviates from
the number of replications used.

We further investigated possible reasons why we deviate from linear speedup. We tested
for I/O-Wait to exclude negative effects of hard drive access. Except for the case the model
contains the rarely used statistics level 5, the hard drive is never accessed during simula-
tion except for logging purposes. The tests for utilization show full utilization except
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8.2. Performance of Application Level Parallelism 71

for a limited time at the end of the simulation when some of the replications have already
finished simulation. Software contention describes the effect of multiple transactions com-
peting for the same resources. Whenever software contention occurs the utilization of cores
decreases. The tests for utilization showed that software contention for resources can
be excluded to be responsible for slowdown. Next we consider additional overheads due to
parallelization. The only aspect that creates additional computational effort is the thread
pool creation which is performed in about 0.05 seconds. On our search for aspects limiting
speedup we investigated the sequential parts of the implementation which are:

e net copy,

e garbage collection and

e logging.

We investigate the sequential net copy and metered about 0.03 seconds for all net copy
operations. By that, the net copy operation cannot be a relevant slowdown factor. The
overhead due to garbage collection in SimQPN is small. Nevertheless, even small delays
may sum up to bigger delay. Hence, we tested for garbage collection effects. The over-
head for garbage collection can be displayed on console throughout the VM argument
-verbose:gc. shows experiments on garbage collection. The garbage collector
speed increases when using parallel simulation. We reach a speedup of 5,6 with parallel
garbage collector instruction and 4,8 without instructions compared to sequential simu-
lation. The repetition of these experiments showed only slight deviations so that we can
assume garbage collector overhead to be constant. Throughout the Java internal paral-
lelization of garbage collection the effects of garbage collection are negligible regarding
overall parallelization.

Execution mode | Java VM instruction | Runtime in seconds
sequential 0.640161
parallel 0.134327
parallel -XX:4+UseParallelGC 0.113950
parallel -XX:4+UseParNewGC 0.473132

Table 8.2: Experiment on the effect of garbage collection

We tested for multiple possible slowdown factors. None of them explains the deviation from
speedup equal to the number of cores. The limited time frame of this thesis prevented
from testing all aspects that might cause the slowdown. We assume that cache misses
play a role but we have not tested to far. An explanation for slowdown would be that
replications change the executing core during execution. If a replication thread changes
the core it cannot benefit from the information stored in the L1 Cache. The L1 cache
stores loaded values per core. A change of core results in an increased cache miss rate. A
solution would be to pin threads to cores. Pinning threads to cores is still experimental in
Java. To the best of our knowledge there exists no platform-independent implementation
so far. Another reason for slowdown may be contention for the shared LP2 cache. Each
core has its own L1 cache but all cores of a share the L2 cache. The replications
are in contention for the L2 cache. Each replication overwrites the cache. During parallel
simulation an increased cache miss rate may occur. The problem of inter-thread cache
contention on a chip multi-processor architecture has been described in [CGKS05].

The discussion about possible slowdown factors should not depreciate the positive effects
of application level parallelization. The implementation reaches an almost linear speedup

71



72 8. Evaluation

slightly below the number of replications for less replications than cores. In case of more
replications than cores, the speedup is slightly below the number of cores. Parallel Repli-
cation/Deletion performs markedly faster than the sequential version in all scenarios.

8.3 Performance of Event Level Parallelism

In this section, we evaluate the parallelization on event level with the Batch/Means ap-
proach. The first experiment in shows a comparison of active wait and passive
wait at the synchronization barrier. In these experiments, active wait outperformed pas-
sive waiting. Hence, the remaining experiments of this section use active wait as described
in [Section 6.4.5

The speedup for event level parallelization heavily depends on the capability of the model
for event parallel simulation. For these experiments we use artificial models because they
enable to vary net characteristics. In order to evaluate the influence of statistic levels
SimQPN allows to set, we show experiments that vary these levels in[Section 8.3.2l More-
over, this section discusses on parallel simulation of ramp up which is equal to statistics
level zero. shows the effect of different lane lengths. This varies the number
of events and thereby the workload between synchronizations. In we vary
the number of lanes. This enables to utilize different numbers of cores.

8.3.1 Experiments on Barrier Synchronization

Barrier synchronization can either be done waiting actively on barrier release or waiting
passively on release. Active waiting threads enter the barrier and claim [CPUlcycles with-
out performing computations. Thereby, threads save the time to reenter the when
the barrier is released. A thread that uses passive wait releases the on entering the
barrier and reenters the on barrier release. The wait and notify strategy of passive
wait implies a high overhead within the operating system.

The experiments in show a comparison of runtimes for active and passive wait
for several models. Active wait outperforms passive wait in each scenario. In some sce-
narios the difference is less explicit. In those scenarios the the share of barrier executions
on overall runtime is low. The more barrier operations the more evident the performance
difference gets. The strength of active wait clarifies at fine-grained synchronization sce-
narios.

Runtime in seconds
Model CyclicBarrier (passive wait) | JBarrier (active wait)
pepsy-bcmp2.gpe 23.907 14.453
Runlength | Stats-level
lane 4 x 1 107 0 296.369 38.285
lane4x 1| 4%10° 4 20.423 14.687
lane 2 x 2 | 4%10° 4 11.293 8.893

Table 8.3: Experiment on barrier synchronization

The active barrier wait performs remarkably faster than passive wait in all test cases. As
the goal of this thesis is to simulate as fas as possible, active wait is the method of choice.
The following experiments only consider active waiting.
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8.3.2 Experiments on Statistics Level

SimQPN distinguishes between six levels of statistic collection, called stats-level. These
levels have been described in[Section 2.3| The lower the stats-level, the faster the processing
of events is done. This section observes the effects of different levels of statistic collection on
runtime. Indirectly, we observe the effect of ramp up on event processing speed.
shows variations of stats-level at lane 6 x 2 model parameterized with run length of 106
and a negligible ramp up length of 10.

Runtime in seconds

Model Statistics level | Sequential | Parallel | Speedup
lane 6 x 2 0 18.065 28.098 0.6429
lane 6 x 2 1 20.502 26.736 | 0.76683
lane 6 x 2 2 25.26 28.58 0.88383
lane 6 x 2 3 42.205 44.047 | 0.958181
lane 6 x 2 4 43.631 46.961 | 0.92909
lane 6 x 2 5 731.126 | 467.746 | 1.5638

Table 8.4: Experiment on different statistics level

The experiment shows the impact of statistic collection on runtime. An increased collection
of statistics raises the runtime of sequential simulation. We deduce two useful items of
information from this experiment. The first conclusion is that speedup increases by the
overhead for statistics. The long runtime for stats-level 5 comes from continuous writing
to a statistics file. Runtimes for stats-level 3 and 4 are almost equal. In general, models
with lower stats-level suit less for parallel simulation. This insight helps to predict the
suitability of models for event parallel simulation.

What surprises on the first sight is that parallel execution with stats-level 1 performs
faster than stats-level 0. This can be explained by barrier contention. The workload at
stats-level 0 is infinitesimal so that all threads try to enter the barrier at the same time.
Stats-level 1 creates more workload which decreases barrier contention.

During the ramp up phase, like stats-level 0, no statistics are calculated. The lack of
statistic collection decreases the workload per event. This influences speedup as bar-
rier synchronization requires a certain workload to benefit from parallel simulation. The
workload between barrier synchronizations has to reach a certain level to make parallel
simulation faster than sequential simulation. The workload during ramp up is almost
unsuitable for parallel simulation within SimQPN.

For the chosen model we can gain speedup by the use of parallel implementation during
steady state at least at stats-level 5. During ramp up parallel simulation is much slower.
Our experiment points out future implementations should separate ramp up and steady
state analysis. We recommend to run the ramp up phase sequentially and steady state in
parallel.

8.3.3 Experiments on Length of Parallel Sections

The workload between barrier synchronizations influences the speedup. The aspect of
statistic collection on workload has been shown. Moreover, the workload depends on the
number of events that can be processed before the next synchronization. The more events
we can process between barrier synchronizations the less synchronization operations for
parallel simulation are required. We modify the workload in the artificial models by an
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extension of the length of lane. The length of the lane determines the number of events that
each Lane-LP processes before it synchronizes at the barrier. shows experiments
with lane length variations. The used parameterization is run length of 107, an insignificant
ramp up of 10 and a stats-level of 4.

Runtime in seconds

Model Sequential | Parallel | Speedup

lane 6 x 1 54.805 85.383 | 0.6418725039
lane 6 x 2 44.425 43.115 | 1.0303838571
lane 6 x 5 45.782 23.319 | 1.9632917364
lane 6 x 10 44.586 17.067 | 2.6124099139
lane 6 x 20 50.66 12.368 | 4.0960543338
lane 6 x 50 99.668 14.02 | 7.1089871612
lane 6 x 75 161.946 12.282 | 13.1856375183
lane 6 x 100 | 233.625 13.378 | 17,4633727015

Table 8.5: Experiment on the effect of different lengths of lanes

We can see that the higher the length of the lane, the higher the speedup. These experi-
ments show that the event level parallelization enables superlinear speedup. This speedup
higher than the number of cores is far ahead of the model inherent parallelism.
illustrates the speedup effect by comparing lane length to speedup.

5 peadup

0 20 40 60 &0 100 120

Length of the lane

Figure 8.3: Experiment on the effect of different length of lanes

The general effect of an increased speedup for an increased lane length can be explained
by the fact that the number of synchronization operations decreases with the length of the
lane. This decrease of barrier operations reduces the overhead due to barrier contention
which explains speedups up to linear speedup. We figured out two reasons for superlinear
speedup. The first reason is caching effects. Each of the eight cores has its own L1 cache.
In sequential simulation, caches have to hold the whole simulation model. In event parallel
simulation, the decomposition into reduces the amount of memory that caches have
to hold during simulation. L1 caches do not have to hold the whole net during parallel
simulation. Parallel simulation can utilize L1 caches much better sequential simulation.
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Besides these caching effects, we can benefit from additional effects of decomposition. The
decomposition lowers the load-level of event queues. The event queue during sequential
execution holds all events currently created and not processed. In parallel simulation
the queue events are stored per Thereby, the load level at the local event queues
during parallel simulation is lower than the global load level in sequential simulation.
Decomposition brings a lower filling degree of the local event queues compared to the
global event queue in sequential simulation. The sequential version has multiple events
in event queue whereas event queues contain only one event. Thereby, insertion and
removal operations at parallel simulation require less effort than in sequential simulation.

In case of multiple concurrently enabled transitions, SIimQPN choses the next transition
dependent on a random value. If only one transition is enabled, this transition can be
fired directly which avoids the computation of the random value. While the sequential
simulator choses the next transition based on all transitions, parallel simulation delegates
this choice to its which consider only transitions dedicated to them. Considering
only subsets of transitions decreases the number of simultaneously enabled transitions.
Hence, in parallel simulation it is unlikely to have expensive statistical choices of the next
transition compared to sequential simulation.

8.3.4 Experiments on Number of Parallel Sections

Parallelization is the distribution of software execution to multiple cores. The distribution
of the execution of the artificial model to cores can be varied in the number of lanes. An
increase of lanes yields an increase of processor cores we can utilize. compares
simulation runs on models with different number of lanes. The used parameterization is
run length of 107, a ramp up of 10 and a stats-level of 4.

Runtime in seconds
Model Sequential | Parallel | Speedup
lane 2 x 10 13,194 10,599 | 1,2448344183
lane 3 x 10 20,643 10,922 | 1,8900384545
lane 4 x 10 27,61 11,431 | 2,4153617356
lane 5 x 10 36,756 14,056 | 2,6149686966
lane 6 x 10 44,586 17,067 | 2,6124099139

Table 8.6: Experiment on the number of lanes

An increased number of lanes increases the number of cores that can be utilized by the
parallel implementation. More events can be processed in parallel. However, synchroniza-
tion costs for the central barrier rise. shows speedup compared to the number of
lanes. The curve flattens for an increase number of parallel competing for the barrier.
This experiment indicates that each new section that is processed in parallel raises the
contention for the barrier.
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Figure 8.4: Experiment on the effect of different numbers of lanes
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9. Conclusion

This thesis investigates the possibilities of parallel simulation of Queueing Petri Net (QPN)).
Thereby, it splits into two parts. The theoretical part discusses the possibilities of parallel
simulation of in general. The practical part is about the implementation of different
approaches in SimQPN. We parallelized the SimQPN simulation engine and evaluated the
implementation on models from previous case studies and on artificial models.

We performed a theoretical analysis of strengths and weaknesses of the formalism
with respect to parallel simulation. To keep it reusable, this survey is independent of
SimQPN. We surveyed existing parallelization approaches with a focus on Queueing Net-
works (QNk) and Petri Nets (PNk). Based on this, we provided a systematic analysis on
three parallelization levels:

e application level
e cvent level

e functional level

The insights for these levels can be summarized as follows. On application level, multiple
runs are simulated in parallel. This approach is independent of the formalism but can
only be applied to analysis approaches that employ multiple independent runs. For event
level parallel simulation we provided a summary of synchronization algorithms and named
their strengths and weaknesses. We analyzed the characteristics of models from
previous case studies and proposed the use of a conservative barrier-based synchronization
algorithm for simulation. Furthermore, we generalized lookahead calculation and
net decomposition rules from and to [QPNk. On functional level, we identified
common helper functions in the simulation which are candidates for moving to a separate
thread.

Based on the theoretical analysis, we picked promising parallelization approaches for
SimQPN. We parallelized the Replication/Deletion approach on application level and the
Batch/Means approach on event level. For event level parallelization we applied a high
performance barrier implementation which uses active wait and hierarchical synchroniza-
tion. Both parallelization approaches were implemented based on the sequential simulation
engine. Before parallelization we adapted the existing design to suit for parallel simulation.
Functional parallelism was not implemented because the profiling of SImQPN showed no
adequate functional helpers where significant performance improvements could be expected
by running them in parallel to the core simulation loop.
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We validated the correctness of both parallelizations by a comparison of sequential and
parallel version. The experiments show the accuracy of the parallel implementations.

Finally, the speedup of the parallel implementations was evaluated on multiple scenarios.
The Replication/Deletion showed a speedup slightly below the number of replications. One
reason for this effect consists in different replication lengths due to different start seeds.
However, a small overhead occurs as well.

The speedup for the event parallel simulation heavily depends on the capability of the
model. Performance models from previous case studies did not suit for event parallel
simulation. A systematic analysis on artificial models showed superlinear speedups to be
achievable. We varied multiple model characteristics to show their influence on speedup.
In particular we varied the level of statistic collection, the number of events between barrier
synchronizations and the number of concurrently processing [LP5.

9.1 Contributions and Benefits
In summary, the main contributions are
e a roundup for event level parallelization of QPN which includes

— a discussion on lookahead characteristics of [QPNk and a comparison of these
characteristics to existing synchronization approaches.

— an overview about decomposition which is required for event parallel sim-
ulation. Therefore, we transfered decomposition rules from to and
introduced additional rules for lanes, distributor transitions and choice transi-
tion.

— adisquisition on lookahead calculation for[QPNEk. For this purpose we transfered
advanced lookahead calculation for multiple queueing strategies from to

QPN

e an implementation of a parallel simulation engine for(QPNs. The SimQPN simulation
engine has been parallelized to speed up analysis and provides

— an event level parallelization for Batch/Means
— an application level parallelization for Replication/Deletion

e a case study on artificial models which reviews the effects of different model charac-
teristics for speedup on event level parallelization. In particular we review variations

of the
— level of statistics collection.
— number of events between barrier synchronizations.

— number of concurrently processing [LPk.

9.2 Future Work

During this thesis many new questions arose. To conclude this thesis, we point out the
most promising questions with regard to future work.

e Only a subset of models suits for event parallel simulation. Further research
may target the assessment of model suitability for event parallel simulation. The
experiments in [Section 8.3.2] [Section 8.3.3| and [Section 8.3.4] show the influence of
statistics level, number of events between barrier synchronizations and degree paral-

lelism. A goal for future work might be to derive techniques to determine the model
inherent parallelism of [QPNE in advance.
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e Some models cannot benefit from parallel simulation during ramp up simulation
whereas the steady state performs faster with parallel simulation.
depicts an example. Relevant nets have to be identified and the simulator has to be
adapted to process ramp up sequentially and steady state analysis in parallel.

e The decomposition into minimum regions and few merging rules have been applied
for decomposition. The decomposition can by improved by

— the implementation of additional merging rules to derive bigger partitions which
minimizes communication overhead.

— an adaption of the number of threads to the number of available cores. This
may include to combine multiple into a multiprocess.

— the usage of runtime statistics for decomposition.

e We proposed a static assignment of to threads which does consider changing
workloads during simulation. A dynamic scheduling of on physical threads may
improve load balancing.

e The automation of truncation point analysis seems a reasonable extension for SimQPN.
The MSER-5/ method has been identified as state of the art truncation method in
Section 2.2.2.1, An implementation of MSER-5| offers two benefits:

— More precise determination of the truncation point which reduces simulation
run length.

— Avoidance of human interaction, which is required for Method of Welch.
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Acronyms

QN Queueing Network

PN Petri Net

PN Petri Net

CPN Colored Petri Net

SPN Stochastic Petri Net

GSPN Generalized Stochastic Petri Net
CGSPN Colored Generalized Stochastic Petri Net
HFPN Hybrid Functional Petri Net
HPN Hybrid Petri Net

TPN Timed (Transition) Petri Net
QPN Queueing Petri Net

HQPN Hierarchical Queueing Petri Net

FCFS First-Come-First-Served scheduling strategy
RR Round Robin scheduling strategy

PS Processor Sharing scheduling strategy

IS  Infinite Server scheduling strategy

PRIO Priority Scheduling strategy

RANDOM Random Scheduling strategy

SRIP Single Replication In Parallel

MRIP Multi Replication In Parallel

LP  Logical Process

TWLP Time Warp Logical Process

LVT Local Virtual Time

GVT Global Virtual Time used in optimistic Timewarp algorithm
CMB Chandy/Misra/Bryant Algoritm

YAWNS Yet Another Windowing Network Simulator YAWNS protocol is a barrier-based
conservative synchronization algorithm introduced by Nicol et al.

CCT Critical Channel Traversing CCT is an extension to the algorithm
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90 Acronyms

QPME Queueing Petri Net Modeling Environment

SimQPN SimQPN is a simulation engine for which is integrated into
CERN European Organization for Nuclear Research

CPU Central Processing Unit

GPU Graphics Processing Unit

SIMD Single Instruction Multiple Data

MTW Moving Time Window

BTB Breathing Time Buckets

GTW Georgia Tech Time Warp

LBTS Lower Bound on the Time Stamp

CMR Confidence Maximization Rule
MSER Marginal Standard Error Rule
MSER-5 Marginal Standard Error Rule-5
ASD Algorithm for a Static Dataset
ADD Algorithm for a Dynamic Dataset
BPM Business Process Management

PEPSY-QNS Performance Evaluation and Prediction SYstem for Queueing NetworkS
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