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a b s t r a c t

Performance prediction methods can help software architects to identify potential
performance problems, such as bottlenecks, in their software systems during the design
phase. In such early stages of the software life-cycle, only a little information is available
about the system’s implementation and execution environment. However, these details
are crucial for accurate performance predictions. Performance completions close the
gap between available high-level models and required low-level details. Using model-
driven technologies, transformations can include details of the implementation and
execution environment into abstract performance models. However, existing approaches
do not consider the relation of actual implementations and performance models used
for prediction. Furthermore, they neglect the broad variety of possible implementations
and middleware platforms, possible configurations, and possible usage scenarios. In this
paper, we (i) establish a formal relation between generated performance models and
generated code, (ii) introduce a design and application process for parametric performance
completions, and (iii) develop a parametric performance completion for Message-
oriented Middleware according to our method. Parametric performance completions are
independent of a specific platform, reflect performance-relevant software configurations,
and capture the influence of different usage scenarios. To evaluate the prediction accuracy
of the completion for Message-oriented Middleware, we conducted a real-world case
study with the SPECjms2007 Benchmark [http://www.spec.org/jms2007/]. The observed
deviation of measurements and predictions was below 10% to 15%.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Software architects can use design-time performance predictions to evaluate the resource utilisation, throughput, and
timing behaviour of software systems prior to implementation. Using predictions, potential problems, such as bottlenecks
and long delays, can be detected early avoiding costly redesigns or re-implementations in later stages. In model-driven (or
model-based) software performance engineering [1], software architects use architecturalmodels of the systemunder study
and base their analyses on them. Transformationsmap the architecturalmodels to simulation-based or analytical prediction
models, such as queueing networks, stochastic Petri nets, or stochastic process algebras (overview in [2]). The results derived
of the prediction point out potential performance problems.
In general, the architectural models have to remain abstract since not all information is available about the

final implementation and execution environment. However, such details can be of crucial importance for accurate
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performance predictions. Unfortunately, software architects cannot include these details into their architectural models.
The middleware’s complexity and the specific knowledge on the implementation (that is required to create the necessary
models) would increase the modelling effort dramatically.
Woodside et al. proposed performance-related completions to close the gap between abstract architectural models and

required low-level details [3]. They use completions to add performance influences of a system’s infrastructure to prediction
models and, thus, increase prediction accuracy. Later approaches (e.g., [4–6]) extend this idea usingmodel-driven technolo-
gies. However, all of these approaches still neglect crucial aspects that hinder their application in practice. First, they do not
establish a defined relation of the performance model used for prediction and the actual implementation. For accurate per-
formance predictions, there must be a fixed relation between both. Otherwise, the decisions made during implementation
can significantly change the system’s performance. Second, existing approaches do not take into account different config-
urations of execution environments and generated code. For example, Message-oriented Middleware platforms are highly
configurable to meet customer needs. The configuration includes, for instance, durable subscription or guaranteed delivery.
The chosen configuration has a significant impact on the MOM’s performance and, thus, has to be reflected by performance
completions. Third, current performance completions capture the performance influences of amiddleware platform offered
by one specific vendor only. Theoretically, all middleware vendors have to provide separate performance completions for
their middleware platforms. No suitable abstraction that is independent of vendor implementation is available yet. Fourth,
the way the middleware platform or generated code is used heavily influences its performance. For example, the size of
a message determines its delivery time. Verdickt et al. [5] already pointed out the importance of a service’s usage (i.e., its
input parameters) for performance. However, their approach cannot address such influences.
In this paper, we present an approach to define domain-specific languages that capture the performance-relevant config-

urations of middleware platforms and generated code. For this purpose, we use general information about the implementa-
tion that is available in design and collaboration patterns. Software architects can choose among different implementation
features based on these languages on an abstract level. We developed and validated a method for identifying performance-
relevant patterns and designing parametric performance completions on this basis. Parametric completions abstract from
platform-specific details. They can be instantiated for different target environments using measurements of a test-driver.
Test-drivers are designed especially for one parametric performance completion. They collect the necessary data to instan-
tiate the completion for a specific platform. The abstract model in combination withmeasurement data makes performance
completions applicable to various vendor implementations.We realised the completions bymeans ofmodel-to-model trans-
formations. Depending on a given configuration, these transformations inject the completion’s behaviour into performance
models. Furthermore, we explicitly couple the respective transformations to performance models and implementation
adding the necessary details. The coupling of transformations makes the inclusion of implementation details deterministic.
We applied our approach to designing a parametric performance completion for Message-oriented Middleware (MOM)

platforms. We chose MOM platforms, which comply to Sun’s Java Message Service (JMS) specification [7]. Furthermore, we
use the Palladio Component Model (PCM) [8,9] to realise the parametric performance completion and its corresponding
coupled transformations. The PCM is an architecture description language supporting design-time performance evaluations
of component-based software systems. To evaluate the prediction accuracy of the generated performance models, we
conducted a real-word case study using the SPECjms2007 Benchmark [10,11]. The deviation of predicted and measured
performance metrics (message delivery time and CPU utilisation) was below 10% to 15%.
The contributions of this paper are the theoretical background for parametric performance completions, a practical

method for their design and application, and a real-world case study demonstrating their benefit:

Theoretical Background. Coupled transformations formalise the relation between the generated implementation and the
generated performance model.

Practical Method. The proposed method guides the design and application of parametric performance completions.
Parametric performance completions combinemeasurement datawith knowledge on collaboration patterns. They
abstract from the actual (vendor-specific) implementations and make completions independent of the hardware
used.

Application. The application demonstrates the feasibility and benefit of parametric performance completions. For
this purpose, we developed and implemented a parametric performance completion for Message-oriented
Middleware. Software architects can includemessaging in their architecture using a domain-specific configuration
language based on messaging patterns.

The structure of this paper is as follows. Section 2 introduces the basic concepts of model-driven architectures and
performance completions. Based on these concepts, Section 3 introduces coupled transformations which can be used
to integrate low-level details into prediction models and implementations. Section 4 presents the concept and design
process of parametric performance completions. In Section 5, we demonstrate the applicability of parametric performance
completions. The section describes a real-world case study on message-based communication. In Section 6, we discuss
assumptions and limitations of the proposed approachwhile, in Section 7,we compare it to relatedwork. Section 8 concludes
this paper and highlights future research directions.
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2. Background

Parametric performance completions make heavy use of model-driven technologies to include details about the
implementation and execution environment into performance prediction models. In the following, we introduce the basic
concepts of model-driven software development (Section 2.1) and describe the original idea of performance completions as
introduced by Woodside et al. [3,12] (Section 2.2).

2.1. Model-driven software development

Softwaremodels abstract from details of the implementation of a software system and, thus, allow software architects to
reason on larger andmore complex systems. Inmodel-driven software development processes like the OMG’sModel-Driven
Architecture (MDA) process, models also serve as input for transformations to generate the system’s implementation.

Fig. 1. MDAmodels and transformations.

Model-Driven Architecture (MDA) [13] leverages the role of models in software development. According to the MDA
process, the first model to create is an abstract model of the business domain, the computation independent model (CIM).
Based on this model, developers create a model of the system under development without using any details of the technical
solution platform. This model is called a platform independent model (PIM) (cf. Fig. 1). Automatic model-2-model (M2M)
transformations refine this model by adding implementation details of particular platforms. The term platform is a broad
concept in this context. For example, it can define the type of the realisation (database application, workflowmanagement,
etc.) or a specific implementation of a technical concept like different industrial component models (.NET, CORBA, Java EE).
Furthermore, a platform can refer to implementation dependent details like different types of configuration files depending
on a particular middleware selection. A model which depends on such details is a platform specific model (PSM, cf. Fig. 1)
for its platform.
Each model in such an MDA process has to be defined by a so-called meta-model. A meta-model defines the set of valid

models both from a syntactical as well as from a semantical perspective. For example, the UML2 meta-model [14] defines
the set of valid UMLmodels. It defines the elements available in an UMLmodel and their connections (syntax). Additionally,
it contains the Object Constraint Language (OCL), which allows the definition of semantical constraints.
In Fig. 1, the refinement process is distributed among a number of transformations forming a transformation chain. Each

transformation takes the output of the previous one and adds its own specific details. When refining high-level concepts of
transformations into concepts on lower abstraction levels, different alternatives may be available. For example, if different
applications communicate via messaging, different patterns for realising the message channels can be used, e.g., with or
without guaranteed delivery. If developers want their transformations to be flexible, they can parameterise them allowing
transformation users to decide on mapping alternatives themselves. The OMG’s MDA standard allows transformation
parameterisation by so called mark model instances.
Czarnecki and Eisenecker [15] introduced generator options in their book on Generative Programming which is a

predecessor of today’s MDA paradigm. They used so called feature diagrams to capture different variants in the possible
output of code generators. Feature diagrams model all valid combinations of a set of features called (feature) configuration
where a single feature stands for a certain option in the respective input domain. For example, using Guaranteed Delivery is
an optional feature of the higher level feature Sender (cf. Fig. 7 in Section 5.2).
Using feature diagrams to parameterise model transformations bears the advantage of having a model for the possible

transformation parameters which introduces the options in terms easily understandable by software architects. Using
feature diagrams as mark models captures the variability in the mapping in a focused way as feature diagrams tend to be
small. As such, they make mapping decisions explicit and allow the selection of appropriate completions for performance
prediction.

2.2. Performance completions

When doing performance predictions in early development stages, the software model needs to be kept on a high
level of abstraction. The middleware’s complexity and the specific knowledge on the implementation that is required to
create the necessary models would dramatically increase the modelling effort. By contrast, detailed information about a
system is necessary to determine its performance accurately. Performance completions, as envisioned by Woodside and
Wu [3,12], are one possibility to close this gap. Performance completions refine prediction models with components that
contain the performance-relevant details of the underlying middleware platforms. To apply performance completions,
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Fig. 2. Transformation integrating performance completions.

software architects have to extend their software model with annotations (or rules) whose refinements (such as additional
components, execution environments, or communication patterns) are injected into the software model.
Fig. 2 shows how performance completions can be realised using the MDA concepts described in Section 2.1. Elements

of a software architecture model, such as components or connectors, are annotated by elements of a Mark Model using,
for example, feature diagrams. Mark models annotate elements in the architecture which shall be refined and provide the
necessary configuration options. For example, if a connector canbe replacedbymessage-passing themarkmodel canprovide
information about the type of themessaging channel, e.g., using guaranteed delivery. Model-to-model transformations take
the necessary components from the Completion Library, adjust them to the configuration, and insert them in the software
architecture prediction model. The result of the transformation is an architecture model whose annotated elements have
been expanded to its detailed performance specifications.
For the sound application of performance completions, it is essential to understand the relation of the generated

performance models and the generated source code. Coupled transformations described in the following section provide
the necessary formal background for the relation of both.

3. Coupling transformations to implementation and performance models

Model-based ormodel-driven performance predictions with currentmethods [1] rely on the information available in the
sourcemodel only, e.g., UMLmodels annotatedwith the UML-SPT profile. However, the performance of a software system is
a runtime property, i.e., a property of the deployed and executed implementation of the system. Hence, the implementation
has to correspond to the model. However, if a team of developers uses the model as blueprint to implement the system
manually, it often cannot be ensured that the code corresponds to the model. Model-driven software development can
reduce this variability, as design decisions have to bemodelled explicitly and source code is generated automatically.Model-
based performance predictions should use this knowledge to achieve more accurate predictions.
Coupled transformations [16] formalise the relationship between generated code and performance completions. Mark

models configure the code transformation as well as transformation to performance models. Considering the same
information used for generating code, middleware configurations, and deployment options for software performance
prediction is a powerful means to put performance completions to practice.
In the next Section, we give a motivating example demonstrating the central idea of coupling transformations to code

and prediction models. The formalisation of coupled transformations follows in Section 3.2.

3.1. Motivating example

Technical design decisions involved in implementing abstract model concepts may lead to different implementations of
the same concept by different developers. The following example presents such an open design decision of the model and
additionally shows its influence on the system’s performance.

Fig. 3. Motivating example for coupled transformations.

Fig. 3 shows the structural view of a simple architectural model. Two components C1 and C2 communicate using a
connector. The attached UML note resembles the mark model instance that marks the connection as asynchronous. Assume
that two teams of developers implement the system. The first team uses a Message-oriented Middleware (MOM) and
configures the channel with guaranteed delivery to realise the connection. The other team implements the asynchronous
communicationmanually not considering any special features ofMOM. The implementations of both teams are valid, as they
are consistent with the given model (assuming no additional information or implementation rules existed). Despite being
functional equivalent, the performance impact of both implementations is likely to be different. Model-driven performance
predictions have to rely on correct implementation assumptions about the connector.

Please cite this article in press as: J. Happe, et al., Parametric performance completions formodel-driven performance prediction, Performance Evaluation
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(a) Annotated connector. (b) Result of the transformation.

Fig. 4. Parameterised transformation.

A solution to the presented consistency problem between model and code is provided by a model-driven development
process. Using deterministic transformations to generate an implementation from a model limits the degrees of
freedom assumed for manual implementations, i.e., the result of a transformation solely depends on the input models.
Transformations restrict the amount of possible outputs to the number of different input model instances as the mapping
to implementations is fixed in the transformations and cannot be changed. If multiple mapping options are available, the
transformation should be able to reflect these options. For our example, it must be able to generate a message channel with
or without guaranteed delivery.
However, the introduction of different types of messaging in themodel undermines the abstraction property of software

architecture models [17], since unimportant details of the modelled entities should be omitted. Since the additional
information should not be part of the source model, we use transformation parameters (mark models) to include the
necessary information in the transformation. For example, Fig. 4(a) shows a connector annotated by a mark model for
message-based communication. The coupled transformation takes the software architecture model and the mark model
as input and deterministically generates the corresponding source code and/or performance models. The tight coupling of
code and performance model generation allows us to establish a guaranteed relationship between the implementation and
the prediction model.

3.2. Formalisation

In this section, we give a formal description of coupled transformations and clarify their theoretical background. The
concept can be applied to manymodel-driven prediction approaches for various quality attributes. In the following, we first
define model transformations and chains of transformations formally. Based on these definitions, we introduce the formal
description of coupled transformations.
Models and meta-models. Let MM denote a meta-model expressed as instance of some meta-meta-model MMM , e.g., the
PCM (Palladio Component Model, see Section 5.1) is an instance of the Meta Object Facility (MOF) [18], which is the meta-
meta-model promoted by the OMG. Then the set of all valid model instances of the meta-modelMM is defined as

inst(MM) = {M|M is a valid instance ofMM}. (1)

An instance is valid only if it conforms to MM’s abstract syntax and (static and dynamic) semantics whereMMM defines the
semantics of the term conformance. UsingMOF asmeta-meta-model, i.e.,MMM = MOF , then theMOF specification’s semi-
formal definition of conformance applies [18, p.53 cont.]. For example, the following holds using the notation introduced
above: inst(PCM) is the set of all valid component-based software architectures expressible in the PCM. PCM ∈ inst(MOF)
expresses the fact that the MOF is the meta-model used to define the PCM.MOF ∈ inst(MOF) formalises the fact that MOF
is an instance of itself.
Transformations. In the following, we formalise model transformations. Let t be a computable function which maps an
instance of a sourcemeta-modelMMsrc and an instance of amarkmeta-modelMMmark to an instance of a targetmeta-model
MMdest .

t : inst(MMsrc)× inst(MMmark)→ inst(MMdest). (2)

The function t represents a parameterised transformation. For example, consider a transformation:
tPCM×EJBMARK→EJB : inst(PCM)× inst(EJBMARK)→ inst(EJB)

Please cite this article in press as: J. Happe, et al., Parametric performance completions formodel-driven performance prediction, Performance Evaluation
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mapping instances of the PCM (inst(PCM)) to instances of a meta-model to define EJB based applications. The latter serve
as basis for the generation of an EJB based implementation. The transformation takes EJB specific parameters, e.g., which
kind of Java EE communication the connectors use, as instances of an EJB mark meta-model (inst(EJBMARK)). Another
transformation mapping PCM instances to implementations using the Fractal [19] component model has the following
definition

tPCM×FRACTMARK→FRACT : inst(PCM)× inst(FRACTMARK)→ inst(FRACT )

where FRACT is a meta-model to describe instances of the Fractal component model and FRACTMARK a mark-model used
to define Fractal specific implementation details. The role of the mark models in the two examples given as parameter set
specific to the destination meta-model.
We did not cover the case in which a transformation has no mark model, i.e., takes no parameters other than the input

model instance. For this, let EMPTY denote the emtpymeta-model, for which inst(EMPTY ) = {ε} holds. This is analogue to
the empty word used in grammar definitions. A parameterless transformation t is then

t : inst(MMsrc)× inst(EMPTY )→ inst(MMdest). (3)

In this case, t takes the empty set as second parameter t(m, ε)withm ∈ inst(MMsrc).
Chains of transformations. Next,we consider composed transformations,which represent an ordered chainof transformations
as introduced in Section 2.1. Let T = {ti|i ∈ [1 . . .N − 1]} be an ordered set of transformations ti which are executed
sequentially with t1 being the first transformation and tN−1 being the last one. Each transformation ti maps instances of
meta-modelMMi and instances of mark-modelMMmarki to instances of meta-modelMMi+1:

ti : inst(MMi)× inst(MMmarki)→ inst(MMi+1). (4)

In the following,we show that a chain of transformations is itself a transformation tcomp fitting the definition in Eq. (2), that
transforms instances ofMM1 directly into instances ofMMN . For this purpose,weuse amark-model instance of ameta-model
MMmarkcomp , whereMMmarkcomp is a meta-model which is derived by combining the meta-modelsMMmark1 . . .MMmarkN−1 . To
define meta-model compositions, we introduce the ⊗ operator which stands for the Cartesian product applied to meta-
models. Let MM1 and MM2 be two meta-models, then MM1 ⊗ MM2 is the set of all possible ordered pairs whose first
component is an instance ofMM1 and whose second component is an instance ofMM2. Using function inst(), we can define
⊗ as follows:

inst(MM1 ⊗MM2) = {(m1,m2) | m1 ∈ inst(MM1) andm2 ∈ inst(MM2)}.

Now, we can defineMMmarkcomp based on the individual mark-models:

MMmarkcomp = MMmark1 ⊗MMmark2 · · · ⊗MMmarkN−1 . (5)

A valid instance of the combinedmeta-model is a sequence ofmodel instances of its constitutingmeta-models. For example,
in MOF such a combined model instance can be realised as a model extend which contains n (sub-)models. In our case, an
element

Emacomp = (ma1,ma2, . . . ,maN−1) ∈ inst(MMmarkcomp)

characterises a full set of parameters or mark model instances of all transformations ti contained in a transformation chain,
i.e.,mai is a valid parameter for transformation ti. A transformation

tcomp : inst(MM1)× inst(MMmarkcomp)→ inst(MMN)

is the composed transformation of a chain of transformations ti if

t(m1, Emacomp) = tN−1(tN−2(. . . t1(m1,ma1) . . .),maN−2),maN−1 = mN (6)

where m1 ∈ inst(MM1), mN ∈ inst(MMN), and Emacomp ∈ inst(MMmarkcomp). We write mi
ti(mai)
−−−→ mi+1 as abbreviation. If

mi+1 = ti(mi,mai) holds, a chain of transformations t1 . . . tN−1 can be written as follows:

m1
t1(ma1)
−−−−→ m2

t2(ma2)
−−−−→ · · ·

tN−1(maN−1)
−−−−−−−→ mN ⇔ m1

tcomp((ma1,ma2,...,maN−1))
−−−−−−−−−−−−−−→ mN .

The following extends the previous PCM to EJB example into a chained transformation by appending a second
transformation. This transformation adds details specific for the Sun Application Server, i.e., special configuration setting
only available in this server. If both transformations are executed in a chain, a transformation results which transforms PCM
instances into EJB applications for the Sun Application Server. Let the additional transformation be:

tEJB×SUNAPPMARK→EJBSUN : inst(EJB)× inst(EJBSUNMARK)→ inst(EJBSUN)

where SUNAPPMARK denotes a mark model defining parameters specific the Sun’s application server and EJBSUN denotes
an extended EJB meta-model containing Sun Application Server specific settings. Then, the transformation chain is
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mPCM
tPCM×EJBMARK→EJB(maEJBMARK )
−−−−−−−−−−−−−−−−→ mEJB

mEJB
tEJB×SUNMARK→EJBSUN(maSUNAPPMARK )
−−−−−−−−−−−−−−−−−−−−→ mEJBSUN

The equivalent composed transformation is then

mPCM
tcomp(maEJBMARK ,maSUNAPPMARK )
−−−−−−−−−−−−−−−−−→ mEJBSUN

The example shows how transformation chains can separate several aspects of a transformation into multiple
transformation steps.
Coupled transformations have to deal with the fact that not all functional relevant parameters of a transformation

influence performance. Furthermore, performance models do not have to reflect the functional aspects of a system but
their impact on software performance. Therefore, the design of performance completions requires a systematic approach
to identify the performance-relevant features and create accurate performance models even if limited information on the
system under study is available. In the following section, we address the question of how to build performance completions
that capture performance-relevant information.

4. Parametric performance completions

Performance completions can be used to include the influence of execution environments and generated parts of
the implementation in software performance prediction. They focus on performance-relevant influences and abstract
from functional details. To design performance completions, we need to identify those factors that actually influence
software performance and can neglect those that play a minor role. In this section, we present the concept of parametric
performance completions (Section 4.1), a systematic approach to the design of performance completions (Section 4.2), and
their parameterisation for different execution environments (Section 4.3).

4.1. Concept

The high complexity and diversity of middleware platforms (and even more of generated code) make the design
of individual performance completions for specific target platforms cumbersome and time-consuming. The high effort
for the design of performance completions may even void their potential benefit. Therefore, parametric performance
completions abstract from the platform-dependent influences. They extend and generalise our pattern-based completion
presented in [20]. Parametric performance completions consist of completionmodel skeletons that reflect themiddleware’s
general (performance-relevant) behaviour. The skeletons are structurally similar for different platforms but their resource
demands vary. For performance prediction, the missing resource demands have to be determined separately for
each middleware platform and hardware environment. This approach allows accurate predictions using performance
completions independent of the middleware implementation used and hardware platform.
The design and application of parametric performance completions involves two roles. Performance analysts are

responsible for the design of parametric performance completions. They develop the model skeletons and test-drivers that
evaluate different target platforms. Software architects use parametric performance completions for performance prediction.
They instantiate the parametric completions for specific platforms.

Fig. 5. Overview of the concept of parametric performance completions.

Fig. 5 sketches the idea of parametric performance completions. Their core concept is the separation of structural and
quantitative information. While the structure is captured by Completion Model Skeletons which are the same for all target
platforms, the quantitative information, i.e., the Parametric Resource Demands, is adjusted for each platform.
To capture the quantitative information for a specific platform, software architects execute Test-Drivers that take the

necessary measurements. For performance prediction, the test-drivers are executed independently of the application under
development. A runningmiddleware platform is sufficient for this purpose. Thus, the test-driver decouples the performance
model from the application development. Based on Performance Measurements of the test-drivers, software architects can
determine realistic resource demands for complex middleware platforms, like today’s Java EE application servers. The
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Fig. 6. Design and application of parametric performance completions.

combination of measurements and abstract performance models holds the middleware’s complexity off the performance
models while enabling accurate predictions.
Furthermore, test-drivers evaluate the quantitative effects of various feature configurations and their combination that

can be specified in the mark model of the parametric performance completion. For the scope of this paper, we use feature
diagrams to specify the available configurations and their possible combination for an execution environment or generated
code. For example, software architects use a feature diagram to capture the various properties ofmessaging systems, e.g., the
number of competing consumers at the receiver’s side (see Fig. 7 in Section 5 for details).
In subsequent steps, software architects use the measurements to include the effect of different configurations in

their prediction model. They analyse the measurement results and derive platform-specific Parametric Resource Demands.
Regression analyses can be used to determine the dependencies of resource demands on input parameters (or more general
on the usage profile). For example, software architects want to capture the effect of message sizes on resource demands
for a specific Message-oriented Middleware. They perform regression analyses that yield the approximated functional
dependency of resource demands on the message size. Ideally, the analyses are performed automatically.
The integration of the Completion Model Skeletons and Parametric Resource Demands yields the Platform-specific

Completion. Therefore, the platform specific resource demands are attached to their corresponding actions of the model
skeletons that structurally model the completion’s behaviour. The combination of parametric resource demands and model
skeletons yields a complete performance model for the specific target platform.
In the following, we describe the design process for parametric performance completions and their instantiation for

specific platforms in more detail.

4.2. Design process

The key challenge of performance completion design is finding the right performance abstraction for the system under
study. To identify the performance-relevant behaviour and factors, we employ a combination of goal-driven measurements
and existing knowledge about the functional system behaviour. In general, only a little information about the behaviour of
the system is available and, thus, we have to consider the middleware as a black box. To design performance completions,
we have to use more general knowledge on the system, for example, implemented collaboration and design patterns.
The design process of performance completions comprises six activities shown on the left-hand side in Fig. 6. During

identification, performance analysts use the existing knowledge of the system (e.g., design patterns) to identify a set of
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Fig. 7. Feature diagram of the relevant messaging patterns.

possible performance-relevant factors of the system under study. For the example of message-based communication from
the previous section, the optional feature of guaranteed delivery can represent such a factor.
For the selected factors, performance analysts design experiments that evaluate their actual influence. For an efficient

evaluation, we propose the use of goal-driven measurement methods such as the Goal/Question/Metric approach [21]. For
our example, performance analysts may be interested in the influence of the amount of transferred data on the delivery
time of a message. The result of this activity is a set of test-drivers that systematically evaluate the identified factors.
The experiment run yields the necessary measurements that give insight into the actual influences on software

performance. Based on the results of the experiments, performance analysts can decidewhether a feature can be included in
the performancemodel or not. If theywant to include it, they need to design performance completions thatmodel the relevant
behaviour. The behaviour of the completion for message-based communication might simply consist of some resource
demands on the client and server side as well as utilization of the network connection.
In order to ensure that the model captures all relevant factors, performance analysts compare predictions and

measurements in a validation activity. Based on the outcome of the validation, it might be necessary to execute further
experiments to evaluate observed deviations of predictions and measurements. For the message-based communication,
performance analysts may compare different predictions and measurements for the delivery time of a message with and
without guaranteed delivery.
When the desired degree of accuracy is reached, performance analysts can parameterise the performance completions.

Therefore, they remove the resource demands from the completion components and adjust the test-drivers (that are a result
of the experiment design) to provide the information necessary to derive resource demands for any target platform. Ideally,
they extend the test-driver so that it automatically derives the parametric resource demands and adds them to the model
skeletons. For our example, the resource demands (specified as times) for the client and server side aswell as the network are
removed from the completion leaving its skeletons. Next, software architects can use the specific test-driver to instantiate
the parametric performance completion for a specific platform and predict its performance influence.

4.3. Instantiation process for specific platforms

The design phase yields completion model skeletons that capture the structure of the completion and a test-driver that
collects the necessary information of the target platform. The right-hand side of Fig. 6 illustrates how software architects
can instantiate parametric performance completion for their target platform.
During data collection, the test-driver is executed on the target platform. It measures the performance metrics for all

relevant parts and configurations of the middleware that are necessary to instantiate the performance skeletons for the
target platform. For the example above, the test-driver measures (for instance) the time from sending a message until its
onMessagemethod is executed at its destination, i.e., the delivery time.
So far, themeasurements only provide raw data, e.g., a series of response time and throughputmeasurements. In order to

use thedata for performanceprediction, further analyses are necessary. These analyses are performed in theData Aggregation
phase. The aggregation can subsume a broad rage of different analyses. For example, regression analysesmay be necessary to
determine the dependency of different parameters on observed performance metrics (e.g., [22]). For the messaging system,
the delivery time of a message may depend on its size. Furthermore, the observed timing behaviour may not be sufficient
for performance prediction. For more accurate performance models, queueing theory (e.g., the Service Demand Law) can
be applied to estimate resource demands based on measured response times, throughput, and resource utilisation (cf.
Section 5.3.2).
Once the resource demands have been determined, they can be integrated into the model skeletons. The result of the

Integration activity are platform-specific performance completions. Software architects can use these completions to predict
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the performance of the system under study for the specific platform. For example, software architects may create a specific
instance of the messaging completion for their company network or some client’s environment.
In the next section, we present a real-world case study that illustrates the design and application of parameterised

performance completions.

5. Parametric performance completions for message-oriented middleware

In today’s enterprise application, messaging represents a central mean for communication. Message buses allow
the loose coupling and easy distribution of software systems. To consider the influence of messaging on software
performance,wedeveloped a parametric performance completion formessage-based communication based on our previous
work [20]. We chose the Palladio Component Model (PCM) [8,9] for this purpose. The PCM supports different analytical
methods (e.g., simulation [8] and layered queueing networks [23]). It can also generate code skeletons from architectural
specifications [24] and, thus, is well suited for realising coupled transformations. In the following, we briefly introduce
the PCM (Section 5.1). Furthermore, we describe the performance-relevant configurations of Message-orientedMiddleware
(Section 5.2), specify the necessary components and their behaviour (Section 5.3), and present a real-world case study of
the SPECjms2007 Benchmark [10] to validate the parametric performance completion (Section 5.4).

5.1. The palladio component model

The Palladio Component Model (PCM) [8,9] is an architecture description language supporting design-time performance
evaluations of component-based software systems. In the following, we introduce the concepts necessary for the
middleware completion.
Software components are the core entities of the PCM. Basic components contain an abstract behavioural specification

called Resource Demanding-Service Effect Specification (RD-SEFF) for each provided service. RD-SEFFs describe how
component services use resources and call required services using an annotated control flow graph. Basic components
cannot be further subdivided. In contrast, composite components are assembled from other components introducing
hierarchy into the component model. To connect components, a connector binds a required interface of one component
to the provided interface of another component.
Following Szyperski’s definition [25], a component is a unit of independent deployment with explicit dependencies

only. As a consequence, component specifications in the PCM are parameterised for their later environment. The
parameterisation of a component’s performance specification covers influences of required services, different soft- and
hardware environments, as well as different input parameters of provided services. Similar to UML activities, RD-SEFFs
consist of three types of actions: Internal actions, external service calls, and control flow nodes.
Internal actions model resource demands and abstract from computations performed inside a component. For

performance prediction, component developers need to specify demands of internal actions to resources, like CPUs or hard
disks. Demands can depend on parameters passed to a service or return values of external service calls.
External service calls represent invocations by a component of the services of other components. For each external service

call, component developers can specify performance-relevant information about the service’s parameters. For example, the
size of a collection passed to a service can significantly influence its execution time, while the actual values have only little
effect. Modelling only the size of the collection keeps the specification understandable and themodel analysable. Apart from
input parameters, the PCM also deals with return values of external service calls. Note that external service calls are always
synchronous in the PCM, i.e., the execution is blocked until a call returns. This is necessary to consider the effect of return
values on performance. However, asynchronous calls are essential to model MOM. A combination of external service calls
and fork actions (that allow parallel execution) can introduce asynchronous communication into the model.
Control flow elements allow component developers to specify branches, loops, and forks of the control flow.
Branches represent ‘‘exclusive or’’ splits of the control flow, where only one of the alternatives can be taken. In the PCM,

the choice can either be probabilistic or determined by a guard. In the first case, each alternative has an associated probability
giving the likelihood of its execution. In the latter case, boolean expressions on the service’s input parameters guard each
alternative. With a stochastic specification of the input parameters, the guards are evaluated to probabilities.
Loops model the repetitive execution of a part of the control flow. A probability mass function specifies the number of

loop iterations. For example, a loop might execute 5 times with a probability of 0.7 and 10 times with a probability of 0.3.
The number of loop iterations can depend on the service’s input parameters.
Forks split the control flow into multiple concurrently executing threads. The control flow of each thread is modelled

by a so-called forked behaviour. The main control flow only waits for forked behaviours that are marked as synchronised.
Its execution continues as soon as all synchronised forked behaviours have finished their execution (Barrier pattern [26]).
Fig. 13(a) shows a fork action with a single forked behaviour whose synchronised property is set to false. The fork action
spawns a new thread and immediately continues the execution of the main control flow. This models an asynchronous
service call in the PCM.
In the PCM, parameter characterisations [27,28] abstractly specify input and output parameters of component

services with a focus on performance-relevant aspects. For example, the PCM allows to define the VALUE, BYTESIZE,
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Table 1
Messaging patterns and features categorised according to their performance influence.

Messaging pattern Performance influence
≈ 0 <0.1 ≤1.0 >1.0

Point to point 3

Publish subscribe (3)
Guaranteed delivery 3

Idempotent receiver 3

Selective consumer 3

Transactional client 3

Durable subscriber 3

Competing consumers 3

Message size 3

Remote receiver 3

NUMBER_OF_ELEMENTS, or TYPE of a parameter. The characterisations can be stochastic, e.g., the byte size of a data
container can be specified by a probability mass function:

data.BYTESIZE = IntPMF[(1000; 0.8)(2000; 0.2)]

where IntPMF is a probability mass function over the domain of integers. The example specifies that data has a size of
1000 bytes with probability 0.8 and a size of 2000 with probability 0.2.
Stochastic expressionsmodel data flow based on parameter characterisations. For example, the stochastic expression

result.BYTESIZE = data.BYTESIZE ∗ 0.6

specifies that a compression algorithm reduces the size of data to 60%. Thus, the expression yields: IntPMF[(600;0.8)
(1200;0.2)]. Stochastic expressions support arithmetic operations (∗,−,+, /, . . .) as well as logical operations for
boolean expressions (==,>,<,AND,OR, . . .) on random variables.
Finally, resource containers model the hardware environment in the PCM. They represent nodes, e.g., servers or client

computers, on which components can be allocated. They provide a set of processing resources, such as CPUs and hard
disks, that can be used by the hosted components. Processing resources can employ scheduling disciplines such as processor
sharing or first-come-first-served. In the following, we present an evaluation of the influence of different design patterns
for message-based communication on software performance.

5.2. Identified performance influences

Our first step in the design of a parametric performance completion for MOM is the evaluation and identification of its
performance-relevant factors. Therefore, we conducted measurements for all message patterns on the JMS implementation
of Sun’s Java System Message Queue 3.6 (see [29] for details). Table 1 lists the resulting classification. We distinguish
features without performance influence (mean delivery time not changed), a small influence (below 10%), a moderate
influence (between 10% and 100%), and a large influence (more than 100%). All features of the last category depend on
input parameters, e.g., message size, number of messages in a transaction, or the number of competing consumers.
For each messaging pattern, we have measured the delivery time of a message (the time passed from sending a message

until its onMessage method is executed at the receiver’s side) in a series of experiments. The results of the benchmark
form the basis for the pattern selection presented in Fig. 7. The feature diagram distinguishes patterns formessage channels,
receivers, and senders. In the following, we explain the patterns and their performance influences.
Message channels are logical connections between communicating components. They can be considered as queues.While

point-to-point channels allow only a single receiver for messages, multiple receivers can subscribe to publish–subscribe
channels. Optionally, a receiver can durably subscribe to the latter. In this case, the MOM keeps all published messages for a
receiver disconnected from the channel until they can be delivered.
For a single receiver, the choice between publish–subscribe and point-to-point channels has no considerable effect on

the delivery time. However, this distinction is necessary for modelling multiple receivers and, thus, is included in the model
(see for example [30] for a detailed evaluation of the influence of multiple receivers). Furthermore, durable subscription
leads to longer delivery times even if the receiver is never disconnected.
Senders addmessages to amessage channel. The sender of amessage determines its size, transaction boundaries, and type

of delivery. The message size depends on the data that needs to be transferred from the sender to the receiver. A message
is a simple data structure containing a header and a body. However, message size refers only to the body of a message
neglecting the influence of possible overhead of the message, such as its header. To guarantee the delivery of a message,
the MOM stores messages persistently during their transfer. The implementation of a MOM determines how messages are
stored, for example using a database or file system. Stored messages can survive system crashes and are delivered after
restart, if possible. A transactional client sends one or multiple messages as a single transaction. The transaction boundaries
are specified by the sender.

Please cite this article in press as: J. Happe, et al., Parametric performance completions formodel-driven performance prediction, Performance Evaluation
(2009), doi:10.1016/j.peva.2009.07.006



ARTICLE  IN  PRESS
12 J. Happe et al. / Performance Evaluation ( ) –

(a) Persistent vs. non-persistent message transfer. (b) Local vs. remote message transfer.

Fig. 8. The influence of message size on the delivery time.
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Fig. 9. The effect of transactions and competing consumers on delivery time.

The size of a message significantly influences its delivery time. Fig. 8 illustrates this effect. With an increasing message
size the delivery time of a message increases. While the slope of the curves is rather small for short messages, its impact
grows for messages larger than 10000 bytes. The influence of the message size strongly depends on the platform. For the
system evaluated in Fig. 8, the influence is especially strong for the distributed setting.
For guaranteed delivery (Fig. 8(a)), the access to additional resources, e.g., the hard disk, leads to longer delivery times.

The increase is approximately 25%. If the MOM or the message receiver is deployed on a remote machine, the necessary
transfer over the network further delays the delivery of a message (Fig. 8(b)). As to be expected, the network’s influence is
more significant for larger messages.
For transactional clients, the delivery time of a message strongly depends on the number of messages in a transaction

set and the message’s position. The delivery time increases linearly with the message’s position in the transaction set (see
Fig. 9(a)). The MOM stores all messages until it receives the last message of a transaction set and then delivers the messages
sequentially. Since messages arrive much faster than they are processed, the waiting time of the first message (0.4 s) is
exceeded by the processing time of the successive messages. The sequential processing of messages leads to the observed
linearly increasing delivery times.
Receivers removemessages from amessage channel. They can employmultiple, competing consumers to process incoming

messages concurrently. Consumers wait for incoming messages. When a message arrives, it is processed by the next
waiting consumer. If no consumer is available, messages queue up until a consumer finishes processing its current message.
Furthermore, message receivers can filter messages delivered via its subscribed channels. These selective consumers only
accept messages, which match their filter criteria.
Competing consumers can have a large impact on performance. If too few consumers are available, congestion is likely

leading to long delivery times. For example, if messages are received and processed sequentially by a single consumer, the
consumer can easily become a bottleneck leading to congestion on receiver side as shown in Fig. 9(b).Message delivery times
increase constantly up to 1400 s. When multiple consumers process the same load (Fig. 9(c)), the system can maintain the
pace ofmessage arrivals yielding acceptablemessage delivery times of less than 10ms. Thus,multiple competing consumers
can avoid congestion at the receiver side. The influence of selective consumers depends on the complexity of their filters [31].
For the simple filters considered in this evaluation, the influence on delivery times was marginal.

5.3. Completion design

In the following, we present how the PCM (cf. Section 5.1) can be used to design and apply a parametric performance
completion for Message-oriented Middleware. The messaging completion takes into account the patterns evaluated in
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Fig. 10. Messaging completion components.

Section 5.2 together with the allocation of theMOM. The feature diagram in Fig. 7 allows software architects to easily choose
among different design alternatives regarding the messaging service.
Coupled transformations generate a series of adapter components that models the performance-relevant behaviour of

the Message-oriented Middleware. The adapters hide the message-based communication from the sender and receiver.
Resource demands are generated bymiddleware components for specific platforms. Fig. 10 shows the resulting components.

5.3.1. Parameterisation
To capture the effect of different message sizes on software performance, we exploit the parametric resource demands

of the PCM. Stochastic expressions [8,9] reflect the influence of different parameters on software performance. They support
basic arithmetic operations on probability distributions and parameters (cf. Section 5.1).

a b

Fig. 11. Regression analysis for different message sizes.

We usemultiple regressions to determine the stochastic expressions that approximate the influence of themessage size.
The regression can be applied on the delivery time of a message (as described in the following) or on estimated resource
demands (as described in Section 5.3.2). Fig. 11 shows an example of how the message size can affect the average delivery
time. Here, the sender, receiver, and the MOM are deployed on the samemachine. A single regression analysis [32] over the
measured times yields the linear function in Fig. 11(a). While the approximation is good for large messages, it deviates
a multiple of the measurements for small ones. To achieve better prediction results, we used two separate regression
functions: One for messages smaller than 1000 bytes and one for messages larger than 1000 bytes (cf. Fig. 11(b)). This
reduces the estimation error to approximately 5%–30%. For example, the average delivery time of messages larger than
1000 bytes can be computed by a linear function with a slope of 0.02 and a y-intercept of −32.8. This yields the following
stochastic expression:

0.02 ∗ message.BYTESIZE− 32.8

In the prediction model, a branch condition selects the correct regression for a specific message size. For performance
prediction, the stochastic expressions resulting from the regression analysis are integrated in the platform-specific
messaging completion.

5.3.2. Approximation of resource demands
Using delivery times directly as input for performance prediction can be sufficient, if the system’s load is moderate. For

higher loads, we have to consider the actual resource demands in order to accurately predict contention effects. We use
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the Service Demand Law [33] for this purpose. Based on this law, we can compute the demand D at a particular resource
using its utilisation U and throughput X: D = U/X . In the following, we assume that a single resource limits the overall
performance of the MOM. Furthermore, we require that the scheduling policy of the bottleneck resource (e.g., the CPU) can
be approximated by processor sharing. Thus, when n messages are processed or delivered simultaneously, each message
receives 1/nth of the bottleneck resource. Based on these assumptions, we can approximate resource demands for message
delivery and for message processing.
Let tt be the total time from sending amessage until its processing is finished, td the delivery time of amessage, and tp the

processing time of a message, i.e., the time needed for executing the method invoked at the receiver’s side, then we know
that tt = td + tp. The values td, tp, and tt can be, for example, determined by measurements of the test driver. Moreover, let
dt , dd, and dp be the respective resource demands at the bottleneck resourcewith dt = dd+dp. For performance predictions,
we need to know dd and dp. These values cannot be derived directly using the Service Demand Law. Therefore, we propose
the following approximation.
In a first step, we estimate the number of competing messages n based on the total time tt . For this purpose, we have to

consider an additional delay, δ, caused by waiting and processing times at other resources. So, tt is given by:

tt = n ∗ dt + δ (7)

If δ/dt → 0 (the demand at the bottleneck resource is much larger than the delay at other resources), we can use Eq. (7) to
approximate the average number of messages handled simultaneously:

n = tt/dt − δ/dt
n ≈ tt/dt

n refers to the total number of messages in the system that are either processed or delivered. A further distinction (such as
n = nd + np) is not necessary, since the delay included in the processing time tp is a result of all messages that are either
delivered or processed. Furthermore, if only the bottleneck resource (e.g., the CPU) is used during message processing, we
have that tp = n ∗ dp. Then, we can approximate dd by:

dd = dt − dp (8)

= dt − tp/n (9)

≈ dt − tp/tt/dt (10)

≈ dt(1− tp/tt) (11)

dt is the only remaining unknown variable in Eq. (11). Applying the Service Demand Law (dt = U/X), where U is the
utilisation of the bottleneck resource and X the measured throughput of the MOM, yields:

dd ≈ U/X(1− tp/tt). (12)

Eq. (12) enables us to estimate resource demands of message delivery (dd) and of message processing (dp = dt − dd).
However, the approximation can only be applied if a single resource limits the overall performance, the resource’s scheduling
policy can be modelled by processor sharing, and the demands at all other resources are comparatively low. In our case
study (Section 5.4), we successfully used this approach to estimate parametric resource demands of the message deliveries.
In addition, we applied linear regression analyses on the estimated resource demands (cf. Section 5.3.1) to capture the
influence of different message sizes.

5.3.3. Marshalling and demarshalling
Apart from the parametric dependency of resource demands and message sizes, we also have to determine the size of a

message resulting from a specific service call. Therefore, we developed a marshalling completion for the PCM. To consider
the influence ofmessage sizes,marshalling is always the first, demarshalling the last processing step (cf. Fig. 10). All resource
demands of the following steps depend on the size of the serialised message. The Marshalling component computes the
message size depending on the serialisation method used (binary or XML) and the parameter specifications of a signature.
Fig. 12 shows its RD-SEFF for an artificial signature service(p1,.., pn) with parameters p1 to pn. To pass on the
size to the following processing steps, the transformation extends the initial interface used for remote communication.
Assuming IFoo is the considered interface, the transformation derives a new interface IFoo’ whose signatures are equal
to the ones of IFoo except for an additional parameter stream, e.g., service(p1,.., pn) becomes service(p1,..,
pn, stream). Characterisation stream.BYTESIZE contains the probabilistic distribution of the message size.
To determine the size of the message, the Marshalling component calls the Sender Middleware on its interface

IMarshalling. Since the PCM does not support overloaded parameters, the marshalling service takes all basic data
types as input: marshall(Strategy s, int[] ints, double[] doubles, String[] strings...).
In the transformation, OCL function number(sig:Signature, direction:ParameterModifier, t:Primitive
DataType) determines the occurrences of the PrimitiveDataType t in Signature sig and sets the corresponding
NUMBER_OF_ELEMENTS (NoE) characterisation to the resulting values. Given this information the Sender Middleware
computes the size of the resulting serialisation. See [34, pp. 208–217] for details of the marshalling and demarshalling.
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Fig. 12. Generated RD-SEFFs of the marshalling example.

Fig. 13. Behavioural specifications for the sender, MOM and the receiver adapter.

Following the compositional approach presented in our previous work [16], the messaging completion can further be
combined with any completion introduced there, e.g., encryption and authentication. This approach is possible since we are
mainly interested in timing behaviour and not the actual data that is passed. Thus, we can consider (and model) message
passing as asynchronous method calls.

5.3.4. Adapter components
Messages are passed from the sender to the receiver using the SenderAdapter, MOM-Adapter, and Receiver

Adapter components. The adapters model the MOM’s behaviour according to the configuration used. Furthermore, they
generate the load caused by the sender, the MOM, and the receiver using the platform-specific middleware components.
All adapters implement the interface generated by the marshalling components (IFoo’ in Fig. 10). Thus, they can use the
message size for performance evaluation. Furthermore, the adapters do not load the resources directly but call methods
of the (platform-specific) middleware components that load the resource accordingly. In the following, we describe the
behaviour of all components continuing the example in Fig. 10.
The SenderAdapter asynchronously forwardsmessages to the MOM-Adapter and, thus, allows the sender to continue

its execution directly after the message has been sent. Fig. 13 shows its behaviour modelled as an RD-SEFF. Before the
message is sent, the sender adapter calls method preparePublishing on the SenderMiddleware. The method’s
InputVariableUsage sets the size of themessage. Themiddleware can use this value to determine the resource demand
necessary to prepare the message. The size of a message can be a probabilistic distribution over different message sizes.
When the preparation is finished, a ForkAction starts a new thread which forwards the service call to the MOM-Adapter.
As its property synchronize is set to false, the execution of SenderAdapter continues immediately and does not
wait for the behaviour of the ForkAction to finish. Thus, the sender adapter decouples the delivery of a message
from the sender’s process. Analogously, the MOM-Adapter loads the MOM’s resources and passes the message to the
ReceiverAdapter component (cf. Fig. 13(b)).
The ReceiverAdapter has to consider the influence of (competing) consumers that process incoming messages. In

Fig. 13, their influence is modelled by the passive resource CompetingConsumers and corresponding Acquire- and
ReleaseActions. The receiver adapter first pre-processes the incomingmessage. The overhead of this step is modelled by
an ExternalCallAction to service finishPublishing of the receiver’s middleware. Like for the sender and MOM
adapter, the resource demand can depend on message.BYTESIZE passed to the service. When the pre-processing is
finished, the receiver adapter tries to acquire a consumer for the message. Therefore, it calls service getConsumer on
interface IReceiver. Its RD-SEFF is shown in Fig. 13(d). The passive resource ConsumerPool contains the maximum
number of available consumers specified in the mark model. The consumers limit the number of concurrently processed
messages. Method getConsumer executes a single AcquireAction on ConsumerPool. The AcquireAction blocks
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Fig. 14. Behavioural specification for the Message-oriented Middleware.

until a consumer becomes available. Then the receiver adapter forwards the message to the DeMarshalling component
calling service on interface IFoo’. Once service is processed, the receiver adapter returns its consumer to the pool
(calling returnConsumer on the receiver’s middleware) and its execution is terminated.

5.3.5. Middleware components
While the adapters model the behaviour of the messaging system according to its configuration, the middleware

components generate the platform-specific resource demands. If parametric resource demands with multiple regressions
are used to approximate resource demands, their effect has to be reflected in the performancemodel. In the PCM,we can use
stochastic expressions and guarded branch transitions for this purpose (cf. Section 5.1). Fig. 14 shows the RD-SEFF ofmethod
processMessageTransfer of the Messaging System. The RD-SEFF comprises a single GuardedBranchTransition
that executes one of its branching behaviours depending on the message size. Whenever the BYTESIZE of a message
is smaller than 1000 bytes the left branch is taken, otherwise the right one. Both branching behaviours differ in the
ParametricResourceDemands of the internal action process. In both cases, the resource demands are stochastic
expressions, whose resource demand increases with the message size (cf. Section 5.2). Currently, only the resource demand
of a single, limiting resource is considered, which does not reflect the actual resource usage in distributed scenarios
(discussion in Section 6).

5.4. Completion validation: A real-world case study

In this section, we present a case study that evaluates the prediction quality of the messaging completion described in
Section 5.2. A comparison of predictions based on architectural specifications with measurements of an implementation
gives an impression on the prediction accuracy of the messaging completion. The case study is based on the SPECjms2007
Benchmark [10,35,11] and focuses on the influence of the MOM on performance. Since the messaging completion should
support early design decisions, the case study evaluates three design alternatives for one of the benchmark’s interactions.
The case study answers the question: Are the predictions using our messaging completion good enough to support the
decision for the design alternative (i.e., configuration of the MOM) with the actual best performance given a specific
configuration?
The SPECjms2007 Benchmark [10,35,11] provides suitable scenarios for the case study. It is a standard industry

benchmark for performance analyses of JMS developed by SPEC’s OSG-Java subcommitee (including IBM, TU Darmstadt,
Sun, Sybase, BEA, Apache, Oracle, and JBoss). SPECjms2007 reflects the waymessaging services are used in real-live systems
including the communication style, the types of messages, and the transaction mix. Furthermore, it is focused on the
influence of theMOM’s implementation and configuration. Thus, the benchmarkminimises the impact of other components
and services that are typically used in the chosen application scenario. For example, the database used to store business data
and manage the application state could be easily become the limiting factor of the benchmark and, thus, is not represented
in the benchmark. This design allows us to focus our evaluation on the influences of theMOMwithout possible disturbances
of other infrastructure components.
The SPECjms2007 Benchmark resembles a typical scenario of the supply chain management domain. It models a set of

supply chain interactions between a supermarket company, its stores, its distribution centres, and its suppliers. In this case
study, we focus on the inventory management of a single supermarket. Inventory management is necessary when goods
leave the warehouse of a supermarket, to refill a shelf. RFID readers register goods leaving the warehouse and notify the
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Fig. 15. Architecture of the warehouse application.

Table 2
Design alternatives.

Alternative Arrival Rate Data Size Configuration

1. Persistent 100 Full Persistent, Transacted
2. Non-Persistent 100 Full
3. Small 100 Identifier Persistent, Transacted

Full := Int PMF [(10;0.01) (100;0.04) (500;0.95)]
Identifier:= Int PMF [(10;0.95) (100;0.04) (500;0.01)]

local warehouse application, which updates its inventory. In the following, we describe the architecture of the warehouse
application and propose three design alternatives.
Architecture of the warehouse application. Fig. 15 shows the static architecture of the warehouse application. A hardware
RFID Reader is directly connected to the Warehouse Application Server. An RFID Adapter component manages
the connection to the RFID reader. It converts and forwards the read data to the Inventory Management. A Messaging
Annotation configures the connector between the Inventory Management and the RFID Adapter as persistent,
transactional messaging channel. The message service allows RFID Adapter to quickly accept new requests from the
RFID Reader as it will not block its execution. Persistency ensures that no inventory update is lost in case of failures.
When notified, the Inventory Management updates the inventory data using the DB Adapter component.
Usually, many goods leave the warehouse at once, e.g., an employee brings a lorry with goods into the supermarket to

refill the shelves. In this case, the RFID reader sends many messages in a short time period. Experts estimate the number
of messages up to 100 in a second. The software architect now wants to know, if such a high load can be handled by the
Message-oriented-Middleware. It also needs to ensure that the warehouse application itself is not affected.
Design alternatives. The software architect considers three design alternatives of the warehouse application (Table 2). The
original architecture (alternative 1, Persistent) sends the complete data, i.e., data.BYTESIZE = Full from the RFID
Reader to the Inventory Management. Alternative 2 (Non-Persistent) uses a reconfigured message service, since
persistency and transactionality might produce too much overhead. However, turning both off carries the risk of losing
messages in case of failures, but might solve possible performance problems. Alternative 3 (Small) reduces the data size.
Instead of transmitting all data kept on an RFID chip to the inventory management, the data could be limited to a single
product identifier. This reduces the data size, but also requires changes of the Inventory Management component. Thus,
this alternative should only be considered if really necessary.
Furthermore, the software architect defines performance requirements for the warehouse application. The RFID reader

should not affect the rest of the application, so it should not utilise the system more than 50%, which enables the other
components to keep working properly. In addition, the system should be able to handle 100 RFID reads per second, which
is the expected maximum number of goods taken out of the warehouse at once. Finally, the delivery time of a message shall
not exceed 1 s in 90% of all cases.
Results. We used the PCM’s simulation environment SimuCom [8] to predict the performance for each design alternative.
Basically, SimuCom interprets PCM instances as a queuing network model with multiple G/G/1 queues. To instantiate the
parametric performance completions, we executed their test driver in the target environment. We derived the parametric
resource demands for the CPU following the approximation method described in Section 5.3.2. Each simulation run lasted
5 min and simulated the delivery of over one million messages. A warm-up period of the first 2500 measurements was
not included in the prediction results. The measurements were conducted with the SPECjms2007 Benchmark version 1.0.
The benchmark was deployed on a single machine, to focus on the effects of message sizes and the message service’s
configuration. Sun’s Java SystemMessageQueue 3.6 provided the necessary infrastructure for themeasurements. During the
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measurement period, the benchmark executed only the inventory movement interaction. The upper 5% of measured values
were removed, to exclude disturbances from the results. All other interactions were disabled and, thus, not considered in
the case study. A warm-up period of 10 min preceded the measurement period of 30 min.

(a) Average of the delivery time. (b) 90% percentile of the delivery time. (c) CPU utilisation.

Fig. 16. Predictions and measurements of the three design alternatives.

Fig. 16 summarises the predictions and measurements for the three design alternatives. It shows the average and 90%
percentile of the delivery time as well as the CPU’s utilisation. Measured values are printed in dark grey, predicted values in
light grey. The prediction error for the average delivery time (Fig. 16(a)) as well as the 90% percentile (Fig. 16(b)) is below
15% in all cases. The messaging completion predicts the CPU utilisation (Fig. 16(c)) with an error below 3% for all design
alternatives. In the considered scenario, the usage of persistent message transfer had a major influence on the delivery time
of a message. While the measured and predicted average delivery times for alternative 2 (Non-Persistent) are 150 ms and
165 ms, respectively, they are 722 ms and 650 ms for alternative 1 (Persistent). The 90% percentile of the latter exceeds the
upper bound of 1 s. For the measurements it is 1354 ms, for the prediction 1537 ms.

Fig. 17. Delivery time of alternative 2 (cdf).

To allow a visual comparison, Fig. 17 shows the cumulative distribution function (cdf) of the predicted and measured
delivery times for design alternative 2 (Non-Persistent). The measured time is printed in dark grey and the predicted time
in light grey. Both functions match to a large extent. The model predicted that 90% of all messages are delivered in less than
411 ms. This is confirmed by the measurements, where 90% of all messages are delivered in less than 449 ms. In this case,
the prediction error is 8.5%. However, the predicted and measured CPU utilisation (Fig. 16(c)) of about 96% for alternative 2
exceeds the required maximal utilisation of 50%.
In the considered scenario, alternative 3 (Small) shows the best performance. Its measured and predicted delivery

times are much smaller than for the other alternatives. For example, 90% of all messages are delivered in less than 2.2 ms
(measured) and 2.1 ms (predicted). The measured and predicted CPU utilisation is with 24% and 24.6% below the required
upper boundof 50%. Therefore, alternative 3 is the best choice for the software architectwith respect to performance. Coming
back to the question posed in the beginning of this section, the messaging completion can correctly rank different design
alternatives concerningmessage services. It can predict the delivery time of messages with an error of less than 15% and the
resource utilisation with an error less than 3%.
In the following section,we discuss the assumptions and limitations of coupled transformations, parametric performance

completions, and their application to Message-oriented Middleware.
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6. Discussion

The case study based on the SPECjms2007 benchmark presented in the previous section demonstrates the applicability of
parametric performance completions as well as the good prediction results of the messaging completion. However, despite
the good results, there are several assumptions and limitations necessary for coupled transformations and parametric
performance completions.
Manual interactions not considered. In cases where the source code transformation tc is incomplete, i.e., results in code
skeletons, the final code completion is done manually by developers. However, as argued in Section 3.1, this is a non-formal
process, whose outcome usually highly depends on the developer. It is even very likely that the same code skeletons will
be completed differently by the same developer, if it is done repeatedly with some time in between. For these reasons,
manual transformations are disregarded in tq. Current modelling approaches tend to be incomplete, hence, they contain
implementation parts which cannot be captured by Coupled Transformations. However, applying Coupled Transformations
to those parts of the generated code describable in a mark model gives improved accuracy. This is important as the number
of fully generated systems increases, e.g., in the automotive domain.
Feature models as mark models. The transformation of the messaging completion uses feature models as mark models. This
does not limit applicability of the method for other common types of mark models, such as stereotypes and tagged values,
since all of them add parameters to the transformation. However, the different types of mark models offer different degrees
of freedom on the parameterisation.
(Slightly) different source models for code-generation and performance-evaluation. In cases where the initial input model for a
coupled transformation is slightly different for the code generation and for the performance evaluation, the approach may
still be applicable. This is true if the inputmodel to the performancemodel generation is a refinement of the code generation
model. For example, using an UML model for code generation while using the same UML model including performance
annotations for the performance model generation is fine.
Measurement-based models. The resource demands of the completion’s internal actions are based on measurements. To
predict the performance of a middleware system on different hardware platforms, it is necessary to re-execute the
benchmark application for each platform in order to determine its resource demands. If the target platform is available
this is not a problem. However, if the performance of an application needs to be evaluated during early development stages
the execution environment might not be available.
Relying on measurements of time consumption leads to further challenges. The middleware might access different

resources during the measured period. For example, a persistent message channel will access the hard drive. Measuring
the whole period makes it challenging to assign the correct load to single resources. In our case study, we used the Service
Demand Law to determine the resource demand at a single resource. This strategy was appropriate for our case study, since
the resource that we considered was the one that limited the overall performance. In general, focussing on a single resource
can lead to large prediction errors. Especially in a distributed setting, where different resources are accessed, demands and
contention effect at all resources have to be considered.
Not only is the assignment of load to different resources challenging, also allocating the load to the involved components

is difficult. Resource demands of single components cannot be measured directly. The computation of the actual demand of
the sender, receiver, andmiddleware components is challenging. In Section 5.3.2, we demonstrated how individual resource
demands can be approximated. However, it remains unclear to what extent our approach can be extended to estimate
resource demands in a distributed setting.
Case study for message-based communication. The case study in Section 5.4 demonstrates the prediction accuracy of the
messaging completion. The different configurations of alternative 1 and 2 significantly influence performance. Furthermore,
the delivery time of a message strongly depends on its size. Especially in highly loaded systems, different message sizes can
change the delivery time by several orders of magnitude. This makes the MOM’s configuration as well as message sizes
important factors for performance of systems using message-based communication.
The case study also demonstrated that predictions and measurements can deviate by up to 15%. This is mainly caused

by the abstraction of the model compared to a real system. In the model, we focus on the largest resource demand in the
system. Furthermore, the model does not represent the actual arrival rates of messages in the benchmark. The benchmark
tries to achieve the specified rate of messages. However, if the system is overloaded, the benchmark reduces the pace, since
the workload driver does not get enough processing time. The approximation of the resource demands by linear regression
introduces another abstraction to the model. Therefore, the uncontended resource demands derived from a linear function
can already deviate from the demands in a real system.
Horizontal and vertical scaling. In the description of the SPECjms2007 Benchmark, Kounev and Sachs [11] distinguish
horizontal and vertical scaling. For horizontal scaling, the number of receivers for a message is increased, while for vertical
scaling the number of messages in the system is increased. As demonstrated in the case study presented in Section 5.4,
messaging completions can successfully predict the influence of additional messages in the system. However, the influence
of additional message receivers can only be predicted with limited accuracy.
In the next section, we discuss work related to coupled transformations, parametric performance completions, and the

messaging completion.
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7. Related work

Thework related to the resultswepresented in this paper can be classified into two areas. The first area covers approaches
which explicitly utilise model-driven software development for software performance predictions. The other area contains
approaches evaluating the performance impact of (message-oriented) middleware.
Woodside and Wu [3,12] envisioned the concept of completions in order to supply additional information not needed

for functional specification but required for performance prediction. Our work draws upon this idea and uses trans-
formations generating the application to derive these rules and encodes them in a coupled transformation. Further-
more, we define a practical method that allows designing and parameterising performance completions for various target
environments.
In software performance engineering, several approaches use model transformations to derive prediction models

(e.g., [36–38,8]). Cortellessa et al. surveyed three performancemeta-models in [39] leading to a conceptual MDA framework
of different model transformations for the prediction of different extra-function properties [6,40].
Verdickt et al. [5] developed a framework to automatically include the impact of CORBAmiddleware on the performance

of distributed systems. Transformations map high-level middleware-independent UML models to UML models with
middleware-specific information. Their work focuses on the influence of Remote Procedure Calls (RPCs) as implemented in
CORBA, Java RMI, and SOAP. Neither Verdickt nor Cortelessa considered the influence of service parameters on performance.
For example, the prediction model for marshalling and demarshalling of service calls in [5] neglects the influence of the
service’s parameters. Verdickt et al. considered it an important factor, which their approach cannot address.
Coupled transformations and parametric performance completions fit into this context. Coupled transformations

investigate the relationship between the code and prediction transformations. Additionally, parametric performance
completions represent a practical approach to realise performance completions in complex environments.
Gorton and Liu [41,42] as well as Denaro et al. [43] studied the influence of middleware on software performance. Both

consideredmiddleware as the determining factor for performance in distributed systems and, thus, focused on itsmodelling
and evaluation. Gorton and Liu [41,42] proposed ameasurement-based approach in combinationwithmathematicalmodels
to predict the performance of J2EE applications. Measurements provide the necessary data to compute the input values of a
queueing network model. The computation reflects the behaviour of the application under concern. The queueing network
is solved to derive performance metrics such as response time and throughput for the application.
Denaro et al. [43] completely focused on measurements and did not rely on predictions. They assumed that the

infrastructure of a software system is available during early development stages. Thus, application specific test cases based
on architecture designs can provide estimates of the performance of a software system. Both approaches strongly simplify
the behaviour of an applicationneglecting its influences on software performance. Furthermore, they require a fully available
and measurable infrastructure, which can limit their applicability.
Manymiddleware platforms implement design and architectural patterns for distributed systems. For example, theMOM

standard Java Message Service (JMS) [7,44] realises messaging patterns such as publish–subscribe or competing consumers
(as described in Section 5.2). The inclusion of architectural patterns into performance prediction models was studied by
Petriu [37,45] and Gomaa [46]. Petriu et al. [37,45] modelled the pipe-and-filter and client–server architectural patterns
with UML collaborations. The UMLmodels are transformed into Layered Queueing Networks using graph transformations as
well as XSLT transformations. Gomaa and Menasce [46] developed performance models for component interconnections in
client/server systems based on typical interconnection patterns. These approaches build the basis for the later development
of performance completions.
Recently, Sachs et al. [30] presented a detailed evaluation of a message-oriented middleware (BEA Weblogic server)

using the SPECjms2007Benchmark. They evaluateddifferent configurations (and combinations of configurations) of senders,
receivers, andmessage-channels on performance. For the BEAWeblogic server, they observe similar performance influences
(not in terms of quantity but quality) for message size, competing consumers, and guaranteed delivery as we found for Sun’s
Java SystemMessage Queue 3.6. The conformance of the results suggests a good portability of the messaging completion to
other platforms. For our work, the evaluation of vertical scaling (i.e., publish–subscribe channels) is of special interest. The
findings and results of Sachs et al. can help us to further improve message completion.

8. Concluding remarks

In this paper, we (i) formalised the dependency of generated parts of the implementation (including middleware
configurations) and performance models in coupled transformations, (ii) presented an approach to design and apply
performance completions parametrising platform-specific influences, and (iii) applied our approach to capture the influence
of Message-oriented Middleware on software performance.
Coupled transformations formalise the relation between generated code (including middleware configurations and

deployment options) on one hand and performancemodels on the other hand. They limit the design space to a restricted set
of features specified in the transformation’s mark model. Chains of transformations realise these options deterministically.
Using the knowledge about the deterministically generated code, coupled transformations can generate performance
models based on the same restricted set of features. The determinism as well as the knowledge on the generated code
allows performance analysts to design performance completions that accurately reflect its performance influence.
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To put performance completions into practice, we introduced a general process to design and apply performance
completions in a parametric way. Performance analysts define completions based on abstract communication and design
patterns and, thus, parameterise over the platform and vendor-specific properties of middleware platforms. In our design
process, a specifically developed test-driver measures the performance of the target middleware. The results allow software
architects to instantiate the parametric performance completion for their target platform. The combination of model
skeletonswith resource demands derived frommeasurements represents a powerful tool to predict the influence of complex
middleware on software performance.
To demonstrate the applicability of parametric performance completions, we developed a completion for Message-

oriented Middleware based on the Palladio Component Model. For the design of the completion, we modelled the MOM’s
behaviour usingwell-knownmessaging patterns. In a real-world case study,we applied themessaging completion to predict
the performance of an interaction of the SPECjms2007 benchmark. The observed deviation ofmeasurements and predictions
was below 10% to 15%.
The approach of parametric performance completions in combination with coupled transformations helps software

architects and performance analysts to systematically design and apply performance completions. The design process
guides performance analysts to identify, model, and validate the performance-relevant factors of middleware platforms.
Software architects can instantiate the resulting parametric performance completion (i.e., the model skeletons and test-
drivers) for their target platform. Parametric performance completions reduce the necessary modelling effort (for software
architects and performance analysts) as well as the complexity of the software architecture models. The combination of
the approach with coupled transformations includes the necessary information about low-level details and allows more
accurate performance predictions.
For the future, we plan to apply the approach of parametric performance completions to capture and model the

performance influence of legacy applications. Even though the source code might be available in such cases its complexity
hinders a detailed design of the application. The combination of measurements and modelling proposed in this paper can
help us to identify and model the performance-relevant aspects of legacy applications.
Furthermore, messaging as an essential part of today’s enterprise applications needs to be fully integrated into the PCM

to ease its modelling and analysis. The integration requires additional refinements and extensions of the completion. For
example, software architects might want to specify a subset of the methods of an interface to be invoked asynchronously
by the MOM. Finally, we have to extend the PCM towards publish–subscribe systems and their highly dynamic behaviour.
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