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Abstract. Software performance engineering (SPE) enables software architects
to ensure high performance standards for their applications. However, apply-
ing SPE in practice is still challenging. Most enterprise applications include a
large software basis, such as middleware and legacy systems. In many cases, the
software basis is the determining factor of the system’s overall timing behav-
ior, throughput, and resource utilization. To capture these influences on the over-
all system’s performance, established performance prediction methods (model-
based and analytical) rely on models that describe the performance-relevant as-
pects of the system under study. Creating such models requires detailed knowl-
edge on the system’s structure and behavior that, in most cases, is not available.
In this paper, we abstract from the internal structure of the system under study.
We focus on message-oriented middleware (MOM) and analyze the dependency
between the MOM’s usage and its performance. We use statistical inference to
conclude these dependencies from observations. For ActiveMQ 5.3, the resulting
functions predict the performance with a relative mean square error 0.1.

1 Introduction

With the rising complexity of today’s software systems, methods and tools to achieve
and maintain high performance standards become more and more important. Software
performance engineering [27] and model-based performance prediction (surveyed in [3]
and [18]) provide software architects and developers with tools and methods to system-
atically estimate the expected performance of a software system based on its architec-
tural specification. Performance engineering of today’s enterprise applications entails a
high degree of complexity. Enterprise application systems are very large and are rarely
developed from scratch. In most cases, a sound base of software exists on which devel-
opers build their new applications. Such software bases include middleware platforms,
third party components (or services), and legacy software. Up to date performance mod-
els for these systems are not available in most cases. Moreover, knowledge about the
structure and performance of these systems is limited. However, the software basis of
an application can have a major influence on its overall performance and thus has to be
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considered in performance predictions. Most existing approaches use established pre-
diction models [3, 18] to estimate the performance of already existing complex software
systems. Their main focus lies on the questions: i) ”How can we automatically derive
or extract the models we need?” and ii) ”How can we estimate the resource demands /
quantitative data needed for our models?” Approaches addressing the first question ana-
lyze call traces [7] or use static code analyses [20] to derive models of software systems.
Approaches addressing the second question (e.g. [23, 19]) use benchmarking and mon-
itoring of the system to extract model parameters. In order to apply these approaches,
software architects have to instrument large parts of the system and conduct precise
measurements. Furthermore, they are bound to the assumptions of the prediction model
used. For example, if a network connection is modeled with FCFS scheduling, it won’t
capture the effect of collisions on the network. Another drawback of these approaches
is that they do not scale with respect to the increasing size and complexity of today’s
software systems. Size and complexity can become inhibiting factors for quality analy-
ses. The process of creating performance prediction models for those systems requires
heavy effort and can become too costly and error-prone. For the same reason, many
developers do not trust or understand performance models, even if such models are
available. In case of legacy systems and third party software, the required knowledge to
model the systems may even not be available at all. In such scenarios, re-engineering
approaches (e.g. [20]) can help. However, re-engineering often fails due to the large and
heterogeneous technology stack in complex application systems.

In our approach, we handle the complexity of large scale enterprise application
systems by creating goal-oriented abstractions of those parts that cannot be modeled or
only with high effort. For this purpose, we apply automated systematic measurements to
capture the dependencies between the system’s usage (workload and input parameters)
and performance (timing behavior, throughput, and resource utilization). To analyze the
measured data we use statistical inference, such as Bayesian networks or multivariate
adaptive regression splines (MARS) [10]. The analysis yields an abstract performance
model of the system under study. The abstractions are similar to flow equivalent servers
used in queueing theory where a network of servers is replaced by a single server with
workload-dependent service rate. The resulting models can be integrated in the Palla-
dio Component Model (PCM) [6], a model-driven performance prediction approach.
For this purpose, we combine the statistical models with parametric performance com-
pletions introduced in our previous work [11]. The combination of statistical models
and model-based prediction approaches allows to predict the effect of complex middle-
ware components, 3rd party software, and legacy systems on response time, throughput,
and resource utilization of the whole software system.

In this paper, we focus on message-oriented middleware platforms which are in-
creasingly used in enterprise and commercial domains. We evaluated our approach us-
ing the SPECjms2007 Benchmark for message-oriented systems. The benchmark re-
sembles a supply chain management system for supermarket stores. In our case study,
we used MARS and genetic optimization to estimate the influence of arrival rates and
message sizes on the performance of a message-oriented middleware (MOM). The com-
parison of measurements and predictions yielded a relative mean square error of less
than 0.1.



The contributions of this paper are i) statistical inference of software performance
models, ii) their usage in combination with model-driven performance prediction meth-
ods, and iii) the application of our approach to a supply chain management scenario
including a validation of predictions and measurements.

The paper is structured as follows. Section 2 gives an overview on our approach.
Work related with performance prediction of message-oriented middleware and perfor-
mance analysis using statistical inferencing is summarized in Section 3. In Section 4,
we demonstrate how the performance of message-oriented middleware can be captured
using a combination of systematic benchmarking and statistical inference. We discuss
our results in Section 5. Finally, Section 6 concludes the paper.

2 Overview
In this section we describe our approach focusing on performance analyses of message-
oriented middleware (MOM) platforms. The influence of general configurations and
patterns on a MOM’s performance (delivery time, throughput, and resource utilization)
are well understood [11, 25]. However, the exact quantification of these influences is
still cumbersome and has to be done for each implementation and each execution envi-
ronment. In the case of MOM, the implementation is known to have a large impact on
the overall performance [25]. Some implementations scale better with a larger number
of processors or make better use of the operating system’s I/O features. Capturing such
low-level details in a generic performance model is impossible. Even if accurate per-
formance models of a MOM are available, they have to be kept up to date and adjusted
for new execution environments. Slight changes in the configuration can already affect
the overall performance [11, 25, 16]. To consider such effects in a priori predictions,
software architects need an approach to create accurate performance models for their
middleware platform, even if the actual implementation is unknown. The performance
models have to be parameterized and thus reflect the influence of the system’s usage (in-
put parameters, system state, arrival rate) on timing behavior, throughput, and resource
utilization.

In our approach, we use systematic measurements and statistical inference to cap-
ture the performance of a MOM platform. We abstract from internals of the MOM
implementation and identify functional dependencies between input parameters (mes-
sage size, style of communication) and the observed performance. The resulting mod-
els are woven into the software architectural model. The combination of model-driven
approaches and measurement-based model inference allows software architects to eval-
uate the effect of different middleware platforms on the performance of the overall
system. Figure 1 illustrates the overall process of combining parametric performance
completions with statistical model inference.

The process in Figure 1 is a specialization of the performance completion instantia-
tion by the software architect [11, Figure 6]. We assume that the completion has already
been designed and performance-relevant parameters are known. In the following, we
describe the steps of the process in more detail.

Benchmarking (Data Collection) In the first step, we measure the influence of
performance-relevant parameters for the middleware platform in its target execution
environment. A standard industry benchmark (cf. Section 4.3) quantifies the delivery
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Fig. 1. Statistical Inference of Software Performance Models for Parametric Performance Com-
pletions.

time of messages, the MOM’s throughput, and the utilization of resources. To capture
the influence of parameters, the benchmark is executed several times with different
configurations (cf. Section 4.1). In our experiments, we focus on the influence of arrival
rates, messages sizes, and persistence of messages (messages are stored on hard disk
until they are delivered).

Model Inference (Data Aggregation) The collected data is used to infer (parameters
of) a prediction model. In Section 4.3, we use statistical inference techniques [13],
more specifically Multivariate Adaptive Regression Splines (MARS) [10] and genetic
optimization, to derive the influence of a MOM’s usage on its performance.

Other inference techniques, such as [21, 23, 19], can be used to estimate param-
eters of queueing networks if the (major) resources and the structure of the system
under study are known. However, these approaches are bound to the assumptions of the
underlying queueing model, such as FCFS or PS scheduling, which may not hold in
reality. Furthermore, they cannot (directly) predict the effect of input parameters (such
as message size) on performance.

Statistical inference of performance metrics does not require specific knowledge
on the internal structure of the system under study. However, statistical inference can
require assumptions on the kind of functional dependency of input (independent) and
output (dependent) variables. The inference approaches mainly differ in their degree
of model assumptions. For example, linear regression makes rather strong assumptions
on the model underlying the observations (they are linear) while the nearest neighbor
estimator makes no assumptions at all. Most other statistical estimators lie between both



extremes. Methods with stronger assumptions, in general, need less data to provide
reliable estimates, if the assumptions are correct. Methods with less assumptions are
more flexible, but require more data.

Model Integration The models inferred in the previous step are integrated into soft-
ware performance models to predict their effect on the overall performance of the sys-
tem. We use the Palladio Component Model (PCM) [6] in combination with parametric
performance completions [11] to evaluate the performance of the system under study.
The PCM is well suited for our purposes since it captures the effect of input param-
eters on software performance. Stochastic expressions of the PCM can be used to di-
rectly include the functions resulting from the statistical analysis into the middleware
components of a parametric performance completion. Performance completions allow
software architects to annotate a software architectural model. The annotated elements
are refined by model-to-model transformations that inject low-level performance influ-
ences into the architecture [15]. Completions consist of an architecture-specific part
that is newly generated for each annotation (adapter components) and an architecture-
independent part that models the consumption of resources (middleware components).
Completions are parametric with respect to resource demands of the middleware. The
demands have to be determined for each middleware implementation and for each exe-
cution environment.

Transformation Finally, model-to-model transformations integrate the completion into
architectural models [15]. The performance of the overall system can be determined
using analytical models (such as queueing networks or stochastic Petri nets) or simula-
tions.

In this paper, we focus on the first two steps (Benchmarking and Statistical Model
Inference). A description of the remaining steps can be found in [11, 15].

3 Related Work

Current software performance engineering approaches can be divided in (i) early-cycle
predictive model-based approaches (surveyed in [3] and [18]), (ii) late-cycle measure-
ment-based approaches (e.g. [1, 2, 4]), and (iii) combinations of measurement-based
and model-based approaches (e.g. [8, 19]) [29]. Late-cycle measurement-based ap-
proaches as well as the approaches that combine model-based and measurement-based
performance engineering mainly rely on statistical inferencing techniques to derive per-
formance predictions based on measurement data.
Zheng et al. [30] apply Kalman Filter estimators to track parameters that cannot be mea-
sured directly. To estimate the hidden parameters, they use the difference between mea-
sured and predicted performance as well as knowledge about the dynamics of the perfor-
mance model. In [23] and [19], statistical inferencing is used for estimating service de-
mands of parameterized performance models. Pacifici et al. [23] analyze multiple kinds
of web traffic using CPU utilization and throughput measurements. They formulate and
solve the problem using linear regressions. In [19], Kraft et al. apply a linear regression
method and the maximum likelihood technique for estimating the service demands of
requests. The considered system is an ERP application of SAP Business Suite with a



workload of sales and distribution operations. Kumar et al. [21] and Sharma et al. [26]
additionally take workload characteristics into account. In [21], the authors derive a
mathematical function that represents service times and CPU overheads as functions of
the total arriving workload. Thereby, the functional representation differs depending on
the nature of the system under test. The work focuses on transaction-based, distributed
software systems. Sharma et al. [26] use statistical inferencing to identify workload
categories in internet services. Using coarse grained measurements of system resources
(e.g. total CPU usage, overall request rate), their method can infer various characteris-
tics of the workload (e.g. the number of different request categories and the resource
demand of each category). They apply a machine learning technique called independent
component analysis (ICA) to solve the underlying blind source separation problem. The
feasibility of their approach is validated using an e-commerce benchmark application.
Other researchers focus on measurement-based and/or analytical performance models
for middleware platforms. Liu et al. [22] build a queuing network model whose input
values are computed based on measurements. The goal of the queuing network model
is to derive performance metrics (e.g. response time and throughput) for J2EE appli-
cations. The approach applied by Denaro et al. [9] completely relies on measurements.
The authors estimate the performance of a software system by measurements of appli-
cation specific test cases. However, both approaches simplify the behavior of an appli-
cation, and thus, neglect its influence on performance. Recently, Kounev and Sachs [17]
surveyed techniques for benchmarking and performance modeling of event-based sys-
tems. They reviewed several techniques for (i) modeling message-oriented middleware
systems and (ii) predicting their performance under load considering both analytical
and simulation-based approaches.

4 Capturing the Performance of Message-oriented Middleware
with Statistical Inference

In the following, we demonstrate how the performance of Message-oriented Middle-
ware (MOM) can be captured using statistical inference. For this purpose, we first in-
troduce our method for gathering the required performance data (Section 4.1) as well as
the tools and techniques to derive statistical models from measurements (Section 4.2).
The application of these methods to message-oriented systems follows in Section 4.3.
The resulting models reflect the influence of message size, arrival rate, and configura-
tions on delivery times, resource utilization, and throughput. Finally, we compare our
predictions to measurements that are not part of the training set (Section 4.4).

4.1 Measurement Method

In order to apply statistical inferencing to the performance of MOM, we first need to
measure the influence of different parameters (e.g., message size and persistence) on its
performance. The strategy of sampling the effect of different parameter combinations on
performance is critical, since it has to be detailed enough to achieve accurate predictions
but must also be kept feasible at the same time (i.e., measurements must not last too
long).
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Fig. 2. Measurement strategy.

For this reason, we separate the measurements into three phases. First, we determine
the maximal throughput of the system for each message size m ∈ M . While a high
throughput can be achieved for small messages, the throughput decreases significantly
for larger messages. In Figure 2, the upper solid line illustrates the dependency of the
maximal throughput and the size of a message. In queuing theory, the throughput (X)
can be computed from the resource utilization (U ) and the service demand (D) by
X = U/D. If we assume that the resource is fully utilized (U = 1), we can compute
the maximal throughput Xmax = 1/D. In a flow balanced system, the arrival rate (λ)
is equal to the throughput of the system. Thus, the maximal arrival rate which can be
handled by the system is λmax = Xmax. To determine the maximal arrival rate, we
increase the load of the system until U ≈ 1 and still λ ≈ X , i.e., the system can still
handle all incoming messages. We focus our measurements on arrival rates between 0
and λmax,i.e, 0 < λ ≤ λmax. The performance measurements for λmax represent the
worst case performance of the system if it is still able to process all messages.

In the second phase, we measure the influence of individual parameters without
resource contention. For example, we measure the effect of different message sizes on
the delivery time when only one message is processed at a time. These measurements
provide the baseline of our curve. They represent the best achievable performance for
the system under study. In Figure 2, the solid line at the bottom depicts the baseline for
a MOM with persistent message delivery (i.e., messages are stored on hard disk until
they are delivered).

In the final phase, we sample the performance of the system under study between
the best case and the worst case performance. For this purpose, we separate the arrival
rate between the best and the worst case performance into N equidistant steps. For
each message size v ∈ V , we measure the performance of the MOM for arrival rates
of λi = λmax ∗ i/N for i ∈ {1, . . . , N − 1}. The dashed lines in Figure 2 show the
relative measurements for N = 4 steps.



4.2 Statistical Model Inference

Statistical inferencing is the process of drawing conclusions by applying statistics to
observations or hypotheses based on quantitative data. The goal is to determine the re-
lationship between input and output parameters observed at some system (sometimes
also called independent and dependent variables). In this paper, we use Multivariate
Adaptive Regression Splines (MARS) and genetic optimization to estimate the depen-
dency between different system characteristics (configuration and usage) and perfor-
mance metrics of interest.

Multivariate Adaptive Regression Splines (MARS): MARS [10] is a statistical
method for flexible regression modeling of multidimensional data which has already
been successfully employed in software performance prediction [8]. MARS is a non-
parametric regression technique which requires no prior assumption as to the form of
the data. The input data may be contaminated with noise or the system under study may
be responding to additional hidden inputs that are neither measured or controlled. The
goal is to obtain a useful approximation to each function using a set of training data.
Therefore, the method fits functions creating rectangular patches where each patch is a
product of linear functions (one in each dimension). MARS builds models of the form
f(x) =

∑k
i=1 ciBi(x), the model is a weighted sum of basis functions Bi(x), where

each ci is a constant coefficient [10]. MARS uses expansions in piecewise linear basis
functions of the form [x− t]+ and [t− x]+. The + means positive part, so that

[x− t]+ =

{
x− t , if x > t

0 , otherwise and [t− x]+ =

{
t− x , if x < t

0 , otherwise

The model-building strategy is similar to stepwise linear regression, except that
the basis functions are used instead of the original inputs. An independent variable
translates into a series of linear segments joint together at points called knots [8]. Each
segment uses a piecewise linear basis function which is constructed around a knot at the
value t. The strength of MARS is that it selects the knot locations dynamically in order
to optimize the goodness of fit. The coefficients ci are estimated by minimizing the
residual sum-of-squares using standard linear regression. The residual sum of squares
is given by RSS =

∑N
i=1(ŷi − y)2, where y = 1

N

∑
ŷi, where N is the number of

cases in the data set and ŷi is the predicted value.

Genetic Optimization (GO) If the functional dependency between multiple param-
eters is known, i.e., a valid hypothesis exists, then either non-linear regression or GO
can be used to fit the function against measured data. Non-linear regressions allow var-
ious types of functional relationships (such as exponential, logarithmic, or Gaussian
functions). Non-linear regression problems are solved by a series of iterative approx-
imations. Based on an initial estimate of the value of each parameter, the non-linear
regression method adjusts these values iteratively to improve the fit of the curve to the
data. To determine the best-fitting parameters numerical optimization algorithms (such
as Gauss-Newton or Levenberg-Marquardt) can be applied.

Another way of identifying a good-fitting curve for a non-linear problem is the
use of GOs. In [14] the author describes the basic principals of GOs. GOs simulate



processes of biological organisms that are essential to evolution. They combine two
techniques at the same time in an optimal way: (i) exploration which is used to investi-
gate new areas in the search space, and (ii) exploitation which uses knowledge found at
points previously visited to help finding better points [5]. Compared to the non-linear
regression techniques GO is more robust, but requires more time. In our case, the basis
of the GO is an error function which has to be minimized. Errors represent the dif-
ference between the observations and the model’s predictions. It must be taken into
account that the definition of the error metric can influence the accuracy of fitting. For
example, if error is expressed as absolute measure, the approximation is inaccurate for
small values at large scattering. If error is expressed as relative measure, small values
are approximated better while large values can show stronger deviations.

We use mean squared error (MSE) and relative mean squared error (RMSE) to
measure the difference between predicted and observed value. The MSE is given by
MSE = 1

N

∑N
i=1(ŷi − yi)2 and the RMSE is given by RMSE = 1

N

∑N
i=1(

ŷi−yi
yi

)2.
In both cases N is the number of cases in the data set, y is defined as observed value,
ŷi as the predicted value.

In the following section, we apply the methods for statistical model inference pre-
sented here to derive a performance model for message-oriented systems.

4.3 Analyzing Message-oriented Systems

In message-oriented systems, components communicate by exchanging messages us-
ing a message-oriented middleware. Such a loose coupling of communicating parties
has several important advantages: i) message producers and consumers do not need to
be aware of each other, ii) they do not need to be active at the same time to exchange
information, iii) they are not blocked when sending or receiving messages. Most MOM
platforms offer two types of communication patterns: (a) Point-to-Point (P2P), where
each message is consumed by exactly one message receiver and (b) Publish/Subscribe,
where each message can be received by multiple receivers [28]. A discussion of mes-
saging patterns influencing the software performance is provided in [11].

MOM Benchmarks: SPECjms2007 & jms2009-PS SPECjms2007 is the first indus-
try standard benchmark for Java Message Services (JMS). It was developed by the Stan-
dard Performance Evaluation Corporation (SPEC) under the leadership of TU Darm-
stadt. The underlying application scenario models a supermarket’s supply chain where
RFID technology is used to track the flow of goods between different parties. Seven
interactions such as order management are modeled in detail to stress different aspects
of MOM performance.

jms2009-PS [24] is built on top of the SPECjms2007 framework and SPECjms2007
workload [25] using pub/sub communication for most interactions. Both benchmarks
are focused on the influence of the MOM’s implementation and configuration. The
benchmarks minimize the impact of other components and services that are typically
used in the chosen application scenario. For example, the database used to store busi-
ness data and manage the application state could easily become the limiting factor and
thus is not represented in the benchmark. This design allows us to focus our evaluation
on the influences of MOM without disturbances.



Benchmark Application For our experiments, we selected Interaction 4: Supermarket
(SM) Inventory Management. This interaction exercises P2P messaging inside the SMs.
The interaction is triggered when goods leave the warehouse of a SM (e.g., to refill a
shelf). Goods are registered by RFID readers and the local warehouse application is
notified so that inventory can be updated. The size of such messages varies from very
small (a single good) to very large (pallets). Therefore they can be used to test JMS
performance for all message sizes.

Experimental Environment We statistically inferred a performance model for Active
MQ 5.3 running on a IBM x3850 Server with a 2-Core Intel Xeon 3.5 GHz, a RAID
10 with 6 SAS hard drives and 16 GByte of RAM running under Debian Linux 2.6.26.
During the measurements, all satellites where hosted on a Windows Server 2003 System
with 16 GByte of RAM and two 4-Core Intel Xeon 2.33 GHz. The utilization of the host
for the satellites never exceeded 20%. The benchmark was executed 288 times. Each run
lasted about 6 minutes leading to a total measurement time of approximately 31 hours.
During each run, the inventory management send between 1800 and 216000 messages
to the supermarket server. The actual number depends on the configured arrival rate of
messages. For each run, we measured the utilization of CPUs and hard disk, network
traffic and throughput as well as the delivery time of messages. In the following, we
analyze the measurements collected by the jms2009-PS benchmark using the statistical
inferencing techniques presented in Section 4.2.

Analysis We determine the functional dependency of performance metrics on the
MOM’s usage applying MARS and genetic optimization. For the analyses, the actual
arrival rate and message size can be computed based on the benchmark’s configura-
tion. In case of interaction 4 ”‘Supermarket Inventory Management”’, the size of a
message v (in kilobyte) is given by the linear equation v = m1 ∗ x + b [25], where
m1 = 0.0970 and b = 0.5137. Furthermore, the total arrival rate of messages ξ4 per
second is a multiple of the arrival rate for each supermarket (λ4): ξ4 = λ4 ∗ |ΨSM |,
where ΨSM = {SM1, SM2, . . . , SM|ΨSM |} is the set of all supermarkets. Since we
only consider flow-balanced scenarios, the number of messages sent and received are
equal. Furthermore, no other messages are sent through the channels of interaction 4.

In the first measurement phase, we determine the maximal throughput for persistent
and non-persistent message delivery.The performance metrics collected in this setting
represent the worst case performance of the MOM. The message size lies between 1 and
850 kBytes while the maximal throughput ranges from 6 to 900 messages per second.
The maximal throughput decreases exponentially with an increasing message size for
persistent and non-persistent delivery.

In the second phase, we analyze the influence of the message size without con-
tention. The total arrival rate is set to 0.5 messages per second for this purpose. The
results represent the best achievable performance for each message size. The mean de-
livery time of the messages ranges from less than a millisecond to approx. 85 ms. Here,
we observed an almost linear growth of delivery time for increasing message sizes.

In the final phase, we analyze the intermediate performance between the best case
and worst case observed. Figure 3 shows the utilization of the MOM’s host machine as a
function of message size and arrival rate. Figure 3(a) suggests that, for a fixed message
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Fig. 3. CPU utilization as a function of message size and arrival rate.

size, the dependency is almost linear. However, the gradient increases significantly for
larger messages (cf. Figure 3(b)). In our measurements, the CPU utilization never ex-
ceeded 50%. This observation is unexpected, especially for large messages. However,
the physical resources were not the limiting factor in our experiments, but in the im-
plementation of the MOM. Active MQ 5.3 uses only a single thread to process its I/O.
This thread can become the bottleneck in multiprocessing environments. Statistically
inferred models can cover this effect without knowledge about the internal cause.
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So far, MARS provided good approximations of the measurements. However, it fails
to accurately reflect the effect of arrival rates and messages sizes on delivery times.
Figure 4(a) shows the averages of the measured delivery time (circles) compared to
predictions of MARS (dashed line). In this case, regression splines do not capture the
steep increase in delivery times for an arrival rate of 35 msg/s (with messages of 850



kByte). Exponential distributions, which are fitted to the measurements using genetic
optimization (cf. Section 4.2), provide much better results. In Figure 4(a), the solid line
depicts an exponential function fitted to the delivery time of messages with a size of
850 kByte. For an arrival λ of messages with 850 kByte, the exponential function

fdt850(λ) = exp(24.692 ∗ (λ− 0.412)) + 0.079

accurately reflects the changes of the delivery time in dependence of the arrival rate
of messages. The relative mean squared error (RMSE) of measurements and predictions
is 0.061 compared to 3.47 for MARS. Figure 4(b) illustrates the result of the genetic
optimization for different message sizes and different arrival rates. For each message
size the exponential function is determined separately. The resulting terms are combined
by linear interpolation. Let v be the size of the message whose delivery time is to be
determined and m and n message sizes with n ≤ v < m that are close to v and for
which fdtn (λ) and fdtm (λ) are known, then:

fdt(v, λ) = fdtn (λ) +
fdtm (λ)− fdtn (λ)

m− n
(v − n).

This function reduces the sum of the relative mean squared error (RMSE) from 341.4
(MARS) to 10.7. The additional knowledge about the type of the function significantly
decreases the error of our statistical estimator. However, at this point, it is still unclear
whether linear interpolation is appropriate to estimate the delivery time for message
sizes whose exponential functions have not been approximated explicitly. In the fol-
lowing section, we address this question by comparing measurements for message sizes
and arrival rates that are not part of the training set to the predictions of the statistical
models.

4.4 Evaluation of the Statistical Models

In order to validate the prediction model for MOM developed in Section 4.3, we com-
pare the predicted delivery times and resource utilization to observations that are not
part of the training set. The results indicate whether the approach introduced in the pa-
per yields performance models with the desired prediction accuracy. More specifically,
we address the following questions: i) ”Is the training set appropriate for statistical in-
ferencing?” and ii) ”Are the chosen statistical methods for model inference sufficient
to accurately reflect the systems performance?”. To answer both questions, we set up
a series of experiments where the arrival rate λ is 200 messages per second and the
message size is varied between 0.6 kByte and 165.4 kByte in steps of 9.7 kByte. The
experiments have been repeated three times.

Figure 5 illustrates the results of the experiments as well as the corresponding pre-
dictions for delivery time (Figure 5(a)) and resource utilizations (Figure 5(b)–5(d)). In
general, predictions and observations largely overlap. The interpolation used to estimate
the delivery time captures the influence of messages sizes accurately. The relative mean
squared error (RMSE) for predicted delivery times is 0.10. The partly unsteady shape
of the prediction curve is a consequence of the interpolation. As a variant of the nearest
neighbor estimator, it is quite sensitive to deviations in the training set and passes them
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Fig. 5. Evaluation results.

down to the predictions. Furthermore, the almost linear growth of the utilization of all
resources is accurately reflected in the corresponding MARS functions. The measured
utilization of the hard disk shows a much larger variance than the utilization of other
resources. This effect occurs because after each run the files used by Active MQ to store
the messages are deleted. The deletion and recreation affects the fragmentation of the
files which in turn can influence the disk utilization by a factor of three.

To answer the questions posed in the beginning, the training set is appropriate to
capture the performance of the system under study. Furthermore, the chosen statisti-
cal inferencing techniques were able to extract accurate performance models from the
training data. However, the interpolation for different message sizes might become in-
stable if the training data has a high variance. In the following, we discuss the benefits
and drawbacks of the approach for statistical model inferencing presented in this paper.



5 Discussion

The evaluation in the previous section demonstrates the prediction accuracy of perfor-
mance models inferred using the approach proposed in this paper. For such models, no
knowledge about the internals of the system under study is needed. In the case of Active
MQ 5.3, its internal I/O thread became the limiting factor in our experiments while no
physical resource was fully utilized. Modeling such behavior with queueing networks
is challenging and requires extended queueing networks such as Queueing Petri Nets.
The method for statistical inferencing proposed in this paper is based on functional de-
pendencies only and thus allows to capture such effects without drilling down into the
details of the middleware’s implementation. However, observations like for Active MQ
5.3 provide valuable feedback for middleware developers, but are of minor interest for
the application developers. They are mainly interested in how such internal bottlenecks
will influence the performance of the overall system.
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Fig. 6. Load dependent resource demand.

Load dependent resource demands are typically problematic in software perfor-
mance prediction. Figure 6 shows the resource demand of a single message delivery
for the network (in megabyte) and the CPU (in milliseconds). The data send over the
network per message stays constant, independent of the arrival rate. By contrast, the re-
source demand for the CPU increases by 44% from 0.45 ms to 0.65 ms. The additional
demand for processing time is caused by increasing I/O waits for a larger number of
messages. Reflecting such a behaviour in queueing networks requires advanced infer-
encing techniques. By contrast, it plays a minor role for statistically inferred models
proposed in this paper.

The drawback of such measurement-based models is the large amount of measure-
ments necessary for their derivation. To derive the performance model for Active MQ
5.3, we conducted 288 benchmark runs that lasted approximately 31 hours. In this sce-
nario, the measurements where fully automated and thus still feasible. However, as soon
as the number of parameters that can be varied increases, the number of measurements
needed increases rapidly. One approach to reduce the number of measurements is to add
mare assumptions about the data dependencies to the inferencing technique. For exam-



ple, given the exponential relationship of arrival rate and delivery time, only a very few
measurements may be sufficient to characterize the function. An extensive discussion
on the challenges of statistical inference for software performance models can be found
in [12].

6 Conclusions
In this paper, we proposed statistical inferencing of performance models based on mea-
surements only. Our approach focuses on the observable data and does not consider the
structure of the system. We applied our approach to model the performance of Active
MQ 5.3. The performance metrics considered include the delivery time of messages,
throughput, and utilization of different resources. We used MARS as well as genetic
optimization to infer their dependency on message size and arrival rates. The com-
parison of predictions and measurements demonstrated that the model can accurately
predict the performance outside the original training set.

The method allows software architects to create performance models for middle-
ware platforms without knowing or understanding all performance relevant internals.
The models remain on high level of abstraction but still provide enough information for
accurate performance analyses. Software architects can include a wide range of differ-
ent implementations for the same middleware standard in their performance prediction
without additional modeling effort. Having a simple means to include the performance
influence of complex software systems into prediction models is a further, important
step towards the application of software performance engineering in practice.

Based on the results presented in this paper, we plan the following steps. First, we
need to reduce the number of measurements necessary to create performance models.
This might be achieved by adding assumptions about the functional dependencies be-
tween input and output variables to the model. Furthermore, the results for one execu-
tion environment might be transferable to other environments with a significantly lower
number of measurements. Second, we plan to apply our approach to other middleware
platforms including common application servers. Finally, we will fully integrate the re-
sulting models into software performance engineering approaches (namely the Palladio
Component Model) to allow a direct usage of the models for the performance analysis
of enterprise applications.
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