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ABSTRACT
In software performance engineering, the infrastructure on
which an application is running plays a crucial role when pre-
dicting the performance of the application. Thus, to yield
accurate prediction results, performance-relevant properties
and behaviour of the infrastructure have to be integrated
into performance models. However, capturing these prop-
erties is a cumbersome and error-prone task, as it requires
carefully engineered measurements and experiments. Exist-
ing approaches for creating infrastructure performance mod-
els require manual coding of these experiments, or ignore
the detailed properties in the models. The contribution of
this paper is the Ginpex approach, which introduces goal-
oriented and model-based specification and generation of ex-
ecutable performance experiments for detecting and quanti-
fying performance-relevant infrastructure properties. Gin-
pex provides a metamodel for experiment specification and
comes with pre-defined experiment templates that provide
automated experiment execution on the target platform and
also automate the evaluation of the experiment results. We
evaluate Ginpex using two case studies, where experiments
are executed to detect the operating system scheduler time-
slice length, and to quantify the CPU virtualization over-
head for an application executed in a virtualized environ-
ment.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—Measurement techniques,Performance attributes;
D.2.8 [Software Engineering]: Metrics—Performance mea-
sures
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1. INTRODUCTION
The performance of a software system depends on the per-

formance of the underlying execution platform and on the
workload. The increasing complexity of execution platforms
(e.g. virtualized servers, load balancing or enhanced middle-
ware) makes it more difficult to understand performance of
software. At the same time, the existing execution platform
performance models are too simple and no longer suitable
for performance prediction [17]. Thus, when analyzing or
predicting the performance of a software system, the execu-
tion platform has to be taken into account in more detail.

In the last decades, Software Performance Engineering
(SPE [18]) supported software architects in analyzing the
performance of software systems at different stages of the
software lifecycle. Model-based SPE approaches, such as
the Palladio Component Model [4] allow to generate per-
formance models (e.g. queuing networks or Petri nets) of
software systems from existing architectural models (com-
ponents, behaviour specifications, etc.). Using such trans-
formational approaches leads to reduced efforts, and also
shields architects and developers from fine-grained mathe-
matical formalisms of conventional performance models.

Although there exists a large body of research on abstract-
ing performance models [2, 12], the task of instantiating
them and the quantification of concrete model attributes
values remains a manual, error-prone task. For modelling
the applications, some automation has been achieved using
machine learning and application instrumentation [13]. But
when modelling the execution platform, the quantification
of important attributes (such as operating system schedul-
ing properties or different hardware resource characteristics)
remains an open problem, since such attributes are mostly
not specified and depend on the execution platform.



To ease the burden of integrating performance-relevant
properties of the infrastructure environment into perfor-
mance analysis, we propose an approach that detects such
properties automatically through goal-oriented experiments,
i.e. experiments that aim at inferring infrastructure proper-
ties with pre-defined experiment analysis logic. These exper-
iments are executed on each relevant target platform. The
experiments issue certain load patterns on the platform, ob-
serve the effect of patterns on the system’s performance (re-
sponse time, throughput, and resource utilisation), and infer
properties based on the measured results.

In this paper, we present the Ginpex approach (Goal-
oriented INfrastructure Performance EXperiments), which
allows for specifying, executing and evaluating such goal-
oriented experiments. Ginpex can be used by performance
analysts to automatically derive performance-relevant in-
frastructure properties for performance predictions. For each
property, an experiment can be specified in the tool together
with analysis logic for evaluating the experiment results. De-
pending on the part of the infrastructure that is in the fo-
cus (e.g. operating system properties, hard disk or network
resources), Ginpex has been designed to provide a library
of experiments that can be selected for execution. Ginpex
already contains pre-defined experiments for various infras-
tructure properties, and is kept extendable in order to add
new experiments.

Ginpex can be used in model-based performance predic-
tion approaches during design time, but also at later stages
of the software lifecycle. For example, performance pre-
dictions can be conducted when parts of the infrastructure
change (e.g. a major upgrade of the operating system ker-
nel, migration of components to virtualized environments,
or replacement of hard disk devices). In this case, little
effort is necessary to re-run the experiments in order to de-
tect the updated infrastructure properties that are needed
for performance prediction.

In order to systematically set up new experiments, we de-
veloped a metamodel which is used for specifying the exper-
iments in detail. Metamodelling the experiments has several
advantages. First, a model-based approach provides an easy
and elegant way to specify experiment configurations. Ad-
ditional experiments and their specifications can easily be
added by adding metamodel instances. Furthermore, exist-
ing modelling frameworks come with extensive model sup-
port. Based on the modelling framework, we derived mod-
elling editors that can be used to display experiments in a
convenient way, and allow for easily creating new experi-
ments. The Ginpex framework also provides programmatic
access to the model, which can be used for automated gen-
eration of experiment descriptions, rather than GUI-based
DSL editing. By using a metamodel for the experiments, we
separated the specification of an experiment from its execu-
tion: the (often platform-specific) way of how an experiment
is executed and interpreted is not encoded in the model. In
addition, the implementation and the metamodel of Gin-
pex itself can be extended in a systematic way, since we
used established model-driven technologies and transforma-
tion languages.

The specified experiment model is transformed into exe-
cutable Java classes which can be run on any suitable plat-
form. The outcomes of the experiment runs are analysed by
Ginpex to derive the desired attribute value from the ex-
periment results. The goals can apply to various attributes

and resources, e.g. operating system scheduler properties,
virtualization platform properties, hard disks or network re-
sources.

The contributions of this paper are (i) automated deriva-
tion of performance-relevant execution platform attribute
values through the new Ginpex approach for goal-oriented
experiments, (ii) a metamodel for the systematic specifica-
tion of consistent Ginpex experiments, and (iii) reusable
experiment series for two different infrastructure properties
(detecting the operating system scheduler timeslice length,
as well as quantifying CPU virtualization overheads).

We evaluate the contributions of the paper by defining
experiments for detecting the timeslice length of operating
system schedulers and for quantifying the CPU virtualiza-
tion overhead of the Xen hypervisor. The validity of Gin-
pex results for the timeslice length is shown by comparing
them to the vendor-specified values (Ginpex itself had no
access to this information). The utility of Ginpex results
for the virtualization overhead is shown by predicting the
performance of an application based on the SPECjms2007
Benchmark: the prediction quality increases when Ginpex-
provided overheads are included into performance models.

The remainder of this paper is structured as follows: Sec. 2
outlines the Ginpex approach, while Sec. 3 describes the
core aspects of its implementation. Sec. 4 presents the eval-
uation using two case studies. Sec. 5 contrasts our approach
with related work, and Sec. 6 concludes.

2. APPROACH
In this section, we give an introduction to the overall ap-

proach covered by the Ginpex tool. The approach aims at
automatically deriving performance-relevant infrastructure
properties based on goal-oriented measurements. It can be
embedded into Software Performance Engineering (SPE) ap-
proaches to enhance model-based performance predictions.

An initial overview on the approach is given in Figure 1
and consists of the following steps: In the first step, a pro-
gram has to be deployed on the machine (or machines) on
which measurements are to be taken, which is called Load
Driver in the following. The Load Driver is used for issuing
load on the machine based on the experiment specification
and taking the measurements. Once the Load Driver is de-
ployed, experiments can be selected for execution. During
execution of an experiment, different patterns of CPU and
I/O load are issued by the Load Driver(s), and certain mea-
surements (e.g. response times or CPU utilization) are taken
for specific parts of the issued load. To derive performance-
relevant properties, the load patterns in the experiments
have to be designed in a way that the measured results allow
to infer infrastructure properties through statistical analy-
ses. In a third step, the measurement results serve as input
for an analysis to derive the performance-relevant proper-
ties.

Finally, the detected properties are integrated into the
performance prediction model. This can be done for exam-
ple by using a configuration model. In this case, the detected
properties would be passed to the prediction tool as a con-
figuration instance. Once the performance prediction tool
is configured based on the detected performance properties,
the software architect can conduct a performance prediction
that takes the experimentally derived infrastructure perfor-
mance properties into account. The Ginpex tool explicitly
covers the steps denoted by the grey boxes in Figure 1.
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Figure 1: Overall Workflow of the Approach

Figure 2 shows the approach within the tool framework.
The main part of Ginpex runs on the controller machine,
which is not part of the target platform on which measure-
ments are taken. Here, the user can either manually specify
experiments and evaluate the results, or select pre-defined
experiments which are then executed and evaluated auto-
matically.

We call the actual specification of an experiment a task
set. A task set specifies the control flow of the experiment,
the load that should be generated during the experiment,
and the sensors that indicate the parts where measurements
have to be taken. An experiment task set might be executed
on different machines, for example in order to examine pa-
rameters of a network connection between two machines. To
indicate which part of the experiment is being executed on
which machine, several machine task sets can be specified
in a task set.

The machine task sets of an experiment are being trans-
formed into executable code and transferred to the ma-
chine(s) for execution. The Ginpex tool ships with a Load
Driver that has to be run on the target machine(s). The
Load Driver executes the experiment code, manages the
measurements to be taken and transfers the measurement
results back to the controller machine. Upon experiment
completion, the controller machine stores the experiment
results. In the manual case, the user can inspect the ex-
periment results for further reasoning. In the automated
case, the pre-defined experiments contain logic for analysing
the experiment results. This logic derives the infrastructure
properties and exports them into a configuration model in-
stance that can be used in the performance prediction tool.

We are using Ginpex to detect infrastructure performance
properties that are used for performance prediction with the
Palladio Component Model (PCM) [4]. By using a config-
uration model to export the detected infrastructure prop-
erties, automated configuration of the PCM performance
analysis tooling is possible. To use a different performance
prediction tool, only the output format of the detected prop-
erties would have to be adapted.

The Ginpex tool can be downloaded from the web [6].

3. MODEL-BASED EXPERIMENT DEFINI-
TION AND EXECUTION

In the following, we explain the approach in more detail.
We give an overview on the metamodel which we developed
for experiment and task specification in Ginpex and explain
how experiments are executed.

3.1 Experiment Library and Experiment Do-
mains

Ginpex provides pre-defined experiments together with
evaluation logic for the results of these experiments.

Every experiment aims at deriving one characteristic of an
infrastructure property. This property is called the detected
parameter of the experiment. In some cases, an experiment
might need additional parameters as input configuration. If
an input parameter is known to the user, he can specify the
parameter prior to the experiment execution. Otherwise, if
a pre-defined experiment is available that detects this pa-
rameter, this experiment is executed before the selected ex-
periment is being executed. Note that Ginpex requires the
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Figure 3: Ginpex Experiments Metamodel

specification of a partial order on parameters, i.e. there must
not be a cycle in depending parameters.

As Ginpex can be applied to various parts of the infras-
tructure, pre-defined experiments are grouped in experiment
domains. An experiment domain specifies a certain part of
the infrastructure whose properties are to be detected. For
example, certain performance predictions may be conducted
which only focus on the hard disk performance of an applica-
tion and are only interested in reflecting hard disk properties
(such as disk cache performance impact). In this case, the
prediction abstracts from properties of other parts of the in-
frastructure, and thus, only experiments for the experiment
domain of hard disks are of interest. Other experiment do-
mains include network properties, OS scheduling properties,
and virtualization properties. For automated experiments,
the user can either select a complete experiment domain,
or a subset of experiments for an experiment domain for
execution.

The structuring of experiments within the Ginpex meta-
model is shown in Figure 3.

3.2 Experiment Specification
Pre-defined experiments as well as manually defined ex-

periments share the same metamodel structure specifying
the experiment task set. An exemplary task set and its GUI
visualization can be found in Section 4.1 (see Figure 6). In
the following, this part of the metamodel is described in
more detail.

Figure 4 shows the Ginpex task set metamodel, Figure 6
shows the GUI support for specifying a task set and its con-
tents. The central element of the experiment specification
is the TaskSet. A TaskSet is made up of three different
parts: (i) a specification of target machines on which the
experiment is to be executed, (ii) the tasks that have to be
executed, and (iii) sensors that indicate which measurements
have to be taken for which tasks.

All executable tasks inherit from AbstractTask and are
presented in more detail below. Sensors reference the task
for which measurements have to be taken. Currently, two
different types of sensors are supported. A ResponseTime-

Sensormeasures the time a task needs for execution, a CpuU-
tilizationSensor measures the overall CPU utilization of
the machine while the task is being executed. Both types of
sensors can be specified for any kind of task.

An overview on all executable tasks is given in Figure 5.
For more detailed information, please refer to the Ginpex
metamodel documentation at [6]. Executable tasks fall into
two groups. The first group consists of tasks that spec-

ify the control flow of the experiment. Control flow tasks
contain nested tasks that are to be executed in a certain
way. A SequenceTask executes all included task one after
another, while a ParallelTask executes all included tasks
concurrently. Additionally, for a ParallelTask the attribute
stopAfterFirstTaskCompleted indicates whether the Par-

allelTask should abort nested tasks once the first nested
task has completed. ParallelProcessTask inherits from
ParallelTask. In contrast to ParallelTask, which uses
threads for parallel execution of tasks, a ParallelProcess-

Task forks child processes for parallel execution. A Loop-

Task executed a nested task multiple times. The stop con-
dition of a LoopTask can be modelled with different ele-
ments that inherit from the abstract StopCondition element
(not shown in the figure). Such elements allow for example
specifying loops that run a specific number of iterations, or
endless loops. Finally, a MachineTaskSet denotes another
type of task which contains tasks that are to be executed
on a certain target machine. By modelling task sets con-
taining multiple MachineTaskSets which reference different
MachineReferences, the experiment execution can be dis-
tributed to different target machines. Note that only tasks
that are modelled within a MachineTaskSet are actually ex-
ecuted on a target machine. All other tasks are executed on
the controller machine.

Apart from control flow tasks, machine tasks denote the
actions that are to be executed during the experiment. Such
tasks have to be nested inside a MachineTaskSet, and thus,
can only be executed on target machines. Currently, such
tasks include the generation of certain types of load on the
target platform. For example, a CpuLoadTask can be spec-
ified to put different types of CPU load on the platform.
A NetworkLoadTask creates network load that is sent to a
different target machine (referenced through the receiving-
Machine association).

Further specification details, such as model attributes, are
omitted from the figures for the sake of brevity. However, we
explain the CpuLoadTask model element and its attributes
in more detail in the following.

The CpuLoadTask allows for generating CPU load exe-
cuted in a single thread. It contains two different attributes
for specification: The amount of demand specified by the
duration attribute, and the type of demand specified by the
demand attribute. The type of demand can be chosen out
of MandelbrotDemand, FibonacciDemand, SortArrayDemand,
and WaitDemand. MandelbrotDemand and FibonacciDemand

generate load that puts more stress on the CPU than on the
memory. In contrast, SortArrayDemand issues load perform-
ing sorting logic that strongly affects memory. WaitDemand

does not directly issue CPU load, but waits for the specified
duration, and thus can be seen as an “empty demand” type.

The specified duration denotes the time in milliseconds
that the demand would take to execute on the target ma-
chine on a single core without contention. This is achieved
by calibrating resource demand measurements on the plat-
form prior to experiments execution. This calibration deter-
mines input parameters for the load generation algorithms to
match the specified duration times. The detailed approach
is explained in [3].

3.3 Experiment Execution
To execute an experiment, we decided to generate exe-

cutable code based on the MachineTaskSets instead of in-
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Figure 4: Ginpex Task Set Metamodel

terpreting the models in order to keep the overhead of per-
forming measurements low. For each MachineTaskSet, Java
code is being generated that conforms to the specified tasks
inside the MachineTaskSet. The generated code includes for
each task the task logic to be executed, as well as sensor logic
(i.e. response time and/or CPU utilization measurements),
if sensors had been specified for the tasks.

The generated code is being transferred to the Load Driver
running on the machine references by the MachineTaskSet.
The Load Driver then compiles the code and runs the initial
preparation part of the experiment. This part includes the
result objects initialization, as well as different checks (for
example if needed network connections are working etc.).

For CpuLoadTasks, the preparation phase also includes the
calibration step explained above. As calibration might take
some time, the calibration results are stored in calibration
files which are then used in later runs. Ginpex also supports
executing CpuLoadTasks on a machine while using calibra-
tion files from a different machine. Through this, the ex-
act same amount of load can be put on different machines.

For example, if specifying CpuLoadTasks with 50 ms on two
different machines, a 1 GHz CPU machine and a 2 GHz
CPU machine, the tasks should take around 50 ms on both
machines if the calibration files are generated individually
on each machine. If the calibration file from the 1 GHz
CPU machine is reused for executing the task on the 2 GHz
CPU machine, the task should run in around 25 ms on this
machine. Sharing calibration files across machines is useful
for detecting machine speedups compared to reference ma-
chines. We used this approach in the virtualization overhead
case study in Section 4.2.

After the code for all MachineTaskSets has been generated
and prepared, the experiment is being executed. Depend-
ing on the specified experiment control flow, the controller
machine asks the Load Drivers to execute the correspond-
ing MachineTaskSets. Once the overall experiment control
flow is completed, each Load Driver reports all measurement
results for the executed MachineTaskSets to the controller
machine.
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Figure 5: Ginpex Tasks Metamodel



3.4 Results Analysis
After experiment completion, the measured results are

available to the controller machine and can be visualized to
the user. If the evaluation logic is available (as it is the case
for pre-defined experiments), the evaluation phase directly
follows the experiment execution.

In this step, the experiment results are analyzed in or-
der to derive performance properties for later performance
predictions. Ginpex provides access to statistical libraries,
for example the R statistical computing engine, which facil-
itates enhancing Ginpex with additional experiment analy-
sis logic. More details on Ginpex extendability are given in
Section 3.5.

The output format of the detected parameters depends
on the scenario in which Ginpex is used. In our work, we
use Ginpex in the scope of model-based performance pre-
diction with the Palladio Component Model (PCM) [4]. To
integrate infrastructure properties into performance predic-
tion, Ginpex stores the detected properties in a configura-
tion model that can be used by the PCM for performance
prediction. However, the Ginpex is not linked to a specific
performance prediction approach, but can also be enhanced
to export output parameters in a different format.

3.5 Ginpex Extendability
TheGinpex tool has been designed to be extendable w.r.t.

(i) experiment domains, (ii) experiments, and (iii) experi-
ment tasks. Ginpex is integrated into the Eclipse IDE plat-
form and makes use of the Eclipse OSGi architecture [20].
For experiment domains and experiments, Eclipse extension
points have been defined, i.e. new experiment domains and
experiments can be added by specifying the corresponding
Eclipse extensions. Ginpex provides an API that indicates
the methods that have to be implemented by new experi-
ments. Such methods include the specification of the input
and output parameters, the generation of the experiment
model, and the analysis logic of the experiment results.

Adding a new experiment specification and the corres-
ponding analysis logic certainly requires detailed domain
knowledge. The experiment has to be defined in a way to de-
tect infrastructure properties without being tailored towards
a certain platform, as the experiment should be applicable
to a variety of platforms. For example, specifying an ex-
periment that detects the throughput of write requests to a
storage device should be applicable to platforms equipped
with hard disks as well as solid state disks. As Ginpex
also can be used to perform experiments manually, it sup-
ports the developer in performing explorative measurements
which precede the definition of new experiments and exper-
iment analyses.

Enhancing experiment tasks can be done by using es-
tablished model-driven technologies included in the Eclipse
platform. The experiment metamodel is specified in Ecore.
Using the Eclipse Modeling Framework, developers can add
new tasks to the metamodel. In order to support new tasks
in experiment execution on the Load Driver, code genera-
tion templates have to be enhanced with Java code which is
to be generated for the added task. For adding a new task,
four templates are available for specifying Java code to be
generated:

• The VariablesDeclaration template contains all vari-
able definition that the task accesses.

• The TaskPreparation template contains preparation
logic. This logic is called prior to the task execution
in the preparation phase.

• The TaskExecution template contains the actual exe-
cution logic. This logic is called in the execution phase.

• The TaskCleanup template contains cleanup logic
which is called after the experiment has been executed.

The templates are specified using the Xpand language of
the Eclipse Model-To-Text (M2T) framework [21]. In ad-
dition, we plan to extend Ginpex so that existing Java li-
braries can be easily incorporated into experiments, without
the need to enhance or change the meta-model or the code
generation templates.

4. CASE STUDY
In the following we present the results of two case studies

in which we applied Ginpex in order to detect performance-
relevant properties. We chose two different domains for the
case studies to demonstrate that Ginpex is not restricted to
a certain domain of the infrastructure a software is running
on. The first case study focusses on detecting the timeslice
length property of the operating system scheduler and gives
an example for an experiment model instance. In the second
case study, Ginpex was used to predict the performance
impact of CPU virtualization overheads when migrating a
software system to a virtualized environment.

4.1 OS Scheduler Timeslice Length
Detecting the time slice length of operating system sched-

ulers is part of the experiment domain “OS scheduling” that
is included in Ginpex. The timeslice of an OS scheduler
is the amount of time that the scheduler allows a task to
work on the CPU without interruptions when there is con-
tention on the CPU. In the “OS scheduling” domain, addi-
tional experiments have been defined that aim at detecting
load-balancing properties of the OS scheduler. These exper-
iments are available as pre-defined experiments in Ginpex.
Detailed experiment descriptions, experiment results and its
impact on performance prediction results can be found in [8].

Reflecting scheduler timeslices in performance prediction
is crucial, as especially for short requests, abstracting from
the timeslice can lead to imprecise predictions. The results
gained in [8] actually suffer from neglecting the timeslice
length in a performance prediction simulation.

The experiment described in the following is pre-defined
in Ginpex and can thus be used out-of-the-box in order
to detect the timeslice length on an arbitrary platform. The
experiment for detecting the timeslice length depends on one
input parameter, which denotes the number of CPU cores
that is available on the target machine. While Ginpex also
provides an experiment to detect the number of cores, this
property often is known to the user and can be specified
prior to the experiment run.

The experiment for detecting the timeslice length is de-
fined as follows: In parallel running processes, CPU load is
issued on the machine. The number of parallel processes
is twice as high as the number of available cores, so that
every parallel task issuing CPU load is assumed to share a
core with another task. One of the tasks repeatedly issues
small amounts of CPU load, i.e. 20 ms CPU load. Between
the demands, response time measurements are taken. For



Figure 6: Task Set for Detecting the OS Timeslice
Length on a Dual-core Machine

this experiment, we assume that the actual timeslice length
is larger than 20 ms in order to yield measurements that
can be used for analysis. However, given the fact that all
common operating systems use average timeslice lengths be-
tween 30 ms and 500 ms, we believe this is a valid assump-
tion.

The remaining tasks also continuously issue CPU demands
in order to put load on the CPUs. On these tasks, no mea-
surements are taken, thus, only measurement results for the
first task are regarded. The experiment assumes that the
measured task results fall into two clusters. One portion of
results is expected to be approximately around 20 ms, i.e.
the scheduler put the executed demand into one timeslice.
The remaining results are expected to be a lot higher than
20 ms. In this case, the scheduler has interrupted the exe-
cuted demand and put the parallel running task on the CPU.
As all tasks are running with the same priority, we assume
that the task has been interrupted for exactly one timeslice.
The measured result in this case includes the execution of
the 20 ms demand, in addition to the interruption time of
one timeslice. The difference between the average measured
time of the first cluster and the average measured time of
the second cluster can be interpreted as the timeslice length.
Ginpex uses a clustering algorithm [9] for this experiment,
which is a derivation of the k-means clustering method.

We executed the experiment on a dual-core machine1 on
three different operating system environments (WindowsXP,
Ubuntu Linux kernel 2.6.22, Fedora 12 Linux kernel 2.6.31),
whose scheduler implementation differs in the timeslice
length. Figure 6 shows a screenshot of the experiment edi-
tor displaying the generated task set for the experiment. As
the experiment is executed on a dual-core machine, in total
4 parallel nested tasks have been created. The bars around
the first CPU Load Task indicate that response time sensors
have been defined for this task.

Figure 7 shows the experiment results on the three sys-
tems. For each system, the results of the measured tasks are

1Intel Core 2 Duo, 2.66 GHz, 3 GB RAM

shown as cumulative distribution function (CDF). For each
result, the two clusters are clearly visible. The difference in
the average results in each cluster yields a calculated times-
lice of 31 ms for Windows XP, 100 ms for Linux 2.6.22, and
50 ms for Linux 2.6.31.

According to the OS scheduling documentation [16, 1, 15],
the actual average scheduler timeslice length is 31.5 ms for
Windows XP, 100 ms for Linux 2.6.22, and 50 ms for Linux
2.6.31. Thus, the detected timeslice length matches the ac-
tual length accurately. We are aware that in certain operat-
ing systems, the timeslice length is being adjusted dynam-
ically depending on the priority of processes. The priority
management of OS processes has to be reflected in further
experiments which are subject to future work.

4.2 Virtualization Overhead
In a second case study, we applied Ginpex to a supply

chain management (SCM) system for supermarkets based
on the SPECjms2007 Benchmark scenario described in [19].
The focus of this case study lies on detecting CPU overheads
that occur when executing software in a virtualized environ-
ment. In the SCM system, we concentrate on three request
types that occur in the system, static web page requests,
online monitoring requests, and business intelligence report
requests. We assume a user workload with an arrival rate of
500 requests per minute. Details on the workload mix are
given in Table 1.

Table 1: Workload of the SCM Case Study
Request Type Mean Service Time Relative Frequency

Web Page 20 ms 85%
Monitoring 250 ms 10%
Reporting 2000 ms 5%

In the original setting, the case study is deployed on a sin-
gle quad-core server2 runningWindows 7. Prediction models
already exist that match the system with sufficient accuracy
(see Table 2).

Table 2: Initial Prediction and Measurement Re-
sults for the SCM Case Study

Average Average
Measured Predicted

Web Page Response Time 21 ms 20 ms
Monitoring Response Time 264 ms 251 ms
Reporting Response Time 2050 ms 2013 ms

Server Utilization 31.6% 29.7%

In a different setting, the SCM system is to be migrated
to a distributed system, using virtualized servers. While the
component that deals with the web page requests should
remain on the native quad-core server, the Monitoring and
Reporting components are to be migrated to separate virtu-
alized servers. The new system consists of two native quad-
core servers with the same hardware equipment as the server
in the original setting. The first server runs Windows 7 and
only hosts the Web Page component. The second server
runs a virtualization hypervisor (XenServer 5.6) with two
virtual machines. The first virtual machine runs Windows 7
and hosts the Monitoring component. The second virtual

2Intel Core i7-860, 2.80 GHz, 8 GB RAM
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Figure 7: Timeslice Experiment Results on a Dual-core System with Windows XP, Linux 2.6.22, and Linux
2.6.31

machine runs Fedora 12 Linux (kernel 2.6.31) and hosts the
Reporting component. Both virtual machines have been as-
signed two CPU cores and 2 GB RAM. No further virtu-
alization adjustments, such as virtual CPU priorities, core
pinning, or dynamic RAM adjustments, have been set.

The experiment for detecting virtualization overhead is
structured as follows. The experiment consists of two parts,
which are executed one after another (thus, the root task
of the experiment is a SequenceTask). In the first part,
a MachineTaskSet executes tasks on a non-virtualized ma-
chine which forms the base for the later virtualization over-
head measurements. In the case study, this machine is the
quad-core server on which all components are running in the
original setting. Currently, the experiment first executes a
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Figure 8: Results of the Virtualization Overhead
Experiment

CpuLoadTask multiple times without additional load on the
machine. This task issues CPU demands with a duration of
500 ms and measures the duration time. In the second part,
another MachineTaskSet executes tasks on the virtualized
machine. It executes the same tasks as before. In order to
put the same amount of load on the machine, this Machine-
TaskSet is modelled to use the calibration files from the
non-virtualized machine for the CpuLoadTasks, as explained
in Section 3.3.

Figure 8 shows the response times for the three executed
CpuLoadTasks. The response times of the task executed in
a virtual machine are lower than the response times mea-
sured on the non-virtualized machine. From the results, a
virtualization overhead of 1.3% can be calculated for virtual
machine 1 and 6.7% for virtual machine 2. The different
overhead results can be explained by the different guest op-
erating systems that are used in the virtual machines.

Based on the results, the virtualization overheads have
been integrated into the performance prediction models for
the case study. The modelled infrastructure of the case
study has been adapted in order to reflect the new target en-
vironment. The Monitoring and Reporting machines have
been deployed on the virtual servers. In the performance
analysis, the calculated overheads are taken into account
by adding the overhead on every demand that occurs by a
component deployed on the virtual machine.

Finally, we conducted a performance prediction with the
adapted performance models and compared the predicted
results with measurements taken from the case study com-
ponents in the distributed setting.

Table 3 lists the measured and predicted average compo-
nent response times and server CPU utilizations for the dis-
tributed case study scenario. In the last column, we depicted
the prediction results for the prediction without taking into
account the detected overheads. For all prediction, the re-
spective prediction error is shown in brackets. The results
show that prediction accuracy can be enhanced by taking
into account virtualization overheads. Especially for virtual
machines that incur a higher overhead, the prediction error
is considerably lower.



Table 3: Prediction and Measurement Results for the SCM Case Study in the Distributed Setting. In
Brackets: Deviation Percentage between Prediction and Measurement

Average Average Average
Measured Predicted Predicted

w/o Overheads
Web Page Response Time 20.02 ms 20 ms (0%) 20 ms (0%)

(Non-virtualized)
Monitoring Response Time 272 ms 253 ms (7.0%) 250 ms (8.1%)

(Virtual Machine 1)
Reporting Response Time 2616 ms 2541 ms (2.9%) 2314 ms (11.5%)

(Virtual Machine 2)
Non-virtualized Server Utilization 3.34% 3.5% (4.7%) 3.5% (4.7%)

Virtual Machine 1 Utilization 12.33% 10.1% (18.1%) 9.1% (26.2%)
Virtual Machine 2 Utilization 48.8% 48% (1.7%) 42.3% (13.3%)

Note that this case study only features rudimentary ex-
periments on virtualization overhead in order to show the
applicability of Ginpex and the variety of possible experi-
ments. More experiments are necessary in order to detect a
fine-grained model of the virtualization platform that cover
different virtualization properties, such as the performance
in scenarios with higher load, as well as the performance
impact of I/O access within a virtual machine. Research on
such experiments is left to future work.

5. RELATED WORK
In this section, we summarize related work deriving per-

formance-relevant infrastructure properties through auto-
mated measurements and analysis.

Cherkasova and Gardner [5] use measurements to detect
I/O overhead that occurs for the Xen virtualization plat-
form. They propose a measuring and monitoring framework,
but the approach is only applicable to the Xen hypervisor.
Wood et al. [24] use microbenchmarks to estimate perfor-
mance overheads that occur when migrating an application
to a virtualized environment. They regard different kinds
of virtualization overhead, but only focus on analyzing re-
source requirements, not on changes of response times. Io-
sup et al. [10] aim at measuring performance properties of
cloud computing platforms. This approach focuses on cloud
computing services for scientific computing. However, the
measurement results are not used for integration into anal-
ysis tools, e.g. for performance prediction.

Happe et al. [7] developed a performance completion for
message-oriented middleware to include low level platform
details into performance prediction. The approach does not
aim at enhancing the analysis tools, but focusses on extend-
ing a software architecture model by integrating a perfor-
mance completion provided by a completion library.

Liu et al. [14] aim at predicting the performance of soft-
ware running on a middleware platform. Performance-rele-
vant properties of a Java EE platform are derived based on
measurements, but underlying effects, such as hardware con-
tention or operating system scheduling, are included in the
benchmark results and not analyzed. Hence, the underlying
platform cannot be decoupled from the middleware model.
Additionally, the approach lacks tool support. In [25, 26],
Zhu et al. extend the approach by a model-driven bench-
mark generation tool. The authors focus on benchmarks
that are generated based on a software architecture descrip-

tion, whereas our approach employs model-driven load gen-
eration of infrastructure experiments agnostic to the soft-
ware system under prediction.

Frameworks that do not focus on a specific part of the in-
frastructure include the ones presented by Kalibera et al. [11]
and Tsouloupas and Dikaiakos [22]. These frameworks facil-
itate the automation of benchmark execution in distributed
environments or grid environments, but do not cover auto-
mated evaluation of measurement results.

Another generic framework to conduct performance anal-
yses is presented in [23]. This framework allows adding
adapters to benchmark, monitor, and analyze the perfor-
mance of a system. However, it is designed for automated
measurement of whole (software) systems and does not focus
on fine-grained analysis of infrastructure properties.

6. CONCLUSIONS
In this paper, we presented the Ginpex approach and tool

for detecting performance-relevant infrastructure properties
based on goal-oriented experiments. The experiments issue
certain load patterns on the target platform and measure
performance metrics for certain parts of the issued load. Af-
terwards, the measurement results are evaluated in order to
derive properties that are not directly measurable.

Ginpex features a metamodel for modelling experiments
and experiment task sets, which specify the actual execu-
tion logic of the experiment. Ginpex allows for storing pre-
defined experiments together with experiment analysis logic
that can be executed automatically on the target platform.
We illustrated the applicability of Ginpex in two different
case studies, focussing on the detection of operating sys-
tem scheduler timeslice length and CPU overhead in virtu-
alized environments. Ginpex can be downloaded from the
web, where more documentation about the approach and
the Ginpex metamodel is also available [6].

For future work, we plan to extend the pre-defined exper-
iments and enhance Ginpex with further experiment sce-
narios. We want to add more pre-defined experiments to
Ginpex so that Ginpex can also serve as an open platform
for a large community to collect a variety of pre-defined ex-
periments.

We are currently working on defining experiments for de-
tecting hard disk properties and network connection prop-
erties in order to enhance software performance prediction
with more accurate hard disk and network resource models.



Besides, we plan to further enhance experiments for virtu-
alized environments to include further performance-relevant
properties of virtualization platforms into performance pre-
diction models, such as hypervisor scheduling properties or
I/O access overhead. Based on the results gained in the
conducted case studies, we believe that Ginpex provides a
proper fundament for future research.
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